• Non ci sono risultati.

RISULTATI E DISCUSSIONE

6.4 Livelli intrapiastrinici di BDNF

In figura (Illustrazione 22) riportiamo la retta di taratura ottenuta mediante il kit di determinazione del BDNF.

Illustrazione 22: Retta di calibrazione del dosaggio del BDNF.

I dati relativi al BDNF piastrinico sia nei controlli (C) che nei pazienti (HD) sono stati interpolati dalla retta di taratura e riportati come pg/ml di omogenato. Poiché l’omogenato era stato diluito 1:8 prima del dosaggio, i valori ottenuti sono stati poi tutti corretti per il fattore di diluizione.

82 CONTROLLI, BDNF pg/mg proteine tot. PAZIENTI, BDNF pg/mg proteine tot.

C1 2385,22 HD 1 3563,33 C2 1050,63 HD 2 4378,96 C3 2525,72 HD 3 3350,64 C4 1261,24 HD 4 3544,62 C5 2706,48 HD 5 3005,92 C6 2243,49 HD 6 2061,03 C7 3670,04 HD 7 3439,90 C8 2058,85 HD 8 3895,00 C9 4432,75 HD 9 2285,31 C10 1602,94 HD 10 2046,95 C11 1832,52 HD 11 3147,60 HD 12 2144,38 HD 13 2438,13

Tabella 6: Valori di BDNF intrapiastrinico nei controlli e nei pazienti.

Per una misura più accurata del BDNF contenuto all'interno delle piastrine, tali valori sono stati poi tutti rapportati alla quantità di proteine totali misurate nel sovranatante piastrinico, per normalizzare le concentrazioni in funzione della notevole variabilità del numero di piastrine tra campioni di soggetti diversi. Dai pg/ml di BDNF abbiamo quindi ottenuto i pg di BDNF/mg di proteine totali (Tabella 6).

Esprimendo i dati come pg/mg di proteine totali, le quantità medie di BDNF intrapiastrinico riscontrate nei pazienti sono risultate leggermente superiori (Media ± SEM: 3023 ± 212 pg/mg proteine) rispetto alle quantità medie ottenute nei controlli (2343 ± 302 pg/mg proteine). Questa differenza è risultata quasi significativa (t-test p = 0.072), indicando una tendenza verso livelli di BDNF intrapiastrinici più elevati nei pazienti con HD (Illustrazione 23).

83

Illustrazione 23: Confronto tra BDNF intrapiastrinico nei controlli e nei pazienti

Infine, questo parametro non ha dato correlazioni significative con i tests psicocognitivi e di comportamento sociale (Pearson, p >0.05); i livelli piastrinici di BDNF non hanno correlato neanche con la scala UHDRS, con l’età, la scolarità e l’età di esordio della malattia (Pearson, p >0.05).

Una correlazione significativa e positiva è stata invece osservata tra i livelli di BDNF nelle piastrine dei pazienti e la durata della malattia (Illustrazione 24).

Illustrazione 24: Correlazione tra i livelli di BDNF nelle piastrine dei pazienti

e la durata della malattia

Infine, le correlazioni tra i 3 parametri valutati, binding del SERT

0 5 10 15 20 0 1000 2000 3000 4000 5000 r = 0.64; p=0.025

durata malattia (anni)

B D N F p ia s ti n ic o , p g /m g p ro te in e t o ta li

84

piastrinico, livelli plasmatici di OT e il BDNF intrapistrinico non sono risultate significative, né esaminando i soggetti nella loro totalità, né separandoli nei due gruppi di confronto (p > 0.05).

CONCLUSIONI

I risultati clinici di questo studio hanno rivelato che i pazienti con HD mostrano una minore percezione emotiva e abilità al riconoscimento delle espressioni dei volti rispetto ai soggetti di controllo.

Per quanto riguarda i parametri biochimici presi in esame, i valori di densità ed affinità del SERT piastrinico sono risultati debolmente inferiori e maggiori, rispettivamente, nei pazienti rispetto ai controlli. I livelli di OT plasmatica prima e dopo la somministrazione dei tests psicosociali erano invece mediamente inferiori nei pazienti rispetto ai soggetti di controllo, mentre il BDNF intrapiastrinico risultava più elevato nei malati. L’insieme di questi dati potrebbe suggerire un diverso stato del SERT piastrinico, accompagnato da minor OT circolante e da un incrementato accumulo di BDNF all’interno delle piastrine, nella Corèa. Queste differenze non sono risultate tuttavia statisticamente significative, salvo il risultato molto vicino alla soglia di significatività relativo allo “storage” di BDNF piastrinico nei pazienti, impedendo quindi di trarre conclusioni definitive. La scarsa numerosità dei soggetti valutati e la variabilità interindividuale dei parametri biochimici misurati potrebbero aver influenzato l'esito dell'analisi statistica.

Sono risultate invece significative le correlazioni tra i parametri del SERT e dell'OT e le scale di valutazione neuropsicologiche: i valori più bassi di OT sono stati riscontrati nel plasma di pazienti con minori

85

abilità nel riconoscimento delle espressioni facciali negative, mentre l'affinità del SERT si riduceva al peggiorare delle capacità di riconoscimento di precise espressioni dei volti.

I livelli di BDNF accumulato nelle piastrine non erano invece correlati con nessun test neuropsicologico ma solo, in senso positivo, con la durata della malattia.

Riassumendo non possiamo del tutto escludere che 5-HT, OT e BDNF misurati a livello periferico possano avere una rilevanza di indicatori del quadro sintomatologico della patologia.

Lo studio necessita di ulteriori indagini incrementando il numero dei soggetti reclutati nelle diverse fasi di malattia, cercando anche di controllare tutti i fattori di variabilità individuale, nei limiti consentiti dalla rarità della Còrea.

86

BIBLIOGRAFIA

•Aloyz RS, Bamji SX, Pozniak CD, Toma JG, Atwal J, Kaplan DR, et al. p53 is essential for developmental neuron death as regulated by theTrkA and p75 neurotrophin receptors. J Cell Biol 1998, 143:1691- 703.

•Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL, et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 1997, 389: 856-60.

Angelini C, Battistin L, Neurologia clinica. Eds Esculapio, 2004. Auber G. Charcot Revisited. The Case of Bruegel’s Chorea.Arch Neurol 2005, 62:155-161.

•Baquet ZC, Gorski JA, Jones KR. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neuroscience 2004, 24: 4250-58.

• Batchelor PE, Liberatore GT, Wong JY, Porritt MJ, Frerichs F, Donnan GA, et al. Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain- derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 1999, 19: 1708-16.

•Bates G. Huntingtin aggregation and toxicity in Huntington’s disease. Lancet 2003, 361: 1642–1644.

Bezprozvanny I. Calcium signaling and neurodegenerative diseases. Trends Mol Med 2009, 15: 89-100.

•Bielsky IF, Young LJ. Oxytocin, vasopressin, and social recognition in mammals. Peptides 2004, 25:1565-74.

87

Boll S, Gamer M. 5-HTTLPR modulates the recognition accuracy and exploration of emotional facial expressions. Front Behav Neurosci. 2014, 8:255.

Browne SE, Ferrante RJ, Flint Beal M. Oxidative stress in Huntington’s disease. Brain Pathol 2006, 9: 147-63.

•Cao Y, Gimpl G. A constitutively active pituitary adenylate cyclase activating polypeptide (PACAP) type I receptor shows enhanced photoaffinity labeling of its highly glycosylated form G. Biochim Biophys Acta. 2001, 1548:139-51.

Carroll JB, Warby SC, Southwell AL, Doty CN, Greenlee S, Skotte N, et al. Potent and selective antisense oligonucleotides targeting single- nucleotide polymorphisms in the Huntington disease gene / allele- specific silencing of mutant huntingtin. Mol Ther 2011, 19:2178-85. • Cattaneo E, Rigamonti D, Goffredo D, Zuccato C, Squitieri F, Sipione S. Loss of normal huntingtin function: new developments in Huntington's disease research. Trends Neurosci 2001, 24:182-188. • Ceccatelli S, Ernfors P, Villar MJ, Persson H, Hökfelt T. Expanded distribution of mRNA for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the rat brain after colchicine treatment. Proc Natl Acad Sci U S A 1991, 88: 10352-56.

• Cooper JK, Schilling G, Peters MF, Herring WJ, Sharp AH, Kaminsky Z, et al. Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum. Mol. Genet. 1998, 7:83–90.

Cowan CM, Raymond LA, Selective neuronal degeneration in Huntington’s disease. Curr Topics Develop Biol 2006, 75: 25-71. • Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, et al. Formation of neuronal intranuclear inclusions underlies the

88

neurological dysfunction in mice transgenic for the HD mutation. Cell 1997; 90: 537–548.

Dechant G, Barde YA. The neurotrophin receptor p75NTR: novel functions and implications for diseases of the nervous system. Nature Neuroscience 2002, 5: 1131 – 1136.

DiFiglia M, Sapp E, Chase K, Schwarz C, Meloni A, Young C, et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 1995, 14: 1075–81.

•Dragatsis I, Levine MS, Zeitlin S. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nature Genetics 2000, 26: 300-306.

Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: a Frontal Assessment Battery at bedside. Neurology 2000, 12;55:1621-26.

• Dugich-Djordjevic MM, Peterson C, Isono F, Ohsawa F, Widmer HR, Denton TL, et al. Immunohistochemical visualization of brain- derived neurotrophic factor in the rat brain. Eur J Neurosci 1995, 7: 1831-9.

Erbaş O, Oltulu F, Taşkiran D. Amelioration of rotenone-induced dopaminergic cell death in the striatum by oxytocin treatment. Peptides 2012, 38:312-7.

• Faber PW, Barnes GT, Srinidhi J, Chen J, Gusella JF, MacDonald ME. Huntingtin interacts with a family of WW domain proteins. Human Mol Gen 1998, 7:1463-1474.

Feigin A, Kieburtz K, Como P, Hickey C, Claude K, Abwender D,et al. Assessment of coenzyme Q10 tolerability in Huntington's disease. Mov Disord 1996,11:321-3.

89

2011, 3: 6a007476.

• Folstein MF, Folstein SE, McHugh PR, "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975, 12, 3: 189–98.

• Frisén J, Verge VM, Fried K, Risling M, Persson H, Trotter J, et al., Characterization of glial trkB receptors: differential response to injury in the central and peripheral nervous systems. Proc Natl Acad Sci U S A 1993, 90: 4971-75.

Furukawa S, Sugihara Y, Iwasaki F, Fukumitsu H, Nitta A, Nomoto H, et al. Brain-derived neurotrophic factor-like immunoreactivity in the adult rat central nervous system predominantly distributed in neurons with substantial amounts of brain-derived neurotrophic factor messenger RNA or responsiveness to brain-derived neurotrophic factor. Neuroscience 1997, 82: 653–670.

• Fusco FR, Zuccato C, Tartari M, Martorana A, De March Z, Giampà C, et al. Co-localization of brain-derived neurotrophic factor (BDNF) and wild-type huntingtin in normal and quinolinic acid-lesioned rat brain. Eur J Neurosci 2003, 18: 1093-102.

• Gauthier LR, Charrin BC, Borrell-Pagès M, Dompierre JP, Rangone H, Cordelières FP, et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 2004, 118: 127-138.

• Gervais FG, Singaraja R, Xanthoudakis S, Gutekunst CA, Leavitt BR, Metzler M, et al. Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nat Cell Biol. 2002,4:95-105.

Giannacini G, Betti L, Palego L, Pirone A, Schmid L, Lanza M et al. Serotonin transporter (SERT) and translocator protein (TSPO)

90

expression in the obese ob/ob mouse. BMC Neuroscience 2011, 12:18 DOI: 10.1186/1471-2202-12-18

Giannaccini G, Betti L, Palego L, Marsili A, Santini F, Pelosini C, et al. The expression of platelet serotonin transporter (SERT) in human obesity. BMC Neurosci 2013, 14:128. doi: 10.1186/1471-2202-14- 128.

•Gimpl G, Fahrenholz F, The Oxytocin reeptor system: structure, function and regulation. Physiol Rev 2001, 81:629-83.

• Goldman M1 Marlow-O'Connor M, Torres I, Carter CS. Diminished plasma oxytocin in schizophrenic patients with neuroendocrine dysfunction and emotional deficits. Schizophrenia Res. 2008, 98:247- 255.

Gonitel R, Moffitt H, Sathasivam K, Woodman B, Detloff PJ, Faull RL, et al. DNA instability in postmitotic neurons. PNAS 2008, 105: 3467-72.

•Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G et al. Cleavage at the caspase-6siteisrequired for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 2006, 125:1179–1191. Grandmougin T, Bourdet C, Gurruchaga JM. De la danse de Saint Guy à la chorée de Huntington: rappels sur l'émergence d'un concept medical. Histoire de la médecine et des sciences. Médecine/sciences 1997; 13: 850-4

• Halliday GM, McRitchie DA, Macdonald V, Double KL, Trent RJ, McCusker E. Regional specificity of brain atrophy in Huntington’s disease. Exp Neurol 1998; 154: 663–72.

Han I, You Y, Kordower JH, Brady ST, Morfini GA. Differential vulnerability of neurons in Huntington’s disease: the role of cell-type specific features. J Neurochem 2010, 113: 1073-1091.

91

• Hamanoue M, Middleton G, Wyatt S, Jaffray E, Hay RT, Davies AM p75-mediated NF-kappaB activation enhances the survival response of developing sensory neurons to nerve growth factor. Mol Cell Neurosci 1999,14:28-40.

• Hoffner G, Kahlem P, Djian P. Perinuclear localization of huntingtin as a consequence of its binding to microtubules through an interaction with beta-tubulin: relevance to Huntington's disease. J Cell Sci 2002, 115 (Pt 5): 941–8.

Holmes A, Murphy DL, Crawley JN. Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol Psychiatry 2003, 54:953-9.

Holt DJ, Graybiel AM, Saper CB. Neurochemical architecture of the human striatum. J Comp Neurol 1997, 384: 1-25.

Hoffner G, Kahlem P, Djian P. Perinuclear localization of huntingtin as a consequence of its binding to microtubules through an interaction with beta-tubulin: relevance to Huntington's disease. J Cell Science 2002, 115: 941–8.

Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993, 72:971–983.

Hyttel J. Pharmacological characterization of selective serotonin reuptake inhibitors (SSRIs). Int Clin Psychopharmacol 1994, 9: 19-26. Inoue Y, Tonooka Y, Yamada K, Kanba S. Deficiency of theory of mind in patients with remitted mood disorder. J Affect Disord 2004, 82:403-9.

Insel TR, Young LJ. Neuropeptides and the evolution of social behavior. Curr Opin Neurobiol 2000, 10:784-789.

92

Jakel RJ, Maragos WF. Neuronal cell death in Huntington’s disease: a potential role of dopamine. Trends Neurosci 2000, 23: 239-245.

Jeong H, Then F, Melia TJ Jr., Mazzulli JR, Cui L, Savas JN, et al. Acetylation Targets Mutant Huntingtin to Autophagosomes for Degradation. Cell 2009, 137:60–72.

Joliffe T, Cohen-Baron S. The Strange Stories test: a replication with high functioning adults with autism or Asperger syndrome. J Aut & Develp Dis 1999, 29:395-406.

•Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system, Curr Opin Neurobiol. 2000, 10:381-91

•Keverne EB, Curley JP. Current Opinion Neurobiol. Vasopressin, oxytocin and social behaviour.Sub-department of Animal Behaviour, University of Cambridge, High Street, Madingley, Cambridge 2004. •Lee J, Duan WZ, Long JM, Ingram DK, Mattson MP. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J. Neurochem 2002, 5:1131- 1136.

Legleiter J, Mitchell E, Lotz GP, Sapp E, Ng C, DiFiglia M, et al. Mutant Huntingtin Fragments Form oligomers in a Polyglutamine Length dependent Manner in Vitro and in Vivo. J Biol Chem. 2010, 285: 14777–14790.

• Li SH, Gutekunst CA, Hersch SM, Li XJ. Interaction of huntingtin- associated protein with dynactin P150Glued. J Neurosci 1998, 18:1261-9.

Lonigro R, Breganti E, Damante G, Bergonzi P, Lucci B. Patogenesi della malattia di Huntington. Riv. It. Neurobiologia 2009, 55: 51-66. •Lundqvist D, Flykt A, Öhman A. Karolinska Directed Emotional Faces (KDEF). CD ROM from Department of Clinical Neuroscience,

93

Psychology section, Karolinska Institutet, ISBN 91-630-7164-9]

•Mack SO, Kc P, Wu M, Coleman BR, Tolentino-Silva FP, Haxhiu MAJ. Paraventricular oxytocin neurons are involved in neural modulation of breathing. J Appl Physiol (1985) 2002, 92:826-34. •Maggirwar SB, Sarmiere PD, Dewhurst S, Freeman RS. Nerve growth factor-dependent activation of NF-kappaB contributes to survival of sympathetic neurons. J Neurosci 1998, 18:10356-65.

•Marazziti D, Dell'Osso B, Baroni S, Mungai F, Catena M, Rucci P, et al. A relationship between oxytocin and anxiety of romantic attachment. Clin Pract Epidemiol Ment Health, 2006; 2: 28.

Marazziti D, Baroni S, Giannaccini G, Betti L, Massimetti G, Carmassi C,e t al. A link between oxytocin and serotonin in humans: Supporting evidence from peripheral markers. European Neuropsychopharmacol 2012 22: 578–583.

•Mazzoni IE, Saïd FA, Aloyz R, Miller FD, Kaplan D. Ras regulates sympathetic neuron survival by suppressing the p53-mediated cell death pathway. J. Neurosci 1999, 19:9716-27.

McGuire JR, Rong J, Li SH, Li XJ. Interaction of Huntingtin- associated Protein-1 with Kinesin Light Chain. Implications in intracellular trafficking in neurons. J Biol Chem 2006, 281: 8552- 8559.

Meltzer CC, Smith G, DeKosky ST, Pollock BG, Mathis CA, Moore MY, et al. Serotonin in Aging, Late-Life Depression, and Alzheimer's Disease: The Emerging Role of Functional Imaging. Neuropsychopharmacol 1998, 18: 407–430.

Modahl C, Green L, Fein D, Morris M, Waterhouse L, Feinstein C,et al. Plasma oxytocin levels in autistic children. Biol. Psychiatry, 1998; 43:270-277.

94

Morfini G, Pigino G, Brady ST. Polyglutamine expansion diseases: failing to deliver. Trends Mol Med 2005, 11: 64-70.

•Mowla SJ, Farhadi HF, Pareek S, Atwal JK, Morris SJ, Seidah NG et al. Biosyntesis and post- traslational processing of the precursor to brain- derived neurotrophic factor. J Biol Chem 2001, 276:12660- 12666.

Murai T, Müller U, Werheid K, Sorger D, Reuter M, Becker T, et al. In Vivo Evidence for Differential Association of Striatal Dopamine and Midbrain Serotonin Systems With Neuropsychiatric Symptoms in Parkinson's Disease. J Psych & Clin Neurosci 2001, 13: 222-228. •Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 2001, 63:71–124.

• Nakajima K, Kikuchi Y, Ikoma E, Honda S, Ishikawa M, Liu Y, et al., Neurotrophins regulate the function of cultured microglia. Glia 1998, 24: 272-89.

• Nasir J, Floresco SB, O'Kusky JR, Diewert VM, Richman JM, Zeisler J et al. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81, 811-823 (1995).

• Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005, 53:695-99.

•Paulsen JS, Langbehn DR, Stout JC, Aylward E, Ross CA, Nance M, et al. Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry 2008,79:874-80 •Pawson T, Nash P. Protein-protein interactions define specificity in

95

signal trasduction. Genes Dev 2000, 14:1027-47.

Penney JB, Vonsattel JP, MacDonald ME, Gusella JF, Myers RH. CAG repeat number governs the development rate of pathology in Huntington's disease. Ann Neurol 1997, 41:689-92.

• Prior M, Sartori G, Marchi S. Cognizione sociale e comportamento: uno strumento per la misurazione. Padova, Domeneghini Editore, 2003.

•Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T. Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics 2007, 90:397–406.

Pytliak M, Vargovà V, Mechìrovà V, Felsoci M. Serotonin Receptors – From Molecular Biology to Clinical Applications. Physiol. Res. 2011, 60: 15-25.

Quintanilla RA, Johnson GV. Role of mitochondrial dysfunction in the pathogenesis of Huntington’s Disease. Brain Res Bull 2009, 80: 242- 47.

Ranen NG, Stine C, Abbott MH, Sherr M, Codori AM, Franz ML, et al. Anticipation and Instability of IT- IS (CAG)N Repeats in Parent- Offspring Pairs with Huntington Disease. Am J Hum Genet 1995, 57:593-602.

Rehman HU, Masson EA. Neuroendocrinology of ageing. Age Ageing 2001, 30:279-287.

Reynolds GP, Pearso SJ Decrease glutamic acid and increased 5- hydroxy-tryptamine in Huntington’s disease brain. Neurosci Lett 1987, 22:233-238.

•Richards RI Dynamic mutations: a decade of unstable expanded repeats in human genetic disease. Hum Mol Genet 2001, 10: 2187–94.

96

•Rigamonti D, Sipione S, Goffredo D, Zuccato C, Fossale E, Cattaneo E. Huntingtin's neuroprotective activity occurs via inhibition of procaspase-9 processing. J Biol Chem 2001, 276:14545-14548.

• Rigamonti D, Bauer JH, De-Fraja C, Conti L, Sipione S, Sciorati C, et al. Wild-type huntingtin protects from apoptosis upstream of caspase3. J Neurosci 2000, 20: 3705-3713.

•Roback JD, Marsh HN, Downen M, Palfrey HC, Wainer BH. BDNF- activated signal transduction in rat cortical glial cells. Eur J Neurosci 1995, 7: 849-62.

Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 2011, 10:83-89. • Rudge JS, Li Y, Pasnikowski EM, Mattsson K, Pan L, Yancopoulos GD et al., Neurotrophic factor receptors and their signal transduction capabilities in rat astrocytes. Eur J Neurosci 1994, 6: 693-705.

Sakowski SA, Geddes TJ, Thomas DM, Levi E, Hatfield JS, Kuhn DM. Differential tissue distribution of tryptophan hydroxylase isoforms 1 and 2 as revealed with monospecific antibodies. Brain Res 2006, 1085:11-8

• Sartori G, Colombo L, Vallar G, Rusconi ML, Pinarello A. Test Intelligenza Breve (TIB). Università di Padova e Roma. 1997

• Savaskan E, Ehrhardt R, Schulz A, Walter M, Schächinger H. Post- learning intranasal oxytocin modulates human memory for facial identity. Psychoneuroendocrinology 2008; 33: 368–374.

• Siesling S, van Vugt JP, Zwinderman KA, Kieburtz K, Roos RA. Unified Huntington's disease rating scale: a follow up. Mov Disord 1998, 13:915-9.

97

Mutant Huntingtin binds the mitochondrial fission GTPase DRP1 and increases its enzymatic activity. Nat Med 2011, 17: 377-382.

•Squitieri F, Gellera C, Cannella M, Mariotti C, Cislaghi G, Rubinsztein DC, et al. Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course. Brain 2003, 126: 946–955.

•Stone VE, Baron-Cohen S, Knight RT. Frontal lobe contributions to theory of mind. Faux-pas task. J Cogn Neurosci 1998,10: 640–656. •Subramaniam S, Sixt KM, Barrow R, Snyder SH. Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 324: 1327–1330, 2009.

Sumiyoshi T, Kunugi H, Nakagome H. Serotonin and dopamine receptors in motivational and cognitive disturbances of schizophrenia. Front Neurosci. 2014; 8: 395.

Szily E, Bowen J, Unoka Z, Simon L, Kèry S. Emotional appraisal is modulated by the genetic polymorphism of the serotonin transporter. J Neural Transm 2008, 115:819–822.

Tang TS, Slow E, Lupu V, Stavrovskaya IG, Sugimori M, Llinás R, et al. Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s Disease. PNAS 2005, 102: 2602-7.

•Tapia-Arancibia L., Rage F., Givalois L., Arancibia S. Physiology of BDNF: focus on hypotalamic function. Front Neuroendocrinol ,2004. 25, 77- 107.

• Vikenes K, Farstad M, Nordrehaug JE. Serotonin Is Associated with Coronary Artery Disease and Cardiac Events. Clinical Investigation and Reports. Circulation 1999,100: 483-489.

98

neuropathology: similarities and differences. Acta Neuropathol 2008; 115: 55–69.

Ursin R. Serotonin and sleep. Sleep Med Rev 2002, 6: 55-67.

•Wade BE, Wang CE, Yan S. Ubiquitin-activating enzyme activity contributes to differential accumulation of mutant huntingtin in brain and peripheral tissues. J Neuroscience 2014 Jun 18;34(25):8411-22. • Wexler NS, Young AB, Tanzi RE, Travers H, Starosta-Rubinstein S, Penney JB, et al., Homozygotes for Hungtington’s disease. Nature 1987 326: 194-197.

•Yoon SO, Casaccia-Bonnefil P, Carter B, Chao MV. Competitive signaling between TrkA and p75 nerve growth factor receptor determines cell survival. J Neurosci 1998, 18:3273-3281

• Young LJ1, Wang Z. The neurobiology of pair bonding. Nat Neurosci. 2004, 7:1048-54.

Zahniser NR, Doolen S. Chronic and acute regulation of Na+/Cl- - dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol Ther. 2001, 92:21-55. • Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, et al., Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 2003, 35: 76-83.

Zuccato C, Cattaneo E. Role of brain-derived neurotrophic factor in Huntington's disease. Prog Neurobiol, 2007. 81(5-6): p. 294-330. Zuccato C, Marullo M, Vitali B, Tarditi A, Mariotti C, Valenza M, Brain-derived neurotrophic factor in patients with Huntington’s disease. Plos-One 2011, 6: 1-11.

99

potential therapeutical targets in Huntington's disease. Physiol Rev 90: 905- 981. 2010.

•Zuccato G, Cattaneo E, Huntington's Disease. Handbook Exp Pharmacol. 2014, 220:357-409. doi: 10.1007/978-3-642-45106-5_14.

Documenti correlati