• Non ci sono risultati.

Ground-Based Interferometric radar systems with fast acquisition capabilities: assessment of their use for the monitoring of deformation processes of geological interest.

N/A
N/A
Protected

Academic year: 2021

Condividi "Ground-Based Interferometric radar systems with fast acquisition capabilities: assessment of their use for the monitoring of deformation processes of geological interest."

Copied!
148
0
0

Testo completo

(1)

 

 

Sistemi  radar  interferometrici  da  terra  a  sintesi  elettronica:  

definizioni  dei  vantaggi  derivanti  dal  loro  uso  per  il  

monitoraggio  di  fenomeni  deformativi  di  interesse  

geologico.  

Ground-­‐Based  Interferometric  radar  systems  with  fast  acquisition  capabilities:   assessment  of  their  use  for  the  monitoring  of  deformation  processes  of  geological  

interest.  

Tesi  di  dottorato  di  ricerca     Dottorato  Scienze  della  Terra  

XXVIII  Ciclo    

     

Autore:  Dario  Tarchi  

(2)

Abstract  

A   new   class   of   Radar   interferometer,   based   on   an   electronically   scanned   array   in   MIMO   configuration   (MIMO-­‐SAR)   has   been   assessed   for   the   operational   use   in   the   monitoring   of   phenomena   of   geological   interest,   such   as   landslides   and   unstable   slopes.   The   new   system   is   able   to   apply   the   very   well-­‐known   and   proven   Ground   Based   Interferometric   technique   and   may   guarantee   and   unprecedented   short   refreshing   time   in   comparison   with   traditional   systems   based   on   the   mechanical   movement  of  the  radar  transceiver  on  a  rail  or  on  the  mechanical  steering  of  a  real   antenna.   This   new   feature   can   allow   monitoring   a   number   of   phenomena   having   deformation  rates  too  high  to  be  correctly  retreived  by  traditional  systems  currently   in  use.  The  implementation  of  a  prototype,  termed  MELISSA,  has  been  finalized  and   a   full   validation   of   the   system   in   a   controlled   environment   has   been   completed.   A   framework  to  assess  in  general  terms  all  the  different  measurement  parameters  of  a   radar  interferometer  and  how  they  relate  and  influence  each  other  has  been  defined.   This  allowed  identifying  the  advantages  but  also  the  expected  limitations  of  the  new   system   in   comparison   to   existing   instruments.   Real   cases   where   GB-­‐InSAR   is   currently  being  applied  have  been  first  analysed  to  evaluate  the  possible  advantages   of   using   a   similar   system   and   then   real   experiments   have   been   conducted   on   different   sites   including,   the   operational   monitoring   of   the   stability   of   the   Costa   Concordia  wreck,  the  Vetto  landslide  and  the  Stromboli  Volcano.  The  experimental   results   have   been   combined   with   the   theoretical   framework   to   provide   the   final   assessment  of  the  system  and  identify  possible  scenarios  for  its  operational  use.  A   reference  design  for  the  MIMO-­‐SAR  able  to  ensure  about  125  images  per  second  in  a   maximum  range  of  about  500  m  turns  out  to  be  fully  validated.  In  this  scenario  the   MIMO-­‐SAR   may   acquire   images   with   an   unprecedented   high   rate   while   it   is   equivalent   to   existing   system   concerning   other   relevant   measurement   parameters.   Over   larger   distances   the   MIMO-­‐SAR   system   cannot   actually   maintain   similar   performances  and  the  second  recommended  scenario  is  in  support  and  combination   with   a   traditional   system   to   provide   temporary   close-­‐in   view   over   portions   that   exhibits   an   acceleration   of   the   deformation   rates.   A   third   scenario   concerning   the   provision  of  early  warning  is  also  defined.  This  is  particularly  tailored  for  situations   where  a  fast  evolving  phenomenon  may  suddenly  develop  whitout  clear  precursors.   Finally  possible  options  to  enhance  the  system  are  presented.    

(3)

Riassunto  

Una   nuova   classe   d’interferometri   radar,   basata   su   una   schiera   di   antenne   in   configurazione  MIMO  (MIMO-­‐SAR)  e  scansionate  elettronicamente  è  stata  valutata  al   fine  di  un  suo  uso  per  il  monitoraggio  di  fenomeni  d’interesse  geologico  quali  frane  e   instabilità   di   versante.   Il   nuovo   sistema   è   capace   di   applicare   la   ben   nota   e   comprovata   tecnica   dell’interferometria   radar   con   sensore   basato   a   terra   (GB-­‐ InSAR)   garantendo   un   tempo   di   ripresa   della   singola   immagine   molto   breve   in   confronto   a   strumenti   tradizionali   basati   sulla   movimentazione   meccanica   del   sensore  radar  su  un  binario  o  sulla  scansione  meccanica  di  un’antenna  reale.    Tale   nuova   capacità   può   consentire   di   monitorare   fenomeni   con   dinamiche   veloci   che   eccedono   le   possibilità   dei   sistemi   tradizionali   correntemente   in   uso.   La   realizzazione   di   un   prototipo,   denominato   MELISSA,   è   stata   completata   attraverso   l’effettuazione  di  una  serie  di  test  di  validazione  in  laboratorio.  In  parallelo  è  stato   definito   un   quadro   generale   per   la   valutazione   delle   prestazioni   di   un   generico   interferometro   tenendo   in   conto   i   diversi   parametri   di   misura   e   le   principali   interdipendenze   fra   essi.   Questo   ha   consentito   una   valutazione   preliminare   delle   prestazioni   e   dei   possibili   vantaggi   attesi   anche   considerando   esempi   reali   di   monitoraggio  effettuato  con  sensori  GB-­‐InSAR  tradizionali.  Esperimenti  con  il  nuovo   strumento  sono  stati  quindi  compiuti  in  una  serie  di  siti  con  diverse  e  significative   tipologie   di   fenomeno   e   che   includono   il   monitoraggio   del   relitto   della   Costa   Concordia   all’isola   del   Giglio,   la   frana   di   Vetto   e   il   vulcano   Stromboli.   I   risultati   ottenuti   sono   stati   combinati   con   il   complesso   degli   elementi   precedentemente   elaborati   per   fornire   una   valutazione   finale   del   nuovo   sistema   ed   identificare   possibili  scenari  per  il  suo  impiego.  Utilizzando  una  configurazione  base  del  sistema,   precisamente  descritta  nel  lavoro,  è  possibile  eseguire,  entro  una  distanza  di  ca.  500   m,   monitoraggi   operativi   con   risultati   equivalenti   a   sistemi   tradizionali   ma   con   un   numero  di  acquisizioni  fino  a  125  per  secondo.  Su  distanze  superiori  il  sistema  non   può,   nella   configurazione   analizzata,   mantenere   le   stesse   prestazioni   e   l’uso   suggerito   è   in   combinazione   e   complemento   a   sistemi   tradizionali   allo   scopo   di   monitorare   temporaneamente   aree   specifiche   che   mostrino   una   dinamica   di   deformazione   particolarmente   rapida.   Un   terzo   scenario   è   infine   specificamente   elaborato   al   fine   di   ottenere   early-­‐warning   rispetto   a   fenomeni   che   insorgono   improvvisamente   e   senza   chiari   precursori.   Possibili   attività   per   migliorare  

(4)

Table  of  Contents  

Introduction  ...  7  

1   Monitoring  ground  displacement  using  a  ground-­‐based  radar  system  ...  11  

1.1   The  LISA  system  ...  16  

1.2   Limits  of  an  approach  based  on  a  mechanical  scanning  system  ...  20  

1.3   The   need   to   extend   the   applicability   field.   An   example   of   geological   interest.  ...  23  

2   A  radar  system  with  fast  acquisition  capabilities  ...  32  

2.1   The  Multiple  Input  Multiple  Output  (MIMO)  approach  ...  32  

2.2   Expected  advantages  and  limitations  ...  37  

2.2.1   Calibration  Procedure  ...  38  

2.3   MELISSA  –  The  existing  prototype  ...  41  

2.3.1   Principle  ...  41  

2.3.2   Theoretical  accuracy  ...  44  

2.3.3   Validation  tests  ...  46  

3   Identification  of  phenomena  of  interest  ...  51  

3.1   Measurement  parameters  and  attainable  performances  ...  51  

3.1.1   Refreshing  time  ...  52  

3.1.2   Acquisition  time  ...  52  

3.1.3   Power  budget  ...  56  

3.1.4   Additional  measurement  parameters  ...  57  

3.1.5   Capabilities  of    exisiting  GB-­‐InSAR  systems  ...  59  

(5)

3.2.1   The  Mont  de  La  Saxe  rockslide  ...  65  

3.2.2   Capriglio  landslide  ...  75  

3.3   The  Stromboli  Volcano  ...  79  

3.3.1   Specific  needs  in  volcanic  areas  ...  82  

4   Examples  of  real  application  ...  85  

4.1   Monitoring  of  the  Costa  Concordia  wreck’s  stability  ...  86  

4.1.1   Measurement  campaign  set-­‐up  ...  86  

4.1.2   Results  ...  93  

4.1.3   Concluding  remarks  ...  98  

4.2   Monitoring  of  the  Vetto  landslide  ...  101  

4.2.1   Site  description  ...  101  

4.2.2   Performed  Experiments  ...  104  

4.2.3   Results  ...  105  

4.2.4   Concluding  remarks  ...  109  

4.3   Monitoring  of  the  slope  instability  on  the  Stromboli  Volcano  ...  110  

4.3.1   Concluding  remarks  ...  118  

5   Final  validation  of  the  new  capabilities  ...  120  

5.1   Assessment  of  the  performances  for  operational  monitoring  ...  120  

5.2   Definition  of  operation  modes  ...  123  

5.2.1   MELISSA  reference  design.  ...  123  

5.2.2   Acquisition  modes  ...  127  

(6)

5.2.4   Operation  mode  1  –  Monitoring  of  limited  areas.  ...  129  

5.2.5   Operation   mode   2     -­‐   Use   in   combination   with   a   traditional   system.   130   5.2.6   Operation  mode  3  –  Provision  of  Early-­‐Warning  ...  130  

5.3   Extending  the  capabilities  of  MELISSA  ...  132  

5.3.1   Combining  ESAA  and  SFCW  ...  132  

5.3.2   Reducing  the  acquisition  time  ...  133  

5.3.3   Range  Gated  FMCW  ...  133  

6   Conclusions  ...  136  

Bibliography  ...  139    

(7)

Introduction  

The   Synthetic   Aperture   Radar   (SAR)   interferometry   is   a   remote   sensing   technique   well   known   since   decades   and   offer   a   number   of   interesting   applications.    It  may  be  implemented  through  spaceborne,  airborne  and  ground   based   sensors   thus   providing   relevant   information   at   different   spatial   scales   from   the   global   to   the   local   one.   A   typical   application   of   the   technique   is   the   assessment   of   ground   surface   displacement   fields   over   wide   areas,   whose   first   successful   demonstration,   using   spaceborne   observation   dates   back   to   more   than   25   years  (Gabriel   1989,   Massonnet   1993,   Massonet   1994,   Zebker   1994,   Carnec   1995).   In   fact   the   technique   is   extremely   powerful   in   providing   information   on   “changes   detection”.   Through   the   comparison   between   two   observations   (interferometric   pair),   of   the   same   scene,   made   in   different   moments   of   time,   the   portions   eventually   experiencing   modifications   in   the   elapsed  time  between  the  observations  can  be  identified  and  characterised.  The   nature  and  the  amount  of  the  information  that  can  be  retrieved  strongly  depend   on   the   ‘coherence’   of   the   observed   scene.   The   coherence   has   a   precise   mathematical  formulation  and  it  is  usually  assumed  that  it  measures  the  changes   occurred  in  the  time  interval.  Often,  not  enough  attention  is  paid  to  the  fact  that   the   scene   may   change   also   during   the   acquisition   of   each   single   observation   forming   the   interferometric   pair.   Similarly   to   the   exposure   time   for   optical   picture   the   acquisition   time   for   a   SAR   image   plays   a   fundamental   role   in   governing  the  quality  of  the  image,  what  type  of  phenomenon  can  be  observed   and   the   quantity   and   quality   of   the   retrieved   information.   This   will   in   turn   impact   on   the   resulting   coherence   determining   the   information   content   about   the  occurred  changes,  which  may  pass  from  qualitative  to  quantitative.  This  may   finally  result  in  a  precise  determination  of  the  contribution  to  the  changes  due  to   the   displacement,   namely   the   variation   of   the   distance   sensor-­‐target   along   the   Line-­‐Of-­‐Sight  (LOS),  with  a  very  high  accuracy.    

Concerning   the   assessment   of   the   negative   effects   on   the   image   quality   due   to   displacements   of   portions   of   the   observed   scene   during   its   acquisition   it   is   important   to   consider   the   frequency   of   observation   of   the   sensor   and   the  

(8)

during   the   acquisition   time   become   comparable   with   the   wavelength   the   coherence  of  the  portion  is  severely  reduced  and  will  not  be  correctly  imaged.  In   summary   (Prati   et   al.,   1998)   the   resulting   image   quality   depends   on   the   combination  of  three  factors:  i)  the  entity  of  the  displacement  with  respect  to  the   wavelength;  ii)  the  time  interval  necessary  for  the  displacement  to  reach  a  value   comparable  to  the  wavelength  of  observation  (correlation  time);  iii)  the  time  to   acquire  the  image  (acquisition  time).    

Consequently  changes  that  develop  quickly  with  a  potential  severe  effect  on  the   coherence   may   be   correctly   imaged   if   the   acquisition   time   is   short   enough.   Shortening  the  acquisition  time  of  a  SAR  image  allows  not  only  to  refine  the  use   of   the   radar   interferometry   in   traditional   fields   of   application   but   makes   also   possible  new  applications.    

Considering   the   specific   context   in   which   the   Ground-­‐Based   Radar   Interferometry  is  used  (Tarchi  2003a,  Tarchi  2003b,  Leva  2003,  Monserrat  2014,   Caduff  2015)  it  is  now  possible  to  consider  a  different  approach,  no  longer  based   on   the   mechanical   movement   of   the   radar   sensor,   for   implementing   the   SAR   principle.  A  new  class  of  Ground  Based  radar  interferometer  can  be  implemented   using  the  well-­‐known  concept  of  antenna  array  combined  with  an  efficient  and   switching   system   able   to   channel   the   signal   to   the   different   transmitting   or   receiving   elements   composing   the   array.   An   efficient   way   to   implement   this   is   offered   by   the   Multiple   Input   Multiple   Output   (MIMO)   technique  (Bliss   2006).     This  approach  along  with  its  equivalence  to  a  traditional  SAR  approach  has  been   demonstrated   and   experimentally   validated   (Tarchi   2013).   Even   though   alternative   methods   to   realise   an   electronically   scanned   array   exist,   we   will   hereinafter  use  the  acronym  MIMO-­‐SAR  to  indicate  this  class  of  instruments.  A   fully   working   prototype   has   been   implemented   at   the   Joint   Research   Centre   of   the  European  Commission  and  it  has  been  extensively  used  for  the  monitoring  of   the  Costa  Concordia  wreck  at  the  Giglio  Island  (Broussolle  2014).  In  operational   condition  the  system  has  acquired  images  with  an  acquisition  time  of  about  0.1   sec  but  in  laboratory  test  it  has  been  demonstrated  the  capability  to  acquire  up   to  150  frames  per  second.    

(9)

The   MIMO-­‐SAR   it   is   not   originally   conceived   and   designed   to   be   used   for   GB-­‐ InSAR   application   in   a   geological   context   were   a   traditional   approach   has   demonstrated  its  capability  until  the  actual  level  of  maturity  which  makes  those   systems  a  standard  operational  tool  to  measure  ground  displacements.    

Consequently  the  work  reported  here  as  the  main  goal  to  assess  in  a  systematic   way   whether   a   similar   system,   bringing   the   original   capability   of   an   unprecedented  short  acquisition  time  may  bring  advantages  in  the  monitoring  of   various  phenomena  of  geological  interest.    

The  work  analyses  the  actual  validated  capabilities  of  MIMO-­‐SAR  with  respect  to   other   existing   approaches/systems   currently   used   analysing   a   number   of   real   cases,  including  landslides  and  various  types  of  slopes  instabilities  in  a  volcanic   environment,   where   the   monitoring   with   GB-­‐InSAR   techniques   is   being   performed.  This  analysis  is  then  complemented  by  real  tests,  executed  with  the   existing   prototype   that   provided   evidence   of   the   advantages   and   limitations   of   MIMO-­‐SAR.  By  combining  the  two  type  of  analysis  it  is  finally  possible  to  identify   a   number   of   scenarios   where   the   use   of   MIMO-­‐SAR   may   represent   a   real   advantage.   In   addition,   it   has   been   also   possible   to   suggest   further   lines   of   research  aiming  at  improve  the  MIMO-­‐SAR  by  creating  a  version  tailored  for  the   use  in  a  geological  context,  which  helps,  in  synergy  with  other  existing  system,  to   further   extend   and   enrich   the   monitoring   capabilities   of   GB-­‐InSAR   techniques.   The   MIMO-­‐SAR   has   new   and   original   capabilities   but   its   optimal   use   is   in   combination   with   a   system   using   a   traditional   approach   since   this   is   still   the   more  efficient  solution  for  a  large  variety  of  phenomena.    

The  outline  of  the  thesis  is  as  follows:    

• Chapter   1   –   The   basic   principles   of   GB-­‐InSAR   are   presented,   including   a   description   of   the   main   characteristics   of   the   LISA   system,   the   first   example   of   system   based   on   the   mechanical   movement   of   the   antenna.   The  limits,  in  terms  of  acquisition  time  of  this  approach  are  analysed  and   it   is   presented   an   example,   of   geological   interest,   requiring   a   much   shorter  acquisition  time  to  be  fully  monitored.    

(10)

• Chapter  2  –  The  concept  of  a  Ground  Based  SAR  interferometer  with  fast   acquisition   capabilities   is   presented   showing   how   it   can   be   based   on   a   MIMO   approach.   The   existing   MIMO-­‐SAR   prototype,   called   MELISSA,   is   described   and   results   of   the   validation   tests   in   controlled   environment   are  detailed.  

• Chapter  3  –  this  is  devoted  first  to  present  a  general  framework  to  assess   in   general   terms   all   the   different   measurement   parameters   of   a   radar   interferometer   and   how   they   relate   and   influence   each   other.   The   different  solutions,  including  the  MIMO-­‐SAR  are  analysed  and  a  diagram,   acquisition   time   vs.   maximum   distance   to   summarise   the   attainable   performances  is  presented.  In  the  second  part  a  number  of  real  cases  are   analysed  and  the  potential  use  of  a  MIMO-­‐SAR  is  evaluated.  

• Chapter   4   –   This   presents   the   various   experiment   campaigns   performed   with   the   existing   MIMO-­‐SAR   prototype   with   particular   attention   on   the   main   elements   that   have   been   validated   in   each   case.   They   include   the   monitoring   of   the   stability   of   the   Costa   Concordia   wreck,   a   test   on   the   Vetto  landslides  and  a  test  on  the  Stromboli  Volcano.    

• Chapter  5  –  This  is  dedicated  to  summarize  the  different  results  obtained   through  the  analysis  performed  in  Chapter  3  and  the  tests  executed  and   reported   in   Chapter   4.   The   reference   designed   for   the   MIMO-­‐SAR   is   presented.  Different  scenarios  for  a  possible  operational  use  of  a  MIMO-­‐ SAR   are   identified   and   described.   Future   activities   aiming   at   further   enhancing  the  system  are  also  discussed.      

• Chapter  6  finally  contains  the  conclusions.  

(11)

1 Monitoring   ground   displacement   using   a  

ground-­‐based  radar  system  

The  Ground  Based  Interferometric  Synthetic  Aperture  Radar  (GBInSAR)  (Tarchi   1997,   Tarchi   1999)   is   a   radar   technique,   which   allows   performing   radar   measurements   installing   a   system   within   some   distance   from   the   area   that   is   aimed  to  be  monitored.  The  installation  of  any  other  equipment  or  tool  in  that   area  is  not  necessary  to  gather  reliable  and  accurate  data.  This  has  the  advantage   not   to   require   in   general   access   to   the   area   under   surveillance,   which   is   a   key   safety   feature   in   critical   applications.   The   technique   provides   quantitative   information  of  the  superficial  deformation  pattern,  along  the  line-­‐of-­‐sight  (LOS)   of  the  measuring  device,  of  the  area  under  monitoring.  The  sole  requirement  is   that   the   radar   device   is   a   system   installed   in   a   fixed   ground   position   and   this   bears  reasons  and  consequences  that  will  be  described  in  the  following.  

However,   in   general   terms,   the   GBinSAR   technique   exploits   the   well-­‐known   Synthetic   Aperture   Radar   (SAR)   principle   (Curlander   1992),   and   the   interferometric   techniques   originally   developed   for   spaceborne   earth   observation  (Zebker  1986).  The  SAR  principle  allows  increasing  the  azimuth  (or   cross-­‐)  resolution  of  a  radar  image  by  combining  a  coherent  sequence  of  radar   acquisition,  using  a  real  antenna  of  limited  size,  while  it  is  moving  over  a  known   trajectory.   Within   reasonable   limits,   the   known   trajectory   can   also   be   reconstructed   in   post-­‐processing   with   the   integration   of   data   from   secondary   sensors  or  sources.  The  data  at  the  end  of  the  entire  process  result  in  an  image,   namely  a  bidimensional  distribution  of  radar  reflectivity  of  the  observed  scene,   with  a  spatial  resolution  approximately  equal  to  that  obtainable  through  a  real   antenna   of   an   equal   dimension   to   that   of   the   trajectory   covered   by   the   sensor   (the   syhtnetic   aperture).   This   can   allow   a   significant   increase   of   the   cross-­‐ resolution  of  the  image.    

Additional   processing   can   be   performed   on   the   collected   images.   The   most   applied   technique   is   interferometry.   This   has   had   a   wide   range   of   theoretical   background  (Goldstein  1988,  Bamler  1998,  Fornaro  1996,  Rosen  2000,  Ferretti   2001,   Crosetto   2002,   Nico   2004)   and   operational   applications  (Gabriel   1989,  

(12)

Kimura  2000,  Ferretti  2000,  Rabus  2003),  as  it  allows  retrieving  information  on   the  third  dimension  (i.e.  altitude),  making  it  possible  to  gather  a  full  3-­‐D  map.   In  order  to  further  exploit  the  SAR  technique  for  the  interferometric  processing   the  processed  images  are  requested  to  be  coherent,  i.e.  they  should  preserve  the   phase  related  to  the  distance  between  the  sensor  and  each  pixel  in  the  image,  as   the  related  information  allows  to  retrieve  the  third  dimension.  

The   interferometric   processing   aims   at   extracting   such   information   by   comparing   two   radar   images   of   the   same   scene.   With   reference   to   a   pair   of   coherent  SAR  images  we  term  the  first  master  (m)  and  the  latter  slave  (s).  The   interferogram  I  is  given,  for  a  generic  pixel  (k,l),  by  the  following  relationship:  

𝑰 𝑘, 𝑙 =  𝒎 𝑘, 𝑙 𝒔 ∗   𝑘, 𝑙                            (1)   where  *  indicates  the  complex  conjugate.  

In  the  general  case,  which  is  the  usual  one  in  case  of  spaceborne  observations  the   two   acquisitions   are   taken   from   two   slightly   different   positions   and   in   two   different   moments   of   time.   The   phase   of   each   pixel   in   the   interfegram,   termed   interferometric  phase,  varies  according  to  different  effects:  

i. The   topographic   effect,   due   to   the   different   height,   with   respect   to   a   reference  plane,  of  the  portion  of  terrain  corresponding  to  the  pixel  in  the   image.   This   contribution   can   be   exploited   for   the   generation   of   Digital   Elevation   Model   of   the   observed   scene.   It   requires   that   the   two   acquisitions   are   taken   from   slightly   different   positions   and   disappears   when  the  two  positions  are  coincident  (zero  baseline  condition);  

ii. The  dielectric  effect,  due  to  the  phase  variation  induced  by  the  different   conditions,  in  different  moments  of  time,  either  of  the  atmospheric  layers   the   signal   is   propagating   through   during   the   acquisition   of   each   image   either  to  the  different  dielectric  properties  of  the  observed  scene.  

iii. Displacement   of   the   portion   of   the   scene   corresponding   to   each   pixel   along  the  line-­‐of-­‐sight  (LOS)  of  the  system.  As  mentioned  above  in  case  of   a   coherent   radar   acquisition   and   SAR   signal   processing   each   pixel   contains   information   on   the   distance   between   the   sensor   and   the   corresponding  portion  of  the  scene.  If  this  portion  is  varying  his  position  

(13)

in   the   time   interval   between   the   two   acquisitions   the   phase   of   the   corresponding   pixel   in   the   two   images   will   vary   accordingly   and   the   interferometric   phase   will   contain   a   contribution   directly   related   to   the   occurred  relative  displacement.    

The   optimal   condition   to   use   the   interferometric   phase   to   measure   relative   displacement   is   then   minimising   or   eliminating   the   contributions   i)   and   ii)   mentioned   above.   It   is   possible   to   eliminate   completely   the   contribution   i)   by   repeating   the   second   acquisition   exactly   from   the   same   position,   namely   by   moving  the  radar  system  exactly  on  the  same  trajectory  in  the  two  passes,  while   the   contribution   ii)   can   be   minimised   by   repeating   the   second   acquisition   as   close  as  possible  in  time  or  at  least  in  conditions  as  possible  to  the  previous  one.   This  condition  has  to  be  verified  case-­‐by-­‐case  and  particular  techniques  can  be   applied  to  further  minimise  any  residual  effect    (Luzi  2004,  Pipia  2008)  

The   use   of   ground-­‐based   systems   usually   allows   to   control   completely   the   measurement  parameters  and  consequently  to  fulfil,  with  affordable  operational   costs   with   respect   to   airborne   or   spaceborne   platforms,   both   conditions.   This   capability,  in  combination  with  the  advantage  to  adapt  in  a  quite  flexible  way  the   acquisition  parameters,  such  as  frequency  of  observation,  time  interval  between   acquisitions,   duration   of   the   monitoring   activities,   to   the   characteristics   of   the   phenomenon  of  interest,  can  explain  the  success  of  the  technique.    

In  addition,  the  technique  maintains  all  the  usual  advantages  of  a  radar  system,   namely   day   and   night   operability   and   low   sensitivity   to   environmental   conditions,  and  operate  from  ‘safe  ground’,  namely  from  a  certain  distance  from   the   area   of   interest.   It   is   not   necessary   to   install   reference   targets   in   the   monitored  area  so  eliminating  the  need  to  access  a  dangerous  area.  Today,  the   technique   cannot   be   longer   considered   an   experimental   technique   but   an   operational   tool   widely   used   for   the   monitoring   of   landslides,   ground   deformations  induced  by  other  phenomena  and  deformations  of  large  man-­‐made   structures,   such   as   dams,   bridges,   buildings   and   historical   monuments  (Tarchi   2003a,  Tarchi  2003b,  Leva  2003,  Casagli  2009,  Monserrat  2014,  Caduff  2015).    

(14)

can   be   used   to   implement   the   SAR   principle,   is   a   bi-­‐dimensional   map   of   the   relative  displacement  along  the  line-­‐of-­‐sight  (LOS)  of  the  sensor.  A  similar  map  is   directly  retrieved  from  the  phase  of  the  interferogram  formed  according  to  (1)  as   detailed   in   the   following.   The   two   dimensions   of   the   final   map   are   the   range,   namely  the  distance  sensor/object  and  the  azimuth,  namely  a  direction  parallel   to  the  synthetic  aperture  (trajectory  of  the  sensor).  Each  pixel  of  the  final  map   will  have  a  spatial  resolution  depending  in  range  and  azimuth  on  the  extension  of   radar   frequency   band   and   on   the   length   of   the   synthetic   aperture   respectively.   To  be  noted  that  while  the  range  resolution  is  independent  from  the  range  the   azimuth  resolution  decreases  as  the  range  increases  since  the  GB-­‐InSAR  system   can  only  synthetize  a  sub-­‐optimal  aperture  (Leva  2003):  

The   fundamental   relationships   governing   the   spatial   resolution   in   range   (Δr)   and  azimuth  (Δx)  are  the  following:  

Δr=c/2B   (2)  

Δx  =  (λ/2L)*R     (3)   where:  

ü c  =  Propagation  velocity  of  the  radar  signal   ü B  =  Frequency  bandwidth  of  the  radar  system   ü λ  =  Wavelength  of  the  central  frequency   ü L  =  Length  of  the  synthetic  aperture    

ü R   =   Distance   (range)   from   the   sensor   and   the   portion   of   the   scene   corresponding  to  the  pixel    

As  the  resolution  and  the  cross-­‐resolution  are  usually  requested  to  be  the  same,   the   two   equations   above   provide   a   tool   for   estimating   the   synthetic   aperture.   Alternative   ratios   between   the   two   resolutions   can   lead   to   a   different   dimensioning  of  the  system.    

The   relative   displacement   along   the   LOS   (d)   of   the   portion   of   the   scene   corresponding   to   each   pixel   of   the   interferogram   relates   to   the   interferometric   phase  according  to  the  following  formula:    

(15)

d  =  (λ/4π)*  Δϕ                                    (4)   where:  

ü λ  =  Waveleght  of  the  central  frequency     ü Δϕ  =  Interferometric  phase  

The   GB-­‐InSAR   technique,   in   comparison   to   the   other   typical   platforms   for   SAR   application,   allows   fulfilling   accurately   the   operational   requirements   related   to   the   application   to   the   continuous   monitoring   of   slide   instabilities   and/or   other   local   phenomena.   First   of   all   it   allows   for   the   necessary   persistence   of   the   observations,  which  is  a  prerequisite  for  any  operational  service.  In  addition  it  is   possible   usually   possible   to   adapt   the   monitoring   capabilities   to   the   specific   characteristics  of  the  phenomenon,  which  may  largely  vary  in  terms  of  size  of  the   affected   area,   mechanism,   entity   and   rate   of   displacement,   dielectric   characteristics  of  the  involved  material,  spatial  distribution  of  the  displacement   pattern  etc.  The  technique  is  suitable  for  the  application  on  area  of  limited  size,   typically  of  few  squared  kms.  In  this  respect,  in  order  to  cover  much  larger  areas,   the  use  of  a  spaceborne  or  airborne  platform  remains  the  most  effective  solution,   even  though  the  same  flexibility  as  in  case  of  a  ground-­‐based  system  cannot  be   achieved.    

A  ground-­‐based  system  maintains  all  the  advantages  typical  of  any  other  radar   system,   such   as   the   day   and   night   operability,   the   robustness   against   environmental   conditions   and   the   capacity   to   operate   from   certain   distance   without  the  necessity  for  any  reason  to  directly  access  the  area  under  monitoring   and  thus  minimising  the  associated  risk  for  the  instrumentation  or  the  personnel.     At  the  same  time  some  typical  limitations  of  the  technique  are  still  present.  This   includes   the   difficulties   to   apply   it   over   areas   affected   by   fast   de-­‐correlation   processes,  namely  where  pixels  experience  fast  and  randomly  distributed  phase   changes  as  it  might  be  the  case  for  highly  vegetated  areas  in  windy  conditions,   and   the   fact   that   only   the   displacement   component   along   the   LOS   can   be   measured.   This   latter   point   has   different   consequences.   The   first   is   that   any   displacements  perpendicular  to  the  LOS  cannot  be  measured.  In  general  terms,  

(16)

displacement   of   the   corresponding   portion.   The   use   of   at   least   two   systems   observing  from  different  positions,  if  applicable,  would  solve  the  problem.  If  this   is   not   possible   a   single   system   can   be   used   in   a   preliminary   phase   to   repeat   observations   for   limited   periods   of   time   from   different   positions   in   order   to   retrieve   overall   information   on   the   direction   of   displacement.   Anyway,   this   requires   assuming   that   the   phenomenon   under   monitoring   is   stationary   with   time,   identifying   suitable   observation   sites   and   to   carefully   assessing   on   the   feasibility  from  a  logistic  point  of  view  of  a  similar  solution.    In  many  cases  the   problem  can  be  efficiently  approached  by  having  a  detailed  geological  analysis  of   the   phenomenon   under   monitoring   in   combination   with   a   Digital   Elevation   Model   (DEM)   of   the   affected   area.   By   geolocating   the   measuring   system   in   the   DEM   it   is   possible   to   calculate   the   angle   between   the   LOS   and   the   local   slope   direction  in  each  point  of  the  DEM  and  finally  retrieve  a  realistic  estimate  of  the   total   displacement.   A   further   improvement   may   be   represented,   in   a   similar   condition,   by   the   existence   of   total   displacement   measurements   with   other   devices,  even  though  in  few  points.      

  Figure 1 – Detection of displacement along the Line-Of-Sight of the system.

The   possibility   to   retrieve   the   deformation   only   along   the   LOS   has   the   further   consequence   that   different   platforms   employed,   due   to   their   different   and   peculiar  geometries  of  acquisition,  may  be  suitable  for  monitoring  deformations   along   different   directions.   In   this   sense,   even   considering   some   relevant   contraints   (Ferretti   2014),   space-­‐borne   and   GB-­‐InSAR   platforms   can   be   considered  more  effective  in  detectint  displacements  in  a  horizontal  and  vertical   plane  respectively.    

(17)

1.1 The  LISA  system  

The   LISA   system  (Rudolf   1999)   (figure   2)   is   a   radar   system   pioneered   by   the   Joint  Research  Centre  of  the  European  Commission  and  specifically  designed  for   the  application  of  GB-­‐InSAR  techniques.  It  was  designed  with  unique  features  for   monitoring  slope  instabilities  and,  after  its  tests  and  the  validation  of  its  results,   has  been  extensively  applied  to  many  measurement  campaigns  in  various  sites   and  a  large  variety  of  operational  conditions  (Tarchi  2003a,  Tarchi  2003b,  Leva   2003).   Figure   3   depicts   the   working   principle   for   the   system.   The   synthetic   aperture  is  implemented  by  using  a  mechanical  linear  computer  controlled  rail   system.  The  main  characteristic  of  the  movement  on  the  rail  is  a  “stop  and  go”   procedure   where   the   transceiver   has   been   decomposed   into   a   couple   of   transmitting  and  receiving  module  in  a  ‘quasi-­‐monostatic’  arrangement  in  order   to   ease   its   design.  The  radar  system  is  a  Stepped  Frequency  CW  scatterometer  

(Robinson  1974)  based  on  a  Vector  Network  Analyser.    

The  system,  during  the  execution  of  measurement,  needs  to  be  controlled  by  a   computer,   which   also   stores   acquired   data.   Other   solutions,   in   terms   of   architecture  and  practical  implementation  for  both  the  radar  and  the  mechanical   components  are  possible  provided  that  they  ensure  the  necessary  stability  and   accuracy.   The   "stop   and   go"   movement   scheme   allows   to   perform   a   radar   measurement  in  each  selected  position  along  the  trajectory,  so  to  reconstruct  the   movement   of   the   antennas   precisely   and,   consequently,   coherently   process   the   received  echoes  at  the  end  of  the  scan  to  obtain  the  radar  image.    

On  the  software  side,  basic  modules  for  the  system  include  a  phase-­‐preserving   SAR   processing   algorithm  (Fortuny   1994)   and   a   package   for   interferometric   analysis  of  data  in  the  condition  of  zero-­‐baseline  (repeated  pass  interferometry   from  exactly  the  same  location).  The  JRC  implemented  the  original  version  of  the   software   in   the   development   phase   and   its   core   has   been   kept   unchanged   throughout  the  different  versions  and  operational  modes  of  this  system.  

Another   key   feature   of   the   developed   system   was   the   modularity   and   the   scalability,   especially   with   respect   to   the   transceiver   block   and   the   operational  

(18)

to  Ku  (see  table  1).  

 

  Figure 3 - Schematic of the design of LISA system.

(19)

However  the  Ku  is  generally  the  preferred  one  on  the  basis  of  various  reasons.   They  include:  

• Better   azimuth   resolution   with   respect   to   other   frequency   bands   assuming  the  same  length  of  the  rail;  

• Cost  element  taking  into  account  accuracy,  reliability  and  size  of  both  the   mechanical  and  radar  components;  

• Regulatory   aspects,   namely   the   availability   of   reserved   frequency   bands   for  the  use  of  a  similar  system.  

Table 1 - Microwave sub-bands definition (from https://www.ametsoc.org/ams/)

  Whilst   there   are   little   costs   associated   to   the   modularity   and   scalability   of   the   system,  the  benefits  can  be  significant  and  are  related  to  the  adaptability  of  the   system   to   the   monitored   environment.   Whereas   objects   backscatter   a   limited   amount   of   energy   back   to   the   receiver,   it   can   be   convenient   to   trade   some   angular   resolution,   which   is   achieved   using   higher   frequencies,   with   additional   backscattered   power   or   range   coverage,   which   is   typically   achieved   at   lower   frequencies.   This   allows   the   possibility   to   tailor   the   system   according   to   the   application.    

The   equivalent   aperture   of   this   system   shown   in   figure   2   is   about   3   m   but   the   design  is  easily  scalable  and  other  versions  of  the  system  of  different  size  (rail   length)  can  be  implemented  in  order  to  fulfill  specific  operational  requirements   and  logistic  constraints.  In  any  case,  an  essential  prerequisite  for  the  execution  of   high  precision  measurements  is  the  high  stability,  over  the  entire  duration  of  the   monitoring  activities,  of  the  basement  the  system  is  installed  on.    

(20)

system  characteristics,  such  as  rail  length,  frequency  band  and  central  frequency   of  observation  as  well  as  on  the  distance  sensor/target  area.  As  a  rule  of  thumb   assuming  the  above-­‐mentioned  typical  characteristics    (Ku  band,  3m  rail  length,   100  MHz  bandwidth)  a  spatial  resolution  of  about  3  x  3  m  within  a  range  of  1  km   and  a  field  of  view  of  about  60  deg  can  be  assumed.    

In   general   terms,   the   precision   of   a   GB-­‐InSAR   systems   in   estimating   deformations   depends   on   the   Signal-­‐to-­‐Noise   Ratio   (SNR)   of   the   measurement,   which   in   turns   depends   on   different   factors,   such   as   the   characteristics   of   the   target,   the   distance   sensor-­‐target   and   the   transmitted   power.   Usually   the   precision   turns   out   to   be   a   fraction   of   the   wavelenght   of   the   observation   frequency  and  may  range,  considering  the  frequency  bands  most  commonly  used   (see  table  1),  from  sub-­‐millimetres  to  a  few  millimetres.  

1.2 Limits   of   an   approach   based   on   a   mechanical  

scanning  system  

The   approach   based   on   the   use   of   a   mechanical   rail   to   realize   the   synthetic   aperture   or   in   more   general   terms   on   the   mechanical   movement   of   the   radar   sensor   or   of   the   antenna   system   has   proven   its   ability   in   ensuring   an   effective   tool   for   the   monitoring   of   deformations   until   the   actual   level   of   maturity   that   makes  it  a  standard  and  operational  technique.  GB-­‐InSAR  is  today  routinely  used   for   monitoring   activities   applied   to   various   phenomena   inducing   slope   instabilities  of  natural  or  man-­‐made  origin,  as  it  is  the  case  in  open-­‐pit  mines.         The  need  to  ensure  accuracy  and  repetibility  in  the  movement  requires  the  use   of  high  precision  devices  and  this  may  have  an  impact  on  the  cost  of  the  system.   This  may  become  even  more  significant  increasing  the  size  of  the  rail.  This  will  in   turn  impact  also  on  the  necessary  maintenance  operations,  which  may  become   more   expansive   and/or   more   frequent   in   case   of   monitoring   activities   to   be   executed  over  long  period  of  time  and/or  in  an  aggressive  environment  (volcanic,   dusty  areas,  coastal  marine).  It  is  also  to  consider  the  impact  of  the  overall  size  of   the   system   and   in   particular   of   the   rail,   which   can   make   very   difficult   the   operations  of  installation.      

(21)

More  importantly,  there  is  a  general  element  concerning  the  applicability  of  SAR   and   InSAR   techniques   that   should   be   taken   carefully   into   account.   This   is   the   assumption   that   the   scene   under   observation   is   time-­‐invariant,   at   least   in   the   interval  of  time  necessary  to  acquire  the  entire  sequence  of  raw  measurements.       In  fact,  it  is  well  known  the  problem  of  blurring  in  the  final  image  that  may  occur   in   case   of   non-­‐stationarity   of   the   target  (Sullivan   2000).   If   we   assume   that   the   portion   of   the   scene,   corresponding   to   a   certain   pixel,   it   is   varying   its   LOS   distance  to  the  sensors  during  the  acquisition,  this  will  induce  a  corresponding   phase   variation   in   the   acquired   sequence   of   measurement.   In   order   to   identify   the   source   of   backscattered   energy   in   the   bi-­‐dimensional   image,   the   SAR   processing   algorithm   processes   the   phase   variation   of   the   scatterers   assuming   that  it  is  a  sole  function  of  the  movement  of  the  sensor.  The  system  is  actually   unable  to  compensate  for  significant  movements  during  the  acquisition  time.  In   particular,   a   movement   is   defined   "fast"   when   the   target   moves   of   a   distance   comparable  with  the  wavelength  of  observation.    

The  "fast"  movements  generate  an  extra  phase  shift  that  will  result  in  a  defocus   of   the   target,   with   at   least   a   part   of   the   backscattered   energy   that   cannot   be   associated  to  the  right  resolution  cell  but  will  be  spread  out  over  other  portion  of   the  image.  Depending  on  the  type  of  motion  of  the  target,  and  how  this  combines   with   the   trajectory   of   the   sensor,   this   may   result   in   an   image   artefact,   i.e.   a   misplacement/deformation   of   the   target,   as   in   case   of   moving   ships  (Tunaley   2003)   until   a   total   decorrelation   effect,   resulting   in   the   entire   energy   from   the   corresponding  cell  randomly  distributed  over  all  iso-­‐range  resolution  cells.  The   final   local   effect,   on   the   moving   area,   is   a   severe   loss   of   coherence,   which   may   prevent  to  retrieve  any  quantitative  information  on  the  displacement.  In  addition,   the  randomly  distributed  energy  will  produce  a  deterioration  of  the  SNR  of  the   image  (Prati  99).  

Even   though   the   process,   from   correct   focusing   to   a   complete   decorrelation   is   gradual   it   is   possible   to   identify   a   value,   for   the   rate   of   displacement,   to   be   considered  as  a  limit,  over  which  the  phenomenon  is  no  longer  correctly  imaged.   We   indicate   with   Δt   the   time   interval   necessary   to   perform   an   acquisition  

(22)

(coherent  integration  time)  and  assume  a  criterion  of  λ/8,  namely  only  targets   eventually  moving  (along  the  LOS)  less  than  this  value  will  be  correctly  imaged.   We  finally  obtain  the  relationship  between  Δt  and  vlim  as  follows:  

𝑣!"#= (𝜆  /8  𝛥𝑡)                    (5)  

This  value  is  not  to  be  considered  a  very  strict  limit  since  as  previously  explained   the   process   is   gradual   and   the   peculiarity   of   the   displacement   may   combine   in   very  different  way  with  the  synthetic  aperture  producing  a  final  effect  which  is   quite  unpredictable.    

It  is  then  more  and  more  relevant  that  the  acquisition  time  of  the  system  has  a   severe  impact  on  its  performance  and  application  field.  For  a  GB-­‐InSAR  system   exploiting  mechanical  movements  and  a  stop-­‐go  acquisition  scheme,  Δt  may  be   quite  long  as  it  depends  on  both  the  time  for  the  radar  measurement  acquisition   and  the  time  to  move  and  position  the  radar  system  along  the  rail  (or  move  the   antenna   pointing   in   case   of   real   aperture   radar   system).   The   latter   is   certainly   the  element  having  the  greater  impact  on  Δt.  The  latter  is  certainly  the  element   having  the  greater  impact  on  Δt.    

The   LISA   system   was   originally   designed   without   consider   this   as   a   critical   constraint  and  in  the  implementation  phase  no  special  attention  was  paid  to  this   aspect.  In  many  applications  to  the  monitoring  of  landslides  typical  value  for  Δt   were   in   the   order   of   several   minutes.   Today   it   has   been   recognized   the   importance   of   this   element   and   examples   of   GB-­‐InSAR   systems   with   enhanced   capabilities   in   terms   of   Δt   are   available  (Roedelsperger   2013).   The   shortest   possible  Δt  for  this  class  of  instruments  has  to  be  considered  in  order  of  5-­‐10  sec   (for  a  system  of  about  1  m  in  length).  To  be  noted  that  this  fast  operation  mode   for  system  based  on  a  mechanical  rail  may  turn  out  to  be  extremely  demanding   in  terms  of  maintenance  when  the  monitoring  has  to  be  performed  on  very  long   period  of  time.  

(23)

1.3 The   need   to   extend   the   applicability   field.   An  

example  of  geological  interest.  

An   example   of   the   possible   advantages   deriving   from   the   use   of   an   alternative   approach   allowing   to   significantly   decrease   Δt   for   a   GB-­‐InSAR   system   and   to   increase   the   ability   to   adapt   it   to   the   characteristics   of   the   phenomenon   to   be   studied  is  provided  by  the  explosion  that  affected  the  Stromboli  Volcano  on  the   5th  of  April  2003  (Calvari  2006).  This  event  took  place  when  a  LISA  system  was   continuously   monitoring   the   instabilities   of   the   area   of   the   volcano,   termed   Sciara  del  Fuoco,  triggered  by  the  landslide  occurred  few  months  before.    

The   selected   acquisition   time   for   the   LISA   system   was   about   12   minutes,   optimised  to  fulfil  this  clear  and  specific  operational  objective  for  the  monitoring   activities  (Casagli  2003).  However  it  was  beyond  the  capabilities  of  the  system  to   decrease  significantly  this  value.    

The   explosion   has   triggered   deformations   of   significant   portion   of   the   entire   volcanic   edifice   with   rates   much   higher   with   respect   to   the   selected   Δt.   It   happens   while   the   system   is   performing   a   scan   and   produces   the   sudden   interruption  of  the  measurements  for  a  power  shutdown.  

   

(24)

  Figure 4 - Optical image of the monitored area of Stromboli Volcano from the position of LISA

and SAR image (power) acquired by LISA and processed over a DEM and displayed using a similar point of view as the optical image. Numbers identify different visible portions of the volcano. With reference to figure 5, showing the power image in its typical radar projection, it is

possible to identify the corresponding areas.  

1

2

3

4

5

(25)

  Figure 5 - Radar image (power) in range-azimuth projection. Numbers indicates the

correspondence with different visible areas of the volcano (figure 4). 1: Basamento, area where the system is installed; 2,3: different portions of the Sciara del Fuoco; 4,5: Crater areas.  

However   it   was   possible   to   process   the   portion   of   scan   already   completed   and   generate  an  interferogram  with  the  corresponding  portion  in  the  previous  image   as  displayed  in  figure  6.    

The   analysis   of   the   interferogram   shows   that   the   area   corresponding   to   the   Sciara  del  Fuoco  (2,  3  according  to  figure  5)  is  substantially  stable  (red  according   to  the  colour  coded  scale)  while  the  crater  areas  (4)  and  (5)  (between  700  and   1100   metres   in   range)   shows   a   little   displacement   of   about   +2   and   -­‐2   m   respectively,  namely  in  opposite  directions.    

A   different   kind   of   elaboration   of   the   existing   data   has   been   implemented   in   order   to   try   to   retrieve   additional   details   about   the   deformation   patterns   induced  by  the  explosion  (Tarchi  2004).  

(26)

  Figure 6 –Displacement map of the Stromboli volcano just after the explosion of the 5th of April. Since the scan has been interrupted by the power shutdown due to the explosion only the part the

portion already acquired of the whole synthetic aperture has been used.  

The  technique  includes  a  number  of  steps  as  detailed  in  the  following:   1. The  following  assumptions  are  made:  

i. The  fast  evolving  event  is  happening  in  an  interval  of  time   belonging  to  a  single  scan  and  it  is  characterised  by  a  very   sudden  beginning;    

ii. Other  phenomena  affecting  the  area  and  having  a  different   origin   are   characterised   by   a   very   slow   deformation   rates   and   do   not   produce   significant   displacements   in   the   considered  time  interval.    

(27)

2. In  addition  to  the  scan  containing  the  fast  event  it  is  selected  a  reference   image  that:  it  is  as  close  as  possible  in  time  but  fulfilling  condition  ii)  of   the  previous  point,  It  guarantees  the  best  possible  coherence.  This  usually   corresponds  to  the  previous  one  in  the  sequence,  but  a  certain  number  of   preceding   images   should   be   tested   to   identify   the   optimal   one.   To   note   that   slower   is   the   deformation   rate   of   area   further   back   in   time   can   be   identified  the  optimal  reference  image.    

3. Each  of  the  two  acquisitions  is  divided  in  ‘sub-­‐aperture’,  namely  a  certain   set  of  corresponding  portions  having  a  reduced  length.  They  can  also  be   overlapping.   Considering   for   instance   a   full   aperture   composed   by   300   acquisition  points,  a  single  sub-­‐aperture  of  100  points  and  an  overlapping   portion  of  50  points  we  will  finally  get  a  set  of  5  sub-­‐aperture.  The  choice   of  the  length  of  the  sub  aperture  and  of  the  overlapping  portion  depend   on  the  following  factors:    

i. The  length  will  determine  the  spatial  resolution  in  azimuth   of  the  ITF  formed  using  corresponding  sub-­‐apertures.     ii. The  length,  corresponding  to  a  longer  acquisition  time,  will  

also  determine  the  level  of  decorrelation  induced  by  the  fast   deformation   and/or   the   entity   of   the   low-­‐pass   filtering   effect   due   to   slow   acquisition   time   with   respect   to   a   fast   deformation   rate.   Shorter   sub-­‐aperture   will   be   faster   and   then  more  accurate  in  monitoring  the  phenomenon.  

4. Having   produced   two   sets   of   sub-­‐aperture   the   entire   sequence   of   ITF   is   generated  using  pair  of  correspondent  sub-­‐apertures.    

If  the  assumptions  at  point  1  are  satisfied,  the  obtained  sequence  will  show  the   evolution  of  the  displacement  pattern  corresponding  to  the  time  of  acquisition  of   each  sub-­‐aperture  with  respect  to  a  previous  condition  of  stability.  Recalling  the   step  3  of  the  procedure  there  is  a  resulting  space-­‐time  filtering  effect,  which  can   be   modulated   by   varying   the   length   of   the   sub-­‐aperture   and   the   overlapping   factor.  The  temporal  averaging  will  be  reduced  by  making  shorter  sub-­‐apertures  

Riferimenti

Documenti correlati

The aim of our experiment was to compare the effectiveness of biodegradation of four different forms of polystyrene (raw material, processed polystyrene, construction material

The inhibition of the proliferation of human thyroid carci- noma cells lines by myc-specific antisense oligonucleotides in- dicates a role of c-myc overexpression in

More specifically while 3D proprietary printers share most of the features of technological innovations, since they are adopted mainly because of their technological features,

Since in the present work a relationship was observed between serum selenium levels and hematologic parameters, stage and, in non- Hodgkin’s lymphoma, grade, it seems appro- priate

These criteria are different from those used in the 2015 edition of the Chal- lenge, as the overall setting of the comparison was different (less restricted demonstrations and,

This study points out the main advantages of the proposed approach with respect to a well-known benchmark: (i) the sparsity of the selected portfolios obtained by penalizing

In the present study, we performed the design and synthesis of new molecules obtained by the symbiotic combination of rivastigmine skeleton with natural

They pertain on the one hand to a hw/sw system of data capturing, processing and communication developed for mobile devices (Tango Project) and on the other to a mixed