• Non ci sono risultati.

MATERIALI E METOD

N- sulfanilamido-guanidina (82) [52]

1,04 g di sulfanilammide (0.006 moli) vengono solubilizzati in 1,6 ml di HCl conc., vengono quindi addizionati 2.4 ml di cianamide (50% p/p soluzione acquosa) (0.058 moli) e si scalda a 100 °C per 30 minuti. Dopo raffreddamento la soluzione ottenuta è versata in un becker contenente una soluzione satura di NaHCO3 e tenuta

in freezer tutta la notte. Si forma un precipitato che viene poi raccolto mediante filtrazione sottovuoto e che corrisponde a 0.739 g di prodotto 82 desiderato. Resa: 45 %.

4-[(7,7-dimetil-5-oxo-5,6,7,8-tetraidrochinazolin-2- il)amino]benzenesolfonammide (78b)

Il composto 81 (0.195 g, 0.0010 moli) è solubilizzato nell’opportuna quantità di n- BuOH e addizionato di 0.300 g (0.0010 moli) del composto 82 e di 0.080 g (0.0020 moli) di NaOH. La miscela di reazione viene scaldata a 120 °C per 16 ore

91 controllando l’andamento mediante TLC (miscela eluente: etere di petrolio 40- 60/acetato di etile = 1:9). Dopo raffreddamento il solido ottenuto viene raccolto mediante filtrazione sottovuoto e purificato tramite cristallizzazione da etanolo. Resa: 40 % P.f.: 257-260 °C 1H NMR (400 MHz, DMSO-d 6): δ 1.03 (s, 6H), 2.48 (s, 2H), 2.86 (s, 2H), 7.76 (d, J = 8.0 Hz, 2H), 7.96 (d, J = 8.0 Hz, 2H), 8.84 (s, 1H); 13C NMR (100 MHz, DMSO- d6): δ 27.78 (2C), 32.29, 44.86, 51.05, 117.69, 119.18 (2C), 126.50 (2C), 137.61, 142.38, 157.31, 160.68, 172.30, 194.98.

Sintesi dei derivati 4-((7,7-dimetil-5-oxo-5,6,7,8-tetraidrochinazolin-2- il)amino)-N-fenilbenzenesolfonammidici (79a-i)

Procedura generale

Il composto 78b (0,190 g, 0,545 mmoli) è addizionato di 0,005g (0,027 mmoli) di CuI, 0,655 mmoli dell’opportuno iodobenzene, 0,188g (1,364 mmoli) di K2CO3,

0,03 ml di N,N’-dimetiletilendiammina (DMEDA) solubilizzati in 3 ml di Acetonitrile . La reazione viene condotta in corrente di N2 e scaldata a 100 °C,

mantenendola in agitazione, per un periodo che va da 8 a 24 ore, controllandone

l’andamento mediante T.L.C. (miscela eluente: etere di petrolio 40-60/acetato di etile = 5:5). Dopo raffreddamento la sospensione ottenuta viene filtrata a pressione ridotta ottenendo i composti solidi grezzi che vengono purificati mediante cromatografia flash su gel di silice (diametro: 3 cm, altezza: 17 cm, miscela eluente: etere di petrolio 40-60/acetato di etile = 5:5).

92 4-((7,7-dimetil-5-oxo-5,6,7,8-tetraidrochinazolin-2-il)amino)-N- fenilbenzenesolfonammide (79a) Resa: 20 % P.f.: 215-217 °C 1H NMR (400 MHz, DMSO-d 6): δ 1.03 (s, 6H), 2.46 (s, 2H), 2.86 (s, 2H), 3.65 (s, 3H), 6.98-7.02 (m, 1H), 7.09 (d, J = 7.6 Hz, 2H), 7.21-7.24 (m, 2H), 7.70 (d, J = 8.8 Hz, 2H), 7.95 (d, J = 8.8 Hz, 2H), 8.84 (s, 1H), 10.17 (s, 1H, scamb.), 10.68 (s, 1H, scamb); 13C NMR (100 MHz, DMSO-d6): δ 27.75, 35.55, 37.13, 51.44, 119.75, 120.25, 123.64, 124.40, 128.29, 129.36, 137.52, 138.53, 138.64, 141.54, 149.44, 192.13. 4-((7,7-dimetil-5-oxo-5,6,7,8-tetraidrochinazolin-2-il)amino)-N-(4- metossifenil)benzenesolfonammide (79b) Resa: 25 % P.f.: 210-212 °C 1H NMR (400 MHz, DMSO-d 6): δ 1.03 (s, 6H), 2.50 (s, 2H), 2.86 (s, 2H), 3.65 (s, 3H), 6.79 (d, J = 8.8 Hz, 2H), 6.98 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.8 Hz, 2H), 7.93 (d, J = 8.8 Hz, 2H), 8.84 (s, 1H), 9.80 (s, 1H, scamb.), 10.66 (s, 1H, scamb); 13C NMR (100 MHz, DMSO-d 6): δ 27.85, 32.38, 51.07, 55.19, 114.32, 119.07, 123.24, 127.82, 129.21, 130.50, 138.07, 143.20, 152.95, 153.85, 160.65, 166.42, 172.33, 195.09. 4-((7,7-dimetil-5-oxo-5,6,7,8-tetraidrochinazolin-2-il)amino)-N-(4- clorofenil)benzenesolfonammide (79c)

93 Resa: 20 % P.f.: 235-237 °C 1H NMR (400 MHz, DMSO-d 6): δ 1.03 (s, 6H), 2.48 (s, 2H), 2.86 (s, 2H), 7.10 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.96 (d, J = 8.8 Hz, 2H), 8.84 (s, 1H), 10.834 (bs, 1H, scamb.), 10.69 (s, 1H, scamb); 13C NMR (100 MHz, DMSO-d6): δ 27.77, 32.30, 44.96, 51.08, 117.92, 119.18, 121.40, 127.79, 127.89, 129.09, 132.54, 136.99, 143.55, 157.27, 160.56, 172.35, 195.09. 4-((7,7-dimetil-5-oxo-5,6,7,8-tetraidrochinazolin-2-il)amino)-N-(4- tolil)benzenesolfonammide (79d) Resa: 15 % P.f.: 246-248 °C 1H NMR (400 MHz, DMSO-d 6): δ 1.03 (s, 6H), 2.17 (s, 3H), 2.49 (s, 2H), 2.86 (s, 2H), 6.99 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.4 Hz, 2H), 7.93 (d, J = 8.6 Hz, 2H), 8.84 (s, 1H), 10.01 (s, 1H, scamb.), 10.67 (s, 1H, scamb); 13C NMR (100 MHz, DMSO-d 6): δ 20.37, 27.86, 32.40, 45.87, 51.18, 118.98, 119.17, 120.45, 126.07, 127.84, 129.62, 130.26, 143.38, 143.78, 144.39, 157.18, 157.36, 194.96. 4-((7,7-dimetil-5-oxo-5,6,7,8-tetraidrochinazolin-2-il)amino)-N-(4- nitrofenil)benzenesolfonammide (79e) Resa: 20 % P.f.: 264-266 °C

94 1H NMR (400 MHz, DMSO-d 6): δ 1.04 (s, 6H), 2.49 (s, 2H), 2.87 (s, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.84 (d, J = 8.8 Hz, 2H), 8.02(d, J = 9.2 Hz, 2H), 8.13-8,15 (m, 2H), 8.85 (s, 1H), 10.74 (s, 1H, scamb.), 11.19 (s, 1H, scamb); 13C NMR (100 MHz, DMSO-d6): δ 27.72, 32.26, 44.80, 51.01, 117.72, 117.94, 119.26, 125.32, 127.92, 131.60, 142.31, 143.97, 144.41, 157.21, 160.48, 172.27, 194.96. 4-((7,7-dimetil-5-oxo-5,6,7,8-tetraidrochinazolin-2-il)amino)-N-(3- metossifenil)benzenesolfonammide (79f) Resa: 15 % P.f.: 209-211 °C 1H NMR (400 MH z, DMSO-d 6): δ 1.03 (s, 6H), 2.56 (s, 2H), 2.86 (s, 2H), 3.70 (s, 3H), 6.56-6.59 (m, 1H), 6.67-6.68 (m, 2H), 7.11 (t, 1H), 7.22 (d, J = 8.8 Hz, 2H), 7.96 (d, J = 8.8 Hz, 2H), 8.84 (s, 1H), 10.20 (s, 1H, scamb.), 10.69 (s, 1H, scamb); 13C NMR (100 MHz, DMSO-d 6): δ 27.86, 32.37, 51.09, 55.18, 106.73, 114.45, 116.42, 118.27, 119.78, 123.89, 127.13, 130.76, 139.47, 143.36, 156.31, 169.16, 186.75, 189.12, 193.14 4-((7,7-dimetil-5-oxo-5,6,7,8-tetraidrochinazolin-2-il)amino)-N-(3- clorofenil)benzenesolfonammide (79g) Resa: 15 % P.f.: 229-231 °C 1H NMR (400 MHz, DMSO-d 6): δ 1.03 (s, 6H), 2.49 (s, 2H), 2.86 (s, 2H), 7.03- 7.12 (m, 3H), 7.26 (t, J = 8.0 Hz, 1H), 7.73 (d, J = 8.8 Hz, 2H), 7.98 (d, J = 8.8 Hz, 2H), 8.85 (s, 1H), 10.50 (s, 1H, scamb.), 10.72 (s, 1H, scamb); 13C NMR (100 MHz,

95 DMSO-d6): δ 27.78, 32.29, 36.09, 42.54, 110.90, 117.88, 118.78, 119.32, 120.91, 127.75, 131.05, 133.29, 143.69, 145.53, 160.42, 172.28, 189.92, 195.05, 197.16. 4-((7,7-dimetil-5-oxo-5,6,7,8-tetraidrochinazolin-2-il)amino)-N-(3- tolil)benzenesolfonammide (79h) Resa: 15 % P.f.: 218-220°C 1H NMR (400 MHz, DMSO-d 6): δ 1.07 (s, 6H), 2.19 (s, 3H), 2.46 (s, 2H), 2.86 (s, 2H), 6.80-6.82 (m, 1H), 6.89-6.91 (m, 2H), 7.07-7.09 (m, 1H), 7.70 (d, J = 8.0 Hz, 2H), 7.95 (d, J = 7.6 Hz, 2H), 8.84 (s, 1H), 10.13 (s, 1H, scamb.), 10.69 (s, 1H, scamb); 13C NMR (100 MHz, DMSO-d6): δ 20.38, 27.84, 32.41, 45.85, 51.17, 111.12, 118.89, 119.722, 120.13, 121.17, 124.83, 128.11, 131.36, 140.26, 143.38, 157.26, 169.15, 173.78, 189.21, 194.37. 4-((7,7-dimetil-5-oxo-5,6,7,8-tetraidrochinazolin-2-il)amino)-N-(3- nitrofenil)benzenesolfonammide (79i) Resa: 20 % P.f.: 241-243 °C 1H NMR (400 MHz, DMSO-d 6): δ 1.03 (s, 6H), 2.48 (s, 2H), 2.86 (s, 2H), 7.53- 7.54 (m, 2H), 7.76 (d, J = 9.2 Hz, 2H), 7.84-7.87 (m, 1H), 7.95-8.00 (m, 3H), 8.84 (s, 1H), 10.72 (s, 1H, scamb.), 10.85 (s, 1H, scamb); 13C NMR (100 MHz, DMSO- d6): δ 27.71, 32.24, 44.82, 51.03, 110.67, 116.46, 118.39, 118.96, 121.03, 126.78,

96

Bibliografia

[1] W Richard Chellwidden I and Nicholas D. Carter. The Carbonic Anhydrases New Horizons. (2000), 14.

[2] Supuran, C. T., Scozzafava, A. & Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev., (2003), 23, 146–189.

[3] Klatte, T., Belldegrun, A. S., & Pantuck, A. J. (2008). The role of carbonic anhydrase IX as a molecular marker for transitional cell carcinoma of the bladder. BJU International, 101(s4), 45–48.

[4] Supuran, C. T., Scozzafava, Carbonic anhydrase inhibitors and their therapeutic potential, Exp. Opin. Ther. Patents (2000) 10(5):575-600

[5] Supuran, C. (2008). Carbonic Anhydrases An Overview. Current Pharmaceutical Design, 14(7), 603–614.

[6] Lindskog, S. (1997). Structure and mechanism of carbonic anhydrase. Pharmacology & Therapeutics, 74(1), 1–20

[7] Domsic, J. F., Avvaru, B. S., Kim, C. U., Gruner, S. M., Agbandje-McKenna, M., Silverman, D. N., & McKenna, R. (2008). Entrapment of Carbon Dioxide in the Active Site of Carbonic Anhydrase II. Journal of Biological Chemistry, 283(45), 30766–30771.

[8] Silverman, D. N., & McKenna, R. (2007). Solvent-Mediated Proton Transfer in Catalysis by Carbonic Anhydrase. Accounts of Chemical Research, 40(8), 669– 675.

[9] Scozzafava, A., Mastrolorenzo, A., & Supuran, C. T. (2004). Modulation of carbonic anhydrase activity and its applications in therapy. Expert Opinion on Therapeutic Patents, 14(5), 667–702.

[10] Temperini, C., Scozzafava, A., Vullo, D., & Supuran, C. T. (2006). Carbonic Anhydrase Activators. Activation of Isozymes I, II, IV, VA, VII, and XIV withL- andD-Histidine and Crystallographic Analysis of Their Adducts with Isoform II: Engineering Proton-Transfer Processes within the Active Site of an Enzyme. Chemistry - A European Journal, 12(27), 7057–7066.

97 [11] Sun, M.-K., & Alkon, D. L. (2002). Carbonic anhydrase gating of attention: memory therapy and enhancement. Trends in Pharmacological Sciences, 23(2), 83– 89.

[12] Supuran, C. T. (2013). Carbonic anhydrases: from biomedical applications of the inhibitors and activators to biotechnological use for CO2 capture. Journal of Enzyme Inhibition and Medicinal Chemistry, 28(2), 229–230.

[13] Supuran, C.T How many carbonic anhydrase inhibition mechanisms exist?. J Enzyme Inhib Med Chem, 1–16 (2015) Taylor & Francis

[14] Supuran, C. T. (2012). Structure-based drug discovery of carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 27(6), 759–772 [15] Vijay M. Krishnamurthy. Carbonic Anhydrase as a Model for Biophysical and Physical-Organic Studies of Proteins and Protein-Ligand Binding Chem. Rev. (2008), 108, 946-1051

[16] Claudiu T. Supuran (2016): Advances in structure-based drug discovery of carbonic anhydrase inhibitors

[17] Claudiu T Supuran & Andrea Scozzafava, Carbonic anhydrase inhibitors and their therapeutic potential. (2000) 10(5):575-600

[18] Supuran, C.T Structure-based drug discovery of carbonic anhydrase inhibitors (2012); 27(6): 759–772

[19] E.Masini, F. Carta, A. Scozzafava & C. T Supuran. Antiglaucoma carbonic anhydrase inhibitors: a patent review. Expert Opin. Ther. Patents (2013)

23(6):705-716 (2013)

[20] Supuran, C.T, Carta. F Diuretics with carbonic anhydrase inhibitory action: a patent and literature review (2005 - 2013) Expert Opin. Ther. Patents. (2013) [21] Supuran, C.T, Diuretics: From Classical Carbonic Anhydrase Inhibitors to Novel Applications of the Sulfonamides. Current Pharmaceutical Design, (2008), 14, 641-64

[22] Riihonen, R., Supuran, C. T., Parkkila, S., Pastorekova, S., Väänänen, H. K., & Laitala-Leinonen, T. (2007). Membrane-bound carbonic anhydrases in osteoclasts. Bone, 40(4), 1021–1031

98 [23] A. Scozzafava, C. T Supuran, F. Carta Antiobesity carbonic anhydrase inhibitors: a literature and patent review. Expert Opin. Ther. Patents (2013) 23(6):725-735

[24] C.T Supuran , A. Di Fiore, G. De Simone Carbonic anhydrase inhibitors as emerging drugs for the treatment of obesity. Expert Opin. Emerging Drugs (2008) 13(2):383-392

[25] Muz, B., de la Puente, P., Azab, F., & Azab, A. K. (2015). The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia, 83

[26] C. T. Supuran Carbonic Anhydrase Inhibition and the Management of Hypoxic Tumors. Metabolites (2017), 7, 48;

[27] A. Thiry, J. Dogne, B. Masereel, CT. Supuran Targeting tumor-associated carbonic anhydrase IX in cancer therapy. (2006) TRENDS in Pharmacological Sciences Vol.27 No.11

[28] Nishimori, I. et al. Carbonic anhydrase inhibitors. DNA cloning, characterization and inhibition studies of the human secretory isoform VI, a new target for sulfonamide and sulfamate inhibitors. J. Med. Chem., (2007), 50, 381– 388.

[29] Vullo, D., et al. Carbonic anhydrase inhibitors. Inhibition of the tumor- associated isozyme IX with aromatic and heterocyclic sulfonamides. Bioorg. Med.Chem. Lett., (2003), 13, 1005–1009.

[30] Teicher, B. A.; Liu, S. D.; Liu, J. T.; Holden, S. A.; Herman, T. S. A carbonic anhydrase inhibitor as a potential modulator of cancer therapies. Anticancer Res. (1993), 13, 1549–1556.

[31] Pastorekova, S., Casini, A., Scozzafava, A., Vullo, D., Pastorek, J., & Supuran, C. T. (2004). Carbonic anhydrase inhibitors: The first selective, membrane- impermeant inhibitors targeting the tumor-associated isozyme IX. Bioorganic & Medicinal Chemistry Letters, 14(4), 869–873.

[32] Wilkinson, B. L.; Bornaghi, L. F.; Houston, T. A.; Innocenti, A.; Supuran, C. T.; Poulsen, S. A., A novel class of carbonic anhydrase inhibitors: glycoconjugate benzene sulfonamides prepared by “clicktailing”.J. Med. Chem. (2006), 49, 6539– 6548.

99 [33] De Simone, G.; Vitale, R. M.; Di Fiore, A.; Pedone, C.; Scozzafava, A.; Montero, J. L.; Winum, J. Y.; Supuran, C. T. Carbonic anhydrase inhibitors: hypoxia-activatable sulfonamides incorporating disulfide bonds that target the tumor-associated isoform IX. J. Med. Chem. (2006), 49, 5544–5551.

[34] S.Singh, C. L. Lomelino, M. Y. Mboge, S.C. Frost ID and R.McKenna Cancer Drug Development of Carbonic Anhydrase Inhibitors beyond the Active Site. Molecules (2018), 23, 1045

[35] Thiry, A., Supuran, C. T., Masereel, B., & Dogné, J.-M. (2008). Recent Developments of Carbonic Anhydrase Inhibitors as Potential Anticancer Drugs. Journal of Medicinal Chemistry, 51(11)

[36] C. T Supuran Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. (2008) Nature Publishing Group

[37] A. Scozzafava, A. Mastrolorenzo e C.T Supuran. Modulation of carbonic anhydrase activity and its applications in therapy. Expert Opin. Ther. Patents (2004) 14 (5):667-702

[38] Marini, A. M., Maresca, A., Aggarwal, M., Orlandini, E., Nencetti, S., Da Settimo, F., ... & Nuti, E. (2012). Tricyclic sulfonamides incorporating benzothiopyrano [4, 3-c] pyrazole and pyridothiopyrano [4, 3-c] pyrazole effectively inhibit α-and β-carbonic anhydrase: X-ray crystallography and solution investigations on 15 isoforms. Journal of Medicinal Chemistry, 55(22), 9619-9629. [39] Weber, A., Casini, A., Heine, A., Kuhn, D., Supuran, C. T., Scozzafava, A., & Klebe, G. (2004). Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. Journal of medicinal chemistry, 47(3), 550-557.

[40] Di Fiore, A., Pedone, C., D’Ambrosio, K., Scozzafava, A., De Simone, G., & Supuran, C. T. (2006). Carbonic anhydrase inhibitors: valdecoxib binds to a different active site region of the human isoform II as compared to the structurally related cyclooxygenase II ‘selective’inhibitor celecoxib. Bioorganic & medicinal chemistry letters, 16(2), 437-442.

[41] Dogne, J. M., Thiry, A., Pratico, D., Masereel, B., & Supuran, C. T. (2007). Dual carbonic anhydrase-cyclooxygenase-2 inhibitors. Current topics in medicinal chemistry, 7(9), 885-891.

100 [42] Supuran, C. T., Casini, A., Mastrolorenzo, A., & Scozzafava, A. (2004). COX- 2 selective inhibitors, carbonic anhydrase inhibition and anticancer properties of sulfonamides belonging to this class of pharmacological agents. Mini reviews in medicinal chemistry, 4(6), 625-632. 114

[43] Barresi, E., Salerno, S., Marini, A. M., Taliani, S., La Motta, C., Simorini, F., ... & Supuran, C. T. (2016). Sulfonamides incorporating heteropolycyclic scaffolds show potent inhibitory action against carbonic anhydrase isoforms I, II, IX and XII.

Bioorganic & medicinal chemistry, 24(4), 921-927.

[44] Salerno, S., Barresi, E., Amendola, G., Berrino, E., Milite, C., Marini, A. M., ... & Taliani, S. (2018). 4-Substitutedbenzenesulfonamides incorporating bi/tricyclic moieties act as potent and isoform-selective carbonic anhydrase II/IX inhibitors. Journal of medicinal chemistry.

[45] Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational

chemistry, 30(16), 2785-2791.

[46] Leitans, J., Kazaks, A., Balode, A., Ivanova, J., Zalubovskis, R., Supuran, C. T., & Tars, K. (2015). Efficient expression and crystallization system of cancer- associated carbonic anhydrase isoform IX. Journal of medicinal chemistry, 58(22), 9004-9009.

[47] Leitans, J., Kazaks, A., Balode, A., Ivanova, J., Zalubovskis, R., Supuran, C. T., & Tars, K. (2015). Efficient expression and crystallization system of cancer- associated carbonic anhydrase isoform IX. Journal of medicinal chemistry, 58(22), 9004-9009.

[48] M. D’Ascenzio, P. Guglielmi, S.Carradori, D. Secci, R. Florio, A. Mollica, M.Ceruso, A. Akdemir, A., P. Sobolev & Claudiu T. Supuran. Open saccharin based secondary sulfonamides as potent and selective inhibitors of cancer-related carbonic anhydrase IX and XII isoforms. Journal of enzyme inhibition and

101 [49] Schenone, P., Mosti, L., & Menozzi, G. (1982). Reaction of 2‐ dimethylaminomethylene‐1, 3‐diones with dinucleophiles. I. Synthesis of 1, 5‐ disubstituted 4‐acylpyrazoles. Journal of Heterocyclic Chemistry, 19(6), 1355- 1361.

[50] Kubas, H., Meyer, U., Krueger, B., Hechenberger, M., Vanejevs, M., Zemribo, R., ... & Abel, U. (2013). Discovery, synthesis, and structure–activity relationships of 2-aminoquinazoline derivatives as a novel class of metabotropic glutamate receptor 5 negative allosteric modulators. Bioorganic & medicinal chemistry

letters, 23(16), 4493-4500.

[51] Harris, Phillip Anthony; Jung, David Kendall; Peel, Michael Robert; Reno, Michael John; Rheault, Tara Renae; Stanford, Jennifer Badiang; Stevens, Kirk Lawrence; Veal, James Marvin; Badiang, Jennifer G.; et al. Preparation of (pyrazolo[1,5-b]pyridazinyl)pyrimidinamines and analogs as cyclin dependent kinase inhibitors for treatment of cancer . PCT Int. Appl. (2003), WO 2003051886 A1 20030626.

Documenti correlati