• Non ci sono risultati.

Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection

N/A
N/A
Protected

Academic year: 2021

Condividi "Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection"

Copied!
8
0
0

Testo completo

(1)

ContentslistsavailableatSciVerseScienceDirect

Sensors

and

Actuators

B:

Chemical

j o u r n al hom e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n b

Acetylcholinesterase

biosensor

based

on

self-assembled

monolayer-modified

gold-screen

printed

electrodes

for

organophosphorus

insecticide

detection

Fabiana

Arduini

a,c,∗

,

Simone

Guidone

a

,

Aziz

Amine

b

,

Giuseppe

Palleschi

a,c

,

Danila

Moscone

a,c

aDipartimentodiScienzeeTecnologieChimiche,UniversitàdiRomaTorVergata,ViaDellaRicercaScientifica,00133Rome,Italy bFacultédeSciencesetTechniquesdeMohammadia,B.P.146,Mohammadia,Morocco

cConsorzioInteruniversitarioBiostruttureeBiosistemi“INBB”,VialeMedaglied’Oro,305Roma,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received30June2012 Receivedinrevisedform 28September2012 Accepted3October2012 Available online 12 October 2012 Keywords:

Acetylcholinesterase Pesticide

Organophosphate Self-assembledmonolayer Goldscreen-printedelectrode

a

b

s

t

r

a

c

t

Amono-enzymaticacetylcholinesterase(AChE)amperometricbiosensorfororganophosphatedetection wasdevelopedimmobilizingtheAChEenzymeviaglutaraldehydeonapreformedcysteamine self-assembledmonolayer(SAM)ongold-screenprintedelectrodes(Au-SPEs).Theenzymaticactivitywas monitoredmeasuringtheenzymaticproduct,thiocholine,atanappliedpotentialof+400mVvs.Ag/AgCl usingferricyanideinsolutionaselectrochemicalmediator.Theelectrocatalyticactivityofferricyanide towardsthiocholinewasinvestigatedbyusingNicholson–Shainmethodandfindingasecondorder homogenousrateconstantksequalto(5.26±0.65)×104M−1s−1.Inordertodevelopasensitive biosen-sor,theeffectofcysteamineconcentration,durationofSAMdepositionandAChEconcentrationwere optimized.Usingparaoxonasmodelcompound,thebiosensorshowedalinearrangeupto40ppbwith adetectionlimitof2ppb(10%ofinhibition).Thebiosensorwassuccessfullychallengedwithdrinking watersampledemonstratingtobeausefulanalyticaltoolfororganophosphorusinsecticidedetection.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Pesticidesareamongthemostimportantenvironmental pol-lutantsbecauseoftheirsignificantpresenceintheenvironment [1].Theorganophosphorusinsecticidesareoneofthemostused insecticidesduetheirhightoxicitybutlowpersistenceinthe envi-ronmentwhencomparedwiththeorganochlorinepesticides.Their toxicityisbasedontheabilitytoirreversiblyinhibitAChEwhichis akeyenzymeofnervoustransmission.AChErapidlyconvertsthe neurotransmitteracetylcholinetocholineandaceticacidafterthe transmissionofanerveimpulse.Aspartofnormalcholinergic neu-rotransmission,aproperlyfunctioningofAChEisacriticalstep;in fact,theinhibitionofthisenzymeleadstocholinergicdysfunction anddeath[2,3].Thedetectionoforganophosphorusinsecticides isgenerallycarriedoutusinggaschromatographyorhigh perfor-manceliquidchromatographythatrequireskilledpersonneland laboratoryset-up[4,5].Simpleandsensitivestrategiesfordetecting organophosphoruscompoundsarethereforecriticallyimportant inordertoperformthemeasurement“insitu”usingminiaturized, cost-effectiveandeasytouseanalyticalsystems.Inthiscontext, theuseof cholinesteraseenzymes hasshown great promiseto assemble enzyme sensorsfor environmentalscreening analysis [6–9].BymeasuringtheAChEactivitybeforeandafterexposure

∗ Correspondingauthor.Tel.:+390672594404;fax:+390672594328. E-mailaddress:fabiana.arduini@uniroma2.it(F.Arduini).

ofthebiosensortoenvironmentalsamples,itispossibleto quan-tifytheamountoforganophosphorusinsecticidespresentinthe sample.

ThedevelopmentofanAChEbiosensorrequiresthe immobi-lizationofAChEonthetransducerandtheimmobilizationisakey pointtoobtainasensitivebiosensor.Infact,theenzymeshould retainitsquaternarystructure,shouldbeclosetothetransducer andthefilmofthemembraneshouldbethininordertoavoida limiteddiffusionoftheenzymaticsubstrate.Inliteratureseveral techniquesforimmobilizingenzymesontransducersarereported, suchasadsorption[10],entrapmentbymeansofsol–gels[11,12] andcross-linking[13,14].Unfortunately,usuallyusingthesetypes ofimmobilizationnocontrolovertheorientationoftheenzymeis achieved[15].Inordertoavoidthisdrawback,theimmobilization byusingSAMhasbeenreportedasa successfullyalternativeto fabricatebiosensors[16].SAMswereusuallypreparedusingthe affinity of thiols such as alkanethiols for some metal surfaces, particularly gold. In this case, the main advantage consists in theimmobilizationoftheenzymeclosetotheelectrodesurface withahighdegreeofcontroloverthemoleculararchitectureof therecognitioninterface[17,18].Fewpapersinliteraturereport the assemblingof a AChE-SAMbiosensor. Somerset et al. have developedagoldelectrodemodifiedwithmercaptobenzothiazole andeitherpoly(o-methoxyaniline)orpoly(2,5-dimethoxyaniline) [19,20].AnAChEbasedamperometricbiosensorwasdeveloped by immobilizing the enzyme onto a self assembled modified goldelectrodeusing3-mercaptopropionicacid,glutaraldehydeor

0925-4005/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved.

(2)

(N-cyclohexy-N -(2-morpholinoethyl)carbodiimide)methyl-p-toluenesulphonatebyPedrosa etal.[21,22].AnAChE biosensor wasalso constructed by meansof gold nanoparticlesand cys-teamineassembledonglassycarbonpaste[23]orbysinglewalled carbon nanotubes wrapped by thiol terminated single strand oligonucleotide(ssDNA)ongold[24].

In all these cases, however, keeping in mind that the organophosphorus insecticides are able to irreversibly inhibit the AChE, after each measurement the biosensor need to be re-preparedorreactivated.TheAChEbiosensor,infact,canbe reac-tivatedputtingincontactthebiosensor,afterthemeasurement, forseveralminuteswith2-PAM(pyridine-2-aldoxime methylio-dide)solution[25]or,forexample,obidoximesolution[26].The reactivation should be performed immediately after the mea-surement, in order to avoid the enzyme phenomenon called “ageing”thatrenderstheinhibitedenzymemoreresistanttothe reactivationbecomingpermanentlyinhibited[27].Inordertoavoid thesestepswithdrawbacksintermoftimeofanalysis,theuseof screenprintedelectrodes(SPEs)canbeasuccessfullyalternative.

ThegoldSPEshavetheadvantagestobeminiaturized,mass pro-duced,andcost-effective,thussuitableforasinglemeasurement, propertiesveryusefulinthecaseofirreversibleinhibitionbased biosensors.Inthepresentworkwereportthedevelopmentofa novelamperometricmono-enzymaticAChEbiosensorinwhichthe enzymeisimmobilizedviaglutaraldehydeonapreformedSAM ofcysteamineontoAu-SPE. Inordertohaveamono-enzymatic biosensor,theacetylthiocholinewasusedassubstrate.The enzy-maticproductthiocholinewasdetectedbyusingferricyanidein solutionaselectrochemicalmediator.

2. Materialsandmethods

2.1. Apparatus

Amperometric measurements were carried out using a VA 641amperometricdetector(Metrohm,Herisau,Switzerland), con-nectedtoanX-trecorder(L250E,Linseis,Selb,Germany).

Cyclic voltammetry (CV) was performed using an Autolab electrochemicalsystem(EcoChemie, Utrecht, TheNetherlands) equippedwithPGSTAT-12andGPESsoftware(EcoChemie,Utrecht, TheNetherlands).Electrochemicalimpedancespectroscopy(EIS) measurements were carried out in the same cell with a PC-controlledAutolab. A sinusoidal voltage perturbation of 10mV amplitudewasapplied over thefrequency range of 100kHz to 0.1Hzwith10measurementpointsperfrequencydecade.Forthe fittingofthedataobtainedbyEIS,Z-viewssoftware(Scribner Asso-ciates,Inc.)wasused.

2.2. Electrodes

Au-SPEswereboughtfromEcobioservice(Florence,Italy).The diameteroftheworkingelectrodewas0.3cmresultinginan appar-entgeometricareaof 0.07cm2.Beforethiolmeasurements,the referenceelectrodewaschlorinatedbyapplyingapotentialof0.6V betweenthesilverandanexternalAg/AgClelectrodefor20sina phosphatebuffersolutioninthepresenceof0.1MKCl[28].

2.3. Reagents

Allchemicalsfromcommercialsourceswereofanalyticalgrade. Potassium ferricyanide from Carlo Erba (Milano, Italy), acetyl-cholinesterase(AChE)fromelectriceel,acetylthiocholinechloride, cysteamine,glutaraldehyde andparaoxonwere purchasedfrom SigmaChemicalCompany(St.Louis,USA).

2.4. Thiocholinemeasurements

Thiocholine was produced enzymatically by AChE using acetylthiocholineassubstrate(becausethiocholineisnot commer-ciallyavailable). For thispurpose, 1mLof1Macetylthiocholine solution was prepared in phosphate buffer 0.1M (pH=8), and 100 units of AChE were added to this solution. After 1h, the concentration of thiocholine produced by AChE was estimated spectrophotometrically by Ellman’s method. For this purpose, 900␮L of phosphate buffer solution (0.1M, pH=8), 100␮L of 0.1MDTNB,and5␮Lthiocholinesolution(diluted1:100inwater) wereputinaspectrophotometriccells.Theabsorbancewas mea-sured, and the real concentration was evaluated by using the Lambert–Beerlawwith theknownmolar extinctioncoefficient ofTNB(ε=13,600M−1cm−1)[29].After1h,theacetylthiocholine hydrolysisiscompleted,and1mLsolutionof1Mthiocholineis obtained.Thesolutionisstablefor1dayat4◦C.

Thiocholinemeasurementswerecarriedoutusing amperomet-ricbatchanalysisatAu-SPEinastirred0.05Mphosphatebuffer solution+0.1MKCl,pH7.4(10mL)containing1mMofferricyanide ionsatanappliedpotentialof+400mVvs.Ag/AgCl.Afteraround 7min,timerequiredforbaselinestabilization,thethiocholinewas addedandtheresponsewasrecorded.

2.5. AChEbiosensor

The Au-SPE, as receivedby Ecobioservice, wasimmersed in 100mM cysteamineaqueoussolutionfor 15hatroom temper-ature in darkness to formcysteamine monolayer. Then, it was thoroughlywashedwithdoubledistilledwatertoremovethe phys-icallyadsorbedcysteamine.Afterthat,thesensorwascoveredwith anaqueoussolutionofglutaraldehyde5%(v/v)for30min,then, itwasthoroughlywashedwithdoubledistilledwatertoremove theunreactedglutaraldehyde.Finallytheresultingelectrodewas incubatedwithAChEsolution(10U/mL)for 15h;afterthat,the biosensorwaswashedandmaintainedinphosphatebufferat4◦C (Scheme1).

2.6. Acetylthiocholinemeasurement

TheacetylthiocholinewasmeasuredusingAChEbiosensorat anappliedpotentialof+400mVvs.Ag/AgClinstirred0.05M phos-phatebuffersolution+0.1MKCl,pH7.4(10mL)containing1mM offerricyanideions.Whenastablebaselinecurrentwasreached, theacetylthiocholinewasaddedandtheanalyteresponseatthe steadystatewasrecorded.

2.7. InhibitionmeasurementusingAChEbiosensors

Paraoxoninaqueoussolutionswasusedasstandardinsecticide fortheAChEinhibitionmeasurements.Theenzymaticactivityof thebiosensorwasmeasuredbefore(i0)andafter(ii)itsexposure toparaoxon for a certain time (incubationtime) at 3mM sub-strate(acetylthiocholine)concentration.Aftertheincubationtime, thebiosensorwasrinsedthreetimeswithdistilledwaterandthe responsetowardsthesubstratewasmeasuredasdescribedabove. Thedegreeofinhibitionwascalculatedasarelativedecayofthe biosensorresponse.

I%= i0−ii i0 ×

100 (1)

wherei0andiirepresentthebiosensorresponsebeforeandafter theincubationprocedure,respectively.

(3)

Scheme1.TheschemeoftheassemblingoftheAChEbiosensor.

2.8. Samplecollection

ThedrinkingwatersamplewascollectedatTorVergata Univer-sityLaboratory,theSaccoriverwatersamplewascollectednear Ceccano;realsampleswerediluted1:2with0.1Mphosphatebuffer solution+0.2MKCl,pH7.4anddirectlyanalysed.

3. Resultsanddiscussion

3.1. AmperometricthiocholinedetectionatAu-SPEbymeansof ferricyanide

Themono-enzymaticAChEbiosensorusestheacetylthiocholine assubstrate,thusthefirstgoalwasthedevelopmentofahighly sensitiveenzymaticproductthiocholine(RSH)sensor.Themajor drawbackrelativetotheelectrochemicaldetectionofthiocholine isthehighoverpotentialrequiredatmostconventionalelectrode surfaces(gold,platinumandcarbonpaste)andthefoulingofthe workingelectrodesurface.Toovercometheseproblems,the elec-trochemical detection of thiocholine could beperformed using nanostructuredmaterialsorredoxmediators[30–35].Inthelast case,theelectrochemicalmediatorcanbeadsorbedonthe work-ingelectrodesurfacesuchasinthecaseofPrussianBlue[33],cobalt hexacyanoferrate[34]oritcanbedirectlymixedtotheinkusedto printtheworkingelectrode,suchasinthecaseofcobalt phthalo-cyanine(CoPc)[35].In thecase ofAu-SPEsmodifiedwithSAM, ourchoicewastousetheelectrochemicalmediatorferricyanide insolutionbecauseitisabletoelectrocatalysetheoxidation of thiocholine[36].

The electrochemicalbehaviour of ferricyanidetowards thio-cholineoxidationwasfirstlyinvestigatedusingaCVtechniqueand aAu-SPE. Beforethethiocholinemeasurement,theAu-SPEwas conditionedbymeansof30CVs usingferricyanide10mM pre-paredin0.05Mphosphatebufferplus0.1MKCl,pH7.4atscanrate of50mV/s.Thisconditionstepwasnecessaryinordertodecrease thepeaktopeakseparationfrom314mVto93mVafter30scansas wecanseeinFig.1,thisbehaviourcanbeascribedtotheenhanced kineticrateafterelectrochemicalpretreatmentasreportedin lit-erature using carbon SPE [37]. Next, we have investigated the responseofthesoconditionedAu-SPEtowardsferricyanidebyCV overascanrangeof0.010–0.200V/s.Thecurrentofbothanodicand cathodicpeaksincreaseslinearlywiththesquarerootofthescan rate(datanotshown),indicatingasemi-infinitelinear diffusion-controlledcurrent.Afterthat,theAu-SPEwasstudiedtoevaluate theelectrocatalyticeffectofferricyanidetowardsthethiocholine oxidation.

Fig.1. CVsofAu-SPEin10mMferricyanidein0.05Mphosphatebuffer+0.1MKCl, pH=7.4,scanrate50mV/s(continuousline=firstscan,longdashedline=10thscan, shortdashedline=20thscananddottedline=30thscan).

Fig. 2 shows a typical response of ik (kinetically controlled current)obtainedinpresenceofthiocholineandid(diffusion con-trolled current)obtainedinabsenceof thiocholine.Thegeneric reactioncanbedescribedbythefollowingequations:

ferricyanide+RSH→ferrocyanide+RSSR (2)

Fig.2.CVsofferricyanide4mMin0.05Mphosphatebuffer+0.1MKCl,pH=7.4, scanrate20mV/sinabsence(continuousline)andinpresenceofthiocholine10mM (dashedline)or20mM(dottedline).

(4)

ferrocyanideelectrode←→ ferricyanide (3) According to the above equations, the addition of thiocholine causesanincreaseinconcentrationoftheferrocyanide,resultingin anincreaseoftheanodicpeakcurrent.Onthecontrary,thecathodic peakcurrent isproportional totheamountofferricyanide that decreasesaftertheadditionofRSH(thiocholine).Moreover,the increaseofthiocholineconcentrationleadstoafurtherincrease oftheanodicpeakcurrentand adecreaseofthecathodicpeak, confirmingthepropertyofferricyanideaselectrocatalystfor thio-cholineoxidation.

Inordertocalculatethesecond-orderhomogeneousrate con-stantksforthereactionbetweenferricyanideandthiocholine,the theoryofstationaryelectrodevoltammetrydevelopedby Nichol-sonandShain[38]wasused.Calculationofkshasbeenperformed byvaryingscanratesintherangeof5–100mV/sandthiocholine concentrationintherangeof10–20mM,fixingtheconcentration offerricyanideat4mM.Thereactionschemecanbedescribedas:

ferrocyanide−e−→ferricyanide (4)

thiocholine+ferricyanide←→ferrocyanidekf (5)

wherekfisthepseudo-firstorderrateconstant.Usingthe experi-mentalvaluesofik/idavalueof(kfRT/nFv)canbeobtainedfrom theworkingcurvereportedin Nicholsonand Shainpaper [38]. Plotting(kfRT/nFv)vs.1/

v

ateachconcentrationofthiocholine,it ispossibletocalculatekf.Then, aplotofkf vs.thiocholine con-centration wascarried out obtaining a linear behaviour whose slopewasequaltothesecond-orderhomogenousrateconstant ksforreactionbetweenferricyanideandthiocholine.Itwasfound equalto(5.26±0.65)×104M−1s−1,demonstratingthegood elec-trontransferbetweenthiocholineasthiolandferricyanide[39]. Thisvalueis,forexample,higherthantheonefoundforthe electro-catalyticreductionofnitriteusingferricyanide(2.75×103M−1s−1)

[40].

3.2. AmperometricthiocholinedetectionatAu-SPEmodifiedby meansofferricyanide

3.2.1. Choiceofappliedpotential

Aplotofcurrent/appliedpotentialusingathiocholineand fer-ricyanideconcentrationof3×10−4Mand1mMrespectively[36], wasconstructedintherangeoftheappliedpotential0–800mVvs. Ag/AgCl(datanotshown).Asexpected,theamperometricresponse followedthebehaviouroftheoxidationcurrentintheCV.The oxi-dationcurrentincreasedfrom0to+100mVvs.Ag/AgClreachinga plateauataround+200mVvs.Ag/AgCl.However,weobservedthe highestratiosignal/noiseat+400mVvs.Ag/AgCl,thusthisapplied potentialwasselectedfortherestofwork.

3.2.2. Analyticalfeaturesofthiocholinemeasurement

Thegoodelectroanalyticalperformancesofthedeveloped sys-tem were then confirmed by performing amperometric batch measurements.Infact,ourpurposewasthedevelopmentofa sen-sorforthiocholinedetectionasaplatformfor anamperometric biosensorforinsecticidedetection.

Using the previous selected applied potential (+400mV vs. Ag/AgCl) and a ferricyanide concentration equal to 1mM [36], calibrationcurves were carried out obtaininga detection limit (S/N=3) of 3×10−6M together with a linear range up to 1×10−3M (R2=0.9964). The sensor showed also a sensitivity equalto113mAM−1cm−2,which ishigherthantheoneshown bytheSPEmodifiedwithCoPc(24mAM−1cm−2)and compara-blewiththatobtainedinthecaseofSPEmodifiedwithPrussian Blue(143mAM−1cm−2)[13].Moreover,thereproducibilitywas

Fig.3. CVsofferricyanide4mMin0.05Mphosphatebuffer+KCl0.1M,pH=7.4, scanrate20mV/susingabaregoldSPE(continuousline)andacysteaminemodified goldSPE(dashedline).

evaluated by studying the response of 5×10−5M thiocholine, foundingaRSD%equalto5%(n=4).

3.3. FerricyanidebehaviouratAu-SPEmodifiedwithaSAMof cysteamine

Ourgoalwasthedevelopmentofbiosensorforinsecticide detec-tionimmobilizingtheAChEbySAM.Inthiscase,cysteaminewas selectedasalkanethioltakinginconsiderationthatglutaraldehyde willbe used tolink theAChE tocysteamine. Firstly, theeffect ofcysteaminecoverageofAu-SPE onferricyanideresponse was investigated,becausetheelectrontransferforredoxreactionsof differentmoleculesatSAMcanbecontrolledbyelectrostaticand hydrophobiceffects[41].

ACVstudywasperformedusingferricyanideatbareAu-SPEand Au-SPEmodifiedwithaSAMofcysteamine,preparedbydipping theAu-SPEina100mMcysteaminesolutionovernight (Cyst–Au-SPE).WeobservedthatinthecaseofbareAu-SPE,thepeaktopeak separationwas314mV;inthecaseofcysteaminemodified Au-SPE,instead,itwas89mV(Fig.3);itseemsthatthepresenceof cysteamineonthesurfaceoftheworkingelectrodecanimproveits electrochemicalperformance.Thisbehaviourshouldbeascribedto theelectrostaticinteractionbetweencysteamineandferricyanide. ThepKaofthecysteamineimmobilizedonthegoldelectrodewas estimatedbyShervedanietal.tobeequalto7.6,thusinthepH regionlowerthan7.6,theAusurfaceispositivelycharged[42].

Inourcase,weworkedatpH=7.4,thusthesurfaceofgold elec-trodemodifiedbySAMofcysteamineshouldbecharacterizedby positivecharge,reason forthatprobablytheCVofferricyanide, whichis negativelycharged,ischaracterizedbya peaktopeak separationlowerthanatthebareAu-SPE.

Inconclusion,inourcasethecysteaminewillbeusedto immo-bilizetheAChEbycross-linkingwithglutaraldehyde,butwehave alsodemonstratedthataSAMofcysteaminecanfacilitatethe elec-trontransferofferricyanideatworkingelectrodesurfaceofAu-SPE.

3.4. AChEbiosensor

3.4.1. Optimizationofbioactivelayer

InordertodevelopasensitiveAChEbiosensor,theAChEandthe cysteamineconcentrationsandthedepositiontimeofcysteamine onthegoldelectrodesurfacewereinvestigatedandoptimized.

(5)

3.4.2. EffectofAChEconcentration

Theeffect of AChE concentrationon thebiosensor response wasinvestigated.TheAChEconcentrationwasvariedinarange comprisedbetween0.1and10U/mLusingaSAMpreparedwith cysteamine0.1mMandadepositiontimeof15h,anda glutaralde-hydesolutionat5%(v/v).Theresponseofthebiosensorswastested usingacetylthiocholine3× 10−4M.Wefoundthatinthecaseof AChE0.1U/mL,1U/mLand10U/mL,acurrentequalto0,116and 209nAwasobserved, respectively.Theresultsshowedthatthe responseofthebiosensorincreasedwiththeincreaseoftheenzyme amountasexpected,butalsotheworkingstability(successively measured) increasedwith theincrease of the enzyme amount. Keepinginmindthat:(i)theAChEinhibitionbyorganophosphorus insecticidesisairreversible,thelowerpossibleamountofenzyme shouldbeused[6]and(ii)anenzymeloadinglowerthan10U/mL doesnotallowasatisfactoryworkingstability, thusanenzyme amountof10U/mLwasfinallyselectedforfurtherwork.

3.4.3. Effectofcysteamineconcentrationanddepositiontimeon goldelectrodesurface

Thedensityof hydrocarbonchainsongoldelectrode surface wasduetotheconcentrationofalkanethiolsusedandtheduration ofSAMdeposition.FortheinvestigationofSAMtimedeposition, Au-SPEwasimmersedfor 1and 15hin cysteaminesolutionat concentrationof0.1mM,usingAChEatconcentrationof10U/mL and glutaraldehyde at 5%(v/v). Theresponse of thebiosensors wastestedusingacetylthiocholine3×10−4M.Wehaveobserveda responsetowardsthesubstrateonlyinthecaseofbiosensor prea-paredwith15hasdepositiontime,thusthistime wasselected for furtherexperiments. In order toevaluate theeffect of cys-teamineconcentration,theAu-SPEwasimmersedincysteamine solutionatdifferentconcentrations:0.1,1,10and100mM,using AChEatconcentrationof10U/mLandglutaraldehydeat5%(v/v). Theresponseofthebiosensorswastestedusingacetylthiocholine 3×10−4M.Thebiosensorspreparedusingcysteamine100mMhad thehighestresponse(around200nA)andthehighestworking sta-bility.Forelectrodesimmersedincysteamine0.1,1and10mMthe biosensorsallowedresultscharacterizedbylowworkingstability. Lookingattheseresults,weselectedasmostsuitablebiosensorin termsofworkingstability,reproducibilityandsensitivitytowards acetythiocholine,theonedevelopedusingSAMpreparedwith cys-teamine100mM,adepositiontimeof15h,AChEat10U/mLand glutaraldehydeat5%(v/v).Thisbiosensorwascharacterizedbya reproducibility(RSD%)intra-andinter-electrodeof2.3%and16%, respectively.ThehighvalueofRSD%inthecaseofinter-electrode reproducibilitydoesnotaffect theaccuracyof insecticide mea-surementsbecausetheywerecarriedoutmeasuringtheresponse beforeandaftertheexposuretotheorganophosphate,thus mea-suringtherelativedecayofenzymaticactivityofasinglebiosensor. 3.5. Electrochemicalimpedancespectroscopymeasurements

Electrochemical impedance spectroscopy can provide useful information ontheimpedance changesoftheelectrode surface duringthefabricationprocess ofbiosensors,giving information abouthowtheinterfacialregionofthegoldelectrodesurfacein presenceofSAMofcysteaminechangesbeforeandaftertheAChE immobilization,measuringthevalueofelectrontransferresistance (Rct).TheRct,estimatedaccordingtothediameterofthesemicircle presentatthehighfrequencyregion,represents,infact,the diffi-cultyofelectrontransferofferro/ferricyanideredoxprobebetween thesolutionand theelectrode. Fig.4showsthetypicalNyquist plot obtained for cysteamine modified Au-SPE (Cyst–Au-SPE), glutaraldehyde–Cyst–Au-SPEand AChE–glutaraldehyde–Cyst–Au-SPE(biosensor).In thisfiguretheNyquistplotofthebaregold SPE was omitted because characterized by a much higher Rct

Fig.4.ComplexplaneimpedanceplotsatopencircuitpotentialforCyst–Au-SPE(a), glutaraldehyde–Cyst–Au-SPE(b)andAChE-glutaraldehyde–Cyst–Au-SPE (biosen-sor)(c)using5mMferro/ferricyanidein0.1MKCl.Inset:Randlescircuit.

(72,187±315)thantheoneobtainedinthecaseofCyst–Au-SPE (407±9),confirmingthedataobtainedusingtheCVtechnique that showed a better electron transfer of ferro/ferricyanide at Cyst–Au-SPEthantheatbareAu-SPE.

The fabrication process of biosensors was followed mea-suring the Rct values, observing that the Rct increases in the following order: Rct AChE–glutaraldehyde–Cyst–Au-SPE (2431±30)>glutaraldehyde–Cyst–Au-SPE (681±9)>Rct Cyst–Au-SPE (407±9), confirming also the deposition of a glutaraldehydelayerandoftheAChEenzymeontheCyst–Au-SPE.

3.6. AChEbiosensorforinsecticidedetection

The optimized biosensor was challenged with the enzy-matic substrate acetylthiocholine. Fig. 5 shows the calibration curve obtainedfor different substrate concentrations described by MichaelisMenten equation. It waspossible tocalculate the apparent Michaelis Menten constant (KMapp), found equal to 1.1±0.2mM.Asubstrateconcentrationof3.0mMwaschosenfor theinhibitionmeasurements.

Fig.5.CalibrationplotofacetylthiocholinechlorideusingtheAChEbiosensor. Appliedpotential:+400mVvs.Ag/AgCl.0.05Mphosphatebuffer+0.1MKCl,pH 7.4+1mMferricyanide.

(6)

Fig.6. Studyofincubationtime.Appliedpotential:+400mVvs.Ag/AgCl,0.05 phosphatebuffer+0.1MKCl,pH7.4+1mMferricyanide,3mMacetylthiocholine assubstrateconcentration,40ppbofparaoxonasinhibitor.

3.6.1. Studyofincubationtime

Theincubationtime isthereactiontimeoftheenzymewith theinhibitor.ForirreversibleinhibitionsuchastheoneofAChE byorganophosphorusinsecticides,itispossibletoachievelower detectionlimitsusinglongerincubationtimes;infact,thedegree oftheenzymeinhibitionusuallyincreaseswiththeincubationtime untilreachingaplateau[6].Inourcase(Fig.6)arapidincreaseofthe inhibitiondegreeupto15min,usingaconcentrationofparaoxon of40ppb,wasfound,reachingaplateauafter20min.Thus,atime of15minwasselectedasacompromisebetweenasensitive mea-surementandareasonablemeasurementtime.

3.6.2. Paraoxondetectioninstandardsolutionsandinwaterreal samples

We selected paraoxon as organophosphorus compound for insecticidedetectionusingthedevelopedbiosensor.Theparaoxon measurementwasperformedusingtheprocedurecalled“medium exchange”inwhichitispossibletoavoidelectrochemical inter-ferencesfromelectroactivespeciesandfromreversibleinhibitors duringthepesticidemeasurement[6,13].Briefly,theenzymatic activitymeasurementbeforeinhibitioniscarriedoutinbuffer solu-tioninpresenceoftheenzymaticsubstrate.After,thebiosensor isputincontactwiththesamplecontaminatedwithinsecticides for a selectedtime;then, the biosensoris rinsed severaltimes withdistilled water and the enzyme residualactivity is finally measuredin anewbufferaliquot inpresenceof theenzymatic substratebutinabsenceofanyinterferingspecies.Inthisway,it waspossibletoavoidbothelectrochemicalinterferencesandthe possiblepresenceofreversibleAChEinhibitorssuchasfluoride, Cd2+,Cu2+,Fe3+,Mn2+andglycoalkaloids[43].Themeasurements were performed using the selected incubation time of 15min, obtainingacalibrationcurvedescribedbythefollowingequation: y=(1.07±0.03)x+(8.09±0.51),R2=0.9868withalinearrangeup to40ppband adetectionlimit(LOD),calculatedastheamount of paraoxon for obtaining a 10% of inhibition, equal to 2ppb. Theanalytical performances obtainedare competitivewiththe onesreportedinliteratureusing,forinstance,cobalt phthalocya-ninemodifiedcarbonepoxycompositewithAChEimmobilizedon nylonnet(LODequalto12ppbforparaoxon)[44],AChEbiosensor basedonapolishable7,7,8,8-tetracyanoquinodimethane-modified graphite-epoxybiocomposite(LODequalto27.5forparaoxon)[45], AChEcapturedinagelatinmembranecoupledwithcarbon screen-printedelectrode(LODequalto2.5ppbforparaoxon)[46],AChE immobilized byglutaraldeyde onto carbon screen-printed elec-trodemodifiedwithPrussianBlue(50%ofdegreeofinhibitionfor

Fig. 7.Storage stability as percentageof residual activity. Appliedpotential: +400mVvs.Ag/AgCl,0.05phosphatebuffer+0.1MKCl,pH7.4+1mMferricyanide, 3mMacetylthiocholineassubstrate.

paraoxon25ppb)[13].Theresultsfoundinthisworkarealso sat-isfactorywhencomparedwithAChEimmobilizedontoaSAMgold electrode(LODequalto9.3ppbforparathion)[22]withthe advan-tagein thecaseof goldscreen-printedelectrodesthattheyare massproducedandcost-effectivethussuitableforasingle mea-surement,propertyveryusefulinthecaseofirreversibleinhibition basedbiosensors.

Inordertoevaluatetheaccuracyofthemethod,thebiosensor waschallengedinspikeddrinkingwatersample.Drinkingwater samplecollectedandtestedinourlaboratorygavenodegreeof inhibition.When,thesamplewasfortifiedwith10ppbofparaoxon, arecoveryof103±3%(n=3)wasobtained.Inaddition,asample collectedfromtheSaccoriverwasanalysed,obtaininginthiscase adegreeofinhibitionequalto10.9±0.4%(n=3),corresponding to5.2±0.7ppbofparaoxoninthesample,keepinginmindthat therealsamplewasdiluted1:2withphosphatebuffer(seeSection 2.8).InordertoevaluatetheaccuracyofthebiosensorintheSacco riversample,thesamplewasalsofortifiedwith10ppbofparaoxon, obtainingarecoveryequalto97±5%(n=3).

3.6.3. Storagestabilityofbiosensor

Inordertotestthepracticabilityofthedevelopedbiosensor, thestoragestabilitywastested.Whenthebiosensor wasnotin use,itwasstoredat4◦Cinphosphatebuffersolution.Thestability wastestedmeasuringthebiosensorresponseina3mM acetylth-iocholinesolution. We observed a rapid decrease of enzymatic activityduringthefirstweekuptoaround60%ofresidual enzy-maticactivity(Fig.7),afterthatitremainedalmoststableupto1 month.

4. Conclusions

Inthiswork,anAChEbiosensorfororganophosphorus insecti-cidesbasedonenzymeinhibitionwasdeveloped.TheAChEenzyme wasimmobilizedviaglutaraldehydeonapreformedcysteamine SAM on Au-SPEs. As reportedin literature, theimmobilization usingaselfassembled monolayerallowsobtainingahighly ori-entatedenzymeimmobilization,leadingtoalowdetectionlimit. Thestrategyofusingferricyanideinsolutionaselectrochemical mediatorallowedtoobtainasensitivesensorfortheenzymatic productdetection.Moreover,theelectrochemicalandenzymatic interferenceswereavoidedbecausethe“mediumexchange” mea-surement method was used. The biosensor was challenged in

(7)

drinkingwatersampleobtainingsatisfactoryresults.Inaddition, theuseofAu-SPEsallowsasingleinsecticidemeasurementwhichis agreatadvantagesincethesecompoundsinhibittheAChEenzyme inirreversibleway.Multipleinsecticidemeasurementswiththe samebiosensorrequire,infact,areactivationoftheimmobilized enzyme or theuse of a renewable enzymatic membrane, both time-consumingprocedures. The developed biosensor hasthus demonstratedtobeanusefulanalyticaltoolforscreeninganalysis oforganophosphorusinsecticides.

Acknowledgements

This work was supported by National Industria 2015 (MI01 00223)ACQUA-SENSEproject.

References

[1]K.Y.Abdel-Halim,A.K.Salama,E.N.El-khateeb,N.M.Bakry, Organophospho-ruspollutants(OPP)inaquaticenvironmentatDamiettaGovernorate,Egypt: implicationsformonitoringandbiomarkerresponses,Chemosphere63(2006) 1491–1498.

[2]J.E. Storm, K.K. Rozman, J. Doull, Occupational exposure limits for 30 organophosphate pesticidesbasedoninhibitionof redbloodcell acetyl-cholinesterase,Toxicology150(2000)1–29.

[3] K.D.Spradling,J.F.Dillman,Themoleculartoxicologyofchemicalwarfarenerve agents,AdvancesinMolecularToxicology5(2011)111–144.

[4]http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/8141b.pdf

(accessed26.06.12).

[5] L.BetowskiDonnelly,T.L.Jones,Theanalysisoforganophosphoruspesticide samplesbyhigh-performanceliquidchromatography/massspectrometryand high-performanceliquidchromatography/massspectrometry/mass spectrom-etry,EnvironmentalScienceandTechnology22(1988)1430–1434. [6] F. Arduini, A. Amine, D. Moscone, G. Palleschi, Biosensors based on

cholinesteraseinhibitionforinsecticides,nerveagentsandaflatoxinB1 detec-tion(review),MicrochimicaActa170(2010)193–214.

[7]S.Andreescu,J.L.Marty,Twentyyearsresearchincholinesterasebiosensors: frombasicresearchtopracticalapplications,BiomolecularEngineering23 (2006)1–15.

[8]M.Pohanka,D.Jun,H.Kalasz,K.Kuca,Cholinesterasebiosensorconstruction—a review,ProteinandPeptideLetters15(2009)795–798.

[9] M.DelCarlo,A.Pepe, M.Sergi,M.Mascini,A.Tarentini,D. Compagnone, Detectionofcoumaphosinhoneyusingascreeningmethodbasedonan elec-trochemicalacetylcholinesterasebioassay,Talanta81(2010)76–81. [10]C.Bonnet,S.Andreescu,J.L.Marty,Adsorption:aneasyandefficient

immobili-sationofacetylcholinesteraseonscreen-printedelectrodes,AnalyticaChimica Acta481(2003)209–211.

[11]S.Andreescu,L.Barthelmebs,J.L.Marty,Immobilizationofacetylcholinesterase on screen-printedelectrodes:comparative studybetween three immobi-lization methods and applicationsto the detection oforganophosphorus insecticides,AnalyticaChimicaActa464(2002)171–180.

[12]K.Anitha,S.VenkataMohan, S.Jayarama Reddy,Developmentof acetyl-cholinesterasesilicasol–gelimmobilizedbiosensor—anapplicationtowards oxydemeton methyl detection, Biosensors and Bioelectronics 20 (2004) 848–856.

[13]F.Arduini,F.Ricci,C.S.Tuta,D.Moscone,A.Amine,G.Palleschi,Detectionof car-bamicandorganophosphoruspesticidesinwatersamplesusingcholinesterase biosensorbasedonPrussianBluemodifiedscreenprintedelectrode,Analytica ChimicaActa580(2006)155–162.

[14]F.Arduini,F.Ricci,A.Amine,D.Moscone,G.Palleschi,Fast,sensitiveand cost-effectivedetectionofnerveagentsinthegasphaseusingaportableinstrument andanelectrochemicalbiosensor,AnalyticalandBioanalyticalChemistry388 (2007)1049–1057.

[15]Th.Wink,S.J.vanZuilen,A.Bult,W.P.vanBennekom,Self-assembled mono-layersforbiosensors,Analyst122(1997)43R–50R.

[16]J.J.Gooding,D.B.Hibbert,Theapplicationofalkanethiolself-assembled mono-layerstoenzymeelectrodes,TrendsinAnalyticalChemistry18(1999)525–533. [17]A. Fragoso,N.Laboria, D. Latta, C.K.O’Sullivan, Electron permeable self-assembledmonolayersofdithiolatedaromaticscaffoldsongoldforbiosensor applications,AnalyticalChemistry80(2008)2556–2563.

[18] R.K. Shervedani, A. Hatefi-Mehrjardi, M.K. Babadi, Comparative electro-chemical study ofself-assembled monolayersof 2-mercaptobenzoxazole, 2-mercaptobenzothiazole,and2-mercaptobenzimidazoleformedon polycrys-tallinegoldelectrode,ElectrochimicaActa52(2007)7051–7060.

[19]V.S. Somerset, M.J. Klink, M.M.C. Sekota, P.G.L. Baker, E.I. Iwuoha, Polyaniline–mercaptobenzothiazole biosensor for organophosphate and carbamatepesticides,AnalyticalLetters39(2006)1683–1698.

[20] S.Somerset,P.Baker,E.I.Iwuoha,Mercaptobenzothiazoleon-goldorganic phasebiosensorsystems:1.Enhancedorganophosphatepesticide determi-nation,JournalofEnvironmentalScienceandHealthPartB:Pesticides,Food Contaminants,andAgriculturalWastes44(2009)164–178.

[21]V.A.Pedrosa,J.Caetano,S.A.S.Machado,M.Bertotti,Determinationofparathion andcarbarylpesticidesinwaterandfoodsamplesusingaselfassembled monolayer/acetylcholinesteraseelectrochemicalbiosensor,Sensors8(2008) 4600–4610.

[22]V.A.Pedrosa,J.Caetano,A.S.Sergio,S.A.S.Machado,R.S.Freire,M.Bertotti, Acetylcholinesterase immobilization on 3-mercaptopropionic acid self assembled monolayer for determination of pesticides,Electroanalysis 19 (2007)1415–1420.

[23]D.Du,W.Chen,J.Cai,J.Zhang,H.Tu,A.Zhang,Acetylcholinesterase biosen-sorbasedongoldnanoparticlesandcysteamineselfassembledmonolayerfor determinationofmonocrotophos,JournalofNanoscienceandNanotechnology 9(2009)2368–2373.

[24]S.Viswanathan,H.Radecka,J.Radecki,Electrochemicalbiosensorfor pesti-cidesbasedonacetylcholinesteraseimmobilizedonpolyanilinedepositedon verticallyassembledcarbonnanotubeswrappedwithssDNA,Biosensorsand Bioelectronics24(2009)2772–2777.

[25]A.N.Ivanov,R.R.Younusova,G.A.Evtugyn,F.Arduini,D.Moscone,G.Palleschi, Acetylcholinesterasebiosensorbasedonsingle-walledcarbonnanotubes—Co phtalocyaninefororganophosphoruspesticidesdetection,Talanta85(2011) 216–221.

[26] L.G. Zamfir, L. Rotariu, C. Bala, A novel, sensitive, reusable and low potentialacetylcholinesterasebiosensorforchlorpyrifosbasedon 1-butyl-3-methylimidazoliumtetrafluoroborate/multiwalled carbonnanotubesgel, BiosensorsandBioelectronics26(2011)3692–3695.

[27]R.M.Dawson, Tacrineslows therate ofageing ofsarin-inhibited acetyl-cholinesterase,NeuroscienceLetters100(1989)227–230.

[28]F.Ricci,F.Arduini,C.S.Tuta,U.Sozzo,D.Moscone,A.Amine,G.Palleschi, Glu-tathioneamperometricdetectionbasedonathiol–disulfideexchangereaction, AnalyticaChimicaActa558(2006)164–170.

[29]G.L.Ellman,Tissuesulfhydrylgroups,ArchivesofBiochemistryandBiophysics 82(1959)70–77.

[30] K.A. Joshi,J. Tang,R. Haddon, J.Wang, W.Chen,A.Mulchandani,A dis-posable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode, Electroanalysis 17(2005) 54–58.

[31] G.Liu, S.L.Riechers,M.C.Mellen,Y. Lin,Sensitive electrochemical detec-tion of enzymatically generated thiocholine at carbon nanotube modi-fied glassy carbon electrode, Electrochemistry Communications7 (2005) 1163–1169.

[32] F.Arduini,C.Majorani,A.Amine,D.Moscone,G.Palleschi,Hg2+detectionby

measuringthiolgroupswithahighlysensitivescreen-printedelectrode mod-ifiedwithananostructuredcarbonblackfilm,ElectrochimicaActa56(2011) 4209–4215.

[33] F.Ricci,F.Arduini,A.Amine,D.Moscone,G.Palleschi,Characterisationof Prus-sianBluemodifiedscreenprintedelectrodesforthioldetection,Journalof ElectroanalyticalChemistry563(2004)229–237.

[34]F.Arduini,A.Cassisi,A.Amine,F.Ricci,D.Moscone,G.Palleschi, Electrocat-alyticoxidationofthiocholineatchemicallymodifiedcobalthexacyanoferrate screen-printedelectrodes,JournalofElectroanalyticalChemistry626(2009) 66–74.

[35]J.P. Hart, I.C. Hartley, Voltammetric and amperometric studies of thio-cholineatascreen-printedcarbonelectrodechemicallymodifiedwithcobalt phthalocyanine:studies towards a pesticide sensor, Analyst 119 (1994) 259–263.

[36]T. Neufeld, I. Eshkenazi, E. Cohen, J. Rishpon, A micro flow injection electrochemicalbiosensorfororganophosphoruspesticides,Biosensorsand Bioelectronics15(2000)323–329.

[37]W.Y. Su, S.M. Wang, S.H. Cheng, Electrochemically pretreated screen-printed carbon electrodes for the simultaneous determination of aminophenol isomers, Journal of Electroanalytical Chemistry 651 (2011) 166–172.

[38]R.S.Nicholson,I.Shain,Theoryofstationaryelectrodepolarography.Single scanandcyclicmethodsappliedtoreversible,irreversible,andkineticsystems, AnalyticalChemistry36(1964)706–723.

[39]O. Nekrassova,G.D.Allen, N.S. Lawrence, L.Jiang, T.J. Jones,R.G. Comp-ton,The oxidation of cysteineby aqueous ferricyanide: a kinetic study usingborondopeddiamondelectrodevoltammetry,Electroanalysis14(2002) 1464–1469.

[40]R.Ojani,J.B.Raoof,E.Zarei,Electrocatalyticreductionofnitriteusing ferri-cyanide;Applicationforitssimpleandselectivedetermination,Electrochimica Acta52(2006)753–759.

[41]V.A.Pedrosa,T.R.L.C.Paixao,.R.S.Freire,M.Bertotti,Studiesonthe electro-chemicalbehaviorofacystineself-assembledmonolayermodifiedelectrode usingferrocyanideasaprobe,JournalofElectroanalyticalChemistry602(2007) 149–155.

[42]R.K.Shervedani,M.Bagherzadeh,S.A.Mozaffari,Determinationofdopamine inthepresenceofhigh concentrationofascorbicacidbyusinggold cys-teamineself-assembledmonolayersasananosensor,SensorsandActuators B115(2006)614–621.

[43]F.Arduini,A.Amine,D.Moscone,G.Palleschi,Reversibleenzyme inhibition-basedbiosensors:applicationsandanalyticalimprovementthroughdiagnostic inhibition(review),AnalyticalLetters42(2009)1258–1293.

[44]P-Skadal,M.Mascini,Senstivesetectionofpesticidesusing amperomet-ricsensorsbasedoncobalt–phthalocyanine-modifiedcompositeelectrodes and immobilizedcholinesterases, Biosensorsand Bioelectronics 7 (1992) 335–343.

(8)

[45]D.Martorell,F.Cespedes,E.Martinez-fabregas,S.Alegret,Determinationof organophosphorusabdcarbamatepesticidesusingabiosensorbasedona polishable7,7,8,8,tetracyanoquinodimethane-modifiedgraphite-epoxy bio-composite,AnalyticaChimicaActa337(1997)305–313.

[46]M.Pohanka,D.Jun,K.Kuca,Amperometricbiosensorsforrealtimeassaysof organophosphates,Sensors8(2008)5303–5312.

Biographies

FabianaArduiniisaresearcherinanalyticalchemistryattheChemicaland Technol-ogyDepartmentoftheUniversityofRome“TorVergata”.Shegraduated“cumlaude” inchemistry(2004)andobtainedherPh.D.degreeinchemicalscience(2007).Her researchinterestsincludethedevelopmentofelectrochemicalsensorsand biosen-sorsandtheirapplicationinthefieldofclinical,foodandenvironmentalanalytical chemistry.ShewasinvolvedinseveralNationalandEuropeanprojects.Sheisauthor ofmorethan30papersininternationalandnationalscientificjournalsandbooks andofmorethan50posterandoralpresentationsatNationalandInternational Congresses.

SimoneGuidoneisgraduatedinchemistryatUniversityofRome“TorVergata”in 2010withtheThesis:developmentofbiosensorsforpesticidedetection.

AzizAmineisaprofessorofbiochemistryintheFacultyofSciencesandTechniques oftheUniversityofHassanII-Mohammedia(Morocco).HereceivedPh.D.degree

fromtheFreeUniversityofBrusselsin1993.ProfessorAmine’sresearchoverthe last20yearshasfocusedonsensorsandbiosensorsandtheiruseinanalytical chem-istry.Heisauthorofmorethan100papersandscientificcontributionsandhas servedascoordinatorofseveralnationalandinternationalresearchprojects.Heisa reviewerforseveralscientificinternationaljournals.Hewasco-ordinatorofvarious co-operationprojects.

GiuseppePalleschi,fullprofessorofanalyticalchemistry,hasbeentheHeadofthe DepartmentofChemicalScienceandTechnologyoftheUniversityofRome“Tor Vergata”for1995–2007.In2000heobtainedthe“LaureaHonorisCausa”fromthe UniversityofBucharest.Prof.Palleschi’sresearchoverthelast30yearshasbeen focusedonthedevelopmentofchemicalsensorsaswellasbio-andimmunosensors foruseintheareasofbiomedicine,foodandenvironmentalanalysis.Heistheauthor ofmorethan200papersininternationalscientificjournalsandaninvitedspeaker inmanyInternationalCongresses.

DanilaMosconeisfull professorinanalytical chemistryattheChemicaland TechnologyDepartmentoftheUniversityofRome“TorVergata”.Shehasbeen involvedinthefieldofbiosensorsforabout30years,andisanexpertin elec-trochemicalbiosensorandimmunosensorsassembling,theiranalyticalevaluation andapplicationforsolvinganalyticalproblems.Sheisactuallyinvolvedin Euro-peanprojectsandisresponsibleforNationalprojects.Herscientificactivityis summarizedinmorethan150papersoninternationalandnationalscientific jour-nalsandbooks,andinmorethan300oralandposterpresentationsatscientific meetings.

Figura

Fig. 2 shows a typical response of i k (kinetically controlled current) obtained in presence of thiocholine and i d (diffusion  con-trolled current) obtained in absence of thiocholine
Fig. 3. CVs of ferricyanide 4 mM in 0.05 M phosphate buffer + KCl 0.1 M, pH = 7.4, scan rate 20 mV/s using a bare gold SPE (continuous line) and a cysteamine modified gold SPE (dashed line).
Fig. 5. Calibration plot of acetylthiocholine chloride using the AChE biosensor.
Fig. 7. Storage stability as percentage of residual activity. Applied potential:

Riferimenti

Documenti correlati

“cultural and creative industries are those industries that are based on cultural values, cultural diversity, individual and/or collective creativity, skills

Metro Manila and the other five metropolitan areas of the country (Metro Davao, Metro Cagayan de Oro, Metro Angeles and Metro Iloilo-Guimaras) produce 80% of the Philippines’

The proposed method is based on the formation of acetic acid by reacting acetylcholine with acetyl cholinesterase enzyme and the resulting acetic acid permeates

We find that in a continuous double auction market the imposition of a transaction tax is not likely to stabilize financial markets since a reduction in market liquidity amplifies

Phytonutrients aren't essential for keeping us alive but when you eat or drink phytonutrients, they may help prevent disease and keep your body working properly

A fruitful relation host- parasite is established when parasite is able to interfere with host immune response: it can modulate effector cells activity and defend

This assembly system is confined in a controlled environment and consists, at the moment, of an assembly station equipped with various grippers (on the basis of the assembly tasks

More appropriate investigations on the role of Survey data for the estimation of macroeconomic variables is provided in the third Chapter, where the basic model presented in