• Non ci sono risultati.

43

Figura 1

È illustrato il rapporto fra forza muscolare (misurata con grip test) e l’avanzare dell’età. Per evitare di raggiungere stati di sarcopenia e/o di disabilità con scarse performance fisiche risulta essenziale elevare il picco nella giovane età, mantenere la forza nell’età adulta e ridurre la perdita nella vecchiaia.

44

Figura 2

La figura illustra i sottogruppi della sarcopenia e categorizzati come forma primaria (aging) e secondarie (disease, inactivity, malnutrition). Numerosi fattori hanno un ruolo importante in ciascuna categoria, per cui l’interazione di questi, anche con piccoli aggiustamenti, può determinare una variazione importante della quantità e qualità di muscolo.

45

Figura 3

Il questionario SARC-F attualmente utilizzato come principale strumento di approccio alla sarcopenia.

46

Figura 4

L’algoritmo diagnostico EWGSOP2 per identificare i casi di sarcopenia. L’acronimo FACS (find, assess, confirm, severity) descrive gli step progressivi per la definizione della patologia, in un continuum diagnostico che parte dal questionario SARC-F (o dalla clinica), passando per la valutazione della forza muscolare, quindi valutazione di qualità/quantità muscolare e delle performance fisiche per valutare il grado di disabilità.

47

Figura 5

Incidenza di recidiva post-chirurgica di metastasi epatiche di carcinoma colorettale in funzione della sarcopenia97.

48

Figura 6

Sopravvivenza attuariale post-resezione chirurgica in funzione della sarcopenia in pazienti affetti da metastasi epatiche di carcinoma colorettale97.

49

Figura 7

La figura illustra come sono ottenuti i valori di densità media e di L3 index. Arrivati a livello di L3, nel momento in cui sia possibile vedere entrambi i processi trasversi, viene manualmente posto un confine (in giallo) e si evidenzia in rosso la zona muscolare interessata. Il software restituisce quindi valori di area (cm3) e densità media della selezione (HU).

50

Figura 8

51

Figura 9

52

Figura 10

53

Figura 11

È illustrata la dispersione della variabile altezza misurata in MT all’interno della popolazione.

54

Figura 12

È illustrata la dispersione dell’indice di massa corporea (BMI) (peso/altezza2)

55

Figura 13

È illustrata la distribuzione del valore di L3 totale e L3 index all’interno della popolazione.

56

Figura 14

È possibile osservare la distribuzione del valore di HU medio della scansione all’interno della popolazione.

57

Figura 15

Sopravvivenza attuariale globale (OS), libera da recidiva neoplastica (RFS) e libera da malattia (DFS) della popolazione oggetto di studio.

%

a

n

n

i

%

58 Tabella 1 CRITERI Anno, Paese Estensione campione

Contenuto dei criteri Sopravvivenza

a 5 anni

UCSF 2001,

America

70 DDLT Un nodulo ≤ 6,5cm;

≤ 3 noduli con diametro maggiore ≤4,5cm e somma dei diametri ≤8cm

OS: 75,2% RFS: -

UP-TO-7 2009, Italia 1404 DDLT 121 LDLT

La somma fra il numero delle nodularità il diametro maggiore deve essere ≤7

OS: 71,2%

Tokyo 2007,

Giappone

78 LDLT Un massimo di 5 nodularità con diametro massimo di 5cm

OS: 75% RFS (3y): 94%

Hangzhou 2008, Cina 195 DDLT Diametro massimo ≤8cm, se ≥8cm GI/GII e AFP ≤ 400ng/mL OS: 78,3%. RFS: 62,4%. Kyushu 2007, Giappone Diametro massimo ≤5cm e DCP ≤ 300 mAU/mL OS: 82,7%. Kyoto 2007, Giappone

125 DDLT ≤ 10 noduli, diametro massimo ≤ 5cm, DCP ≤ 400 mAU/mL

OS: 86,7%.

Shanghai 2009, Cina 1074 DDLT 4 LDLT

Una nodularità ≤ 9cm, ≤ 3

nodularità con diametro maggiore ≤ 5cm, assenza di invasione macrovascolare e linfonodale OS: 78,1%. RFS: 52,6%. Toso et Al. 2009, Svizzera

6478 LT TTV ≤ 115cm3, AFP ≤ 400ng/mL Outside criteria OS

≤ 50%.

Toronto 2016,

Canada

294 LT Tumore indifferenziato fuori dai MC purchè in assenza di: MTS extraepatiche Trombosi VP

Perdita di peso >4,5kg in 3 mesi Severo decadimento del performance status

OS: 94% 1y, 76% 3y, 69% 5y.

59

Tabella 2

Test Valore di cutoff per uomini Valore di cutoff per donne

Grip strength <27kg <16kg

Chair stand >15 secondi per 5 alzate >15 secondi per 5 alzate

ASM <20kg <15kg

ASM/altezza2 <7kg/m2 <5,5kg/m2

Gait Speed ≤0,8 m/s ≤0,8m/s

SPPB <8 point score <8 Point Score

TUG >20secondi >20secondi

400 m walk test

Non completato o ≥ 6 minuti Non completato o ≥ 6 minuti

Cutoff elaborati dal gruppo EWGSOP2 per i test di valutazione della performance fisica. Valori inferiori sono suggestivi di sarcopenia.

60

Tabella 3

GRADO Definizione Terapia necessaria

Grado I Ogni deviazione dal

normale decorso post- operatorio.

Non si rende necessario intervento

farmacologico, chirurgico, endoscopico o radiologico. Vengono considerati farmaci antiemetici, antipiretici, analgesici, diuretici, somministrazione di elettroliti e fisioterapia. Infezioni delle ferite o piccoli ascessi vi rientrano

Grado II Alterazioni del normale

corso.

Necessario intervento farmacologico non incluso nel grado I. Comprese anche le trasfusioni e la nutrizione parenterale

Grado III Alterazioni che

necessitano interventi.

Nel grado IIIA sono necessari interventi fatti sotto anestesia locale, nel grado IIIB invece sotto anestesia epidurale o generale

Grado IV Alterazioni che mettono a

rischio la vita del paziente e necessitano di supporto UTI

Grado IVA include singole alterazioni d’organo mentre il IVB include condizioni di insufficienza multiorgano

Grado V Morte del paziente

Classificazione delle complicanze post-operatorie chirurgiche secondo Clavien- Dindo.

61

Tabella 4

Variabile Popolazione = 98 pazienti

Maschi, n (%) 84 (85,7)

Età, media (DS) (anni) 57,1 (6,6)

Peso, media (DS) (kg) 71 (10,6) Altezza, media (DS) (m) 1,7 (0,07) BMI, media (DS) (k/m2) Normopeso (18,5; <25), n (%) Sovrappeso (25; <30), n (%) Obeso lieve (30; <35), n (%) 25,6 (2,6) 41 (41,8) 51 (52,0) 6 (6,1) Sarcopenia*, n (%) 40 (40,8) Fumatori, n (%) 71 (72,4) Co-morbilità cardiovascolari, n (%) 14 (14,3) Co-morbilità polmonari, n (%) 16 (16,3) Diabete mellito, n (%) 23 (23,5) Cause dell’epatopatia, n (%) Infezione HCV, n (%) Infezione HBV, n (%) Alcol, n (%) NASH/NAFLD, n (%)

Colangite biliare primitiva, n (%) Altro, n (%) 38 (38,8) 17 (17,3) 19 (19,4) 11 (11,2) 4 (4,1) 9 (9,2) Complicanze dell’epatopatia Varici esofagee, n (%) Ascite, n (%) Encefalopatia epatica 52 (53,1) 24 (24,5) 5 (5,1) Stadio Child-Pugh A, n (%) B, n (%) C, n (%) 51 (52,0) 35 (35,7) 12 (12,2) MELD, media (DS) 15,2 (1,3)

62 Caratteristiche della neoplasia**

Noduli per paziente, media (DS) Diametro massimo, media (DS) (mm) AFP, media (ng/mL) 2,9 (2,1) 40 (16,0) 60,5 (152,3) Donatore deceduto, n (%) 98 (100) Graft intero, n (%) 98 (100)

NOTE: BMI: body mass index (kg/m2); MELD: model for end-stage liver disease; *sulla base del L3

index; **valutazione radiologica pre-trapianto.

63

Tabella 5

Variabile Popolazione = 98 pazienti

Score L3 totale, media (DS) 154,6 (26,8)

L3 index, media (DS) 51,7 (7,9)

HU, media (DS) 41,1 (6,9)

Sarcopenia (in base a L3 index), n (%)

L3 index pazienti sarcopenici, media (DS)

L3 index pazienti non sarcopenici, media (DS)

40 (40,1) 45,2 (5,9)

56,1 (5,9) p = 0,0385

64

Tabella 6

Variabile Popolazione = 98 pazienti

Noduli per paziente, media (DS) 2,9 (2,1)

Diametro massimo, media (DS) (mm) 39,2 (15,8)

Grading Ben differenziato, n (%) Moderatamente indifferenziato, n (%) Scarsamente indifferenziato, n (%) Indifferenziato, n (%) Non disponibile, n (%) 7 (7,1) 48 (48,9) 22 (22,4) 11 (11,2) 10 (10,2) Invasione microvascolare, n (%) 45 (45,9) Milano in, n (%) 17 (17,3)

65

Tabella 7

Variabile Popolazione = 98 pazienti

Decessi, n (%) Recidiva HCC, n (%) Recidiva HCV, n (%) ITBL, n (%) Sepsi, n (%) 16 (16,3) 11 (11,2) 3 (3,1) 1 (1,0 1 (1.0) Recidiva HCC, n (%) 12 (12,2) Recidiva HCV, n (%) 12 (12,2) ITBL, n (%) 4 (4,1)

NOTE: HCC, carcinoma epatocellulare; HCV, virus epatite C; ITBL, colangiopatia ischemica post- trapianto.

66

Tabella 8

Variabile indipendente Variabile dipendente

Rischio di mortalità

Età del donatore P=0.042

AFP pre-trapianto P<0.0001

HCV+ P=0.037

Milan out istologico P=0.041

Rischio di recidiva HCC

AFP pre-trapianto P<0.0001

Milan out istologico P=0.039

Rischio composito di mortalità, recidiva HCC e patologia del graft

Età del donatore P=0.024

AFP pre-trapianto P<0.0001

HCV+ P=0.031

Milan out istologico P=0.041

MELD al trapianto P=0.038

Analisi univariata del rischio di mortalità, di recidiva di HCC e del rischio composito di mortalità, recidiva di HCC e patologia del graft.

67

Tabella 9

Variabile indipendente Variabile dipendente

Rischio di mortalità

AFP pre-trapianto P<0.0001

Rischio di recidiva HCC

AFP pre-trapianto P<0.0001

Rischio composito di mortalità, recidiva HCC e patologia del graft

AFP pre-trapianto P<0.0001

Età del donatore P=0.032

HCV+ P=0.025

Analisi multivariata del rischio di mortalità, di recidiva di HCC e del rischio composito di mortalità, recidiva di HCC e patologia del graft.

68

BIBLIOGRAFIA

1. Santopaolo F, Lenci I, Milana M, Manzia TM, Baiocchi L. Liver transplantation for hepatocellular carcinoma: Where do we stand? World journal of

gastroenterology 2019; 25(21): 2591-602.

2. Mazzanti R, Arena U, Tassi R. Hepatocellular carcinoma: Where are we?

World journal of experimental medicine 2016; 6(1): 21-36.

3. Strassburg CP. HCC-Associated Liver Transplantation - Where Are the Limits and What Are the New Regulations? Visceral medicine 2016; 32(4): 263-71. 4. Schielke A, Meurisse N, Lamproye A, et al. Selection criteria for liver transplantation in patients with hepatocellular carcinoma. Eastern and western experiences, and perspectives for the future. Acta gastro-enterologica Belgica 2019;

82(2): 314-8.

5. Adam R, Karam V, Delvart V, et al. Evolution of indications and results of liver transplantation in Europe. A report from the European Liver Transplant Registry (ELTR). Journal of hepatology 2012; 57(3): 675-88.

6. Mancuso A, Perricone G. Hepatocellular Carcinoma and Liver Transplantation: State of the Art. Journal of clinical and translational hepatology 2014; 2(3): 176-81.

7. Gores GJ. Liver transplantation for malignant disease. Gastroenterology

clinics of North America 1993; 22(2): 285-99.

8. Mazzaferro V, Regalia E, Doci R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. The New

69 9. Filgueira NA. Hepatocellular carcinoma recurrence after liver transplantation: Risk factors, screening and clinical presentation. World journal of hepatology 2019;

11(3): 261-72.

10. Court CM, Harlander-Locke MP, Markovic D, et al. Determination of hepatocellular carcinoma grade by needle biopsy is unreliable for liver transplant candidate selection. Liver transplantation : official publication of the American

Association for the Study of Liver Diseases and the International Liver Transplantation Society 2017; 23(9): 1123-32.

11. Xu DW, Wan P, Xia Q. Liver transplantation for hepatocellular carcinoma beyond the Milan criteria: A review. World journal of gastroenterology 2016;

22(12): 3325-34.

12. Marsh JW, Dvorchik I, Bonham CA, Iwatsuki S. Is the pathologic TNM staging system for patients with hepatoma predictive of outcome? Cancer 2000;

88(3): 538-43.

13. Chen J, Xu X, Ling Q, Wu J, Zheng SS. Role of Pittsburgh modified TNM criteria in prognosis prediction of liver transplantation for hepatocellular carcinoma.

Chinese medical journal 2007; 120(24): 2200-3.

14. Yao FY, Ferrell L, Bass NM, et al. Liver transplantation for hepatocellular carcinoma: expansion of the tumor size limits does not adversely impact survival.

Hepatology (Baltimore, Md) 2001; 33(6): 1394-403.

15. Duffy JP, Vardanian A, Benjamin E, et al. Liver transplantation criteria for hepatocellular carcinoma should be expanded: a 22-year experience with 467 patients at UCLA. Annals of surgery 2007; 246(3): 502-9; discussion 9-11.

70 16. Mazzaferro V, Llovet JM, Miceli R, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. The Lancet Oncology 2009; 10(1): 35-43.

17. Sugawara Y, Tamura S, Makuuchi M. Living donor liver transplantation for hepatocellular carcinoma: Tokyo University series. Digestive diseases (Basel,

Switzerland) 2007; 25(4): 310-2.

18. Xu X, Lu D, Ling Q, et al. Liver transplantation for hepatocellular carcinoma beyond the Milan criteria. Gut 2016; 65(6): 1035-41.

19. Soejima Y, Taketomi A, Yoshizumi T, et al. Extended indication for living donor liver transplantation in patients with hepatocellular carcinoma.

Transplantation 2007; 83(7): 893-9.

20. Ito T, Takada Y, Ueda M, et al. Expansion of selection criteria for patients with hepatocellular carcinoma in living donor liver transplantation. Liver

transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society 2007; 13(12):

1637-44.

21. Fan J, Yang GS, Fu ZR, et al. Liver transplantation outcomes in 1,078 hepatocellular carcinoma patients: a multi-center experience in Shanghai, China.

Journal of cancer research and clinical oncology 2009; 135(10): 1403-12.

22. Wan P, Xia Q, Zhang JJ, et al. Liver transplantation for hepatocellular carcinoma exceeding the Milan criteria: a single-center experience. Journal of cancer

research and clinical oncology 2014; 140(2): 341-8.

23. Toso C, Meeberg G, Hernandez-Alejandro R, et al. Total tumor volume and alpha-fetoprotein for selection of transplant candidates with hepatocellular

71 carcinoma: A prospective validation. Hepatology (Baltimore, Md) 2015; 62(1): 158- 65.

24. Sapisochin G, Goldaracena N, Laurence JM, et al. The extended Toronto criteria for liver transplantation in patients with hepatocellular carcinoma: A prospective validation study. Hepatology (Baltimore, Md) 2016; 64(6): 2077-88. 25. Nagai S, Mangus RS, Kubal CA, et al. Prognosis after recurrence of hepatocellular carcinoma in liver transplantation: predictors for successful treatment and survival. Clinical transplantation 2015; 29(12): 1156-63.

26. Mazzaferro V, Bhoori S, Sposito C, et al. Milan criteria in liver transplantation for hepatocellular carcinoma: an evidence-based analysis of 15 years of experience. Liver transplantation : official publication of the American

Association for the Study of Liver Diseases and the International Liver Transplantation Society 2011; 17 Suppl 2: S44-57.

27. Welling TH, Eddinger K, Carrier K, et al. Multicenter Study of Staging and Therapeutic Predictors of Hepatocellular Carcinoma Recurrence Following Transplantation. Liver transplantation : official publication of the American

Association for the Study of Liver Diseases and the International Liver Transplantation Society 2018; 24(9): 1233-42.

28. Donat M, Alonso S, Pereira F, et al. Impact of Histological Factors of Hepatocellular Carcinoma on the Outcome of Liver Transplantation. Transplantation

proceedings 2016; 48(6): 1968-77.

29. Duvoux C, Roudot-Thoraval F, Decaens T, et al. Liver transplantation for hepatocellular carcinoma: a model including α-fetoprotein improves the performance of Milan criteria. Gastroenterology 2012; 143(4): 986-94.e3; quiz e14-5.

72 30. Piñero F, Tisi Baña M, de Ataide EC, et al. Liver transplantation for hepatocellular carcinoma: evaluation of the alpha-fetoprotein model in a multicenter cohort from Latin America. Liver international : official journal of the International

Association for the Study of the Liver 2016; 36(11): 1657-67.

31. Notarpaolo A, Layese R, Magistri P, et al. Validation of the AFP model as a predictor of HCC recurrence in patients with viral hepatitis-related cirrhosis who had received a liver transplant for HCC. Journal of hepatology 2017; 66(3): 552-9. 32. Vibert E, Azoulay D, Hoti E, et al. Progression of alphafetoprotein before liver transplantation for hepatocellular carcinoma in cirrhotic patients: a critical factor. American journal of transplantation : official journal of the American Society

of Transplantation and the American Society of Transplant Surgeons 2010; 10(1):

129-37.

33. Han K, Tzimas GN, Barkun JS, et al. Preoperative alpha-fetoprotein slope is predictive of hepatocellular carcinoma recurrence after liver transplantation.

Canadian journal of gastroenterology = Journal canadien de gastroenterologie

2007; 21(1): 39-45.

34. Dumitra TC, Dumitra S, Metrakos PP, et al. Pretransplantation α-fetoprotein slope and milan criteria: strong predictors of hepatocellular carcinoma recurrence after transplantation. Transplantation 2013; 95(1): 228-33.

35. Fujiyama S, Morishita T, Hashiguchi O, Sato T. Plasma abnormal prothrombin (des-gamma-carboxy prothrombin) as a marker of hepatocellular carcinoma. Cancer 1988; 61(8): 1621-8.

73 36. Gao FJ, Cui SX, Chen MH, et al. Des-gamma-carboxy prothrombin increases the expression of angiogenic factors in human hepatocellular carcinoma cells. Life

sciences 2008; 83(23-24): 815-20.

37. Okuda H, Nakanishi T, Takatsu K, et al. Comparison of clinicopathological features of patients with hepatocellular carcinoma seropositive for α-fetoprotein alone and those seropositive for des-γ-carboxy prothrombin alone1. 2001; 16(11): 1290-6.

38. Kusumanto YH, Dam WA, Hospers GA, Meijer C, Mulder NH. Platelets and granulocytes, in particular the neutrophils, form important compartments for circulating vascular endothelial growth factor. Angiogenesis 2003; 6(4): 283-7. 39. Kuang DM, Zhao Q, Wu Y, et al. Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. Journal of hepatology 2011; 54(5): 948-55.

40. Najjar M, Agrawal S, Emond JC, Halazun KJ. Pretreatment neutrophil- lymphocyte ratio: useful prognostic biomarker in hepatocellular carcinoma. Journal

of hepatocellular carcinoma 2018; 5: 17-28.

41. Lai Q, Melandro F, Larghi Laureiro Z, et al. Platelet-to-lymphocyte ratio in the setting of liver transplantation for hepatocellular cancer: A systematic review and meta-analysis. World journal of gastroenterology 2018; 24(15): 1658-65.

42. Takada Y, Kaido T, Shirabe K, et al. Significance of preoperative fluorodeoxyglucose-positron emission tomography in prediction of tumor recurrence after liver transplantation for hepatocellular carcinoma patients: a Japanese multicenter study. Journal of hepato-biliary-pancreatic sciences 2017; 24(1): 49-57.

74 43. Kim AY, Sinn DH, Jeong WK, et al. Hepatobiliary MRI as novel selection criteria in liver transplantation for hepatocellular carcinoma. Journal of hepatology 2018; 68(6): 1144-52.

44. Otto G, Schuchmann M, Hoppe-Lotichius M, et al. How to decide about liver transplantation in patients with hepatocellular carcinoma: size and number of lesions or response to TACE? Journal of hepatology 2013; 59(2): 279-84.

45. Siegel AB, Lim EA, Wang S, et al. Diabetes, body mass index, and outcomes in hepatocellular carcinoma patients undergoing liver transplantation.

Transplantation 2012; 94(5): 539-43.

46. Rosenberg IH. Sarcopenia: origins and clinical relevance. Clinics in geriatric

medicine 2011; 27(3): 337-9.

47. Roubenoff R. Origins and clinical relevance of sarcopenia. Canadian journal

of applied physiology = Revue canadienne de physiologie appliquee 2001; 26(1): 78-

89.

48. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age and ageing 2010; 39(4): 412-23.

49. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age and ageing 2019; 48(4): 601.

50. Faulkner JA, Larkin LM, Claflin DR, Brooks SV. Age-related changes in the structure and function of skeletal muscles. Clinical and experimental pharmacology

75 51. Booth FW, Chakravarthy MV, Spangenburg EE. Exercise and gene expression: physiological regulation of the human genome through physical activity.

The Journal of physiology 2002; 543(Pt 2): 399-411.

52. Marcell TJ. Sarcopenia: causes, consequences, and preventions. The journals

of gerontology Series A, Biological sciences and medical sciences 2003; 58(10):

M911-6.

53. Distefano G, Standley RA, Zhang X, et al. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. Journal of cachexia, sarcopenia and muscle 2018; 9(2): 279-94. 54. Keller K, Engelhardt M. Strength and muscle mass loss with aging process. Age and strength loss. Muscles, ligaments and tendons journal 2013; 3(4): 346-50. 55. Dodds R, Denison HJ, Ntani G, et al. Birth weight and muscle strength: a systematic review and meta-analysis. The journal of nutrition, health & aging 2012;

16(7): 609-15.

56. Sayer AA, Syddall H, Martin H, Patel H, Baylis D, Cooper C. The developmental origins of sarcopenia. The journal of nutrition, health & aging 2008;

12(7): 427-32.

57. Mijnarends DM, Meijers JM, Halfens RJ, et al. Validity and reliability of tools to measure muscle mass, strength, and physical performance in community- dwelling older people: a systematic review. Journal of the American Medical

Directors Association 2013; 14(3): 170-8.

58. Morley JE, Abbatecola AM, Argiles JM, et al. Sarcopenia with limited mobility: an international consensus. Journal of the American Medical Directors

76 59. Malmstrom TK, Miller DK, Simonsick EM, Ferrucci L, Morley JE. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. Journal of cachexia, sarcopenia and muscle 2016; 7(1): 28-36.

60. Woo J, Leung J, Morley JE. Defining sarcopenia in terms of incident adverse outcomes. Journal of the American Medical Directors Association 2015; 16(3): 247- 52.

61. Bahat G, Yilmaz O, Kılıç C, Oren MM, Karan MA. Performance of SARC-F in Regard to Sarcopenia Definitions, Muscle Mass and Functional Measures. The

journal of nutrition, health & aging 2018; 22(8): 898-903.

62. Roberts HC, Denison HJ, Martin HJ, et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age and ageing 2011; 40(4): 423-9.

63. Ibrahim K, May C, Patel HP, Baxter M, Sayer AA, Roberts H. A feasibility study of implementing grip strength measurement into routine hospital practice (GRImP): study protocol. Pilot and feasibility studies 2016; 2: 27.

64. Rossi AP, Fantin F, Micciolo R, et al. Identifying sarcopenia in acute care setting patients. Journal of the American Medical Directors Association 2014; 15(4): 303.e7-12.

65. Beaudart C, McCloskey E, Bruyère O, et al. Sarcopenia in daily practice: assessment and management. BMC geriatrics 2016; 16(1): 170.

66. Hull H, He Q, Thornton J, et al. iDXA, Prodigy, and DPXL dual-energy X- ray absorptiometry whole-body scans: a cross-calibration study. Journal of clinical

densitometry : the official journal of the International Society for Clinical Densitometry 2009; 12(1): 95-102.

77 67. Kim KM, Jang HC, Lim S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. The Korean journal of internal medicine 2016; 31(4): 643-50.

68. Sergi G, De Rui M, Veronese N, et al. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clinical nutrition (Edinburgh, Scotland) 2015; 34(4): 667-73.

69. Gonzalez MC, Heymsfield SB. Bioelectrical impedance analysis for diagnosing sarcopenia and cachexia: what are we really estimating? Journal of

cachexia, sarcopenia and muscle 2017; 8(2): 187-9.

70. Reiss J, Iglseder B, Kreutzer M, et al. Case finding for sarcopenia in geriatric inpatients: performance of bioimpedance analysis in comparison to dual X-ray absorptiometry. BMC geriatrics 2016; 16: 52.

71. Beaudart C, Rolland Y, Cruz-Jentoft AJ, et al. Assessment of Muscle Function and Physical Performance in Daily Clinical Practice : A position paper endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Calcified tissue

international 2019; 105(1): 1-14.

72. Guralnik JM, Ferrucci L, Pieper CF, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. The journals of

gerontology Series A, Biological sciences and medical sciences 2000; 55(4): M221-

78 73. Maggio M, Ceda GP, Ticinesi A, et al. Instrumental and Non-Instrumental Evaluation of 4-Meter Walking Speed in Older Individuals. PloS one 2016; 11(4): e0153583.

74. Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society 1991;

39(2): 142-8.

75. Cesari M, Kritchevsky SB, Newman AB, et al. Added value of physical performance measures in predicting adverse health-related events: results from the Health, Aging And Body Composition Study. Journal of the American Geriatrics

Society 2009; 57(2): 251-9.

76. Pavasini R, Guralnik J, Brown JC, et al. Short Physical Performance Battery and all-cause mortality: systematic review and meta-analysis. BMC medicine 2016;

14(1): 215.

77. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Applied

physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme 2008; 33(5): 997-1006.

78. Moisey LL, Mourtzakis M, Cotton BA, et al. Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients. Critical

care (London, England) 2013; 17(5): R206.

79. Montano-Loza AJ. Severe muscle depletion predicts postoperative length of stay but is not associated with survival after liver transplantation. Liver

79

Liver Diseases and the International Liver Transplantation Society 2014; 20(11):

Documenti correlati