• Non ci sono risultati.

Characterization of a putative novel nepovirus from Aeonium sp.

N/A
N/A
Protected

Academic year: 2021

Condividi "Characterization of a putative novel nepovirus from Aeonium sp."

Copied!
5
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Virus

Research

j ou rn a l h o m epa g e :w w w . e l s e v i e r . c o m / l o c a t e / v i r u s r e s

Short

communication

Characterization

of

a

putative

novel

nepovirus

from

Aeonium

sp.

Roberto

Sorrentino

a

,

Angelo

De

Stradis

b

,

Marcello

Russo

b

,

Daniela

Alioto

a,∗∗

,

Luisa

Rubino

b,∗

aUniversitàdiNapoli“FedericoII”,viaUniversità100,80055Portici(NA),Italy bIstitutodiVirologiaVegetaledelCNR,UOSBari,ViaAmendola165/A,70126Bari,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29July2013

Receivedinrevisedform26August2013 Accepted28August2013

Available online 6 September 2013

Keywords: Aeonium Nepovirus Cytopathology Serology Sequencing

a

b

s

t

r

a

c

t

AviruswasisolatedfrompottedplantsofanunidentifiedspeciesofAeonium,asucculentornamentalvery commoninSouthernItaly,showingchloroticspotsandringsonbothleafsurfaces.Itwassuccessfully transmittedbysapinoculationtoalimitedrangeofhosts,includingNicotianabenthamianawhichwas usedforultrastructuralobservationsandviruspurification.Virusparticlesareisometric,ca.30nmin diameter,haveasingletypeofcoatprotein(CP)subunits54kDainsize,thatencapsidatesingle-stranded positive-senseRNAspeciesof7549(RNA1)and4010(RNA2)nucleotides.AthirdRNAmolecule3472nts insizeentirelyderivedfromRNA2wasalsofound.ThestructuralorganizationofbothgenomicRNAsand thecytopathologicalfeatureswerecomparabletothoseofnepoviruses.Inaddition,aminoacidsequence comparisonsofCPandthePro-Polregion(asequencecontainingpartsoftheproteinaseandpolymerase) withthoseofothernepovirusesshowedthattheAeoniumvirusbelongstothesubgroupAofthegenus

Nepovirusandisphylogeneticallycloseto,butserologicallydistinctfromtobaccoringspotvirus(TRSV). BasedonthespeciesdemarcationcriteriaforthefamilySecoviridae,thevirusunderstudyappearstobea novelmemberofthegenusNepovirusforwhichthenameofAeoniumringspotvirus(AeRSV)isproposed. © 2013 Elsevier B.V. All rights reserved.

Crassulaceae(ClassMagnoliopsida,OrderSaxifragales),afamily

ofwidelygrownsucculentornamentalplantscomprisesseveral

genera,amongwhichthegenusAeonium,anativeoftheCanary

Islandsthatincludes37species,mostofwhichareherbaceousand

perennial.

Recently,chloroticspotsandringsonbothleafsurfaceswere

observed on several potted plants of an unidentified Aeonium

speciesgrowinginprivategardensofthecityofScafati(Campania,

Italy)(SupplementaryFig.1).Anisometricviruswasrecoveredby

sapinoculationfromsymptomaticplants.Onthebasisofa

pre-liminarysequence analysisofca. 400 nucleotides(nt) ofthe3′

untranslated(UTR)regionoftheviralgenome(Sorrentinoetal.,

2012),itwasidentifiedasastrainoravariantoftobaccoringspot

virus(TRSV),thetypespeciesofthegenusNepovirus(family

Sec-oviridae,orderPicornavirales;Sanfac¸onetal.,2012).However,as

thestudiesprogressed,itbecameevidentthatthepropertiesof

thevirusunderstudy,hereafterreferredtowiththeprovisional

nameofAeoniumringspotvirus (AeRSV),differedenoughfrom

thoseofTRSVtowarrantamoreexhaustivecharacterization,which

constitutestheobjectofthispaper.

∗ Correspondingauthor.Tel.:+390805442936;fax:+390805442911. ∗∗ Correspondingauthor.Tel.:+390812539365;fax:+390812539367.

E-mailaddresses:[email protected](D.Alioto),[email protected](L.Rubino).

Sap from symptomatic Aeonium leaves was inoculated to a

herbaceoushostrangecomprising19speciesinsixfamilies.

Inoc-ulatedplantswerekeptinagreenhouseatca.25◦Candobserved

uptofourweeksforsymptomexpression.Mostoftheinoculated

plantswereinfectedshowingovertsymptoms(TableS1).In

par-ticular,Nicotianabenthamianareactedwithchlorotic/necroticlocal

lesionsoninoculatedleaves,frequentlyintheshapeofringspots,

followedseventotendaysafterinoculationbysystemicsymptoms

consistingofextensivemottlingandringspots.Arecoveryphase

tookplaceaboutoneweeklater,withproductionofsymptomless

leaves.Useful diagnostichostswereChenopodiumquinoaandC.

muralethatreactedwithlocallesionsfollowedbysystemic

infec-tion,tipnecrosisanddeathoftheplant.Theviruswasroutinely

propagatedinN.benthamiana,whichwasusedforvirus

purifica-tionaccordingtoPincketal.(1988).Purifiedvirusparticleswere

resuspendedinasmallvolumeof0.02Msodiumcitratebuffer,pH

6.0.Concurrently,aTRSVisolate(obtainedfromDr.M.Fuchs)was

initiallypropagatedinN.benthamiana.However,sinceatthe

green-housetemperature(25–26◦C)theseplantsshowednosymptoms,

althoughsystemicallyinfected,C.quinoaplantswerepreferredfor

viruspurificationfollowingthesameprotocol(Pincketal.,1988).

AeRSVwasreadilypurified fromN.benthamianaplants with

average yieldsofca.0.1mg/g freshtissue.Purification wasalso

attemptedfrominfectedAeoniumplants,buttheyieldwasmuch

lower (ca. 0.01mg/g tissue). Preparations negatively stained in

0168-1702/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

Fig.1.(A)NegativelystainedpurifiedunfractionatedAeRSVparticles,fully,partiallyornotpenetratedbythestain.(BandC)AeRSVparticlesexposedtothehomologousor toTRSVantiserum,respectively.(DandE)TRSVparticlesexposedtothehomologousortoAeRSVantiserum,respectively.Bars=50nm.

2% aqueous uranyl acetate and viewed at the electron

micro-scope containedisometricparticlesca.30nmindiameter,some

ofwhichpartiallyortotally(emptyshell)penetratedbythestain

(Fig.1A).Anantiserumwasproducedbyinjectingpurifiedvirus

preparations(0.5–2mg)mixedwithanequalvolumeofFreund’s

incomplete adjuvant in a New Zealand rabbit. Serological

test-ingwasdoneinagargeldouble diffusion(Noordam,1973)and

immunoelectron microscopy (Milne and Lesemann, 1984). The

antiserum toAeRSVhad atitreof 1:256asdeterminedin agar

geldouble-diffusiontests.Itgaveasingleclear-cutprecipitinline

with thehomologous antigen in agar plates and nodetectable

reaction with TRSV and healthy plantextracts (notshown). In

immunoelectronmicroscopythisantiserumdecoratedAeRSV

par-ticlesfromcrudesap(notshown)orpurifiedpreparations(Fig.1B),

butnotTRSVparticles(Fig.1E).Conversely,anantiserumagainst

TRSV decoratedpurifiedTRSV (Fig.1D),butnotAeRSV(Fig.1C)

particles.

The cytopathologicalfeatures ofAeRSV werestudiedin

sys-temicallyinfectedleavesofN.benthamianaprocessedaccordingto

standardprocedures(MartelliandRusso,1984).Comparedwith

the healthy control(not shown),the structuralorganization of

infectedN.benthamianacellswasfairlywellpreserved,exceptfor

thepresenceofconspicuousinclusionbodiesmadeupof

accumu-lationsofmembranousvesicleswithafibrillarcontent,anetwork

ofproliferatedendoplasmicreticulumstrands,lipiddropletsand

virus particles(Fig.2A).These cytopathologicalstructures were

usually appressed tothenuclei, theoutermembrane of which

wasdilatedinseveralpoints(Fig.2B).Virusparticleswereeither

scattered in the ground cytoplasmor arranged in rows within

tubular structures usually connected with plasmodesmata and

sometimes associated with cell wall outgrowths (Fig. 2C). The

observed cytopathologicalmodificationsare incomplete

agree-mentwiththosetypicallyinducedbynepovirusinfections(Martelli

andRusso,1984;Ritzenthaleretal.,2002;Gokalpetal.,2003).

Purifiedviruspreparationsweredissociatedinthepresenceof

Laemmli’sbuffer(1970).Thecoatprotein(CP)subunitsmigrated

asasinglebandwithanestimatedmol.wtof54kDa(Fig.3A)in

discontinuos12.5%acrylamidegels.

RNAwasextractedfromca.200mgpurifiedvirusparticlesby

adding1volofextractionbuffer(100mMglycine–NaOH,pH9.0,

containing100mMNaCl,10mMEDTA,2%sodiumdodecylsulfate

and1%sodiumlauroylsarcosine)and2volofwater-saturated

phe-nol.Theaqueousphasewasfurtherextractedwithequalvolumes

ofphenolandchloroform,thenchloroformalone,andprecipitated

with2.5volofethanolinthepresenceof0.3Msodiumacetate,pH

5.5.RNAwasresuspendedinsteriledeionizedwater.Denatured

RNAwaseithervisualizedbyethidiumbromidestainingor

trans-ferredtonylonmembranesand hybridizedwith a DIG-labelled

probecorrespondingtothelast200nucleotidesoftheviralRNAs.

AsshowninFig.3B,theencapsidatedviralgenomeseparatedinto

twobands(RNA1andRNA2).

Totalnucleicacids(TNA)wereextractedasdetailedinDalmay

etal.(1993).Briefly,about100mgleaftissueweremaceratedina

coldmortarinthepresenceof600mlextractionbufferand600ml

phenol,processedasdescribedaboveandresuspendedinsterile

deionizedwater.NorthernblotanalysisconfirmedthatRNA1and

RNA2weretheonlyvirus-relatedRNAspeciespresentbothinvirus

particles(Fig.3B)andTNAextractsfrominfectedN.benthamiana

tissues(Fig.3C,lane1).However,Northernblotanalysisofextracts

frominfectedAeoniumplantsrevealedthepresenceofanadditional

RNAspeciessmallerthanRNA2(Fig.3C,lane2).

Approximately2mgofRNAextractedfromvirusparticleswere

denaturedbyheatingat65◦Candusedfortheconstructionofa

cDNA librarywith a cDNASynthesis Module(Roche, USA).The

doublestrandedcDNAwasligatedtoaSmaI-linearized,

dephos-phorylatedpUC18,andclonedintoEscherichiacolistrainXL1-Blue

Fig.2. UltrastructuralaspectsofAeRSV-infectedN.benthamianamesophyllcells. (A)Vesiculate-vacuolatecytoplasmicinclusionbodies(IB)nexttothenucleus(N). (B)Portionofanucleus(N),showingenlargementoftheoutermembrane(arrow). (C)Virus-containingtubularstructuresconnectedwithplasmodesmata(arrow)and insidedevelopingcellwalloutgrowth(doublearrow).Bars=250nm.

(3)

Fig.3.StructuralcomponentsofAeRSV.(A)SDS-polyacrylamidegelelectrophoresis ofdissociatedvirusparticles.AsingletypeofCPsubunitsca.54kDainsizeis visi-ble(lane2).Lane1,molecularweightmarkers.(B)GenomicRNA1andRNA2from purifiedunfractionatedparticlesvisualizedafterethidiumbromidestaining(left)or hybridizationwithaDIG-labelledprobe(right).(C)NorthernblotofRNAextracted frominfectedN.benthamiana(lane1)andAeonium(lane2)leaves;hybridization asinpanelB.TheasteriskmarkstheadditionalRNAspeciesfoundonlyinAeonium

extracts.

competentcells.The5′terminusoftheviralgenomewas

deter-minedusinga5′rapidamplificationofcDNAends(RACE)(Roche,

USA).The5′ RACEproductswereclonedintopGEM-TEasy

vec-tor(Promega,USA).Recombinantplasmidswerepurifiedwiththe

NucleoSpinkit(Macherey-Nagel,Germany)andcustomsequenced

inbothdirections(EurofinsMWGOperon,Germany).Sequences

thusobtainedwerebridgedbyRT-PCRusingspecificprimersand

highfidelityTaqDNApolymerase(Roche,USA).Sequenceswere

assembledandanalyzedusingtheDNAStridersoftware(Marck,

1988)andfurtherexaminedbycomparisonwithknownnucleotide

andproteinsequencesusingBLAST(Altschuletal.,1990).Pairwise

comparisonsweremadeusingEMBOSSintheEBIpackage(Rice

etal.,2000).Sequencesoftheencodedproteinswerealignedand

tentativephylogenetictreeswereconstructedwithClustalW

pro-gramme(Thompsonetal.,1994)andvisualizedbytheTreeView

programme(Page,1996).

RNA1consistsof7549nts,excludingthepoly(A)tail(GenBank

accessionno.JX304792).ThefirstAUGstartcodonisatntposition

104inacontextfavourabletoenhancetranslationineukaryotic

cells,withanAinposition−3,aCinposition−2andaGinposition

+4(Kozak,2005).AssumingthattranslationbeginsatthisAUG,it

wouldterminateattheUAAstopcodonatposition7046–7048,thus

yieldingatranslationproduct(P1)of2314aminoacids(aa)with

acalculatedMr of257,168(257kDa)(Fig.4).Computer-assisted

analysisshowedthatP1containsthecharacteristicmotifsofthe

putativeviralproteasecofactor(PRO-co),theNTP-binding(NTP-B),

Fig.4.PutativeschematicgenomeorganizationofAeRSV.Greyzonesindicate conservedmotifsinnepoviruses.Putativecleavagesitesdeducedbysequence com-parisonareindicatedbytheverticallines.Dotsinthe2Aregionindicatetheposition oftwoproline-richsequences.BlackcirclesindicatetheputativeVPg.RNA2′

repre-sentsthesmallerRNA2species,havinga179aadeletionintheMP.

cysteineprotease(PRO)andtheRNA-dependentRNApolymerase

(POL)coredomains,indicatingthatthepredictedpolypeptideis

cleaved by a viral protease togive maturefunctional products

(Fig.4).Theputativeviralproteasecofactormotif(F-x21-W-x11

-L-x22-L-x-Tbetweenaaatpositions525–590)isslightlydifferent

from theconsensus sequence for this motif (Rottet al., 1995),

themajordifferencebeingthesubstitutionofthelastaa(EtoT).

Theputative NTP-bindingmotif(Gorbalenyaand Koonin,1989)

islocatedbetweenaa827and878,intwosites:siteAbetween

positions 827and 834(G-x4-GKS) and site B (DD)at positions

877–878.Theputativeviralcysteineproteasemotif(H-x35-E-x98

-CG-x8-G-x5-G) is locatedbetween aa positions1324 and 1475.

TheunderlinedaaH,EandCformtheputativecatalytictriadof

theenzyme(DessensandLomonossoff, 1991;Gorbalenyaetal.,

1989;MargisandPinck,1992).TheC-terminalregionofP1

con-tainsthesequencecharacterizingtheputativeRNA-dependentRNA

polymerase (RdRp) (Argos, 1988)(D-x4-D-x69-G-x3-T-x3-N-x33

-GDD-x33-DK)betweenaapostitions1782and1936.Theconsensus

sequencereportedbyMayoandFritsch(1994)forthe

genome-linkedprotein(VPg)wasnotfound.

Aminoacid alignmentsof AeRSV-encodedP1 with the

com-parable protein of selectednepoviruses allowed theprediction

ofputative cleavagesitesandpositionsofmatureproducts. For

instance,comparisonwiththeexperimentallyvalidatedstructure

oftheN-proximalregionofarabismosaicvirus(ArMV)P1(Wetzel

etal.,2008),indicatesthattheN-terminalproteasecofactorofthe

virusunderstudywouldbecleavedatthesiteC651/G652toseparate

fromtheNTBprotein,andanadditionalcleavagesite(C450/S451)

wouldproducetwoproteindomainsof450 and201aa,

respec-tively,denotedX1andX2.VPgislocatedbetweentheNTP-binding

and proteaseproteins,beginningataaposition1254,as

identi-fiedbycomparison withthechemicallydeterminedN-terminal

sequenceofTRSVVPg(Zallouaetal.,1996).However,therestof

thesequenceandthecleavagesitescouldnotbeestablishedwith

certaintyduetothelowdegreeofconservationofthissmallprotein.

AcleavagesiteC1499/S1500separatingtheprotease(ca.215aa)and

RdRp(815aa)proteinsispredictedbycomparisonwiththe

corre-spondingregionofgrapevinefanleafvirus(GFLV)P1(Ritzenthaler

etal.,1991;Margisetal.,1994).

RNA2 is 4010 nts in length, excluding the 3′-poly(A) tail

(JQ670669).ItsfirstAUGstartcodonatposition124–126is

pre-cededbyaCinposition−2andfollowedbyaGinposition+4,i.e.

inalessfavourabletranslationcontextthanthatofRNA1.The

sin-gleORFofRNA2extendsfromnt124tont3508–3510,yieldinga

putativepolyproteinP2of1128aaandaMrof125,601(126kDa)

(Fig.4).Thepolypeptidecontainsthe“P”motifconservedinthe

movementproteins(MP)ofnepovirusesandotherplantviruses

(Kooninetal.,1991;Mushegian,1994)ataaposition442and,ataa

1120–1123themotifFWGR,thatisveryclosetothenepovirusCP

motifFYGR(LeGalletal.,1995).TheN-terminalpeptide

(approx-imately260aa)shareslowsequencehomologywithprotein2AHP

ofGFLVinvolvedinthereplicationofRNA2(Margisetal.,1993;

Gaireetal.,1999;Ritzenthaleretal.,2002),includingtheproline

motifsthatarealsopresentintomatoringspotvirus(ToRSV)P2

N-terminalprotein(Carrieretal.,2001),suggestingthisproteinto

havearoleinthelocalizationandreplicationofRNA2.Comparison

ofAeRSVCPsequencewiththechemicallydeterminedsequence

ofTRSVCP(Buckleyetal.,1993,1995)indicatedtheAresidueat

position616astheN-terminalaaandacleavagesiteM615/A616

betweentheMPandCPproteins.SuchM/Acleavagesitebetween

MPandCPisunusualandwasreportedonlyforanothernepovirus

(Tomitakaetal.,2011).

ThesmallerRNAspeciespresentonlyininfectedAeoniumplants

(Fig.3C)wasamplifiedbyRT-PCRfrompurifiedviralRNAextracted

fromAeoniumusingprimerscorrespondingtothefirstandlast17

(4)

RNAis3472ntsinlengthandhasasequenceidenticaltothatof

RNA2butlacks537ntsfromposition1286to1822.Thisadditional

RNA2(RNA2′)hasasingleORFthatextendsfromtheAUGat

pos-itions124–126andcodesforaputativeproteinof949aawithaMr

of105,726(106kDa)(Fig.4).Putativematurationproductsofthe

polyproteinencodedbyRNA2′aretheN-terminalprotein(2A)and

CPofthesamesizeasthoseencodedbyRNA2,andaMPwitha

dele-tionof179aa,fromposition389toposition567.Atleasttwomore

examplesofvariabilityofnepoviralRNAsareknown:onearising

fromRNA2ofArMV(Loudesetal.,1995;Wetzeletal.,2002)and onefromRNA1ofTBRV(Hasiów-Jaroszewskaetal.,2012).

How-ever,onlyinthelattercasesomeevidenceofapossibilebiological

significancewasobtained.ThebiologicalroleofAeRSVRNA2′has

notyetbeeninvestigated.

Sequences ofthe5′ UTR regions of theRNA1 (103nts) and

RNA2(123nts)were53.2%identical.Inparticular,thefirst17nts

(UUGAAAAUUCUCUCACA) are100%identical andcontainthe5′

end consensussequencefor nepovirusRNAs (underlined;Fuchs

etal.,1989).Theconservedrepeatsofthemotifsequences

capa-bletoformstem-loopstructuresinthe5′untranslatedregionsof

othernepoviruses(Wetzeletal.,2001)werenotfound.Comparison

betweenthe3′UTRofRNA1(501nts)andRNA2(500nts)showed

98.6%identity.

Particle morphology, cytopathological features and genome

organization support the classification of AeRSV in the genus

Nepovirus(familySecoviridae,orderPicornavirales;Sanfac¸onetal.,

2012), ataxoncomprisingthree subgroupsofspeciesidentified

bydifferencesinthecleavagesitesrecognizedbytheirproteinase

andsizeofRNA2:(i)subgroupA3700–4000nts;(ii)subgroupB

4440–4700 nts;(iii)subgroupC6400–7300nts.Basedonthese

parameters,AeRSVfitswellinsubgroupA,alikelihoodsupported

byitsallocationnexttoTRSVinacladeofthephylogenetictree

constructedwithCPsequences(Fig.S2).

SpeciesdemarcatingcriteriainthefamilySecoviridaesetbythe

International CommitteonTaxonomyofViruses(ICTV)include,

among others,lack ofserological relationhip andless than75%

Table1

Percentageofsequenceidentitybetweentheaminoacidsequencesofvarious regionsofAeRSVgenomeandthoseofothernepoviruses.

Virus P1 P2 Pro-Pol CP SubgroupA ArMV 31 23 44 27 GDefV 30 20 42 25 GFLV 30 20 42 25 MMMoV 31 29 44 29 RpRSV 28 23 31 25 TRSV 78 70 84 66 SubgroupB BRSV 26 17 38 20 CNSV 28 19 36 20 GCMV 27 20 38 21 TBRV 27 20 40 25 SubgroupC BRV 27 17 38 23 CLRV 25 15 37 21 GBLV 27 16 42 21 ToRSV 27 15 38 23

GenBank accession numbers are: ArMV (arabis mosaic virus; NC006057, NC006056);GDefV(grapevinedeformationvirus;NC017939,NC017938);GFLV (grapevine fanleafvirus;NC003615,NC003623);MMMoV (melonmild mot-tlevirus;AB518485,AB518486);RpRSV(raspberryringspotvirus;NC005266, NC005267);TRSV(tobaccoringspotvirus;NC005097,NC005096);BRSV(beet ringspot virus; NC003693, NC003694); CNSV (cycas necrotic stunt virus; NC003791,NC003792);GCMV (grapevine chromemosaic virus; NC003622, NC003621);TBRV(tomatoblackringvirus;NC004439,NC004440);BRV (black-currant reversion virus; NC003509, NC003502); CLRV(cherry leafroll virus; NC015414, NC015415); GBLV (grapevine Bulgarianlatent virus; NC015492, NC015493);ToRSV(tomatoringspotvirus;NC003840,NC003839).

identity in theaa sequence of CP and less than 80% in theaa

sequence of the Pro-Pol region, defined as “the sequence

con-tainedbetweentheproteaseCGandthepolymeraseGDDmotifs”

(Sanfac¸onet al., 2012). When these and the whole P1 and P2

sequenceswerecomparedwiththoseofnepovirusesofthethree

subgroups,thedivergencebetweenAeRSVandalltheotherviruses

appearedtobewellbelowthethresholdforCP,whereasthePro-Pol

domainofTRSVwasslightlyabove(84vs.80%)(Table1).However,

comparisonofeachsingledomainofTRSVandAeRSVpolyproteins

disclosedarelativelylowpercentageofidentitythroughout(Table

S2).

Themoleculardata,thedifferentreactionofinfectedN.

ben-thamianaplants,andthelackofserologicalrelationshipssupport

thenotionthatAeRSVisanovelnepovirusspeciesphylogenetically

closetobutclearlydistinctfromTRSV.

Acknowledgements

GratefulthanksareexpressedtoMrsA.Antonacciforthe

skil-fultechnicalhelp,Dr.D.Boscia(IVV,Bari,Italy)forthepreparation

oftheantiserum,Dr.M.Fuchs(CornellUniversity,Geneva,USA)

for providing the TRSV inoculum and antiserum and Prof. G.P.

Martelliforusefulsuggestionsandrevisionofthemanuscript.This

studywaspartiallysupportedbyMIPAAFprojectOIGA-IN.OR.QUA

(2009–2012).

AppendixA. Supplementarydata

Supplementary data associated with this article can be

found,intheonlineversion,athttp://dx.doi.org/10.1016/j.virusres.

2013.08.012. References

Altschul,S.F.,Gish,W.,Miller,W.,Myers,E.W.,Lipman,D.J.,1990.Basiclocal align-mentsearchtool.J.Mol.Biol.215,403–410.

Argos,P.,1988.Asequencemotifinmanypolymerases.NucleicAcidsRes.33, 145–156.

Buckley,B.,Silva,S.,Singh,S.,1993.Nucleotidesequenceandinvitroexpressionof thecapsidproteingeneoftobaccoringspotvirus.VirusRes.30,335–349.

Buckley,B.,Silva,S.,Singh,S.,1995.Corrigendumto“Nucleotidesequenceand invitroexpressionofthecapsidproteingeneoftobaccoringspotvirus.Virus Res.30,335–349”.VirusRes.35,111.

Carrier,K.,Xiang,Y.,Sanfac¸on,H.,2001.GenomicorganizationofRNA2ofTomato ringsptvirus:processingatathirdcleavagesiteintheN-terminalregionofthe polyproteininvitro.J.Gen.Virol.82,1785–1790.

Dalmay,T.,Rubino,L.,Burgyan,J.,Kollar,A.,Russo,M.,1993.Functionalanalysisof cymbidiumringspotvirusgenome.Virology164,697–704.

Dessens,J.T.,Lomonossoff,G.P.,1991.Mutationalanalysisoftheputativecatalytic triadofthecowpeamosaicvirus23Kprotease.Virology184,738–746.

Fuchs,M.,Pinck,M.,Serghini,M.A.,Ravelonandro,M.,Walter,B.,Pinck,L.,1989.The nucleotidesequenceofsatelliteRNAingrapevinefanleafvirus,strainF13.J.Gen. Virol.70,955–962.

Gaire,F.,Schmitt,C.,Stussi-Garaud,C.,Pinck,L.,Ritzenthaler,C.,1999.Protein2Aof grapevinefanleafnepovirusisimplicatedinRNA2replicationandcolocalizesto thereplicationsite.Virology264,25–36.

Gokalp,K.,Digiaro,M.,Cigsar,I.,AbouGhanem-Sabanadzovic,N.,DeStradis,A., Boscia,D.,Martelli,G.P.,2003.Propertiesofapreviouslyundescribednepovirus fromSouth-EastAnatolia.J.PlantPathol.85,35–41.

Gorbalenya,A.E.,Koonin,E.V.,1989.ViralproteinscontainingNTP-bindingsequence pattern.NucleicAcidsRes.17,8413–8440.

Gorbalenya,A.E.,Donchenko,A.P.,Blinov,V.M.,Koonin,E.V.,1989.Cysteine pro-teasesofpositivestrandRNAvirusesandchymotrypsin-likeserineproteases. FEBSLett.243,103–114.

Hasiów-Jaroszewska,B.,Borodynko,N.,Figlerowicz,M.,Pospieszny,H.,2012.Two typesofdefectiveRNAsarisingfromthetomatoblackringvirusgenome.Arch. Virol.157,569–572.

Koonin,E.V.,Mushegian,A.R.,Ryabov,E.V.,Dolja,V.V.,1991.Diversegroupsof plantRNAandDNAvirusessharerelatedmovementproteinsthatmaypossess chaperone-likeactivity.J.Gen.Virol.72,2895–2903.

Kozak,M.,2005.RegulationoftranslationviamRNAstructureinprokaryotesand eukaryotes.Gene361,13–37.

Laemmli,U.K.,1970.Cleavageofstructuralproteinsduringtheassemblyofthehead ofbacteriophageT4.Nature227,680–685.

(5)

LeGall,O.,Candresse,T.,Dunez,J.,1995.Amultiplealignmentofthecapsidprotein sequencesofnepovirusesandcomovirusessuggestsacommonstructure.Arch. Virol.140,2041–2053.

Loudes,A.M.,Ritzenthaler,C.,Pinck,M.,Serghini,M.A.,Pinck,L.,1995.The119kDa and124kDapolyproteinsofarabismosaicnepovirus(isolateS)areencodedby twodistinctRNA2species.J.Gen.Virol.76,899–906.

Marck,C.,1988.DNAStrider:aCprogrammeforthefastanalysisofDNAandprotein sequencesontheAppleMacintoshfamilycomputers.NucleicAcidsRes.16, 1829–1836.

Margis,R.,Pinck,L.,1992.Effectsofsite-directedmutagenesisonthepresumed catalytictriadandsubstrate-bindingpocketofgrapevinefanleafnepovirus 24-kDaproteinase.Virology190,884–888.

Margis,R.,Ritzenthaler,C.,Reinbolt,J.,Pinck,M.,Pinck,L.,1993.Genome organiza-tionofgrapevinefanleafnepovirusRNA2deducedfromthe122Kpolyprotein P2invitrocleavageproducts.J.Gen.Virol.74,1919–1926.

Margis,R.,Viry,M.,Pinck,M.,Bardonnet,N.,Pinck,L.,1994.Differentialproteolytic activitiesofprecursorandmatureformsofthe24Kproteinaseofgrapevine fanleafnepovirus.Virology200,79–86.

Martelli, G.P., Russo, M., 1984. Use of thin sectioning for the visualiza-tion and identification of plantviruses. In: Maramorosch,K., Koprowski, H. (Eds.), Methods in Virology, vol. 8. Academic Press, New York, USA, pp.143–224.

Mayo,M.A.,Fritsch,C.,1994.ApossibleconsensussequenceforVPgofvirusesinthe familyComoviridae.FEBSLett.354,129–130.

Milne,R.G.,Lesemann,D.E.,1984.Immunosorbentelectronmicroscopyinplant virusstudies.In:Maramorosch,K.,Koprowski,H.(Eds.),MethodsinVirology, vol.8.AcademicPress,NewYork,USA,pp.85–101.

Mushegian,A.R.,1994.TheputativemovementdomainencodedbynepovirusRNA-2 isconservedinallsequencednepoviruses.Arch.Virol.135,437–441.

Noordam,D.,1973.IdentificationofPlantViruses.Methods&Experiments.Centre forAgriculturalPublishingandDocumentation,Wageningen,TheNetherlands.

Page,R.D.,1996.TreeView:anapplicationtodisplayphylogenetictreesonpersonal computers.Comput.Appl.Biosci.12,357–358.

Pinck,L.,Fuchs,M.,Pinck,M.,Ravelonandro,M.,Walter,B.,1988.AsatelliteRNAin grapevinefanleafvirusstrainF13.J.Gen.Virol.69,233–239.

Rice,P.,Longden,I.,Bleasby,A.,2000.EMBOSS:theEuropeanMolecularBiology OpenSoftwareSuite.TrendsGenet.16,276–277.

Ritzenthaler,C.,Viry,M.,Pinck,M.,Margis,R.,Fuchs,M.,Pinck,L.,1991.Complete nucleotidesequenceandgeneticorganizationofgrapevinefanleafnepovirus RNA1.J.Gen.Virol.72,2357–2365.

Ritzenthaler,C.,Laporte,C.,Gaire,F.,Dunoyer,P.,Schmitt,C.,Duval,S.,Piéquet, A.,Loudes,A.M.,Rohfritsch,O.,Stussi-Garaud,C.,Pfeiffer,P.,2002.Grapevine fanleafvirusreplicationoccursonendoplasmicreticulum-derivedmembranes. J.Virol.76,8808–8819.

Rott,M.E.,Gilchrist,A.,Lee,L.,Rochon,D.M.,1995.Nucleotidesequenceoftomato ringspotvirusRNA1.J.Gen.Virol.76,465–473.

Sanfac¸on, H.,Gorbalenya,A.R.,Knowles,N.J., Chen,J.P.,2012.Order Picornavi-rales.In:King,A.M.Q.,Adams,M.J.,Carstens,E.B.,Lefkowitz,E.J.(Eds.),Virus Taxonomy.ClassificationandnomenclatureofViruses.NinthReportofthe Inter-nationalCommitteeonTaxonomyofViruses.ElsevierInc.,pp.835–839.

Sorrentino,R.,Alioto,D.,Russo,M.,Rubino,L.,2012.Presenceoftobaccoringspot virusinAeoniumspp.J.PlantPathol.94,S4.103.

Thompson,J.D.,Higgins,D.G.,Gibson,T.J.,1994.ClustalW:improvingthe sensitiv-ityofprogressivemultiplesequencealignmentthroughsequenceweighting, position-specificgappenaltiesandweightmatrixchoice.NucleicAcidsRes.22, 4673–4680.

Tomitaka,Y.,Usugi,T.,Yasuda,F.,Okayama,H.,Tsuda,S.,2011.Anovelmemberof thegenusNepovirusisolatedfromCucumismeloinJapan.Phytopathology101, 316–322.

Wetzel,T.,Meunier,L.,Jaeger,U.,Reustle,G.M.,Krczal,G.,2001.Completenucleotide sequencesoftheRNAs2ofGermanisolatesgrapevinefanleafandArabismosaic nepoviruses.VirusRes.75,139–145.

Wetzel,T.,Fuchs,M.,Bobko,M.,Krczal,G.,2002.Sizeandsequencevariabilityofthe Arabismosaicvirusprotein2A.Arch.Virol.147,1643–1653.

Wetzel,T.,Chislom,J.,Bassler,A.,Sanfac¸on,H.,2008.Characterizationofproteinase cleavagesitesintheN-terminalregionoftheRNA1-encodedpolyproteinfrom arabismosaicvirus(subgroupAnepovirus).Virology375,159–169.

Zalloua,P.A.,Buzayan,J.M.,Bruening,G.,1996.Chemicalcleavageof5′-linked

pro-teinfromtobaccoringspotvirusgenomicRNAsandcharacterizationofthe protein-RNAlinkage.Virology219,1–8.

Riferimenti

Documenti correlati

Lo scopo secondario è stato lo studio preliminare della steroidogenesi intra-lesione, attraverso il confronto dei livelli di steroidi presenti nella lesione rispetto al

Tommaseo, veduto ch’era quasi affatto esaurita la seconda edizione del suo Dizionario (che fu quella di Milano) era venuto nella determinazione di preparare ed ordinare i materiali

Prima di arrivare ad indagare le strategie ed i metodi che il personale curante attua per promuovere un’alimentazione sana durante la gravidanza, sono state proposte domande più

6 l'avere il colpevole commesso il reato durante il tempo in cui si è sottratto volontariamente alla esecuzione di un mandato o di un ordine di arresto o di cattura o di

Proprio per questo l’ estensione del segreto professionale in medicina, dalle più antiche attestazioni fino ai moderni codici deontologici, ha riguardato tutto ciò che al

The chemical composition of ice crystals and consequently of snow depends on many parameters: the chemical composition of ice forming nuclei (IFN) or cloud condensation nuclei (CCN)

Therefore, such parameter could be also employed to evaluate for the need of non-stationary EVA, which result in high return period significant wave heights considerably different

Nella visione di Achille de Harlay, espressa a più riprese negli anni ’80 del ’500 come primo presidente del parlamento di Parigi, storicamente i Re francesi avevano voluto