• Non ci sono risultati.

NIR-sensitized Dye-Sensitized Solar Cells: effect of the different molecular moieties on the photovoltaic performances

N/A
N/A
Protected

Academic year: 2021

Condividi "NIR-sensitized Dye-Sensitized Solar Cells: effect of the different molecular moieties on the photovoltaic performances"

Copied!
2
0
0

Testo completo

(1)

22 July 2021

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

NIR-sensitized Dye-Sensitized Solar Cells: effect of the different molecular moieties on the photovoltaic performances

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

Availability:

This is the author's manuscript

(2)

VG8-C8

VG8-C8

VG17-C8

VG18-C8 VG19-C8

a Dipartimento di Chimica, NIS Interdepartmental and INSTM Reference Centre, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino

b Laboratoire de Réactivité et Chimie des Solides, CNRS UMR7314, Université de Picardie Jules Verne, 33 Rue St-Leu, 80039 Amiens, Cedex, France

c ICxT Interdepartmental Centre, Università degli Studi di Torino, Italy Lungo Dora Siena 100, 10153 Torino

d Dipartimento di Scienze Agrarie Forestali e Alimentari, Università di Torino, Largo Paolo Braccini 2, 10095 Grugliasco

[email protected]

Nadia Barbero,

a

Vittoria Novelli,

b

Claudia Barolo,

a c

Raffaele Borrelli,

d

Marco Giordano,

a

Matteo Bonomo,

a

G. Viscardi,

a

Frederic Sauvage

b

Dye-sensitized solar cells (DSSCs) are nowadays one of the most interesting alternatives when looking at solar harvesting technologies able to provide enhanced performance under low or weak irradiation and for building integrated applications (BIVP) [1]. However, most of these cells absorb only the visible domain of the light spectrum that is why these devices are not transparent or no less than semi-transparent. Far-red/near infra-red (NIR) light is indubitably interesting to widen solar harvesting. Of course, the photoconversion expected by the exploitation of these frequencies (700-1000 nm) is lower with respect to the visible region. But, NIR sensitizers allow to tune the colors of final devices from green to blue, even to transparent. Transparent cells without any coloration would allow the visible light to pass through unhampered reaching a fully integration of PV devices in BIPV [2]. Our group have already developed several squaraine dyes for DSSC absorbing in the NIR region [4,5]. A few series of new efficient organic sensitizers based on squaraine [6], cyanine and croconine core-units with a shifted absorption as high as 830 nm have been synthesized and fully characterized. DSSCs based on these new efficient sensitizers are able to convert up to 36% IPCE until 850 nm.

λmax (nm) Log λem (nm) τ (ns) φfl VG1-C8 646 5.55 657 1.09 0.35 VG13 667 5.43 678 1.11 0.37 VG10-C2 670 5.37 677 1.18 0.36 VG10-C8 673 5.49 679 1.51 0.47 350 400 450 500 550 600 650 700 750 0 50000 100000 150000 200000 250000 300000 350000(M -1 cm -1 ) Wavelength (nm) VG1-C8 VG10-C2 VG10-C8 VG13

[3]

0.0 0.1 0.2 0.3 0.4 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 P hoto-c urr ent de nsit y ( mA/c m 2 ) Voltage (V) 400 500 600 700 800 900 1000 0 10 20 30 40 50 60 Wavelength (nm) IPCE (%)

Conversion up

to 950 nm with a

3.6% efficiency

(AM 1,5G)

Photo-dynamic

of VG20

0 5 10 15 1 10 100 1000 10000 Decay Fit Intensity (counts) Time (ns) Excitation at 640 nm Emission at 870 nm

τ

1

= 391 ps (93,5%)

τ

2

= 925 ps (6,5%)

Very fast fluorescence < 1ns

Croconine

VG25

Squaraines

VG11

and

VG12

300 400 500 600 700 800 900 0.0 0.2 0.4 0.6 0.8 1.0 Ab s (a .u .) Wavelength (nm) VG20 VG25 VG11 VG12 λmax (nm) in MeOH VG11 710 VG12 715 VG20 827 VG25 807

J

sc

= 14.0 mA/cm

2

V

oc

= 412 mV

ff = 0.62

η = 3.6 %

TiO2 Voc (V) Jsc (mA/cm2) FF η (%)

VG11 0.587 5.3 76 2.5 VG12 0.599 10.8 71 4.6 VG20 0.412 14.0 62 3.6 VG25 0.274 1.9 63 0.33 400 500 600 700 800 900 1000 0 5 10 15 20 25 30 35 40 45 50 55 VG11 VG12 VG20 VG25 Wavelength (nm) E QE ( %) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 2 4 6 8 10 VG11 VG12 VG20 VG25 Photoc u rr en t d en sity (m A/c m 2 ) Voltage (V) VG20 •Dye solution: 0.1 mM + CDCA 50 mM •Electrolyte: [I3-]=50mM; [I-]=1M; [LiI]=1M VG11 & VG12

•Dye solution: 0.1 mM + CDCA 10 mM •Electrolyte: Z960 + LiI 50 mM

•Dipping 5 h

VG25

•Dye solution: 0.01 mM + CDCA 1 mM

•Electrolyte: 1M DMII, 30 mM I2, 500mM LiI

Photo-active Electrode

C106

λ=550nm

J

sc

= 21.6 mA/cm

2

ff = 0.57

V

oc

= 389 mV

η= 4.9%

VG20

λ=830nm

0.0 0.1 0.2 0.3 0.4 0 4 8 12 16 20 24 P hotoc urr e nt de nsit y ( mA/c m 2 ) Voltage (V) 400 500 600 700 800 900 1000 0 10 20 30 40 50 60 cocktail C106 VG20 Wavelength (nm) IPCE (%)

Acknowledgments: Authors acknowledge financial support by IMPRESSIVE H2020 project (Grant number: 826013)

References: [1] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J.-E. Moser, M. Grätzel, M. et al. Nature Photonics, 2017, 11, 372-379; [2] N. Barbero, F. Sauvage, in Materials for

Sustainable Energy Applications: Conversion, Storage, Transmission and Consumption (Eds.: X. Moya, D. Munoz-Rojas), CRC Press, 2016, pp. 87–147; [3] T. Ono, T. Yamaguchi, H. Arakawa Sol. Energy Mater. Sol. Cells, 2009, C. , 831-835; [4] C. Magistris, S. Martiniani, N. Barbero, J. Park, C. Benzi, A. Anderson, C. Law, C. Barolo, B. O’Regan Renew. Energ., 2013, 60, 672–678; [5] S. Galliano, V. Novelli, N. Barbero, A. Smarra, G. Viscardi, R. Borrelli, F. Sauvage, C. Barolo Energies, 2016, 9, 486; [6] N. Barbero, C. Magistris, J. Park, D. Saccone, P. Quagliotto, R. Buscaino, C. Medana, C. Barolo, G. Viscardi Org. Lett., 2015, 17, 3306–3309.

[5]

Dye CDCA (mM) Jsc (mA/cm2) Voc (mV) Fill Factor η (%) VG10‒C2 0a 8.60 544 0.67 3.11 10a 14.3 623 0.69 6.18 2.5b 13.3 617 0.71 5.81 VG10‒C8 0a 8.81 585 0.64 3.28 10a 13.6 641 0.70 6.10 2.5b 14.0 634 0.69 6.11 VG13 0a 8.74 567 0.62 3.10 10a 12.1 665 0.68 5.50 2.5b 12.6 640 0.68 5.44

panchromatic

spectral

response and

a record

efficiency over

6%

300 400 500 600 700 800 0 1 VG8-C8 VG17-C8 VG18-C8 VG19-C8 Assorb a n za (u.a. ) Lunghezza d'onda (nm) 650 nm 677 nm 680 nm 706 nm Dye Jsc/ mA/cm2 Voc / mV Fill Factor η / % VG1‒C8 -1,34 544 0,76 1,42 VG10‒C8 -4,89 586 0,66 1,89 VG8‒C8 -2.81 558 0,74 1,17 VG17‒C8 -3,84 547 0,71 1,50 VG18‒C8 -2,33 511 0,71 0,85 VG19‒C8 -3,67 564 0,70 1,45

The central functionalization of the

squaric acid with either barbituric acid

(VG8 and VG17) and sulfoxide

tioindanone (VG18 and VG19) is also interesting for the application in

water-based DSSC (hydrogen bonds

interactions)

Initial results with iodine-based (organic) electrolyte (TiO2

Riferimenti

Documenti correlati

Direttore della Scuola di Specializzazione per le Professioni Legali dell’Università degli Studi di Napoli Federico

Enrica Morlicchio, University of Naples Federico II Chair: Lavinia Bifulco, University of Milano-Bicocca. Online Event | Sign

Moreover, if an awareness event is associated with a set of hierarchically related activity contexts, the policies are applied to the most specific one in order to focus on

È plausibile, essendo i Conser vatori a gestire il flusso di denaro più rilevante (fra le entrate, quelle connesse all’appalto dei diritti di pesca sul Lago Trasimeno e al

Come c'è da aspettarsi, nell'immagine a polarizzazione verticale (Figura 10a) si hanno i valori massimi della radio FM e delle stazioni di telefonia cellulare, mentre

Although we hypothesize that the features of the TUT an- notation schemes can be of some help for the alignment, in particular at the syntactic level and with respect to the

Hygrophilic plants usually emit isoprene at high rates under well-watered conditions (Loreto et al., 2014), and isoprene emission is even transiently stimulated at early stages