• Non ci sono risultati.

Risultati e discussione

3.3 Quantificazione mediante Py-GC/MS

Nel tentativo di quantificare il rapporto tra componente riconducibile a polistirene rispetto a quella riconducibile alla parte poliolefinica è stata tentata una quantificazione del contenuto polimerico mediante Py-GC/MS.

A questo proposito sono state preparate tre capsule portacampione contenenti quantità crescenti di polistirene vergine e, dopo pirolisi, è stato integrato il segnale dello stirene (tabella 3.17). Riportando l’area in funzione della quantità pirolizzata è stata ottenuta la curva di figura 3.61.

Tabella 3.17: quantità di standard pesato e aree stirene.

Standard PS Peso (mg) Area

1 0,020 651144816

2 0,034 1221784166

- 65 -

Figura 3.61: curva di calibrazione del PS.

La stessa procedura è stata utilizzata con la frazione ad alto peso molecolare dell’estratto del campione G3040012 (peso 0,044 mg, area stirene 1692554422), che ha fornito il valore indicato dal punto arancione della curva in figura 3.62.

Figura 3.62: curva di calibrazione del PS (punti in blu) con aggiunta della frazione ad alto peso molecolare

del campione G3040012 (punto arancione).

Ricalcolando la quantità di stirene trattata in Py-GC/MS è stato stimato un recupero del 108%.

Pertanto, in base all’equazione della curva di calibrazione costruita a partire dallo standard di PS, è stata fatta una stima della percentuale della frazione riconducibile a PS presente negli estratti dei campioni analizzati mediante Py-GC/MS e, per differenza, è stata calcolata anche la percentuale di poliolefine (tabella 3.18).

y = 4E+10x - 2E+08 R² = 1 0,00E+00 5,00E+08 1,00E+09 1,50E+09 2,00E+09 2,50E+09 0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 A re a Massa (mg)

Calibrazione PS + G3040012

- 66 -

Tabella 3.18: percentuale di materiale riconducibile a PS e poliolefine nei campioni analizzati in Py-GC/MS.

Campione Quantità PS (%) Altro (%)

G3040001 9,3% 90,7%

G3040004 8,7% 91,3%

G3040005 11,1% 88,9%

G3040012

- 67 -

Conclusioni

L’approccio analitico sviluppato per l’analisi della sabbia del litorale pisano ha chiaramente messo in evidenza la presenza di quantità ben misurabili di materiale organico di origine non naturale, riconducibile a processi di degradazione dei detriti di materiale plastico spiaggiato. Il lavoro sperimentale svolto ha permesso di mettere a punto un metodo di estrazione tipo “Kumagawa” che opera una filtrazione a caldo della fase organica contemporaneamente all’estrazione. Inoltre è stato possibile quantificare per pesata il materiale recuperato per estrazione con diclorometano.

La caratterizzazione chimica del materiale estratto dalle sabbie è stata effettuata tramite Py- GC/MS e spettroscopia FT-IR. I dati hanno mostrato che il materiale estratto è costituito da una miscela di composti idrocarburici non naturali sia di natura alifatica che aromatica riconducibili ai processi di degradazione di materiale plastico quale polistirene, polietilene e polipropilene, ampiamente presente nella sabbia come detriti con granulometria superiore ai 2 mm. L’analisi mediante GPC ha messo in evidenza che i composti estratti sono ripartiti su due distribuzioni di pesi molecolari a cui corrispondono anche una differente composizione chimica in termini di natura alifatica e aromatica. In particolare è stato osservato un intervallo di pesi molecolari compreso tra 85,5 e 173 kDa, relativo alla frazione prevalentemente aromatica riconducibile a prodotti di degradazione di polistirene e un intervallo di pesi molecolari compreso tra 0,7 e 1,4 kDa relativo alla frazione prevalentemente alifatica riconducibile con buona probabilità a prodotti di degradazione di polietilene e polipropilene.

I valori dell’indice di polidispersità, maggiori dell’unità, indicano che i polimeri analizzati sono caratterizzati da un’alta variabilità del peso molecolare in accordo con i meccanismi di fotodegradazione dei polimeri.

I risultati relativi a 16 campioni di sabbia raccolta presso la spiaggia di Marina di Vecchiano hanno mostrato una concentrazione media minima di microplastiche nella zona della battigia (5,9±0,4 mg/Kg) e una massima nella zona delle dune (139±130 mg/Kg).

È stato anche tentato un primo approccio di quantificazione mediante Py-GC/MS, costruendo una curva di calibrazione con uno standard di PS. I risultati sono sembrati promettenti ed è stato possibile fare una stima non solo del PS presente nel campione, ma anche, per differenza, delle poliolefine.

- 68 -

Bibliografia

[1] M. B. Browne, T. S. Galloway, R. C. Thompson, Spatial patterns of plastic debris along

estuarine shorelines; Environ. Sci. Technol., 44, (2010), 3404-3409.

[2] V. Hidalgo-Ruz, L. Gutow, R. C. Thompson, M. Thiel, Microplastics in the marine

environment: a review of the methods used for identification and quantification; Environ.

Sci. Technol., 46, (2012), 3060-3075.

[3] E. J. Carpenter, S. J. Anderson, G. R. Harvey, H. P. Miklas, B. B. Peck, Polystyrene

spherules in coastal waters; Science, 17, (1972), 749-750.

[4] E. J. Carpenter, K. L. Smith, Plastics on the Sargasso Sea surface; Science, 175, (1972), 1240-1241.

[5] J. P. Harrison, J. J. Ojeda, M. E. Romero-González, The applicability of reflectance

micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments; Science of the Total Environment, 416, (2012), 455-463.

[6] Proceedings of the international research workshop on the occurrence, effects and fate

of microplastic marine debris. Sept 9-11, 2008. Arthur, C., Baker, J., Bamford, H., Eds.;

NOAA Technical Memorandum NOS-OR&R-30, (2009).

[7] J. P. G. L. Frias, P. Sobral, A. M. Ferreira, Organic pollutants in microplastics from two

beaches of the Portuguese coast; Mar. Pollut. Bull., 60, (2010), 1988-1992.

[8] K. L. Ng, J. P. Obbard, Prevalence of microplastics in Singapore’s coastal marine

environment; Mar. Pollut. Bull., 52, (2006), 761-767.

[9] J. E. Pegram, A. L. Andrady, Outdoor weathering of selected polymeric materials under

marine exposure conditions; Polymer Degradation and Stability, 26, (1989), 333-345.

[10] D. A. Cooper, P. L. Corcoran, Effects of mechanical and chemical processes on the

degradation of plastic beach debris on the island of Kauai, Hawaii; Mar. Pollut. Bull., 60,

(2010), 650-654.

[11] M. M. Qayyum, J. R. White, Effect of stabilizers on residual stresses in weathered

polyethylene; Polymer Degradation and Stability, 39, (1993), 199-205.

[12] I. Yakimets, D. Lai, M. Guigon, Effect of photo-oxidation cracks on behaviour of thick

polypropylene samples; Polymer Degradation and Stability, 86, (2004), 59-67.

[13] A. L. Andrady, J. E. Pegram, N. D. Searle, Wavelength sensitivity of enhanced

photodegradable polyethylenes, ECO, and LDPE/MX; Journal of Applied Polimer Science,

62, (1996), 1457-1463.

[14] M. C. Celina, Review of polymer oxidation and its relationship with materials

performance and lifetime prediction; Polymer Degradation and Stability, 98, (2013), 2419-

- 69 -

[15] J. J. C. Cruz-Pinto, M. E. S. Carvalho, J. F. A. Ferreira, The kinetics and mechanism of

polyethylene photo-oxidation; Macromolecular Materials and Engineering, 216, (1994),

113-133.

[16] P. J. Kershaw, (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection),

“Sources, fate and effects of microplastics in the marine environment: a global assessment”;

GESAMP (2015). (Rep. Stud. GESAMP No. 90, 96 p.)

[17] L. S. Fendall, M. A. Sewell, Contributing to marine pollution by washing your face:

microplastics in facial cleansers; Mar. Pollut. Bull., 58, (2009), 1225-1228.

[18] M. A. Browne, P. Crump, S. J. Niven, E. L. Teuten, A. Tonkin, T. Galloway, R. C. Thompson, Accumulations of microplastic on shorelines worldwide: sources and sinks; Environ. Sci. Technol., 45, (2011), 9175-9179.

[19] L. R. Gilfillan, M. D. Ohman, M. J. Doyle, W. Watson, Occurrence of plastic micro-

debris in the Southern California Current System; CalCOFI Rep. (2009), 50, 123-133.

[20] A. L. Andrady, Microplastics in the marine environment; Mar. Pollut. Bull., 62, (2011), 1596-1605.

[21] S. Endo, R. Takizawa, K. Okuda, H. Takada, K. Chiba, H. Kanehiro, H. Ogi, R. Yamashita, T. Date, Concentration of polychlorinated biphenyls (PCBs) in beached resin

pellets: variability among individual particles and regional differences; Mar. Pollut. Bull.,

50, (2005), 1103-1114.

[22] D. W. Laist, Impacts of Marine Debris: Entanglement of Marine Life in Marine

Debris Including a Comprehensive List of Species with Entanglement and Ingestion Records; Marine Debris, (1997), J. M. Coe, D. B. Rogers, (Eds.), Marine Debris-Sources,

Impacts and Solutions. Springer-Verlag, New York, pp. 99-139.

[23] D. Gramentz, Involvement of loggerhead turtle with the plastic, metal, and hydrocarbon

pollution in the central Mediterranean; Mar. Pollut. Bull., 19, (1988), 11-13.

[24] M. Y. Azzarello, E. S. Van Vleet, Marine birds and plastic pollution; Mar. Ecol. Prog. Ser., 37, (1987), 295-303.

[25] P. G. Ryan, The incidence and characteristics of plastic particles ingested by seabirds; Marine Environment Research, 23, (1987), 175-206.

[26] M. L. Moser, D. S. Lee, A Fourteen-Year Survey of Plastic Ingestion by Western North

Atlantic Seabirds; Colonial Waterbirds, 15, (1992), 83-94.

[27] D. W. Laist, Overview of the biological effects of lost and discarded plastic debris in

the marine environment; Mar. Pollut. Bull., 18, (1987), 319-326.

[28] P. G. Ryan, Effects of ingested plastic on seabird feeding: evidence from chickens; Mar. Pollut. Bull., 19, (1988), 125-128.

[29] P. G. Connors, K. G. Smith, Oceanic plastic particle pollution: Suspected effect on fat

- 70 -

[30] R. W. Furness,, Plastic particle pollution: accumulation by Procellariiform seabirds at

Scottish colonies; Mar. Pollut. Bull., 16, (1985), 103-106.

[31] D. M. Fry, S. I. Fefer, L. Sileo, Ingestion of plastic debris by Laysan albatross and

wedge-tailed shearwaters in the Hawaiian Islands; Marine Pollution Bulletin, 18, (1987),

339-343.

[32] A. Carr, Impact of nondegradable marine debris on the ecology and survival outlook of

sea turtles; Marine Pollution Bulletin, 18, (1987), 352-356.

[33] R. H. Mattlin, M. W. Cawthorn, Marine debris-an international problem; New Zealand Environment, 51, (1986), 3-6.

[34] L. Bugoni, L. Krause, M. V. Petry, Marine debris and human impacts on sea turtles in

Southern Brazil; Marine Pollution Bulletin, 42, (2001), 1330-1334.

[35] K. O’Hara, S. Iudicello, R. Bierce, A Citizen’s Guide to Plastics in the Ocean: More

than a Litter Problem; Center for Marine Conservation, Washington DC, (1988).

[36] E. Schrey, G. J. M. Vauk, Records of entangled gannets (Sula bassana) at Helgoland,

German Bight; Marine Pollution Bulletin, 18, (1987), 350-352.

[37] C. W. Fowler, Marine debris and northern fur seals: a case study; Marine Pollution Bulletin, 18, (1987), 326-335.

[38] M. Weisskopf, Plastic reaps a grim harvest in the oceans of the world (plastic trash

kills and maims marine life); Smithsonian, 18, (1988), 58.

[39] S. Feldkamp, D. Costa, G. K. DeKrey, Energetics and behavioural effects of net

entanglement on juvenile northern fur seals Callorhinus ursinus; Fisheries Bulletin, 87,

(1989), 85-94.

[40] P. G. Ryan, A. D. Connell, B. D. Gardner, Plastic ingestion and PCBs in seabirds: is

there a relationship?; Marine Pollution Bulletin, 19, (1988), 174-176.

[41] K. Lee, S. Tanabe, C. Koh, Contamination of polychlorinated biphenyls (PCBs) in

sediments from Kyeonggi Bay and nearby areas, Korea; Marine Pollution Bulletin, 42,

(2001), 273-279.

[42] K. A. Bjorndal, A. B. Bolten, C. J. Lagueux, Ingestion of marine debris by juvenile sea

turtles in coastal Florida habitats; Marine Pollution Bulletin, 28, (1994), 154-158.

[43] M. R. Gregory, Plastic “scrubbers” in hand cleansers: a further (and minor) source

for marine pollution identified; Marine Pollution Bulletin, 32, (1996), 867-871.

[44] J. F. Grassle, P. Lassere, A. D. McIntyre, G. C. Ray, Marine biodiversity and ecosystem

function; Biology International Special Issue, 23, (1991), 1-19.

[45] D. Minchin, Tar pellets and plastics as attachment surfaces for Lepadid cirripedes in

the North Atlantic Ocean; Marine Pollution Bulletin, 32, (1996), 855-859.

- 71 -

[47] J. E. Winston, Drift plastic-an expanding niche for a marine invertebrate?; Marine Pollution Bulletin, 13, (1982), 348-357.

[48] J. E. Winston, M. R. Gregory, L. M. Stevens, Encrusters, epibionts, and other biota

associated with pelagic plastics: a review of biogeographical, environmental, and conservation issues; (1997), J. M. Coe, D. B. Rogers, (Eds.), Marine Debris-Sources,

Impacts and Solutions. Springer-Verlag, New York, pp. 81-97.

[49] M. R. Gregory, The hazards of persistent marine pollution: drift plastics and

conservation islands; Journal of the Royal Society of New Zealand, 21, (1991), 83-100.

[50] M. R. Gregory, Plastics and South Pacific Island shores: environmental implications; Ocean and Coastal Management, 42, (1999), 603-615.

[51] T. Ayako, H. Hirose, Advance Polymer Science; Polymer Degradation Stabilization, 63, (1999), 441.

[52] G. Scott, Green polymers; Polymer Degradation and Stabilization, 68, (2000), 1-7. [53] J. F. Rabek, B. Ranby, Studied on the photooxidation mechanism of polymers,

photolysis and photooxidation of polystyrene; Journal of polymer science, 12, (1974), 273-

294.

[54] W. Schnabel, Polymer Degradation: Principle and Practical Applications; Chapter 14, Hanser Int, München, (1981).

[55] J. L. Bolland, G. Gee, Kinetic studies in the chemistry of rubber and related materials.

II. The kinetics of oxidation of unconjugated olefins; Trans. Farady Soc., 42, (1946), 236-

243.

[56] D. M. Wiles, G. Scott, Polyolefins with controlled environmental degradability; Polymer Degradation and Stability, 91, (2006), 1581-1592.

[57] M. Iring, F. Tűdös, Thermal oxidation of polyethylene and polypropylene: Effects of

chemical structure and reaction conditions on the oxidation process; Progress in Polymer

Science, 15, (1990), 217-262.

[58] N. C. Billingham, P. D. Calvert, N. S. Allen, Degradation and stabilization of

polyolefins; Applied Science Publishers, UK, (1983).

[59] E. Chiellini, A. Corti, S. D’Antone, R. Baciu, Oxo-biodegradable carbon backbone polymers e Oxidative degradation of polyethylene under accelerated test conditions; Polymer Degradation and Stability, 91, (2006), 2739-2747.

[60] A-C. Albertsson, C. Barenstedt, S. Karlsson, Solid-phase extraction and gas

chromatographic-mass spectrometric identification of degradation products from enhanced environmentally degradable polyethylene; Journal of Chromatography A, 690, (1995), 207-

217.

[61] S. S. Fernando, P. A. Christensen, T. A. Egerton, J. R. White, Carbon dioxide evolution

and carbonyl group development during photodegradation of polyethylene and polypropylene; Polymer Degradation and Stability, 92, (2007), 2163-2172.

- 72 -

[62] J. L. Gardette, B. Mailhot, J. Lemaire, Photooxidation mechanisms of styrenic polymers; Polym. Degrad. Stab., 48, (1995), 457-470.

[63] T. M. Kruse, O. S. Woo, L. J. Broadbelt, Detailed mechanistic modeling of polymer

degradation: application to polystyrene; Chemical Engineering Science, 56, (2001), 971-

979.

[64] K. Velander, M. Mocogni, Beach litter sampling strategies: is there a “best” method?; Mar. Pollut. Bull., 38, (1999), 1134-1140.

[65] A. H. Abu-Hilal, T.H. Al-Najjar, Plastic pellets on the beaches of the northern Gulf of

Aqaba, Red Sea; Aquat. Ecosyst. Health & Manage., 12, (2009), 461-470.)

[66] R. C. Thompson, Y. Olsen, R. P. Mitchell, A. Davis, S. J. Rowland, A. W. G. John, D. McGonigle, A. E. Russell, Lost at sea: where is all the plastic? ; Science, 304, (2004), 838. [67] P. L. Corcoran, M. C. Biesinger, M. Grifi, Plastics and beaches: a degrading

relationship; Mar. Pollut. Bull., 58, (2009), 80-84.

[68] A. Turner, L. Holmes, Occurrence, distribution and characteristics of beached plastic

production pellets on the island of Malta (central Mediterranean); Mar. Pollut. Bull., 62,

(2011), 377-381.

[69] K. Ashton, L. Holmes, A. Turner, Association of metals with plastic production pellets

in the marine environment; Mar. Pollut. Bull., 60, (2010), 2050-2055.

[70] H. Hirai, H. Takada, Y. Ogata, R. Yamashita, K. Mizukawa, M. Saha, C. Kwan, C. Moore, H. Gray, D. Laursen, E. R. Zettler, J. W. Farrington, C. M. Reddy, E. E. Peacock, M. W. Ward, Organic micropollutants in marine plastics debris from the open ocean and

remote and urban beaches; Mar. Pollut. Bull., 62, (2011), 1683-1692.

[71] Y. Mato, T. Isobe, H. Takada, H. Kanehiro, C. Ohtake, T. Kaminuma, Plastic resin

pellets as a transport medium for toxic chemicals in the marine environment; Environ. Sci.

Technol., 35, (2001), 318-324.

[72] N. Zurcher, Small plastic debris on beaches in Hong Kong: an initial investigation; Thesis for the degree of Master of Science in Environmental Management, University of Hong Kong, (2009)

[73] T. Kusui, M. Noda, International survey on the distribution of stranded and buried litter

on beaches along the Sea of Japan; Mar. Pollut. Bull., 47, (2003), 175-179.

[74] F. Norén, Small plastic particles in Coastal Swedish waters; KIMO report, (2007). [75] M. F. Costa, J. A. Ivar do Sul, J. S. Silva-Cavalcanti, M. C. B. Araújo, A. Spengler, P. S. Tourinho, On the importance of size of plastic fragments and pellets on the strandline: a

snapshot of a Brazilian beach; Environ. Monit. Assess., 168, (2010), 299-304.

[76] K. J. McDermid, T. L. McMullen, Quantitative analysis of small-plastic debris on

- 73 -

[77] S. Morét-Ferguson, K. L. Law, G. Proskurowski, E. K. Murphy, E. E. Peacock, C. M. Reddy, The size, mass, and composition of plastic debris in the western North Atlantic

Ocean; Mar. Pollut. Bull., 60, (2010), 1873-1878.

[78] R. J. Morris, Plastic debris in the surface waters of the South Atlantic; Mar. Pollut. Bull., 11, (1980), 164-166.

[79] A. Vianello, A. Boldrin, P. Guerriero, V. Moschino, R. Rella, A. Sturaro, L. Da Ros,

Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification; Estuarine, Coastal and Shelf Science, 130,

(2013), 54-61.

[80] M. S. Reddy, S. Basha, S. Adimurthy, G. Ramachandraiah, Description of the small

plastics fragments in marine sediments along the Alang-Sosiya ship-breaking yard, India;

Estuarine, Coastal and Shelf Science, 68, (2006), 656-660.

[81] M. C. Biesinger, P. L. Corcoran, M. J. Walzak, Developing ToF-SIMS methods for investigating the degradation of plastic debris on beaches; Surf. Interface Anal., 43, (2011), 443-445.

[82] F. Murray, P. R. Cowie, Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758); Mar. Pollut. Bull., 62, (2011), 1207-1217.

[83] J. G. Shiber, Plastic pellets on the coast of Lebanon; Mar. Pollut. Bull., 10, (1979), 28- 30.

[84] G. Riva, Studio di materiale plastico finemente disperso in ambiente costiero; tesi triennale, corso di laurea in Scienze Naturali e Ambientali, curriculum Ambiente, (2016).

Documenti correlati