a
r
t
i
c
l
e
i
n
f
o
a
b
s
t
r
a
c
t
Articlehistory:
Received20May2020
Receivedinrevisedform19June2020 Accepted28June2020
Availableonline2July2020 Editor:L.Rolandi
Asearchforheavyneutrallepton(N)productioninK+→e+N decaysusingthedatasamplecollectedby theNA62experimentatCERNin2017–2018isreported.Upperlimitsoftheextendedneutrinomixing matrix element|Ue4|2 are establishedatthe level of10−9 overmost oftheaccessibleheavy neutral
leptonmassrange144–462 MeV/c2,withtheassumptionthatthelifetimeexceeds50 ns.Theselimits improvesignificantlyuponthoseofpreviousproductionanddecaysearches.The|Ue4|2rangefavoured
byBigBangNucleosynthesisisexcludeduptoamassofabout340 MeV/c2.
©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
0. Introduction
AllStandardModel(SM)fermionsexceptneutrinosareknown to exhibit right-handed chirality. The existence of right-handed neutrinos, or heavy neutral leptons (HNLs), is hypothesised in manySM extensionsinordertogeneratenon-zero massesofthe SMneutrinosviatheseesawmechanism [1].Forexample,the Neu-trinoMinimalStandardModel [2] simultaneouslyaccountsfordark matter,baryogenesis,andneutrinomassesandoscillationsby pos-tulatingtwoHNLsintheMeV–GeVmassrangeandathirdHNL,a darkmattercandidate,atthekeVmassscale.
MixingbetweenHNLs(alsodenoted N below)andactive neu-trinosgivesriseto HNLproductionindecaysofSMparticles and decaysofHNLsintoSM particles.Bothclassesofprocessescanin principlebedetectedexperimentally.Theexpectedbranching frac-tionofthe K+
→
+N decay(=
e,μ
)is [3]B
(
K+→
+N)
=
B
(
K+→
+ν
)
·
ρ
(
mN)
· |
U4|
2,
(1) whereB(
K+→
+ν
)
is the measured branching fraction of the SMleptonicdecay,|
U4|
2 isthemixingparameter,mN istheHNLmass,and
ρ
(m
N)
isakinematicfactor:ρ
(
mN)
=
(
x+
y)
− (
x−
y)
2x
(
1−
x)
2· λ
1/2
(
1,
x,
y),
(2)withx
= (
m/m
K)
2, y= (
mN/m
K)
2 andλ(a,
b,c)=
a2+
b2+
c2−
2
(ab
+
bc+
ac). By definition,ρ
(
0)
=
1. Numerically, the prod-uctB(
K+→
+ν
)
·
ρ
(m
N)
isO(
1)
overmostoftheallowedmNrange;itdropstozeroatthekinematiclimitmN
=
mK−
mand,in thepositroncase,reducestoB(
K+→
e+ν
)
=
1.
582(
7)
×
10−5 [4] formN→
0 duetohelicitysuppression.ThelifetimeofanHNLwithmassmN
<
mKanddecayingexclu-sivelyintoSM particleswillexceed10−4
/
|
U4|
2 μs,where|
U4|
2 is thelargestofthethreecouplingparameters U24 (
=
e,μ
,
τ
) [5].Assuming conservatively that
|
U4|
2<
10−4, the lifetimeexceeds 1 μs andHNLscanbe consideredstableinproduction-search ex-periments.A search for K+
→
e+N decays in the HNL mass range 144–462 MeV/c2usingthedatacollectedbytheNA62experiment atCERNin2017–2018isreported.The results,whichassume the HNLlifetimeexceeds50 ns,arepresentedasupperlimitsof|
Ue4|
2at90%CLforanumberofmasshypotheses.
1. Beam,detectoranddatasample
The layout of the NA62 beamline and detector [6] is shown schematically in Fig. 1. An unseparated secondary beam of
π
+(70%),protons(23%)andK+(6%)iscreatedbydirecting400 GeV/c protons extracted from the CERN SPS onto a berylliumtarget in spills of 3 s effective duration. The central beam momentum is 75 GeV/c,withamomentumspreadof1%(rms).
Beam kaons are tagged with 70 ps time resolution by a dif-ferentialCherenkovcounter(KTAG)usingnitrogengasat1.75 bar pressurecontainedina5 mlongvesselasradiator.Beamparticle positions, momenta andtimes(to better than100 ps resolution) are measured by a silicon pixel spectrometer consisting of three stations(GTK1,2,3)andfourdipolemagnets.Amuonscraper(SCR) is installed between GTK1 and GTK2. A 1.2 m thick steel colli-mator (COL) with a central aperture of 76
×
40 mm2 andouter dimensionsof1.
7×
1.
8 m2 isplacedupstreamofGTK3 toabsorb hadronsfromupstream K+ decays(avariableaperturecollimator of0.
15×
0.
15 m2 outer dimensionswas used up toearly 2018). InelasticinteractionsofbeamparticlesinGTK3aredetectedbyan array ofscintillator hodoscopes(CHANTI) locatedjust afterGTK3. Thebeamisdeliveredintoavacuumtankevacuatedtoapressure of10−6 mbar, whichcontainsa 75 mlongfiducialdecayvolume (FV)starting2.6 mdownstreamofGTK3.The beamdivergenceat theFVentranceis0.11 mrad(rms)inbothhorizontalandvertical https://doi.org/10.1016/j.physletb.2020.1355990370-2693/©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.
2 The NA62 Collaboration / Physics Letters B 807 (2020) 135599
Fig. 1. Schematic side view of the NA62 beamline and detector. planes.DownstreamoftheFV,undecayedbeamparticlescontinue
theirpathinvacuum.
MomentaofchargedparticlesproducedbyK+decaysintheFV aremeasuredbyamagneticspectrometer(STRAW)locatedinthe vacuumtank downstreamoftheFV.Thespectrometer consistsof fourtrackingchambersmadeofstrawtubes,andadipolemagnet (M)located betweenthe second andthirdchambers and provid-ing a horizontal momentum kick of 270 MeV/c. The momentum resolutionachievedis
σ
p/p
= (
0.
30⊕
0.
005·
p)%,wherethemo-mentum p isexpressedinGeV/c.
A ring-imaging Cherenkov detector (RICH), consisting of a 17.5 mlongvesselfilledwithneonatatmosphericpressure(with a Cherenkov threshold for muons of 9.5 GeV/c), is used for the identification of charged particles and time measurements with 70 psprecision(forpositrons).Twoscintillatorhodoscopes(CHOD, whichincludeamatrixoftilesandtwoorthogonalplanesofslabs, arrangedinfourquadrants)downstreamoftheRICHprovide trig-gersignalsandtimemeasurementswith200 psprecision.
A27X0 thickquasi-homogeneous liquidkrypton(LKr) electro-magnetic calorimeter is used for particle identificationand pho-ton detection. The calorimeter has an active volume of 7 m3, is segmentedinthe transverse directioninto13248projective cells of approximately 2
×
2 cm2, and provides an energy resolutionσ
E/E
= (
4.
8/
√
E
⊕
11/E
⊕
0.
9)
%, whereE isexpressedinGeV.To achievehermetic acceptanceforphotonsemittedin K+ decaysin theFVatanglesupto50 mradtothebeamaxis,theLKr calorime-terissupplementedbyannularleadglassdetectors(LAV)installed in12 positions inanddownstream ofthevacuumtank, andtwo lead/scintillatorsampling calorimeters(IRC, SAC) located closeto the beamaxis.An iron/scintillatorsampling hadroniccalorimeter formed of two modules (MUV1,2) and a muon detector (MUV3) consistingof 148 scintillatortiles located behind an 80 cm thick ironwallareusedforparticleidentification.Thedatasampleusedfortheanalysisisobtainedfrom0
.
79×
106SPSspillsrecordedduring360daysofoperationin2017–2018, at a typical beam intensity of 2.
2×
1012 protons per spill cor-responding to a mean beam particle rate at the FV entrance of 500 MHz, anda mean K+ decayrate inthe FVof 3.7 MHz.The trigger used for the K+→
π ν
ν
¯
measurement [7], consisting of bothhardware(L0)andsoftware(L1)stages,isusedforthe anal-ysis. Overall trigger efficiencyfor single positrons withmomenta below30 GeV/c ismeasuredtobe(
90±
4)
% usingdatasamples.2. Eventselection
Assuming an HNL lifetime exceeding 50 ns, and considering that the HNLproduced in K+
→
e+N decayswould be boosted by aLorentz factorofO(
100)
,HNLdecaysinflight intoSMpar-ticlesin the156 mlongvolume betweenthe startoftheFVand thelastdetector(SAC)canbeneglected (Section5).Thereforethe K+
→
e+N decayischaracterizedbyasinglepositroninthefinal state,similarlytotheSM K+→
e+ν
decay.Theprincipalselection criteriafollow.•
A positron track reconstructed in the STRAW spectrometer with momentum in the range 5–30 GeV/c is required. The momentum isrestrictedto thisrange,becausethe L0trigger requiredthatthetotalenergydepositedintheLKrnotexceed 30 GeV. The track’s trajectory through the STRAW chambers anditsextrapolationtotheLKrcalorimeter,CHODandMUV3 should bewithinthefiducialgeometricalacceptanceofthese detectors.Thepositrontimeisevaluatedasthemeantimeof theRICHsignalsspatiallyassociatedwiththetrack.•
Backgrounds dueto particle misidentification are suppressed toa negligiblelevelbyapplyingthefollowingparticle identi-fication criteriatothesingletrack:theratioofenergy, E, de-positedintheLKrcalorimetertomomentum, p,measuredby theSTRAWspectrometerisrequiredtobe 0.
92<
E/p<
1.
08; a particle identification algorithm based on the RICH signal patternwithin 3 ns ofthepositron RICH time isapplied; no signalintheMUV3detectorspatiallyconsistentwiththe pro-jectedtrackimpactpointandwithin4 nsofthepositrontime isallowed.•
Backgrounds frombeampiondecays(mainlyπ
+→
e+ν
,and toalesserextentπ
+→
μ
+ν
followedbymuondecayμ
+→
e+
ν
ν
¯
)aresuppressedby requiringa kaonsignal intheKTAG detectorwithin1 nsofthepositrontime.•
Identification of the K+ track in theGTK relies on the time difference,t
GK, between a GTK trackand the KTAG signal, andspatialcompatibilityoftheGTKandSTRAWtracks quan-tified by the distance,d, of closest approach. A discriminantD( t
GK,
d)isdefinedusingthet
GKandd distributions mea-sured with K+→
π
+π
+π
− decays.Among GTK trackswith|
tGK|
<
0.
5 ns,thetrackoftheparentkaonisassumedtobe theone givingtheD
valuemostconsistentwitha K+→
e+ decay. Itis alsorequired thatd<
4 mm toreduce the back-groundfrom K+→
μ
+ν
decaysinthe FVfollowedbymuon decayμ
+→
e+ν
ν
¯
. The decayvertex isdefined asthe point ofclosestapproachoftheGTKandSTRAWtracks,takinginto accountthestraymagneticfieldinthevacuumtank.•
Background from K+→
μ
+ν
decays upstream of GTK3 fol-lowedbyμ
+ decaysintheFVarisesfrompileupintheGTK, andis suppressedby geometricalconditions. Namely,the re-constructed K+ decayvertexisrequiredto belocated inthe FV at a minimumdistance fromthe start of the FV,varying from2 m to12 m depending onthe anglebetween the K+Fig. 2. Left:reconstructedsquaredmissingmass(m2
miss)distributionsfordataandsimulatedeventsaftertheselectiondescribedinSection2.Decaystomuonscontribute viamuondecaysinflight.TheboundariesoftheSMsignalregion(upperarrows)andtheHNLsearchregion(lowerarrows)aredefinedinSections2and5.Right:theratio ofdataandsimulatedm2
missspectra.Thestatisticaluncertaintiesshownaredominatedbythoseofthesimulatedspectra.
momentuminthelaboratoryframeandthepositron momen-tumintheK+ restframe.
•
Backgrounds from multi-body K+ decays are suppressed by veto conditions. The positron track must not form vertices with any other STRAW track. LKr energy deposition clusters notspatiallycompatiblewiththepositrontrackwithin8 nsof the positrontime are notallowed. Activity inthelarge-angle (LAV)andsmall-angle(SAC,IRC)photonvetodetectorswithin 3 ns ofthepositrontimeisforbidden.ActivityintheCHANTI detectorwithin4 nsofthepositrontimeisnotallowed;more thantwosignalsintheCHODtileswithin6 nsofthepositron timeandnotspatiallyassociatedwiththepositronarealsonot allowed. Datalossduetothe vetoconditionsfromaccidental activity(“randomveto”)averagedoverthesampleismeasured tobeabout30%.Thesquaredmissingmassiscomputedasm2
miss
= (
PK−
Pe)
2, wherePK andPe arethekaonandpositron4-momenta,obtainedfromthe 3-momentameasuredby theGTK andSTRAWdetectors andusingtheK+ ande+masshypotheses.
Simulationofparticleinteractionswiththedetectorandits re-sponseisperformedwithaMonte-Carlosimulationpackagebased on the Geant4 toolkit [8]. The m2
miss spectra of the events se-lected fromdataandsimulated samples,andtheir ratio,are dis-playedinFig.2.ThesignalfromtheSMleptonicdecayK+
→
e+ν
is observed as a peak at m2miss
=
0 with a resolution of 1.
7×
10−3 GeV2/c
4. The simulationis tuned to reproduce this resolu-tion to a 1% relative precision. The SM signal region is defined interms ofthe reconstructed squaredmissingmass as|
m2miss
|
<
0.
01 GeV2/c
4.3. Measurementprinciple
Apeak-searchprocedure measures the K+
→
e+N decay rate withrespecttothe K+→
e+ν
rateforanassumedHNLmassmN.Thisapproachbenefitsfromfirst-ordercancellationsofresidual de-tectorinefficienciesnotfullyaccountedforinsimulations,aswell astrigger inefficiencies andrandom veto losses, common to sig-nalandnormalizationmodes.TheexpectednumberofK+
→
e+N signaleventsNS canbewrittenasNS
=
B
(
K+→
e+N)/
B
SES(
K+→
e+N)
= |
Ue4|
2/
|
Ue4|
2SES,
(3)wherethebranchingfraction
B
SES(K
+→
e+N)andthemixing pa-rameter|
Ue4|
2SES corresponding to the observation of one signalevent,thesingleeventsensitivity(SES),aredefinedas
B
SES(
K+→
e+N)
=
1 NK·
AN and|
Ue4|
2SES=
B
SES(
K+→
e+N)
B
(
K+→
e+ν
)
·
ρ
e(
mN)
,
(4)whereNK isthenumberof K+decaysintheFV, AN isthesignal
selection acceptance,and thekinematic factor
ρ
e(m
N)
is definedinEq. (2).
The number of K+ decays in the FV is evaluated using the numberof K+
→
e+ν
candidatesreconstructed inthe data sam-ple.Data lossesduetotriggerefficiencies andrandomvetoesare includedinthe NK definition,whichmakesthevalue ofNKspe-cifictothisanalysis.ThedominantbackgroundduetoK+
→
μ
+ν
decayfollowed by
μ
+→
e+ν
ν
¯
decay(0.08% inrelative terms) is takenintoaccount.Otherbackgrounds,includingthecontribution fromK+→
μ
+ν
decaywithamisidentifiedmuon,arenegligible.ThenumberofK+decaysiscomputedas
NK
=
NSM
Ae
·
B
(
K+→
e+ν
)
+
Aμ·
B
(
K+→
μ
+ν
)
= (
3.
52±
0.
02)
×
1012,
where NSM
=
3.
495×
106 isthe number ofselected data events inthe SM signal region; Ae= (
6.
27±
0.
02stat)
×
10−2 and Aμ=
(
1.
24±
0.
19stat)
×
10−9 are the acceptances of the selection for the K+→
e+ν
decay and the K+→
μ
+ν
decay (followed by muon decay) evaluated with simulations; andB(K
+→
e+ν
)
=
(
1.
582±
0.
007)
×
10−5 andB(
K+→
μ
+ν
)
=
0.
6356±
0.
0011 are thebranchingfractionsofthesedecays [4].Theuncertaintyquoted in NK isduetotheprecision oftheexternalinputB(
K+→
e+ν
)
andthestatisticalandsystematicaccuracyofthesimulation.The systematicuncertaintyisevaluated byvarying theselection crite-ria.
4. Backgroundevaluationwithsimulations
The search procedure is based ona data-driven estimation of the background to K+
→
e+N decays, which is validin the ab-sence of peaking signal-like background structures in the recon-structed mass spectrum. Simulations are usedto understandthe4 The NA62 Collaboration / Physics Letters B 807 (2020) 135599
Fig. 3. Missingmassresolutionσm (left)andacceptances AN ofthestandardandauxiliaryselections(right)evaluatedfromsimulationsasfunctionsoftheHNLmass,
obtainedbypolynomialfitstomeasurementsbasedon80simulatedsignalsampleswithdifferentHNLmasses.Abovethemassof420 MeV/c2,thetwoselectionshave equalacceptanceasthemomentumofthepositronproducedintheK+→e+N decayisalwaysbelow20 GeV/c.TheboundariesoftheHNLsearchregionareindicatedby verticalarrows.
background qualitatively, to optimizethe eventselection, and to justifythesearchprocedure.
The main background to K+
→
e+N and K+→
e+ν
decays comes from K+→
μ
+ν
decay followed by muon decayμ
+→
e+
ν
ν
¯
. This background is reduced by the requirement of spatial compatibility between the positron and kaon tracks, and its ul-timate level is limited by the resolution on the track directions provided by the STRAW andGTK spectrometers. The background fromK+→
μ
+ν
decaysupstreamofthevacuumtankis60 times smallerthanthatfromdecaysinthevacuumtank.Backgrounds from beam pion decays
π
+→
e+ν
andπ
+→
μ
+ν
decays, followed by muon decay, arise fromπ
+ misidenti-ficationintheKTAGduetothepresenceofanin-timebeamkaon notdecayingintheFV.Consideringthebeamrate,thekaon frac-tioninthebeam,andtheKTAG–RICHtimingconditionsused,the beampionmisidentificationprobabilityduetopileupisabout6%. TheprobabilityofbeampionidentificationasakaonintheKTAG intheabsenceofpileupisnegligible.Thebeampiondecay back-groundpopulatesthe missingmassregionmmiss2>
0.
13 GeV2/c
4, becauseofthe30 GeV/c upperlimitimposed onthee+ momen-tum.The reconstructed m2
miss spectrum of dataevents is described bysimulationstoafewpercentrelativeprecision(Fig. 2). The ac-curacyofthesimulationislimitedbysystematiceffects,suchasin themodellingoftheLAV detectorresponse tosoftradiative pho-tons.
5. Searchprocedure
TheK+
→
e+N processisinvestigatedin264masshypotheses, mN,within theHNLsearch regionbetween144and462MeV/c2.Thedistancesbetweenadjacentmasshypothesesareequaltothe massresolution
σ
m showninFig.3(left),roundedto0.1 MeV/c2.Thismass resolution is three timesbetter than that of the 2015 data sample collected without the GTK spectrometer [9]. Event selectionrequiresthat
|
mmiss−
mN|
<
1.
5σ
mforeachmasshypoth-esis,wheremmiss isthereconstructedmissingmass.
IneachHNLmasshypothesis,sidebandsaredefinedinthe re-constructed missing mass spectrum as 1
.
5σ
m<
|
mmiss−
mN|
<
11
.
25σ
m, additionally requiring the missing mass to be withinthe range122–465 MeV/c2.The number ofexpected background events,Nexp,withinthe
±
1.
5σ
m signalwindowisevaluated witha second-order polynomial fit to the sidebanddata of the mmiss spectrum, where the bin size is 0
.
75σ
m. The uncertainty,δN
exp,in thenumberof expectedbackgroundevents includesstatistical and systematiccomponents. The formercomes fromthe statisti-cal errorsinthefitparameters, andthe latterisevaluatedasthe differencebetweenNexpobtainedfromfitsusingsecondandthird order polynomials. The dominantcontribution to
δN
exp is statis-tical, exceptneartheboundariesoftheHNLsearch regionwhere the systematic uncertainty is comparable. Further systematic er-rorsduetopossibleHNLsignalsinthesidebandsarefoundtobe negligible; thischeck ismadeassuming|
Ue4|
2 tobe equaltotheexpected sensitivityofthe analysis. Theratio
δN
exp/N
exp is typi-cally0.2–0.3%,butreachesafewpercentclosetothelimitsofthe searchregion.An auxiliary selection with a tighter maximum positron mo-mentum requirement of 20 GeV/c is used to achieve a locally smoothmmiss spectrumofbackgroundeventsinthesidebandsfor mass hypotheses in the range 356–382 MeV/c2. The beam pion decaybackgroundthresholdinthem2miss spectrumisshiftedfrom 0
.
14 GeV2/c
4 (Fig. 2) to 0.
165 GeV2/c
4 within the auxiliary se-lection because the e+ momentum and the m2miss reconstructed for theπ
+→
e+ν
decay in the K+ mass hypothesis are anti-correlated.The signalselection acceptances, AN,forthe standardandthe
auxiliary selectionsasfunctionsofmN obtainedwithsimulations
assuming infiniteHNLlifetimeare displayedin Fig.3(right). The acceptanceforameanlifetimeof50 ns(consideringdecaysto de-tectableparticles)islowerthanshownby
O(
1%)
inrelativeterms, making the results of the search valid for lifetimes in excess of 50 ns.Forsmallerlifetimes,theHNLmeandecaylengthinthe lab-oratoryframebecomescomparabletoorsmallerthanthelengthof the apparatus.Consequently, acceptancesforlifetimes of5 (1) ns decreaseduetothevetoconditionsbyfactorsofupto2 (10), de-pendingontheHNLmass.The simulation of the missing mass resolution outside the K+
→
e+ν
peak isvalidatedwithasample offullyreconstructed K+→
π
+π
+π
− decays by studying the resolution ofm
3π=
(P
K−
P3)
2−
(P
1+
P2)
2,where Pi(i=
1,
2,
3)andPK arethereconstructedpionandkaon4-momenta.Theresolutionon
m
3π canbemeasuredforbothdataandsimulatedsamplesbecausethe truevalueofthisquantityisalwayszero.Theresolutionvariesin therange0.8–1.3 MeV/c2 dependingon(P
simu-Fig. 4. Left:thevaluesofNobs,theobtainedupperlimitsat90%CLofthenumbersofK+→e+N events,andtheexpected±1σand±2σ bandsinthebackground-only hypothesisforeachHNLmassvalueconsidered.Right:singleeventsensitivitiesBSES(K+→e+N)(dashedline)and|Ue4|SES2 (solidline)asfunctionsoftheHNLmass.Note thereducedsensitivityintheregionof356–382 MeV/c2inwhichtheauxiliaryselectionisused.TheboundariesoftheHNLsearchregionareindicatedbyverticalarrows. lationagreeswiththedatatobetterthan5%,validatingthesignal
acceptanceestimatesto2%relativeprecision.
6. Results
The number ofobserved events, Nobs, within the signal win-dow, the number of expected background events, Nexp, and its uncertainty,
δN
exp, are used to compute the local signal signifi-canceforeachmasshypothesisz
= (
Nobs−
Nexp)/
(δ
Nobs)
2+ (δ
Nexp)
2,
with
δN
obs=
√
Nobs.Amaximumlocalsignificanceof3.6isfound for mN=
346.
1 MeV/c
2, based on Nobs=
236745 and Nexp=
234678±
314.Accountingforthelook-elsewhereeffect,theglobal significancebecomes2.2.Thequantities Nobs, Nexp, and
δN
exp are used toevaluate the upperlimitat90%CLofthenumberof K+→
e+N decays,NS,ineachHNLmasshypothesisusingtheCLS method [10].Thevalues of Nobs,the obtainedupper limitsof NS,andthe expected
±
1σ
and
±
2σ
bandsofvariationofNS inthebackground-onlyhypoth-esisareshowninFig.4(left).
Upperlimitsat90%CLofthebranchingfraction
B(K
+→
e+N) andthemixingparameter|
Ue4|
2areobtainedfromthoseofNSac-cordingto Eq. (3),usingthesingle eventsensitivities
B
SES(K
+→
e+N) and|
Ue4|
2SES shownasfunctionsofthe HNLmassin Fig.4 (right). The obtained limits ofB(
K+→
e+N)
are displayed in Fig.5.Theobtainedlimitsof|
Ue4|
2,togetherwiththelimitsfromprevious HNL production searches in K+ [9,11] and
π
+ [12,13] decaysinthe30–470 MeV/c2 massrange,andtheBigBang Nucle-osynthesis(BBN)constraint [14],areshowninFig.6.Thereported resultimprovestheexistinglimitsof|
Ue4|
2obtainedinproductionsearchesoverthewholemassrangeconsidered.Comparisonwith HNLdecaysearchesisavailable inRefs. [1,15].The obtained lim-itsof
|
Ue4|
2 improveoverthedecaysearches [16,17] inthemassregionbelow400 MeV/c2.
7.Summaryandoutlook
A search for HNL production in K+
→
e+N decays has been performed with the data set collected by the NA62 experimentFig. 5. Theobtainedupperlimitsat90%CLofB(K+→e+N)and theexpected
±1σ and±2σ bandsinthebackground-onlyhypothesisforeachHNLmassvalue considered.
atCERN in2017–2018.Upperlimitsofthedecay branching frac-tionandthemixingparameter
|
Ue4|
2havebeenestablishedatthe10−9levelovermostoftheHNLmassrange144–462 MeV/c2with theassumptionofmeanlifetimeexceeding50 ns.Theselimits be-come weakerby factors ofup to 2 (10)for lifetimesof5 (1) ns. The
|
Ue4|
2 resultsaresignificantly betterthanpreviouslimitsob-tained from HNL production and decay searches [1], and other experimentalconstraints [15,18].Thevaluesof
|
Ue4|
2 favouredbytheBBNconstraint [14] areexcludedforHNLmassesuptoabout 340 MeV/c2.
Animprovementinsensitivityofthisanalysisintermsof
|
Ue4|
2can only be expected with future NA62 data. Considering the backgroundconditions,thesensitivityto
|
Ue4|
2 isproportional toδN
exp/N
exp,andimprovesastherelativestatisticaluncertaintyin Nexpdecreaseswithsamplesizeas1/
√
NK.HNLmassesbelow144 MeV/c2,notaccessible tothisanalysis duetotheshapeofthebackgroundmassspectrum,canbeprobed via the K+
→
π
0e+N decay. The dataset currently available for6 The NA62 Collaboration / Physics Letters B 807 (2020) 135599
Fig. 6. Upperlimitsat90%CLof|Ue4|2obtainedforeachassumedHNLmass
com-paredtothelimitsestablishedbyearlierHNLproductionsearchesinK+→e+N
decays:KEK [11],NA62 (2015data) [9];and π+→e+N decays:TRIUMF [12], PIENU [13].Thelowerboundaryon|Ue4|2 imposedbytheBBNconstraint [14] is
shownbyadashedline.
this search, collected with a pre-scaled trigger, corresponds to NK
≈
3×
1010.Thesingleeventsensitivityinthemassrangeofin-terestestimatedusingtheformalismofRef. [5] is
|
Ue4|
2SES≈
10−8; thesearchis expectedto belimitedbythe K+→
π
0e+νγ
back-ground.Declarationofcompetinginterest
Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.
Acknowledgements
Itis a pleasureto expressourappreciation tothe staffofthe CERNlaboratoryandthetechnicalstaffoftheparticipating labora-toriesanduniversitiesfortheireffortsintheoperationofthe ex-perimentanddataprocessing.WearegratefultoMatheusHostert, SilviaPascoli,OlegRuchayskiy,RobertShrock,Jean-LoupTastetand InarTimiryasovfortheinputsprovided ontheHNL phenomenol-ogy.
Thecostofthe experimentandits auxiliarysystemswas sup-portedbythefundingagenciesoftheCollaborationInstitutes.We are particularly indebted to: F.R.S.-FNRS (Fonds de la Recherche Scientifique- FNRS), Belgium;BMES(MinistryofEducation,Youth and Science), Bulgaria; NSERC (Natural Sciences and Engineering
Research Council), funding SAPPJ-2018-0017 Canada; NRC (Na-tional ResearchCouncil Canada)contributionto TRIUMF, Canada; MEYS (The Ministry of Education, Youth and Sports), Czech Re-public;BMBF(BundesministeriumfürBildungundForschung) con-tracts 05H12UM5, 05H15UMCNA and 05H18UMCNA, Germany; INFN (Istituto Nazionale di Fisica Nucleare), Italy; MIUR (Minis-terodell’Istruzione, dell’UniversitàedellaRicerca),Italy;CONACyT (Consejo Nacional de Ciencia y Tecnología), Mexico; IFA (Insti-tute of Atomic Physics) Romanian CERN-RO No.1/16.03.2016 and Nucleus Programme PN 19 06 01 04, Romania; INR-RAS (Insti-tute for Nuclear Research of the Russian Academy of Sciences), Moscow,Russia;JINR(JointInstituteforNuclearResearch),Dubna, Russia; NRC (National Research Center)“Kurchatov Institute”and MESRF (Ministry of Education and Science of the Russian Fed-eration), Russia;MESRS (Ministry of Education,Science, Research andSport),Slovakia;CERN(EuropeanOrganizationforNuclear Re-search),Switzerland;STFC(ScienceandTechnologyFacilities Coun-cil), United Kingdom; NSF (National Science Foundation) Award Numbers 1506088 and 1806430, U.S.A.; ERC (European Research Council) “UniversaLepto” advanced grant 268062, “KaonLepton” startinggrant336581,Europe.
Individualshavereceived supportfrom:CharlesUniversity Re-search Center (UNCE/SCI/013), Czech Republic; Ministry of Edu-cation, Universities and Research (MIUR “Futuro in ricerca 2012” grantRBFR12JF2Z,ProjectGAP),Italy;RussianFoundationforBasic Research(RFBRgrants18-32-00072,18-32-00245),Russia;Russian Science Foundation (RSF 19-72-10096), Russia; the Royal Society (grants UF100308, UF0758946), United Kingdom; STFC (Ruther-ford fellowships ST/J00412X/1, ST/M005798/1), United Kingdom; ERC(grants268062,336581andstartinggrant802836“AxScale”); EUHorizon2020(MarieSkłodowska-Curiegrants701386,842407, 893101).
References
[1]J.Beacham,etal.,J.Phys.G47(2020)010501. [2]T.Asaka,M.Shaposhnikov,Phys.Lett.B620(2005)17.
[3]R.Shrock,Phys.Lett.B96(1980)159;Phys.Rev.D24(1981)1232. [4]M.Tanabashi,etal.,ParticleDataGroup,Phys.Rev.D98(2018)030001. [5]K.Bondarenko,etal.,J.HighEnergyPhys.1811(2018)032.
[6]E.CortinaGil,etal.,J.Instrum.12(2017)P05025. [7]E.CortinaGil,etal.,Phys.Lett.B791(2019)156.
[8]S.Agostinelli,etal.,Nucl.Instrum.MethodsA506(2003)250. [9]E.CortinaGil,etal.,Phys.Lett.B778(2018)137.
[10]A.L.Read,J.Phys.G28(2002)2693.
[11]T.Yamazaki,etal.,Conf.Proc.C840719(1984)262. [12]D.Britton,etal.,Phys.Rev.D46(1992)R885. [13]A.Aguilar-Arevalo,etal.,Phys.Rev.D97(2018)072012. [14]A.D.Dolgov,etal.,Nucl.Phys.B590(2000)562.
[15]P.Bolton,F.Deppisch,P.BhupalDev,J.HighEnergyPhys.2003(2020)170. [16]G.Bernardi,etal.,Phys.Lett.B203(1988)332.
[17]K.Abe,etal.,Phys.Rev.D100(2019)052006. [18]D.A.Bryman,R.Shrock,Phys.Rev.D100(2019)073011.
NA62Collaboration
E. Cortina Gil,
A. Kleimenova,
E. Minucci
1,
2,
S. Padolski
3,
P. Petrov,
A. Shaikhiev
4,
R. Volpe
5UniversitéCatholiquedeLouvain,Louvain-La-Neuve,Belgium
T. Numao,
Y. Petrov,
B. Velghe
TRIUMF,Vancouver,BritishColumbia,Canada
D. Bryman
6,
J. Fu
7E. Iacopini,
G. Latino,
M. Lenti,
A. Parenti
DipartimentodiFisicaeAstronomiadell’UniversitàeINFN,SezionediFirenze,SestoFiorentino,Italy
A. Bizzeti
13,
F. Bucci
INFN,SezionediFirenze,SestoFiorentino,Italy
A. Antonelli,
G. Georgiev
14,
V. Kozhuharov
14,
G. Lanfranchi,
S. Martellotti,
M. Moulson,
T. Spadaro
LaboratoriNazionalidiFrascati,Frascati,Italy
F. Ambrosino,
T. Capussela,
M. Corvino,
D. Di Filippo,
P. Massarotti,
M. Mirra,
M. Napolitano,
G. Saracino
DipartimentodiFisica“EttorePancini”eINFN,SezionediNapoli,Napoli,Italy
G. Anzivino,
F. Brizioli,
E. Imbergamo,
R. Lollini,
R. Piandani,
C. Santoni
DipartimentodiFisicaeGeologiadell’UniversitàeINFN,SezionediPerugia,Perugia,Italy
M. Barbanera
15,
P. Cenci,
B. Checcucci,
P. Lubrano,
M. Lupi
16,
M. Pepe,
M. Piccini
INFN,SezionediPerugia,Perugia,Italy
F. Costantini,
L. Di Lella,
N. Doble,
M. Giorgi,
S. Giudici,
G. Lamanna,
E. Lari,
E. Pedreschi,
M. Sozzi
DipartimentodiFisicadell’UniversitàeINFN,SezionediPisa,Pisa,Italy
C. Cerri,
R. Fantechi,
L. Pontisso,
F. Spinella
INFN,SezionediPisa,Pisa,Italy
I. Mannelli
ScuolaNormaleSuperioreeINFN,SezionediPisa,Pisa,Italy
G. D’Agostini,
M. Raggi
DipartimentodiFisica,SapienzaUniversitàdiRomaeINFN,SezionediRomaI,Roma,Italy
A. Biagioni,
E. Leonardi,
A. Lonardo,
P. Valente,
P. Vicini
INFN,SezionediRomaI,Roma,Italy
R. Ammendola,
V. Bonaiuto
17,
A. Fucci,
A. Salamon,
F. Sargeni
18INFN,SezionediRomaTorVergata,Roma,Italy
R. Arcidiacono
19,
B. Bloch-Devaux,
M. Boretto
20,
E. Menichetti,
E. Migliore,
D. Soldi
DipartimentodiFisicadell’UniversitàeINFN,SezionediTorino,Torino,Italy
C. Biino,
A. Filippi,
F. Marchetto
8 The NA62 Collaboration / Physics Letters B 807 (2020) 135599
J. Engelfried,
N. Estrada-Tristan
21InstitutodeFísica,UniversidadAutónomadeSanLuisPotosí,SanLuisPotosí,Mexico
A.M. Bragadireanu,
S.A. Ghinescu,
O.E. Hutanu
HoriaHulubeiNationalInstituteofPhysicsforR&DinPhysicsandNuclearEngineering,Bucharest-Magurele,Romania
A. Baeva,
D. Baigarashev,
D. Emelyanov,
T. Enik,
V. Falaleev,
V. Kekelidze,
A. Korotkova,
L. Litov
14,
D. Madigozhin,
M. Misheva
22,
N. Molokanova,
S. Movchan,
I. Polenkevich,
Yu. Potrebenikov,
S. Shkarovskiy,
A. Zinchenko
†JointInstituteforNuclearResearch,Dubna,Russia
S. Fedotov,
E. Gushchin,
A. Khotyantsev,
Y. Kudenko
23,
V. Kurochka,
M. Medvedeva,
A. Mefodev
InstituteforNuclearResearchoftheRussianAcademyofSciences,Moscow,Russia
S. Kholodenko,
V. Kurshetsov,
V. Obraztsov,
A. Ostankov
†,
V. Semenov
†,
V. Sugonyaev,
O. Yushchenko
InstituteforHighEnergyPhysics- StateResearchCenterofRussianFederation,Protvino,Russia
L. Bician
20,
T. Blazek,
V. Cerny,
Z. Kucerova
FacultyofMathematics,PhysicsandInformatics,ComeniusUniversity,Bratislava,Slovakia
J. Bernhard,
A. Ceccucci,
H. Danielsson,
N. De Simone
24,
F. Duval,
B. Döbrich,
L. Federici,
E. Gamberini,
L. Gatignon,
R. Guida,
F. Hahn
†,
E.B. Holzer,
B. Jenninger,
M. Koval
25,
P. Laycock
3,
G. Lehmann Miotto,
P. Lichard,
A. Mapelli,
R. Marchevski,
K. Massri,
M. Noy,
V. Palladino
26,
M. Perrin-Terrin
27,
28,
J. Pinzino
29,
30,
V. Ryjov,
S. Schuchmann
31,
S. Venditti
CERN,EuropeanOrganizationforNuclearResearch,Geneva,Switzerland
T. Bache,
M.B. Brunetti
32,
V. Duk
33,
V. Fascianelli
34,
J.R. Fry,
F. Gonnella,
E. Goudzovski
∗
,
J. Henshaw,
L. Iacobuzio,
C. Lazzeroni,
N. Lurkin
28,
F. Newson,
C. Parkinson
9,
A. Romano,
A. Sergi,
A. Sturgess,
J. Swallow
UniversityofBirmingham,Birmingham,UnitedKingdom
H. Heath,
R. Page,
S. Trilov
UniversityofBristol,Bristol,UnitedKingdom
B. Angelucci,
D. Britton,
C. Graham,
D. Protopopescu
UniversityofGlasgow,Glasgow,UnitedKingdom
J. Carmignani,
J.B. Dainton,
R.W.L. Jones,
G. Ruggiero
UniversityofLancaster,Lancaster,UnitedKingdom
L. Fulton,
D. Hutchcroft,
E. Maurice
35,
B. Wrona
UniversityofLiverpool,Liverpool,UnitedKingdom
A. Conovaloff,
P. Cooper,
D. Coward
36,
P. Rubin
GeorgeMasonUniversity,Fairfax,VA,USA
*
Correspondingauthor.E-mailaddress:[email protected](E. Goudzovski). † Deceased.
1 Presentaddress:LaboratoriNazionalidiFrascati,I-00044Frascati,Italy.
2 AlsoatCERN,EuropeanOrganizationforNuclearResearch,CH-1211Geneva23,Switzerland. 3 Presentaddress:BrookhavenNationalLaboratory,Upton,NY11973,USA.
4 AlsoatInstituteforNuclearResearchoftheRussianAcademyofSciences,117312Moscow,Russia.
Presentaddress:InstituteofNuclearResearchandNuclearEnergyofBulgarianAcademyofScience(INRNE-BAS),BG-1784Sofia,Bulgaria.
23 AlsoatNationalResearchNuclearUniversity(MEPhI),115409MoscowandMoscowInstituteofPhysicsandTechnology,141701Moscowregion,Moscow,Russia. 24 Presentaddress:DESY,D-15738Zeuthen,Germany.
25 Presentaddress:CharlesUniversity,11636Prague1,CzechRepublic. 26
Presentaddress:PhysicsDepartment,ImperialCollegeLondon,London,SW72BW,UK.
27 Presentaddress:CentredePhysiquedesParticulesdeMarseille,UniversitéAixMarseille,CNRS/IN2P3,F-13288,Marseille,France. 28 AlsoatUniversitéCatholiquedeLouvain,B-1348Louvain-La-Neuve,Belgium.
29 Presentaddress:DepartmentofPhysics,UniversityofToronto,Toronto,Ontario,M5S1A7,Canada. 30 AlsoatINFN,SezionediPisa,I-56100Pisa,Italy.
31 Presentaddress:InstitutfürPhysikandPRISMAClusterofexcellence,UniversitätMainz,D-55099Mainz,Germany. 32 Presentaddress:DepartmentofPhysics,UniversityofWarwick,Coventry,CV47AL,UK.
33 Presentaddress:INFN,SezionediPerugia,I-06100Perugia,Italy.
34 Presentaddress:DipartimentodiPsicologia,UniversitàdiRomaLaSapienza,I-00185Roma,Italy. 35 Presentaddress:LaboratoireLeprinceRinguet,F-91120Palaiseau,France.