• Non ci sono risultati.

Hunt–Crossley model based force control for minimally invasive robotic surgery

N/A
N/A
Protected

Academic year: 2021

Condividi "Hunt–Crossley model based force control for minimally invasive robotic surgery"

Copied!
13
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Biomedical

Signal

Processing

and

Control

j ou rn a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b s p c

Hunt–Crossley

model

based

force

control

for

minimally

invasive

robotic

surgery

A.

Pappalardo

a

,

A.

Albakri

b

,

C.

Liu

b,∗

,

L.

Bascetta

a

,

E.

De

Momi

a

,

P.

Poignet

b aDepartmentofElectronics,InformationandBioengineering(DEIB),PolitecnicodiMilano,PiazzaLeonardodaVinci32,20133Milano,Italy bDepartmentofRobotics,LIRMM(UMR5506),UM-CNRS,161RueAda,34095Montpellier,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18October2015

Receivedinrevisedform18March2016 Accepted7May2016

Keywords: Forcecontrol Softtissueinteraction Activeobserver Hunt–Crossleymodel

a

b

s

t

r

a

c

t

Inminimallyinvasivesurgery(MIS)thecontinuouslyincreasinguseofroboticdevicesallowssurgical operationstobeconductedmorepreciselyandmoreefficiently.Safeandaccurateinteractionbetween robotinstrumentsandlivingtissueisanimportantissueforbothsuccessfuloperationandpatientsafety. Humantissue,whichisgenerallyviscoelastic,nonlinearandanisotropic,isoftendescribedaspurely elas-ticforitssimplicityincontactforcecontroldesignandonlinecomputation.However,theelasticmodel cannotreproducethecomplexpropertiesofarealtissue.Basedoninvitroanimaltissuerelaxationtests, weidentifytheHunt–Crossleyviscoelasticmodelasthemostrealisticonetodescribethesofttissue’s mechanicalbehavioramongseveralcandidatemodels.AforcecontrolmethodbasedonHunt–Crossley modelisdevelopedfollowingthestatefeedbackdesigntechniquewithaKalmanfilterbasedactive observer(AOB).Bothsimulationandexperimentalstudieswerecarriedouttoverifytheperformanceof developedforcecontroller,comparingwithotherlinearviscoelasticandelasticmodelbasedforce con-trollers.ThestudiesandcomparisonsshowthattheHunt–Crossleymodelbasedforcecontrollerensures comparablerisetimeintransientresponseasthecontrollerbasedonKelvin–Boltzmannmodelwhichis reportedasthemostaccuratedescriptionforrobot-tissueinteractioninrecentliterature,butitcauses muchlessovershootandremainsstablefortaskswithfasterresponsetimerequirements.

©2016ElsevierLtd.Allrightsreserved.

1. Introduction

Minimallyinvasivesurgery(MIS)isreplacingtraditionalopen

surgicalprocedureswhichnormallyinvolvelargeincisiontoaccess

thepatient’s body.MIS isperformed usinglonginstrumentsto

enterthepatientbodythroughsmallincisionsandleadstodirect

advantagesincludinglesspain,hemorrhagingandtrauma,reduced

riskofinfections,shortenedhospitalstay,andhencelessburdenfor

boththepatientandsocialhealthcaresystem[1–3].

Withthedevelopmentoftechnologyintheareaofrobotics,

roboticdeviceshavefoundtheirwaytotheoperatingroom(OR)

andleadtothenewconceptofminimallyinvasiveroboticsurgery

(MIRS).Many roboticsurgical devices have beendeveloped for

MISoperationsintheliterature[4–9]withthemostwidelyused

andbestknownexampleofdaVincirobotfromIntuitiveSurgical

∗ Correspondingauthor.Tel.:+33685817659.

E-mailaddresses:pappalardo.antonio87@gmail.com(A.Pappalardo), Abdulrahman.Albakri@lirmm.fr(A.Albakri),Chao.Liu@lirmm.fr(C.Liu), luca.bascetta@polimi.it(L.Bascetta),elena.demomi@polimi.it(E.DeMomi), Philippe.Poignet@lirmm.fr(P.Poignet).

(Sunnyvale,CA,USA).Themovementsoftheroboticdevices,

com-mandedbythesurgeon,canmimicthemotionofhumanhands

insidepatientbodytoaccomplishsaferandmoreprecise

opera-tions.However,aspointedoutin[10],thesurgeoncannotretain

thehapticfeelingoftheinteractionwithtissueduetolackofdirect

contactwiththeworkingsiteandhencetheamountofapplied

forceontissuesurfacecannotbeaccuratelycontrolled.

Executionofpropercontactforceisnecessaryandeven

essen-tialformanysurgicaloperations[11–13].Fortaskslikesuturing

andpre-tensioning,excessiveforceleadstotissuedamageandtoo

lowforcecannotmakethetaskssuccessful.Forhapticteleoperation

withforcecommand,operatingtransparencycanbeobtainedonly

whenthedesiredinteractionforceisaccuratelygeneratedbetween

robotictoolandtissue.Moreover,usingforcecontrolallowsto

per-formthesameoperationwithhigherprecisionanddexterityby

reducinghumanerrors[14].

In the MIRS scenario, one has to control the contact force

betweenroboticsurgicaltoolsandsofttissues(i.e.muscles,organs,

veins,arteries,etc).Todesigntheforcecontroller,aproper

tool-tissue contact model is required. In literature, however, force

controlmethodsaremainlybasedonpureelasticcontactmodel

whichiseasytoimplementandappliestomosthardcontactcases.

http://dx.doi.org/10.1016/j.bspc.2016.05.003 1746-8094/©2016ElsevierLtd.Allrightsreserved.

(2)

Evensomeexistingworksonforcecontrolforsurgicalapplications

assumeanelasticcontactmodel[15].Unfortunately,thismodelis

notsuitabletodescribethecontactwithsofthumantissueswhich

exhibitscomplexpropertiessuchasnonlinearity,viscoelasticity,

anisotropy,etc[16].

Overthelastdecades,severalcompliantcontactmodelshave

beenproposedtodescribethebehaviorbetweencontactbodies

[17].Combination oflinear springsanddampers isone wayto

describetheviscoelasticbehaviorofthecontactforce,although

theseapproachesshowphysicalinconsistenciesintermsofpower

exchangeduringcontact[18].Suchkindoflinear contact

mod-elsincludeMaxwellmodel,Kevin–Voigtmodel,Kelvin–Boltzmann

model,etc.Recentworksshowthatrobot-tissueforcecontrolbased

onKelvin–Boltzmannmodeloutperformscontrolmethodsbased

ontraditionalelasticmodelintermsofrisetimeandstability[19].

Ontheotherhand,nonlinearmodels,suchastheHunt–Crossley

model,areexpectedtobemoreaccuratefordescribing thereal

behaviorduringthecontactwithsofthumantissues[18,20].

How-ever,sofarnonlinearmodelshaveonlybeenusedforparameter

estimation[18,21,22],butnotforforcecontroldesign.

ThispaperpresentsthefirstattempttoadopttheHunt–Crossley

(HC)modelfor thecontroldesignofcontactforcebetweensoft

tissue and robotictool in literature.The controldesign utilizes

theactiveobserver(AOB)techniquewhichhelpstocompensate

parameterandmodelingmismatchesduringcontrol.Stabilityof

theHC model based force controlsystem is analyzed, and the

advantageofthisapproachwithrespecttothemethodsbasedon

linearcontactmodelsisshownthroughbothnumericalsimulation

andinvitroexperimentalstudies.

Therestofthepaperisorganizedasfollows:Section2

intro-ducesthebriefbackgroundonsofttissuecontactmodelsreported

inliterature;Section3presentsacomparisonstudybetweenlinear

andnonlinearviscoelasticcontactmodelsthroughinvitro

relax-ationtests,Section4describesthedevelopmentofaforcecontrol

methodbasedontheidentifiedHunt–Crossleymodel,Sections5

and 6show theperformance comparisonsbetween linear

con-tactmodelbasedforcecontrollersandHunt–Crossleymodelbased

forcecontrollerthrough simulationsand experiments,Section7

summarizestheworkreportedinthispaper.

2. Softtissuecontactmodels

Severalmodelshavebeendevelopedinliteraturetodescribe

theviscoelasticbehaviorofsofttissues[23].Themostcomplete

studyonviscoelastictissuemodelisaddressedin[16],where a

quasi-linearviscoelastic(QLV)modelisproposedtorepresentthe

stress–strainrelationshipasfollows

F(t)=G(t)





e[ε(0)]



I +



t 0 G(t−)

∂

e()

∂

d







II (1)

whereF(t)denotesthecontactforce;e,εdenotesthe

instanta-neouselasticstress and strainrespectively;G(t) isthe reduced

relaxationmodulus.Thismodelingfunctioniscomposedoftwo

parts:thefirstpart(I)istheinstantaneousstressresponseandthe

second(II)givesthestressrelatedtothepasthistory[16].Although

accurateforoff-lineanalysis,thismodeliscomplexanddifficultto

beusedforcontactforcecontroldesign.

One simple and intuitive way to describe the interaction

between robotic tools and soft tissues is to analytically build

theforce–displacementrelationship.Analyticalmodelsareusually

presentedasacombinationofspringsanddampers[16],andare

definedbythefollowingcomponents:theexertedforcebythe

tis-sue,Fe(t),whenastrainisapplied;theindentation(orpenetration),

x(t),computedastheamountofdisplacementofthetissuefromthe

restposition;thevelocityofthedeformation ˙x(t);theelasticand

dampingcoefficientsKandbrespectively.

Followingthismodeling method,severallinearmodelshave

beendeveloped.The firstmodel,oftenusedin traditionalforce

control[24],istheelasticmodel(Fig.1(a))describedby

Fe(t)=Kx(t). (2)

TheMaxwell(MW)modelisrepresentedbytheseriesofaspring

andadamper(Fig.1(b))andisexpressedas

Fe(t)=b ˙x(t)−˛ ˙Fe(t) (3)

where ˙Fe(t)isthederivativeoftheexertedforceand˛=b/K.

TheKelvin–Voigt(KV)modelconsistsofaspringinparallelwith

adamper(Fig.1(c))andisdescribedby

Fe(t)=Kx(t)+b ˙x(t). (4)

AnotherviscoelasticmodelistheKelvin–Boltzmann(KB)model

whichisobtainedbyaddingaspringinseriestoKelvin–Voigtmodel

(Fig.1(d))anditscharacteristicequationisgivenby

Fe(t)=Kx(t)+ ˙x(t)− ˙Fe(t) (5)

whereK=k1k2/(k1+k2),=bk2/(k1+k2),=b/(k1+k2)withk1,k2

andbdenotingtheelasticanddampingcoefficientsrespectively.

Theabovelinearmodelsmayapplytocontactswithobjectsof

linearandhomogeneousproperties,butphysicallimitationscanbe

observedwhencontactwithsofttissueisconsidered.Asillustrated

inFig.2,duringthecontactbetweenarigidtoolandthesofttissue,

twophasescanbeidentified:thefirstone,correspondingto

load-ing,takesplaceatstartingcontacttimet0andendsattMaxwhen

themaximumdisplacementinthesofttissuexmaxisreached;the

secondone,correspondingtounloading,takesplacefromtmaxto

theinstanttFinalwhenthetoolandthesofttissueseparate.

Com-biningtheloadingandunloadingbehavior,anhysteresisloopcan

bedefinedastheforce–displacementrelationshipforsofttissue

duringthecontact.

The power flow during the contact is calculated by P(t)=

Fe(t) ˙x(t)asplottedontherightsideofeachsubfigureinFig.3.For

linearviscoelasticmodels,thedissipatedenergyH,represented

bytheareaenclosedbythehysteresisloop,canbecomputedas

thealgebraicsumoftheenergiesH1,H2andH3,whichare

calcu-latedasintegrationsofpowerflowfordifferentperiodsasshownin

Fig.3(a)[18].Linearviscoelasticmodelsshowthesamebehaviors

(3)

Fig.2.Stress–straincurve(hysteresis)forselectedsectionoflaryngealmuscle[25].

asinFig.3(a)withonlydifferenceinshapes.Itcanbeseenthat

linearviscoelasticmodelsshowinconsistenciesagainstphysical

intuitionintwoaspects[20,18].Thefirstoneconcernsthe

con-tactforcewhenthesofttissuesurfacejuststartstodeform(time

t0).Physicallytheinteractionforceshouldstartfromzeroandthen

buildupovertime,butanon-zeroforceisobservedatthe

begin-ningduetothedampingterms[26].Thesecondiscausedbythe

tensileforces requiredtoseparatethebodies incontact. Inthe

unloadingphasethedisplacementx(t)decreasestozeroandthe

velocity ˙x(t)isnegative.Forthisphase,linearviscoelasticmodels

indicatetheexistenceofapositiveenergyH3meaningthatpower

stillflowsfromtheend-effectortothetissueafterseparation,which

isphysicallyimpossible[18].

Toaddresstheaforementionedproblemswithlinear

viscoelas-tic models,Hunt and Crossley proposed in [20] a new model.

Replacingthespring/damperlinearcombinationin(4)witha

non-linearone,theobtainedmodelequationisgivenby

F(t)=Kxˇ(t)+ xˇ˙x(t) (6)

whereˇisapositivescalarandnormallyrangesfrom1.1to1.3

forsofttissues.ThemaincharacteristicoftheHunt–Crossley(HC)

modelistheeffectofdeformationdepthonthedampingterm.With

theHCmodel,thecontactforceevolvesfromzeroreachingthe

maximumvalueduringtheloadingphaseandreturnstozero

dur-ingtheunloadingphase.Accordingly,aphysicallycorrectpower

flowisseenasinFig.3(b).

3. Softtissuecontactmodelidentificationandparameter estimation

Starting from the models described in the previoussection

(Table1),experimentaltestsbasedoninvitrotissuesampleshave

beencarriedoutinordertoassesstheiraccuracyindescribingthe

contactforce-deformationrelationship.

(4)

Table1 Candidatemodels.

Model Constitutivelaw

Elastic F(t)=Kx(t)

MW F(t)=b ˙x(t)−˛ ˙F(t)

KV F(t)=Kx(t)+b ˙x(t)

KB F(t)=Kx(t)+ ˙x(t)− ˙F(t)

HC F(t)=Kxˇ(t)+ xˇ(t) ˙x(t)

3.1. Relaxationtestdesign

Inordertoanalyzetherelationshipbetweentissuedeformation andreactingforce,itiscommontoperformrelaxationtestsonin vitrospecimens.Therelaxationtestconsistsofgeneratingafixed deformationalongthedirectionnormaltothetissuesurfaceand measuringthecorrespondingforceexertedbythetissue.Forceand deformationdepthdataaresavedtooff-lineestimatethe param-etersofcandidatemodelsandthustocalculatethereconstructed forcebasedondifferentmodelsusingrecordeddeformationdata. Inthis relaxation test, a lamb’s heart isused asthe invitro specimenand aRAVEN-IIsurgicalrobotisusedtogeneratethe tissuedeformationasexplainedindetailinnextsubsection.The testhasbeenrunfourtimestoverifyconsistencyoftheobserved tissueinteractionproperty.Toidentifythemostaccurate (realis-tic)modeltodescribesofttissue interaction,bothtransientand overallforcereconstructionerrorsareconsideredasselection crite-ria.Theexperimentresultsareevaluatedbycomparingthemean forceerror(MFE)andcorrespondingstandarddeviation(STD)of thereconstructedforcesforeachmodel,andKruskal–Wallistest (p<0.05)isusedtoinvestigatethesignificantdifferencesbetween differentmodel-basedforcereconstructionerrors.

3.2. Relaxationtestexecution

TheRaven-IIsurgicalrobotfromAppliedDexterity(Seattle,WA, USA)was usedfor therelaxation tests asshown in Fig.4. The

robotplatformisrunningaReal-TimeLinuxsystemwithan

over-allsystemworkingfrequencyof1kHz.Thisrobotiscomposedof

twocable-actuatedarmsandeachhassevendegreesoffreedom,

whichcreatesasphericalmechanismthatallowsdexteroustool

Fig.4. RelaxationtestusingRavenIIrobot.

manipulationwithinalargeworkspacesimilartothatofmanual

laparoscopy[28].

Intherelaxationtests,theinvolvedjointistheprismaticone

oftherightarm.AsshowninFig.4,thisarmwassetinvertical

configuration(alongzaxis)andaPIDpositioncontrolwasused

togeneratetheverticalmotiontodeformthetissuesample.The

motiondatawererecordedbytheprismaticjointencoderwhich

isofhighaccuracyandnoexternalpositionsensorwasused.The

exertedforcedatawerecollectedbyanATIMINI45forcesensor

(ATIIndustrialAutomation,Apex,NC)mountedonthewristjoint

oftherobotbya3Dprintedplasticsupportwithasphericaltip.The

datawererecordedwithasamplingperiodTsof1ms(1kHz).

Fourrelaxationtestswereperformed.Beforetherelaxationtest,

therobotinstrumentwascontrolledtomovedownfromfreespace

(nocontact)until thedetectedcontactforceincreasedby 0.5N

abovethebaselinevalue(0N)toensurerealcontactbetweenthe

robottipandthetissue.ThenthePIDpositioncontrolwas

trig-geredtogenerateadisplacementdepthof15mmfromtheinitial

surfacewiththerampuptimeof0.5sandloadingtimeof20s.In

ordertoobservethehysteresisbehavior,theunloadingwasalso

donewitharampdowntimeof1s.Fig.5(a)showstherecorded

displacement-forcehistoryofonetest(Trial3).

3.3. Parameterestimation

Basedonthesaveddataforpositionx(t)andforcemeasurement

F(t),off-lineleastsquaresmethodisusedtoestimatethe

parame-tersK,b,,˛,ofthelinearcontactmodels(elastic,MW,KV,KB).

˙x(t)and ˙F(t)arecalculatedbasedonfilteredpositionandforcedata

usingmovingaveragetechnique.

ForthenonlinearHCmodel,theestimatedparametersK, ,ˇ

arecalculatedthroughnonlinearleastsquaresmethodusingthe

Levenberg–Marquardtalgorithm[29,30].Theestimated

parame-tersforthecandidatemodelsinthefourtestsaresummarizedin

Table2.

3.4. Modelidentificationbasedonreconstructedforce

Withtheestimatedparameters,thecontactforcecanbe

recon-structedbasedontherecordedpositioninformationusingdifferent

model.Sinceallfourtestsgeneratedsimilarresults,onlythe

recon-structedforcescorrespondingtoTrial3areshowninFig.5.

GraphicalinspectionofthereconstructedforcesasinFig.5(b)

showsthatallmodelsgiverisetothesamedescriptionsforsteady

statecontactforcesexcepttheMaxwellmodel,whichpresentsa

totallyunrealisticreconstructed force(zerostatic contactforce)

andthereforeisnotconsideredinthefurthercomparisonand

anal-ysis.AsshowninFig.5(c),thepureelasticmodelclearlyshowsthe

worstreconstructedforce.Thereconstructedtransientresponses

Table2

Valuesoftheestimatedparameters.

Model Parameter Mean STD STD/mean[%]

Elastic K 628.92 14.11 2.24 MW b 349.58 13.39 3.83 ˛ 0.27 0.01 3.70 KV K 629.11 14.11 2.24 b 112.72 9.10 8.07 KB K 636.05 16.21 2.55  156.92 4.10 2.61  0.052 0.0046 8.85 HC K 1,732.23 275.82 15.92 41,891.57 1,314.90 3.14 ˇ 1.23 0.03 2.44

(5)

Fig.5.ReconstructedforcesfortheTrial3:(a)rampdeformationandforcemeasurement,(b)reconstructedforces,(c)zoomedinreconstructedtransientresponses,(d) reconstructedhysteresisbehaviors.

Table3

AveragevaluesofMFE[N]andSTD[N]forthefourrelaxationtests.

Model MFE STD

Elastic 0.80 0.98

KV 0.72 0.73

KB 0.71 0.71

HC 0.65 0.58

forthelinearviscoelasticmodels(KV,KB)aresimilarandshowa leadinphasecomparedtotherealmeasuredforceatthe begin-ningofcontact.TheHunt–Crossleymodelshowsaquiteaccurate reconstructedtransientresponseastherealforce.

TheMFEandSTDofreconstructedforcesaccordingtodifferent contactmodelsarecalculatedandsummarizedinTable3.Asshown

inthistable,theHunt–Crossleymodelexhibitsthesmallestmean

errorandstandarddeviation.Kruskal–Wallistest(p<0.05)withthe

nullhypothesis“thereconstructionerrorswithdifferentinteraction

modelsfollowthesamedistribution”hasbeenconductedandthetest

resultsareshowninTable4.

FromTable4itisseenthatthenullhypothesisisfalsewithall

p-valuesp1%andthereforethefourinteractionmodelsdonot

producethesamedistributionsofreconstructedforceerrorswith

theHunt–Crossleymodelpresentingthesmallestmeanerror.To

furtherclarifyifthereisanymodelwhichmaygenerate

reconstruc-tionerrorwiththesamedistributions asHunt–Crossleymodel,

Kruskal–Wallisanalysishasalsobeenconductedassummarized

inTable5.

AboveanalysesshowthatHunt–Crossleymodelgives

signif-icantlysmallerreconstructedcontactforceerrorwithrespectto

theotherlinearinteractionmodels.Itshouldbenotedthatthe

aboveanalysesareforthewholerelaxationtestdurationincluding

boththetransientresponsereconstructionandthesteadystate

reconstruction.Fromthezoomedintransientcontactresponseas

inFig.5(c),itisseenthatallreconstructedforcesbasedondifferent

Table4

p-valueforthefourrelaxationtests.

Test1 Test2 Test3 Test4

p-value 7.7451e−12 6.6636e−05 3.3294e−12 3.6771e−13

modelsconvergetothesamevalueinlessthan1s(sameforall fourtests),henceonlyreconstructionerrorsbetween0and0.8s (transientresponse)areconsideredtoavoidmisleadingresultsdue tothelargeamountofdataforsteadystatewithalmostthesame values(after0.8s)suchthatthesignificanceofvalidationtestsis clearer.Thenotchedboxwhiskermethodisusedtoillustratethe reconstructedforceerrorsinallfourtestsduring0–0.8sasshown

inFig.6.Itisseenfromthisfigurethatthereisstrongevidence

(95%)thattheforcereconstructionerrorofHunt–Crossleymodel

hasa differentmedianfromothermodelssince itsbox’snotch

doesnotoverlapwithanyothermodel.Anditisclearlyshownthat

themedianforHunt–Crossleymodelissmallerthanothermodels

indicatingthatHunt–Crossleymodelprovidesmoreaccurateforce

reconstructioninthevalidationtest.

Moreover,thereconstructedloadingandunloadingbehaviors

ofthecandidatemodelsarealsoshowninFig.5(d).Thelinear

vis-coelasticmodels(KV,KB)predictnegativecontactforcesin the

unloadingphase andtheHunt–Crossleymodelshowsarealistic

hysteresisbehavior,which isconsistentwiththephysical

inter-pretationsasintroducedinSection2.

Therefore,throughtheinvitrorelaxationtests,Hunt–Crossley

model hasbeen identifiedas themost accurateone among all

candidatemodelstodescribetheinteractionbetweentherobot’s

end-effectorandthesofttissue.

Table5

Kruskal–Wallisanalysisforeachtest.

HC(p-value) Test1 Elastic 3.4060e−10 KV 1.5193e−10 KB 1.8489e−06 Test2 Elastic 0.0108 KV 1.3866e−07 KB 8.8199e−07 Test3 Elastic 1.2584e−04 KV 8.3806e−12 KB 2.3771e−10 Test4 Elastic 0.0178 KV 1.0167e−08 KB 3.2448e−13

(6)

Fig.6.Evaluationofforcereconstructionerrors(0–0.8s)forallfourtestwiththeirp-valuesrespectively.Theverticalboxesshowmedianvalues(inred)andquartiles(25% asboxlowerlimitand75%asboxupperlimit)ofthereconstructureerrordatasets.ThehorizontallinesrepresentsignificantdifferencesbetweenHunt–Crossleyandother modelsdeterminedthroughcomparisons(Kruskal–Wallistest,p<0.05).(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

4. Hunt–Crossleymodelbasedforcecontrol

Forsurgicalapplications,linearcontrolmethodsarenormally preferredsincethereexist matureanalysisanddesign toolsfor linearsystems.Also,clearandsimplerelationcanbeestablished betweensystemperformancespecificationsandthecontrol param-eters. On the contrary, in general no uniform tools exist for nonlinearsystemcontroldesign,anditisdifficulttorelate con-trollerdesigntopre-definedperformancespecifications,e.g.rise time,phase/gainmargin,etc.

Tosynthesizetheforcecontrollerusinglineardesigntoolsbased onHunt–Crossleymodel,thismodelhastobelinearized.Inthis work,theforcecontrolisdesignedresortingtostatefeedback reg-ulationwithastochasticKalmanfilterbasedactiveobserver(AOB), whoseroleistoestimatethestatesofthesystemandcompensate formodeling errors(e.g.linearization)and systemdisturbances throughanextra“active”state.

4.1. LinearizationofnonlinearHunt–Crossleymodel

Consideringthatduringcontactthetissuedeformationisfast (transientstate)andthenkeepsalmostconstant(“steady”state),

as can beseen from Fig. 5(b), it is reasonable to linearizethe

Hunt–Crossleymodelaroundthe“steady”statewhichisthe

equi-libriumpositionxsforagivendesiredforcecommandFdasseenin

Fig.7

UsingTaylorexpansion,thecorrespondingfirst-orderlinearized

Hunt–Crossleymodelatx=xshasthefollowingexpression

Fe(x, ˙x)≈Fe(xs, ˙xs)+

∂F

e

∂x





xs, ˙xs (x−xs)+

∂F

e

˙x





xs, ˙xs ( ˙x − ˙xs). (7)

Foragivendesiredforce,Fd,fromEq.(6)theconstant

equilib-riumpositionxscanbecalculatedfrom

Fd=Fe(xs, ˙xs)=Kxsˇ+ xˇs˙xs=Kxˇs, (8) givingriseto xs= ˇ



Fd K. (9)

Thepartialderivativeterms

Fe/

xand

∂F

e/∂x˙satxsand ˙xsin

(7)canthenbecalculatedusing(9)as

∂Fe ∂x





xs, ˙xs =Kˇxsˇ−1+ ˇxˇ−1s ˙xs= ˜ K







Fd K

(ˇ−1)/ˇ ∂Fe ∂ ˙x





xs, ˙xs = xˇs = ˜



Fd K . (10)

Substituting(10), (9) into (7), thelinearized function ofthe

Hunt–CrossleymodelforthegivendesiredforceFdcanbeobtained

as

Fe(x, ˙x)= ˜Kx+ ˜ ˙x+(1−ˇ)Fd. (11)

(7)

Theneglectedhighordertermswouldbeconsideredas

model-ingerrorsandhandledbytheactivestateofAOB.

4.2. Robotdynamicsandcontrolsystemformulation

Thejointspacedynamicsofarobot,withndegreesoffreedom

andjointvariablesdenotedbyq,canbewritteninthefollowing

form[24]

M(q)¨q+V(q, ˙q)+G(q)=c−JT(q)Fe (12)

whereM(q)istherobotinertiamatrix,V(q, ˙q)representsCoriolis

andcentrifugalforces,G(q)isthegravityforcevectorandc

repre-sentsthegeneralizedtorqueinput.Fedenotestheinteractionforces

duetocontactwiththeenvironmentandJ(q)istheJacobianmatrix

mappingjointspacevelocity ˙qtoCartesianspacevelocity ˙Xas

˙X =J(q) ˙q. (13)

TherobotdynamicsinCartesianspacecanbeequallyobtained

as[27,24]

Mx(q) ¨X+Vx(q, ˙q)+Gx(q)=Fc−Fe (14)

whereXrepresentstheCartesiancoordinates,Fcistheend-effector

forceduetojointactuationas

c=JT(q)Fc (15)

andthematricesin(14)aregivenby

Mx(q) =J−T(q)M(q)J−1(q)

Vx(q, ˙q) =J−T(q)V(q, ˙q)−Mx(q)˙J(q) ˙q

Gx(q) =J−T(q)G(q).

Assumingthattheabovematricescanbeenaccuratelyidentified

andaforcesensorisavailabletomeasureFe,therobotdynamics

(14)canbelinearizedusingthefollowinginverse-dynamicscontrol

input

Fc=Mx(q)U+Vx(q, ˙q)+Gx(q)+Fe. (16)

whereUrepresentstheauxiliary controlsignal.Incases where

thesystemdynamicsparameterscannotbeaccuratelycalibrated,

adaptive compensation technique couldbe used in thecontrol

design.

Substituting(16)in(14),thesystembecomes

U= ¨X (17)

presentingadecoupledunitymasssystemalongeach Cartesian

dimension.Byaddinganinnervelocitydampingloopwith

diago-nalmatrixKv,thesystemstabilitycanbeimproved[31].Thenew

dynamicsequationisgivenby

U= ¨X+Kv˙X. (18)

Nowthatthesystemisdecoupled,eachdegreeoffreedomcan

beindependentlyexpressedas

Ui= ¨Xi+Kv˙Xi (19)

where ¨Xiand ˙Xirepresenttheaccelerationandthevelocityalong

oneaxis,andUiistheauxiliarycontrolinput.Thegeneralsystem

blockdiagramispresentedinFig.8.

DifferentiatingthelinearizedHunt–Crossleysofttissuemodel

in(11)andnotingthatFdisconstant,oneobtains

˙Fe= ˜K ˙Xi+ ˜ ¨Xi, ¨Fe= ˜K ¨Xi+ ˜ តXi (20)

andaccordingtothedecoupleddynamicsequation(18),itfollows

˙Ui= តXi+Kv¨Xi. (21)

Fig.8. SystemdiagramforoneCartesianaxis.

FromEqs.(19),(20)and(21),therelationshipbetweencontact

forceFeandcontrolinputUialongoneaxiscanbewrittenas

¨Fe+Kv˙Fe= ˜ ˙Ui+ ˜KUi. (22)

Basedon(22),thetransferfunctionG(s)describingtherelation

betweenthecontrolinputUiandFecanbegivenby

G(s)= Fei(s) Ui(s) = ˜ s+ ˜K s2+K vs. (23)

Thesystemin(22)canberepresentedinstatespaceformaswell

basedonitstransferfunction(23).Usingtheobservablecanonical

form[33],oneobtains

˙ x1 ˙ x2

=

−Kv 1 0 0

x1 x2

+

˜ ˜ K



u=Ax+Bu y(t) =[ 1 0 ]

x1 x2

=Cx. (24)

Forpracticalimplementation,system(24)isoftendiscretized

usingzeroorderhold(ZOH)withasampletimeTs.Thenthediscrete

statespacerepresentationisgivenby

x(k) =x(k−1)+ u(k−1)+ω(k)

y(k) =Cx(k)+(k) (25)

where , arethediscrete statematrix andthediscrete input

matrixrespectively,andtwoadditionaltermsω,areintroducedto

denotethemodelandmeasurementuncertaintiesinrealpractice.

Thediscretestatematriceswereobtainedas[32]

=eATs=I+ATs+A 2T2 s 2! + A3T3 s 3! +... =



Ts 0 eATsBd=BTs+ABT 2 s 2!+A 2 BT 3 s 3!+... (26)

whereA,Barethematrixdefinedin(24)andIistheidentitymatrix.

Thecontrollawcanbedesignedfollowingthestatefeedback

regulationmethodas

u(k)=−Lx(k)+r(k) (27)

wherer(k)isthereferenceforce(Fd)andListhestatefeedbackgain

which canbecalculatedaccordingtopoleplacementtechnique

usingtheAckermann’sformula[32].

4.3. ActiveobserverbasedonKalmanfilter

Itshouldbenotedthatcontrollaw(27)needsfullsystemstate

informationwhichisdifficulttoachievesincethesystemstatex(k)

in(25)maynothaveclearphysicalinterpretationandcannotbe

directlymeasured.Inthiscase,anobserverisusuallythenatural

solution.Theroleoftheclassicalobserveristocomputethe

esti-matedsystemstate ˆx(k)basedonthesystemequationsandoutput

measurements.Kalmanfilterisapopulartechniquetoachievethis

(8)

Fig.9.Forcecontrolarchitecture.

Inrealapplication,thereexistsanerrore(k)betweenthe

esti-matedstateandtheactualstateasfollows

e(k)=x(k)− ˆx(k). (28)

Onecannoticethatwhenstatefeedbackisperformedin

com-binationwithanobserver,theerrorin(28)isintroducedinthe

systemasanundesiredextrainputasfollows

Lˆx(k)=Lx(k)−Le(k). (29)

TraditionalKalmanfilterscannotsolvethissystemstate

obser-vation/reconstructionerrorproblem.Inthiswork,aKalmanfilter

basedactiveobserver(AOB)techniqueisusedtohandlethestate

observationerror.DifferentfromtraditionalKalmanfilters,thegoal

oftheactiveobserver,asshowninFig.9,istoestimateand

com-pensatethiserrorbyusingafeedforwardtermbasedonanextra

state,alsocalledasactivestatep(k),givenby[34,35]:

p(k)=Le(k). (30)

Accordingto[35],astochasticapproachisusedtomodelp(k)as

p(k)−p(k−1)= (k) (31)

where (k)isazero-meanGaussianrandomvariableandisusedin

Kalmanequation,bytheAOBalgorithm,asawhitenoisetodescribe

theevolutionofp(k)[35].

RewritingEq.(25)bytakingintoaccounttheextrastatep(k),

thediscretestatespacedescriptionbecomes

x(k) p(k)



=

0 1



x(k−1) p(k−1)



+

0



u(k−1)+

ω(k) (k)



y(t) =Ca

x(k) p(k)



+(k) (32)

withtheaugmentedcontrolinput

u(k−1)=r(k−1)−[ L 1 ]

x(k−1) p(k−1)



andCa=[ C 0 ].

Thentheclosedloopsystemcanbewrittenas

x(k) p(k)



=

− L 0 0 1



x(k−1) p(k−1)



+

0



r(k−1)+

ω(k) (k)



(33)

andtheactiveobserverbasedon(33)isgivenby

ˆx(k) ˆp(k)



=

− L 0 0 1



ˆx(k−1) ˆp(k−1)



+

0



r(k−1)+K(k)(y(k)− ˆy(k)) (34)

Fig.10.Looptransferfunction.

where ˆy(k)=Ca



− L 0 0 1



ˆx(k−1) ˆp(k−1)



+

0



r(k−1)



.

TheKalmanfiltergain K(k)is calculated usingthefollowing

equations K(k) =P1(k)CaT[CaP1(k)CaT+R(k)]−1 P1(k) =aP(k−1)Ta+Q (k) P(k) =P1(k)−K(k)CaP1(k) (35) with a=

0 1



, Q (k)=

Qx(k) 0 0 Qp(k)



wherethematrixaistheaugmentedopenloopmatrix,Q(k)isthe

processcovariancematrixandR(k)isthemeasurementcovariance

noise.ThecovarianceQp(k)isrelatedtotheeffectivenessofactive

state ˆp(k)tocompensatetheerrors.Thehigherthisvalueis,the

moreeffectivetheerrorcompensationwillbe.

4.4. Systemstability

Toevaluatethesystemstability,themostcommoncriteriaused

arethephaseandgainmarginsthatcanindicatebothabsoluteand

relativestability.Forthesystemconsideredhere,onecancompute

thelooptransferfunction(LTF)astherelationshipbetweeninput

u(k)andtheoutputY,asshowninFig.10.Thecorrespondingstate

spacerepresentationisgivenby[35]

ˆx(k) e(k)



=

−ϒ L K(k)C ϒ L −K(k)C



ˆx(k−1) e(k−1)



+

K(k)C (I−K(k)C)



u(k−1) (36) Y=



L 0



ˆx(k) e(k)



(37) whereϒ=I−K(k)C.

Thetransferfunctionof(36)canbeobtainedas

HLTF=[L 0][I−z−1]−1z−1 (38)

where,arethestatetransitionandcommandmatricesof(36).

GivenHLTF,onecanplottheBodediagramandcomputethegain

andphasemarginofthesystemin(36),asillustratedinnext

sec-tion.Itisworthwhiletonoticethatthisstabilityanalysisapplies

whenthesystemworksclosetotheequilibriumsincealinearized

approximationoftheHunt–Crossleymodelaroundtheequilibrium

(9)

Table6

StabilityanalysisoftheHunt–Crossleymodelbasedforcecontrolsystem.

Model Pole Gm[dB] ϕm[◦] HC −2 29.2 64.3 −5 29.0 63.0 −8 28.8 61.7 5. Numericalstudies

Inthissection,firstlystabilityoftheHunt–Crossleymodelbased forcecontrolsystemasdevelopedinlastsectionisevaluated.The performanceoftheforcecontrollersdesignedonthebasisof dif-ferentcontactmodelsarethencompared.

5.1. StabilityanalysisforHCmodelbasedforcecontrol

Using the average values of the estimated parameters (see Table2),theHunt–Crossleycontactmodelisgivenbythefollowing equation

Fe(t)=2·103 x1.23(t)+4·104 x1.23(t) ˙x(t) (39)

andtheextradampingin(18)issetasKv=0.05.

FortheAOBforcecontroldesign,thelinearizedHunt–Crossley

equationin(11)isused.ThediscretizationtimeisequaltoTs=1ms

and the covariance matrices in (35) are selected as Qx=10−6,

Qp=10−2,R=0.005.Thedesiredforceinputr(k)(Fd)isdefinedasa

stepfunctionof5Nat0.5swithaninitialvalueof0.5Ntobe

con-sistentwiththeexperimentalsetupinnextsection.Threedifferent

situationsarestudiedwithslowertofasterrisetimerequirements,

correspondingtoclosedloopsystempolessetat2rad/s,5rad/sand

8rad/srespectively.

Gain(Gm)andphase(ϕm)marginsgreaterthan10dBand30◦,

respectively,areusuallyrequiredtoguaranteegoodsystem

robust-nessagainstexternaldisturbances.Table6showstheresultsofthe

stabilityanalysisforHunt–Crossleymodelbasedforcecontrol

sys-tem.Inallthreecasesthesystemisstableandretainsgoodgain

andphasemargins.Itisalsoevidenthowfasterpolesdecreasethe

systemgainandphasemargins.

5.2. Simulationcomparisonwithlinearmodelbasedcontrol

TheperformanceoftheforcecontrollersdevelopedusingAOB

basedonelasticandKelvin–Boltzmanncontactmodelsarestudied

inthissubsection.NonlinearHunt–Crossleymodelisusedasthe

contactmodelinthissimulationstudytoapproximatethereal

tool-tissueinteractionasjustifiedinSection3.

ThevaluesofthemodelparametersK,andaresetaccording

totheestimatedaveragevaluesinTable2,andthecorresponding

contactmodelequationsare

Felastic(t)=628.92x(t)

FKB(t)=636.05x(t)+156.92 ˙x(t)−0.052 ˙F(t)

. (40)

Table7

Transientresponsesofthethreecontrolforce.

Risetime(s)

Pole HC KB Elastic

−2 1.21 1.11 1.28

−5 0.47 0.28 0.58

−8 0.23 0.08 0.36

InFig.11,theperformanceofallthreeforcecontrolsystems,

basedondifferentcontactmodelswithdifferentclosed-looppoles,

are illustrated for direct graphical comparison. The simulation

resultsoftheforcecontrolmethodsunderstudyaresummarized

inTable7.

Among the three developed force control methods, theone

basedonKBmodelshowsthefastestrisetimeinallcases,butthe

downsideisthatwhenafastpoleisassignedovershootappearsin

theexertedforceasseeninFig.11(c),whichshouldbeminimized

forsurgicalapplications.Incomparison,theHCmodelbasedcontrol

systemshowsslightlylowerrisetimeandtheelasticonepresents

theslowestresponseinallcases.

Remark1. Theelasticmodelrepresentsthemostoftenused

con-tactmodelforforcecontrolinliterature.TheKelvin–Boltzmann

modelisshowntobesuperiortoelasticandotherlinear

viscoelas-ticcontactmodelsinforcecontrolforsofttissuesbytherecent

works [19].Therefore, forthesimulationstudiesof thissection

andtheexperimentalstudiesinnextsection,onlytheelasticand

Kelvin–Boltzmannmodelbasedcontrollersareconsideredfor

per-formancecomparisonwiththeHunt–Crossleymodelbasedcontrol

method.

Remark 2. The performance of the linearized Hunt–Crossley

modelbasedcontrollermaybeaffectedbytheneglectednonlinear

terms,whichareunknownandtime-varyingandthusaredifficult

togetadeterministicdescription.WiththeKalmanfilterbased

AOB,thestochasticallydrivenactivestatep(k)aimstocompensate

theeffectofneglectednonlineartermsinrealtime[34,35].

Sim-ulationstudiesarecarriedouttotesttherangeofvalidityofthe

controllerbasedonlinearizedHunt–Crossleymodel(around5Nas

anexample)withAOB.ItshouldbenotedthatformostMIS

proce-duresthemeanforceappliedduringtissuegraspsisaround5–11N

andevensmallerfortissuesuturingandotherdelicateoperations

[38,39].Sointhisevaluation,thedesiredinteractionforcehasbeen

chosen as2N,10N,15Nand 20N withthesystempolesetto

p=5rad/s(mediumpole).Thecorrespondingcontrolperformances

areillustratedinFig.12,whereitshowsthatforthecontrollerbased

onaHunt–Crossleymodellinearizedaround5Ntheforcecontrol

performancesaresatisfactorywithdesiredforcecommandranging

from2to15N.WhenFd=20N,anotableovershootisobserved

(Fig.12(f))indicatingthatthecontrolperformancedegradeswhen

thesystemworkstoofarawayfromthelinearizationpoint,which

isanaturalandunderstandablefact.

(10)

Fig.12.Forcecontrolperformanceswithdifferentreferenceforces.

Fig.13.Experimentresultswithpoleatp=2rad/s.

6. Experimentalstudies

Inthissection,theexperimentalresultsfor theforcecontrol

methodsbasedonthelinearizedHunt–Crossley,theelasticand

thelinearviscoelasticKelvin–Boltzmannmodelsarereportedand

compared.

6.1. Systemsetup

Theplatformusedfor theexperimentaltestsistheRaven-II

robotsystemasintroducedinSection3andillustratedinFig.4.A

lamb’sheartwasusedasthesofttissuesamplefortheexperimental

studies.

Astepinputof5Nissetasthereferenceforcecommandthat

shouldexertonalamb’sheartsurface,in linewiththe

simula-tionstudiesof lastsection. Asmallinitialcontact forcearound

0.5Nisexertedontissuesurfacetoensurearealcontactbetween

robotandtissueatthebeginningofexperiment.Onlymotionalong

thenormaldirection(zaxis)isallowedfortherobot.Theextra

dampingtermKvinthecontrollerwassettoKv=0.05,andbased

onthesimulationstudiesthecovariancematricesinAOBhavebeen

selectedasfollows

Qx(k)=10−6, Qp(k)=10−3, R(k)=0.005

6.2. Experimentalforcecontrolresults

Figs.13–15showtheperformanceofthecontrolmethodsbased

onElastic,KB,HCmodelsandfordifferentclosed-looppoles(p=2,

5,8rad/s)throughinvitroexperimentaltests.Toevaluatethe

con-trolperformancequantitatively,thecontactforceovershoot,rise

time(RT)andtheMFE/STDvaluesofforcetrackingerror(0–6s)for

eachexperimentarecalculatedandsummarizedinTable8.

Fromtheexperimentalresultsitcanbeobservedthatthe

elas-ticmodelbasedcontrolalwayspresentstheslowestresponsesand

Kelvin–Boltzmannmodel based controlshows thesmallest

ris-ingtime.TheHunt–Crossleymodelbasedcontrolshowsslightly

slower but comparable responses. Both Kelvin–Boltzmann and

Hunt–Crossleymodelbased controlshowsimilarforcetracking

performanceintermsofMFEandSTD,whiletheelasticmodelbased

controlpresentsabiggerforcetrackingerror.

Concerningovershoot,whichisacriterionofparticular

(11)

Fig.14.Experimentresultswithpoleatp=5rad/s.

Fig.15.Experimentresultswithpoleatp=8rad/s.

model based control shows overshoot even for the slow

sys-tempolep=2rad/s.TheKelvin–Boltzmannmodelbasedcontrol

remainedstableforthefastpolep=8rad/sbuttheovershootis

over 50%(2.72N)of thedesired force(5N).Comparatively,the

Hunt–Crossleymodelbasedcontrolshowedverysmallovershoot

for allthree situations. In fact, for ourexperimentalsetup,the

Hunt–Crossleymodelbasedcontrolpresentedsimilarperformance

for even faster closed-looppoles, but Kelvin–Boltzmannmodel

basedcontrolgeneratedtoobigovershootsuchthattheRaven-II

robotsystementered“E-Stop”protectionmode[36]forpolesfaster

thanp=8rad/s.

6.3. Discussion

Includingtheexperimentsintroducedindetailinlast

subsec-tion,theforcecontrolexperimentshavebeenconductedseveral

timesusingdifferentanimalsamples(beefmuscleandlambheart).

Theaveragecontrolperformanceresultsfortheexperimentsbased

onlambheartaresummarizedinTable9andtheonesbasedon

beefmuscleinTable10.Theaveragedoverallperformancevalues

ofallexperimentsconductedaresummarizedinTable11.From

Tables9–11,itisseenthatallexperimentsleadtoverysimilar

con-clusionsofthecontrolperformancesbasedonthethreeinteraction

modelsundercomparison.

Theelasticmodelbasedcontrolshowstheslowestresponses,

andovershootisobservedevenforslowclosed-looppoles.These

areconsistentwiththerecentworkof[37]comparingthe

elas-ticmodelbasedandKelvin–Boltzmannmodelbasedforcecontrol

methods. The force control based on Kelvin–Boltzmann model

alwaysgivesthefastestresponsesfordifferentclosed-looppoles

Table8

Experimentalresults.

Model Pole RT[s] Overshoot[N] MFE[N] STD[N]

Elastic −2 1.71 0.81 0.86 1.59 KB 1.02 0.67 0.57 1.14 HC 1.34 0.23 0.68 1.30 Elastic −5 0.62 0.72 0.33 1.14 KB 0.22 0.40 0.11 0.62 HC 0.40 0.23 0.21 0.81 Elastic −8 0.35 1.02 0.19 0.91 KB 0.09 2.72 0.002 0.58 HC 0.16 0.40 0.10 0.60 Table9

Averageresultsforexperimentsusinglambheart.

Model Pole RT[s] Overshoot[N] MFE[N] STD[N]

Elastic −2 1.49 0.69 0.89 1.70 KB 1.05 0.46 0.56 1.14 HC 1.26 0.24 0.68 1.31 Elastic −5 0.52 0.73 0.32 1.19 KB 0.20 0.51 0.11 0.66 HC 0.38 0.23 0.21 0.84 Elastic −8 0.32 0.94 0.19 0.94 KB 0.05 2.19 0.002 0.55 HC 0.13 0.43 0.10 0.64 Table10

Averageresultsforexperimentsusingbeefmuscle.

Model Pole RT[s] Overshoot[N] MFE[N] STD[N]

Elastic −2 1.72 1.33 0.92 1.84 KB 0.86 0.59 0.57 1.18 HC 1.30 0.64 0.68 1.40 Elastic −5 0.61 1.34 0.36 1.33 KB 0.20 0.49 0.11 0.66 HC 0.41 0.49 0.21 0.86 Elastic −8 0.39 1.37 0.19 0.99 KB 0.11 1.79 0.002 0.52 HC 0.20 0.78 0.10 0.65

but, asthedownside,ispronetolargeovershootespecially for fastpoles.Thisgreatlylimitsitsapplicabilityfor taskswithlow overshootrequirements.TheHunt–Crossleymodelbasedcontrol presentsslightlyslowerresponses,butalwaysshowsverysmall overshootsandthereforeitisapplicabletoawiderrangeofforce

Table11

Averageresultsofallexperiments.

Model Pole RT[s] Overshoot[N] MFE[N] STD[N]

Elastic −2 1.60 0.95 0.87 1.76 KB 0.97 0.51 0.55 1.16 HC 1.27 0.40 0.66 1.34 Elastic −5 0.55 0.98 0.32 1.24 KB 0.20 0.50 0.11 0.66 HC 0.39 0.33 0.21 0.84 Elastic −8 0.34 1.11 0.19 0.96 KB 0.08 2.03 0.002 0.54 HC 0.15 0.56 0.10 0.64

(12)

controltaskswithrequirementsonbothresponsetime(efficiency) andovershoot(safety).

Experimental studies alsoreveal that theKelvin–Boltzmann modelbasedcontrollerleadstochatteringcontactforces.Thiscould beexplainedbythemodelEq.(5),wherethederivativeofcontact

forceisusedwhosemeasurementisusuallyverynoisy.

Amainlimitationtoourexperimentalstudyisthatthe

hard-waresafetyprotectionofRavenIIsystempreventsusfromfurther

exploringtheperformanceof each controllerwithharshertask

requirements,e.g.toobserveoscillationorevendivergenceinorder

tobetterevaluatethecontrolsystemstability.Thismaybe

allevi-atedbycarryingouttheexperimentalstudyonageneralpurpose

industrialrobot.Also,sofartheexperimentswereconductedbased

oninvitrotissuesamples,invivoanimaltestswillbetterevaluate

differentcontactmodelbasedforcecontrolmethods.

Both simulation and experimental studies confirm that

the Hunt–Crossley model based force control system

pro-vides comparable response time and force control accuracy as

Kelvin–Boltzmannmodel,butitpresentssmootherperformance

withmuchlessovershootthanElasticandKBmodelbased

con-trolsystems.Thisisparticularlyimportantforsurgicalapplications,

whereovershootshouldbeminimizedforsafetyreasonandprompt

responseshouldbegeneratedwhenacommandismade.Therefore,

theHunt–Crossleymodelstandsasthemoresuitablecandidateto

developtheforcecontrolschemeforroboticinstrumentandsoft

tissueinteraction.

7. Conclusion

Inthecontextofminimallyinvasiveroboticsurgery,thecontrol

oftheinteractionforcebetweenroboticinstrumentandsofttissue

isanimportantresearchtopicfrombothsafetyandefficiencypoint

ofview.

Mostforcecontrolmethodsinliterature,includingsomeworks

forrobotictool-tissueforcecontrol,assumethat theinteraction

betweentherobotandtheoperatingenvironmentcanbeestimated

byapureelasticmodel.Tobetterdescribethecomplexviscoelastic

propertiesofsofttissuecontact,moresophisticatedmodelshave

beenproposed.TheKelvin–Boltzmannmodelisoneofthelinear

viscoelasticmodelsthatbestdescribestheseproperties[19].To

improvemodelingaccuracy,thenonlinearpropertiesofsofttissues

mustbeconsideredaswell,anditisnecessarytoexplorenonlinear

modelsliketheHunt–Crossleymodel,whichhasbeenreportedas

amorerealisticoptionfromthephysicalpointofview.

Inthiswork,Hunt–Crossleyhasbeenusedforthefirsttimein

lit-eratureasthebasistodesigntheinteractionforcecontroller.The

designisbasedonstatefeedbackregulationandactiveobserver

(AOB)techniques.Bothsimulationandinvitroexperimental

stud-ieswerecarriedouttoevaluatethedevelopedcontrolmethodand

compareitsperformancewithotherlinearcontactmodelbased

controlmethods.TheHunt–Crossleymodelbasedforcecontroller

isshowntobesuperiortoothermodelbasedmethodsconsidering

themainevaluationcriteriainthescenarioofroboticsurgerysuch

asresponsetime,controlaccuracyandovershoot.

Acknowledgement

This work was supported by French Centre National de la

RechercheScientifique(CNRS)incollaborationwithPolitecnicodi

Milano,Italy.

References

[1]J.S.Park,G.S.Choi,K.H.Lim,Y.S.Jang,S.H.Jun,S052:acomparisonof robot-assisted,laparoscopic,andopensurgeryinthetreatmentofrectal cancer,Surg.Endosc.25(1)(2011)240–248.

[2]R.S.Poston,R.Tran,M.Collins,M.Reynolds,I.Connerney,B.Reicher,D. Zimrin,B.P.Griffith,S.T.Bartlett,Comparisonofeconomicandpatient outcomeswithminimallyinvasiveversustraditionaloff-pumpcoronary arterybypassgraftingtechniques,Ann.Surg.248(4)(2008)

638–646.

[3]G.Perigli,C.Cortesini,E.Qirici,D.Boni,F.Cianchi,Clinicalbenefitsof minimallyinvasivetechniquesinthyroidsurgery,WorldJ.Surg.32(4)(2008) 45–50.

[4]M.Ghodoussi,S.E.Butner,Y.Wang,Roboticsurgery:thetransatlanticcase,in: IEEEInt.Conf.onRoboticsandAutomation,vol.21(3),2002,pp.1882–1888. [5]M.Jacopec,S.J.Harris,F.R.Baena,P.Gomes,J.Cobb,B.L.Davies,Thefirst

clinicalapplicationofa“hands-on”robotickneesurgerysystem,J.Comput. AidedSurg.6(6)(2001)329–339.

[6]R.H.Taylor,B.D.Mittelstadt,H.A.Paul,W.Hanson,P.Kazanzides,J.F.Zuhars, B.Williamson,B.L.Musits,E.Glassman,W.L.Bargar,Animage-directed roboticsystemforpreciseorthopaedicsurgery,IEEETrans.Robot.Autom.10 (3)(1994)261–275.

[7]M.E.Allaf,S.V.Jackman,P.G.Schulam,J.A.Gadeddu,B.R.Lee,R.G.Moore,L.R. Kavoussi,Laparoscopicvisualfield.Voicevsfootpedalinterfacesforcontrol oftheAESOProbot,Surg.Endosc.12(12)(1998)1415–1418.

[8]S.Sastry,M.Cohn,F.Tendick,Milliroboticsforremote,minimallyinvasive surgery,Robot.Auton.Syst.21(3)(1997)305–316.

[9]F.Tendick,M.C.C¸avus¸o˘glu,Human–machineinterfacesforminimally invasivesurgery,IEEEEng.Med.Biol.Soc.6(1997)2771–2776.

[10]M.R.Treat,Asurgeon’sperspectiveonthedifficultiesoflaparoscopicsurgery, in:Computer-integratedSurgery—TechnologyandClinicalApplication, Cambridge,1996,pp.559–560.

[11]E.Dombre,G.Duchemin,P.Poignet,F.Pierrot,Dermarob:asaferobotfor reconstructivesurgery,IEEETrans.Robot.19(5)(2003)876–884. [12]D.DeLorenzo,Y.Koseki,E.DeMomi,K.Chinzei,A.M.Okamura,Coaxial

needleinsertionassistantwithenhancedforcefeedback,IEEETrans.Biomed. Eng.60(2)(2013)379–389.

[13]N.Enayati,E.DeMomi,G.Ferrigno,Hapticsinrobot-assistedsurgery: challengesandbenefits,IEEERev.Biomed.Eng.(2016)(inpress). [14]C.R.Wagner,N.Stylopoulos,P.G.Jackson,R.D-Howe,Thebenefitofforce

feedbackinsurgery:examinationofbluntdissection,J.Presence: TeleoperatorsVirtualEnviron.16(3)(2007)252–262.

[15]W.Zarrad,P.Poignet,R.Cortesao,O.Company,Towardsteleoperatedneedle insertionwithhapticfeedbackcontroller,in:IEEE/RSJInt.Conf.onIntelligent RobotsandSystems,2007,pp.1254–1259.

[16]Y.C.Fung,Biomechanics:MechanicalPropertiesofLivingTissue,Springer, 1993.

[17]M.Machado,P.Moreira,P.Flores,H.M.Lankarani,Compliantcontactforce modelsinmulti-bodydynamics:evolutionoftheHertzcontacttheory,Mech. Mach.Theory52(2012)99–121.

[18]N.Diolati,C.Melchiorri,S.Stramigioli,Contactimpedanceestimationfor roboticsystem,IEEETrans.Robot.21(5)(2005)925–935.

[19]P.Moreira,C.Liu,N.Zemiti,P.Poignet,Softtissueforcecontrolusingactive observersandviscoelasticinteractionmodel,in:IEEEInt.Conf.onRobotics andAutomation,2012,pp.4660–4666.

[20]K.H.Hunt,F.R.E.Crossley,Coefficientofrestitutioninterpretedasdampingin vibroimpact,ASMEJ.Appl.Mech.42(52)(1975)440–445.

[21]A.Haddadi,K.Hashtrudi-Zaad,Real-timeidentificationofHunt–Crossley dynamicmodelsofcontactenvironments,IEEETrans.Robot.28(3)(2012) 555–566.

[22]S.Jeon,M.Harders,Haptictumoraugmentation:exploringmulti-point interaction,IEEETrans.Haptics7(4)(2014)477–485.

[23]Y.Kobayashi,A.Kato,H.Watanabe,M.G.Fujie,Modelingofviscoelasticand nonlinearmaterialpropertiesoflivertissueusingfractionalcalculations,J. Biomech.Sci.Eng.7(2)(2012)177–187.

[24]L.Sciavicco,B.Siciliano,L.Villani,G.Oriolo,Robotics:Modeling,Planningand Control,Springer,2009.

[25]E.J.Hunter,I.R.Titze,Refinementsinmodelingthepassivepropertiesof laryngealsofttissue,J.Appl.Physiol.103(1)(2007)206–219.

[26]D.W.Marhefka,D.E.Orin,Simulationofcontactusinganonlineardamping model,in:IEEEInt.Conf.onRoboticsandAutomation,1996,pp.1662–1668. [27]C.Liu,P.Moreira,N.Zemiti,P.Poignet,3Dforcecontrolforrobotic-assisted

beatingheartsurgerybasedonviscoelastictissuemodel,in:IEEEEng.in MedicineandBiologySoc.,2011,pp.7054–7058.

[28]H.King,S.N.Kosari,B.Hannaford,KinematicanalysisoftheRaven-IITM

researchsurgicalrobotplatform.UWEETechnicalReport,2013.

[29]K.Levenberg,Amethodforthesolutionofcertainnonlinearproblemsinleast squares,Q.Appl.Math.2(1944)164–168.

[30]D.Marquardt,Analgorithmforleast-squaresestimationofnonlinear parameters,SIAMJ.Appl.Math.11(2)(1963)431–441.

[31]J.Park,O.Khatib,Ahapticteleoperationapproachbasedoncontactforce control,Int.J.Robot.Res.25(5–6)(2006)575–591.

[32]K.J.Astrom,B.Wittenmark,Computer-controlledSystems:Theoryand Design,PrenticeHall,1997.

[33]F.L.Lewis,AppliedOptimalControlandEstimation:DigitalDesignand Implementation,PrenticeHall,1992.

[34]R.Cortesao,OnKalmanactiveobservers,J.Intell.Robot.Syst.48(2)(2007) 131–155.

[35]R.Cortesao,J.Park,O.Khatib,Real-timeadaptivecontrolforhaptic telemanipulationwithKalmanactiveobserver,IEEETrans.Robot.22(5) (2006)987–999.

(13)

[36]M.J.H.Lum,D.C.W.Friedman,G.Sankaranarayanan,H.King,K.FoderoII,R. Leuschke,B.Hannaford,J.Rosen,M.N.Sinanan,TheRaven:designand validationofatelesurgerysystem,Int.J.Robot.Res.28(9)(2009)1183–1197. [37]P.Moreira,N.Zemiti,C.Liu,P.Poignet,Viscoelasticmodelbasedforcecontrol

forsofttissueinteractionanditsapplicationinphysiologicalmotion compensation,Comput.MethodsProgr.Biomed.116(2)(2014)52–67.

[38]J.D.Brown,J.Rosen,L.Chang,M.N.Sinanan,B.Hannaford,Quantifying surgeongraspingmechanicsinlaparoscopyusingtheblueDRAGONsystem, in:MedicineMeetsVirtualReality,vol.98(12),2004,pp.34–36.

[39]A.Dubrowski,R.Sidhu,J.Park,H.Carnahan,Quantificationofmotion characteristicsandforcesappliedtotissuesduringsuturing,Am.J.Surg.190 (1)(2005)131–136.

Riferimenti

Documenti correlati

We used unconditional logistic regression to estimate the risk of CM according to the base clinical risk model and to the model including the MC1R gene, defined as the presence

Canary Islands, where the intrinsic component of the landscapital is no longer perceived by the locals as a value and is in fact being destroyed, with a consequent loss of

1968 […], ha indotto lo Stato a farsi datore di lavoro, direttamente o tramite le imprese a partecipazione statale. Se da un lato queste ultime hanno insistito nel voler

Nella figura 3.5 è riportato il disegno di assieme del banco di prova nel quale sono evidenziate le parti principali: al sistema di supporto del banco, che alloggia anche la

For this purpose the Portal was thought to “host training packages, devel- oped on the basis of European best practices in the field, to refer to as a guide for the development

The gold catalysed oxidation of heterocycle derived enynes successfully affords divinyl ketones in which one of the double bond is embedded in a heterocycle. The obtained

An alternative configuration could be a “hybrid” (dielectric cylinders + superconducting plates) PBG based cavity which could lower metallic losses in the structure.. At the

Fig. Sulfur deposits from several SAS caves in Italy; A) Sulfur deposited in little pockets in Faggeto Tondo Cave located in Monte Cucco (photo M. Nagostinis); B) Sulfur deposits