• Non ci sono risultati.

3. RISULTATI E DISCUSSIONE

4.4 RISOLUZIONE STRUTTURA

Ogni cristallo è stato analizzato tramite luce di sincrotrone (beamline XRD1, ELETTRA, Trieste) usando il detector Dectris 2-M PILATUS presente sulla beamline di diffrazione per macromolecole biologiche XRD1. Sono stati raccolti patterns di diffrazione ruotando il cristallo di 360° con un delta di 0.5°. Le raccolte di immagini sono state analizzate, integrate e processate con il pacchetto di software per cristallografia di proteine CCP4 (http://www.ccp4.ac.uk).

2j4z (gruppo spaziale P212121),

3lau e 4uyn (gruppo spaziale P21).

4ntq (proteina CdiA) 2esf (anidrasi carbonica)

Le figure delle strutture di proteina sono state preparate con il programma PyMOL (http://pymol.sourceforge.net).

BIBLIOGRAFIA

[1] P. Kleihues et al., “The WHO Classification of Tumors of the Nervous System,” J.

Neuropathol. Exp. Neurol., vol. 61, no. 3, pp. 215–225, Mar. 2002.

[2] A. Sottoriva et al., “Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 10, pp. 4009–4014, Mar. 2013.

[3] K. Urbańska, J. Sokołowska, M. Szmidt, and P. Sysa, “Glioblastoma multiforme – an overview,” Contemp. Oncol., vol. 18, no. 5, pp. 307–312, Aug. 2014.

[4] H. Ohgaki and P. Kleihues, “The Definition of Primary and Secondary Glioblastoma,”

Clin. Cancer Res., vol. 19, no. 4, p. 764 LP-772, Feb. 2013.

[5] F. A. Chowdhury, M. K. Hossain, A. G. M. Mostofa, M. M. Akbor, and M. S. Bin Sayeed, “Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways,” Biomed Res. Int., vol. 2018, p. 4010629, Jan. 2018. [6] H. Mao, D. G. LeBrun, J. Yang, V. F. Zhu, and M. Li, “Deregulated Signaling Pathways in

Glioblastoma Multiforme: Molecular Mechanisms and Therapeutic Targets,” Cancer

Invest., vol. 30, no. 1, pp. 48–56, Jan. 2012.

[7] M. J. Riemenschneider, W. Mueller, R. A. Betensky, G. Mohapatra, and D. N. Louis, “<em>In Situ</em> Analysis of Integrin and Growth Factor Receptor Signaling Pathways in Human Glioblastomas Suggests Overlapping Relationships with Focal Adhesion Kinase Activation,” Am. J. Pathol., vol. 167, no. 5, pp. 1379–1387, Nov. 2005. [8] H. TSURUSHIMA, K. TSUBOI, Y. YOSHII, T. OHNO, K. MEGURO, and T. NOSE, “Expression

of N-<I>ras</I> Gene in Gliomas,” Neurol. Med. Chir. (Tokyo)., vol. 36, no. 10, pp. 704– 708, 1996.

Cellas – Implications for Pathogenesis and Treatment,” Cancer J., vol. 18, no. 1, pp. 100–106, Jan. 2012.

[12] A. Alvarez-Buylla, J. M. García-Verdugo, and A. D. Tramontin, “A unified hypothesis on the lineage of neural stem cells,” Nat. Rev. Neurosci., vol. 2, p. 287, Apr. 2001.

[13] B. A. Reynolds, W. Tetzlaff, and S. Weiss, “A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes,” J. Neurosci., vol. 12, no. 11, p. 4565 LP-4574, Nov. 1992.

[14] C. Calabrese et al., “A Perivascular Niche for Brain Tumor Stem Cells,” Cancer Cell, vol. 11, no. 1, pp. 69–82, 2007.

[15] L. Ricci-Vitiani et al., “Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells,” Nature, vol. 468, p. 824, Nov. 2010.

[16] J. R. Bischoff and G. D. Plowman, “The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis,” Trends Cell Biol., vol. 9, no. 11, pp. 454– 459, Nov. 1999.

[17] M. Carmena, M. Wheelock, H. Funabiki, and W. C. Earnshaw, “The Chromosomal Passenger Complex (CPC): From Easy Rider to the Godfather of Mitosis,” Nat. Rev. Mol.

Cell Biol., vol. 13, no. 12, pp. 789–803, Dec. 2012.

[18] C. S. M. Chan and D. Botstein, “Isolation and Characterization of Chromosome-Gain and Increase-in-Ploidy Mutants in Yeast,” Genetics, vol. 135, no. 3, pp. 677–691, Nov. 1993.

[19] M. Kollareddy, P. Dzubak, D. Zheleva, and M. Hajduch, “Aurora kinases: structure, functions and their association with cancer.,” Biomedical papers of the Medical Faculty

of the University Palacký, Olomouc, Czechoslovakia. 2008.

[20] J. Fu, M. Bian, J. Liu, Q. Jiang, and C. Zhang, “A single amino acid change converts Aurora-A into Aurora-B-like kinase in terms of partner specificity and cellular function,”

Proc. Natl. Acad. Sci. U. S. A., vol. 106, no. 17, pp. 6939–6944, Apr. 2009.

[21] H. G. Nguyen, D. Chinnappan, T. Urano, and K. Ravid, “Mechanism of Aurora-B Degradation and Its Dependency on Intact KEN and A-Boxes: Identification of an Aneuploidy-Promoting Property,” Mol. Cell. Biol. , vol. 25, no. 12, pp. 4977–4992, Jun. 2005.

activation,” Open Biol., vol. 2, no. 11, p. 120136, Nov. 2012.

[23] E. Hannak, M. Kirkham, A. A. Hyman, and K. Oegema, “Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans ,” J. Cell Biol., vol. 155, no. 7, pp. 1109–1116, Dec. 2001.

[24] D. M. Glover, M. H. Leibowitz, D. A. McLean, and H. Parry, “Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles,” Cell, vol. 81, no. 1, pp. 95–105, 1995.

[25] F. C. Rowan, M. Richards, R. A. Bibby, A. Thompson, R. Bayliss, and J. Blagg, “Insights into Aurora-A Kinase Activation Using Unnatural Amino Acids Incorporated by Chemical Modification,” ACS Chem. Biol., vol. 8, no. 10, pp. 2184–2191, Oct. 2013. [26] P. A. Eyers, E. Erikson, L. G. Chen, and J. L. Maller, “A Novel Mechanism for Activation

of the Protein Kinase Aurora A,” Curr. Biol., vol. 13, no. 8, pp. 691–697, Apr. 2003. [27] P. A. Eyers and J. L. Maller, “Regulation of Xenopus Aurora A Activation by TPX2,” J.

Biol. Chem., 2004.

[28] T. A. Kufer, H. H. W. Silljé, R. Körner, O. J. Gruss, P. Meraldi, and E. A. Nigg, “Human TPX2 is required for targeting Aurora-A kinase to the spindle,” J. Cell Biol., vol. 158, no. 4, pp. 617–623, Aug. 2002.

[29] S. Sen, H. Zhou, and R. A. White, “A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines,” Oncogene, vol. 14, p. 2195, May 1997.

[30] H. Zhou et al., “Tumour amplified kinase STK15/BTAK induces centrosome

amplification, aneuploidy and transformation,” Nat. Genet., vol. 20, p. 189, Oct. 1998. [31] H. M. K. Buschhorn et al., “Aurora-A over-expression in high-grade PIN lesions and

prostate cancer,” Prostate, 2005.

[32] N. L. Lehman et al., “Aurora A is differentially expressed in gliomas, is associated with patient survival in glioblastoma, and is a potential chemotherapeutic target in

elongation by modulation of microtubule dynamics,” Nat. Cell Biol., vol. 11, p. 1057, Aug. 2009.

[35] X. Hong et al., “The selective Aurora-A kinase inhibitor MLN8237 (alisertib) potently inhibits proliferation of glioblastoma neurosphere tumor stem-like cells and

potentiates the effects of temozolomide and ionizing radiation,” Cancer Chemother.

Pharmacol., vol. 73, no. 5, pp. 983–990, May 2014.

[36] J. Nowakowski et al., “Structures of the Cancer-Related Aurora-A, FAK, and EphA2 Protein Kinases from Nanovolume Crystallography,” Structure, vol. 10, no. 12, pp. 1659–1667, Dec. 2002.

[37] R. Bayliss, T. Sardon, I. Vernos, and E. Conti, “Structural basis of Aurora-A activation by TPX2 at the mitotic spindle,” Mol. Cell, 2003.

[38] V. Krenn and A. Musacchio, “The Aurora B Kinase in Chromosome Bi-Orientation and Spindle Checkpoint Signaling,” Front. Oncol., vol. 5, p. 225, Oct. 2015.

[39] F. Sessa et al., “Mechanism of Aurora B Activation by INCENP and Inhibition by Hesperadin,” Mol. Cell, vol. 18, no. 3, pp. 379–391, Apr. 2005.

[40] R. Giet and D. M. Glover, “ Drosophila Aurora B Kinase Is Required for Histone H3 Phosphorylation and Condensin Recruitment during Chromosome Condensation and to Organize the Central Spindle during Cytokinesis,” J. Cell Biol., vol. 152, no. 4, pp. 669–682, Feb. 2001.

[41] I. M. Cheeseman et al., “Phospho-Regulation of Kinetochore-Microtubule Attachments by the Aurora Kinase Ipl1p,” Cell, vol. 111, no. 2, pp. 163–172, Oct. 2002.

[42] M. A. Lampson and I. M. Cheeseman, “Sensing centromere tension: Aurora B and the regulation of kinetochore function,” Trends Cell Biol., vol. 21, no. 3, pp. 133–140, Mar. 2011.

[43] H. Goto et al., “Aurora-B Regulates the Cleavage Furrow-specific Vimentin

Phosphorylation in the Cytokinetic Process,” J. Biol. Chem. , vol. 278, no. 10, pp. 8526– 8530, Mar. 2003.

[44] M. Kitagawa, S. Y. S. Fung, N. Onishi, H. Saya, and S. H. Lee, “Targeting Aurora B to the Equatorial Cortex by MKlp2 Is Required for Cytokinesis,” PLoS One, vol. 8, no. 6, p. e64826, Jun. 2013.

Mol. Cell Biol., vol. 4, p. 842, Nov. 2003.

[46] X. Li et al., “Direct association with inner centromere protein (INCENP) activates the novel chromosomal passenger protein, Aurora-C,” J. Biol. Chem., 2004.

[47] K. Sasai et al., “Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells,” in Cell Motility and the

Cytoskeleton, 2004.

[48] S. M. Quartuccio and K. Schindler, “Functions of Aurora kinase C in meiosis and cancer,” Front. Cell Dev. Biol., vol. 3, p. 50, Aug. 2015.

[49] “Allosteric modulation of AURKA kinase activity by a small-molecule inhibitor of its protein-protein interaction with TPX2.”

[50] S. Sestito et al., “Design and synthesis of 2-oxindole based multi-targeted inhibitors of PDK1/Akt signaling pathway for the treatment of glioblastoma multiforme,” Eur. J.

Med. Chem., vol. 105, pp. 274–288, 2015.

[51] S. Sestito et al., “Locking PDK1 in DFG-out conformation through 2-oxo-indole containing molecules: Another tools to fight glioblastoma,” Eur. J. Med. Chem., vol. 118, pp. 47–63, 2016.

[52] S. Daniele et al., “Dual Inhibition of PDK1 and Aurora Kinase A: An Effective Strategy to Induce Differentiation and Apoptosis of Human Glioblastoma Multiforme Stem Cells,”

ACS Chem. Neurosci., vol. 8, no. 1, pp. 100–114, Jan. 2017.

[53] M. W. Parker, “Protein Structure from X-Ray Diffraction,” in Journal of Biological

Physics, 2003.

[54] X. Fan et al., “NOTCH Pathway Blockade Depletes CD133-Positive Glioblastoma Cells and Inhibits Growth of Tumor Neurospheres and Xenografts,” Stem Cells, vol. 28, no. 1, pp. 5–16, Jan. 2010.

[55] M. Mannino, N. Gomez-Roman, H. Hochegger, and A. J. Chalmers, “Differential

[57] M. Janeček et al., “Allosteric modulation of AURKA kinase activity by a small-molecule inhibitor of its protein-protein interaction with TPX2,” Sci. Rep., vol. 6, p. 28528, Jun. 2016.

[58] M. W. Richards et al., “Structural basis of N-Myc binding by Aurora-A and its

destabilization by kinase inhibitors,” Proc. Natl. Acad. Sci. U. S. A., vol. 113, no. 48, pp. 13726–13731, Nov. 2016.

[59] C. Gu et al., “Semaphorin 3E and Plexin-D1 Control Vascular Pattern Independently of Neuropilins,” Science (80-. )., vol. 307, no. 5707, p. 265 LP-268, Jan. 2005.

[60] G. Shang, C. A. Brautigam, R. Chen, D. Lu, J. Torres-Vázquez, and X. Zhang, “Structure analyses reveal a regulated oligomerization mechanism of the PlexinD1/GIPC/myosin VI complex,” Elife, vol. 6, p. e27322, May 2017.

[61] L. Tamagnone and P. M. Comoglio, “Signalling by semaphorin receptors: cell guidance and beyond,” Trends Cell Biol., vol. 10, no. 9, pp. 377–383, 2000.

[62] A. Casazza et al., “Sema3E–Plexin D1 signaling drives human cancer cell invasiveness and metastatic spreading in mice,” J. Clin. Invest., vol. 120, no. 8, pp. 2684–2698, Aug. 2010.

[63] M. Rehman, S. Gurrapu, G. Cagnoni, L. Capparuccia, and L. Tamagnone, “PlexinD1 Is a Novel Transcriptional Target and Effector of Notch Signaling in Cancer Cells,” PLoS One, vol. 11, no. 10, p. e0164660, Oct. 2016.

Documenti correlati