ContentslistsavailableatScienceDirect
Virus
Research
j ou rn a l h o m epa g e :w w w . e l s e v i e r . c o m / l o c a t e / v i r u s r e s
Short
communication
Characterization
of
a
putative
novel
nepovirus
from
Aeonium
sp.
Roberto
Sorrentino
a,
Angelo
De
Stradis
b,
Marcello
Russo
b,
Daniela
Alioto
a,∗∗,
Luisa
Rubino
b,∗aUniversitàdiNapoli“FedericoII”,viaUniversità100,80055Portici(NA),Italy bIstitutodiVirologiaVegetaledelCNR,UOSBari,ViaAmendola165/A,70126Bari,Italy
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Received29July2013
Receivedinrevisedform26August2013 Accepted28August2013
Available online 6 September 2013
Keywords: Aeonium Nepovirus Cytopathology Serology Sequencing
a
b
s
t
r
a
c
t
AviruswasisolatedfrompottedplantsofanunidentifiedspeciesofAeonium,asucculentornamentalvery commoninSouthernItaly,showingchloroticspotsandringsonbothleafsurfaces.Itwassuccessfully transmittedbysapinoculationtoalimitedrangeofhosts,includingNicotianabenthamianawhichwas usedforultrastructuralobservationsandviruspurification.Virusparticlesareisometric,ca.30nmin diameter,haveasingletypeofcoatprotein(CP)subunits54kDainsize,thatencapsidatesingle-stranded positive-senseRNAspeciesof7549(RNA1)and4010(RNA2)nucleotides.AthirdRNAmolecule3472nts insizeentirelyderivedfromRNA2wasalsofound.ThestructuralorganizationofbothgenomicRNAsand thecytopathologicalfeatureswerecomparabletothoseofnepoviruses.Inaddition,aminoacidsequence comparisonsofCPandthePro-Polregion(asequencecontainingpartsoftheproteinaseandpolymerase) withthoseofothernepovirusesshowedthattheAeoniumvirusbelongstothesubgroupAofthegenus
Nepovirusandisphylogeneticallycloseto,butserologicallydistinctfromtobaccoringspotvirus(TRSV). BasedonthespeciesdemarcationcriteriaforthefamilySecoviridae,thevirusunderstudyappearstobea novelmemberofthegenusNepovirusforwhichthenameofAeoniumringspotvirus(AeRSV)isproposed. © 2013 Elsevier B.V. All rights reserved.
Crassulaceae(ClassMagnoliopsida,OrderSaxifragales),afamily
ofwidelygrownsucculentornamentalplantscomprisesseveral
genera,amongwhichthegenusAeonium,anativeoftheCanary
Islandsthatincludes37species,mostofwhichareherbaceousand
perennial.
Recently,chloroticspotsandringsonbothleafsurfaceswere
observed on several potted plants of an unidentified Aeonium
speciesgrowinginprivategardensofthecityofScafati(Campania,
Italy)(SupplementaryFig.1).Anisometricviruswasrecoveredby
sapinoculationfromsymptomaticplants.Onthebasisofa
pre-liminarysequence analysisofca. 400 nucleotides(nt) ofthe3′
untranslated(UTR)regionoftheviralgenome(Sorrentinoetal.,
2012),itwasidentifiedasastrainoravariantoftobaccoringspot
virus(TRSV),thetypespeciesofthegenusNepovirus(family
Sec-oviridae,orderPicornavirales;Sanfac¸onetal.,2012).However,as
thestudiesprogressed,itbecameevidentthatthepropertiesof
thevirusunderstudy,hereafterreferredtowiththeprovisional
nameofAeoniumringspotvirus (AeRSV),differedenoughfrom
thoseofTRSVtowarrantamoreexhaustivecharacterization,which
constitutestheobjectofthispaper.
∗ Correspondingauthor.Tel.:+390805442936;fax:+390805442911. ∗∗ Correspondingauthor.Tel.:+390812539365;fax:+390812539367.
E-mailaddresses:[email protected](D.Alioto),[email protected](L.Rubino).
Sap from symptomatic Aeonium leaves was inoculated to a
herbaceoushostrangecomprising19speciesinsixfamilies.
Inoc-ulatedplantswerekeptinagreenhouseatca.25◦Candobserved
uptofourweeksforsymptomexpression.Mostoftheinoculated
plantswereinfectedshowingovertsymptoms(TableS1).In
par-ticular,Nicotianabenthamianareactedwithchlorotic/necroticlocal
lesionsoninoculatedleaves,frequentlyintheshapeofringspots,
followedseventotendaysafterinoculationbysystemicsymptoms
consistingofextensivemottlingandringspots.Arecoveryphase
tookplaceaboutoneweeklater,withproductionofsymptomless
leaves.Useful diagnostichostswereChenopodiumquinoaandC.
muralethatreactedwithlocallesionsfollowedbysystemic
infec-tion,tipnecrosisanddeathoftheplant.Theviruswasroutinely
propagatedinN.benthamiana,whichwasusedforvirus
purifica-tionaccordingtoPincketal.(1988).Purifiedvirusparticleswere
resuspendedinasmallvolumeof0.02Msodiumcitratebuffer,pH
6.0.Concurrently,aTRSVisolate(obtainedfromDr.M.Fuchs)was
initiallypropagatedinN.benthamiana.However,sinceatthe
green-housetemperature(25–26◦C)theseplantsshowednosymptoms,
althoughsystemicallyinfected,C.quinoaplantswerepreferredfor
viruspurificationfollowingthesameprotocol(Pincketal.,1988).
AeRSVwasreadilypurified fromN.benthamianaplants with
average yieldsofca.0.1mg/g freshtissue.Purification wasalso
attemptedfrominfectedAeoniumplants,buttheyieldwasmuch
lower (ca. 0.01mg/g tissue). Preparations negatively stained in
0168-1702/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.
Fig.1.(A)NegativelystainedpurifiedunfractionatedAeRSVparticles,fully,partiallyornotpenetratedbythestain.(BandC)AeRSVparticlesexposedtothehomologousor toTRSVantiserum,respectively.(DandE)TRSVparticlesexposedtothehomologousortoAeRSVantiserum,respectively.Bars=50nm.
2% aqueous uranyl acetate and viewed at the electron
micro-scope containedisometricparticlesca.30nmindiameter,some
ofwhichpartiallyortotally(emptyshell)penetratedbythestain
(Fig.1A).Anantiserumwasproducedbyinjectingpurifiedvirus
preparations(0.5–2mg)mixedwithanequalvolumeofFreund’s
incomplete adjuvant in a New Zealand rabbit. Serological
test-ingwasdoneinagargeldouble diffusion(Noordam,1973)and
immunoelectron microscopy (Milne and Lesemann, 1984). The
antiserum toAeRSVhad atitreof 1:256asdeterminedin agar
geldouble-diffusiontests.Itgaveasingleclear-cutprecipitinline
with thehomologous antigen in agar plates and nodetectable
reaction with TRSV and healthy plantextracts (notshown). In
immunoelectronmicroscopythisantiserumdecoratedAeRSV
par-ticlesfromcrudesap(notshown)orpurifiedpreparations(Fig.1B),
butnotTRSVparticles(Fig.1E).Conversely,anantiserumagainst
TRSV decoratedpurifiedTRSV (Fig.1D),butnotAeRSV(Fig.1C)
particles.
The cytopathologicalfeatures ofAeRSV werestudiedin
sys-temicallyinfectedleavesofN.benthamianaprocessedaccordingto
standardprocedures(MartelliandRusso,1984).Comparedwith
the healthy control(not shown),the structuralorganization of
infectedN.benthamianacellswasfairlywellpreserved,exceptfor
thepresenceofconspicuousinclusionbodiesmadeupof
accumu-lationsofmembranousvesicleswithafibrillarcontent,anetwork
ofproliferatedendoplasmicreticulumstrands,lipiddropletsand
virus particles(Fig.2A).These cytopathologicalstructures were
usually appressed tothenuclei, theoutermembrane of which
wasdilatedinseveralpoints(Fig.2B).Virusparticleswereeither
scattered in the ground cytoplasmor arranged in rows within
tubular structures usually connected with plasmodesmata and
sometimes associated with cell wall outgrowths (Fig. 2C). The
observed cytopathologicalmodificationsare incomplete
agree-mentwiththosetypicallyinducedbynepovirusinfections(Martelli
andRusso,1984;Ritzenthaleretal.,2002;Gokalpetal.,2003).
Purifiedviruspreparationsweredissociatedinthepresenceof
Laemmli’sbuffer(1970).Thecoatprotein(CP)subunitsmigrated
asasinglebandwithanestimatedmol.wtof54kDa(Fig.3A)in
discontinuos12.5%acrylamidegels.
RNAwasextractedfromca.200mgpurifiedvirusparticlesby
adding1volofextractionbuffer(100mMglycine–NaOH,pH9.0,
containing100mMNaCl,10mMEDTA,2%sodiumdodecylsulfate
and1%sodiumlauroylsarcosine)and2volofwater-saturated
phe-nol.Theaqueousphasewasfurtherextractedwithequalvolumes
ofphenolandchloroform,thenchloroformalone,andprecipitated
with2.5volofethanolinthepresenceof0.3Msodiumacetate,pH
5.5.RNAwasresuspendedinsteriledeionizedwater.Denatured
RNAwaseithervisualizedbyethidiumbromidestainingor
trans-ferredtonylonmembranesand hybridizedwith a DIG-labelled
probecorrespondingtothelast200nucleotidesoftheviralRNAs.
AsshowninFig.3B,theencapsidatedviralgenomeseparatedinto
twobands(RNA1andRNA2).
Totalnucleicacids(TNA)wereextractedasdetailedinDalmay
etal.(1993).Briefly,about100mgleaftissueweremaceratedina
coldmortarinthepresenceof600mlextractionbufferand600ml
phenol,processedasdescribedaboveandresuspendedinsterile
deionizedwater.NorthernblotanalysisconfirmedthatRNA1and
RNA2weretheonlyvirus-relatedRNAspeciespresentbothinvirus
particles(Fig.3B)andTNAextractsfrominfectedN.benthamiana
tissues(Fig.3C,lane1).However,Northernblotanalysisofextracts
frominfectedAeoniumplantsrevealedthepresenceofanadditional
RNAspeciessmallerthanRNA2(Fig.3C,lane2).
Approximately2mgofRNAextractedfromvirusparticleswere
denaturedbyheatingat65◦Candusedfortheconstructionofa
cDNA librarywith a cDNASynthesis Module(Roche, USA).The
doublestrandedcDNAwasligatedtoaSmaI-linearized,
dephos-phorylatedpUC18,andclonedintoEscherichiacolistrainXL1-Blue
Fig.2. UltrastructuralaspectsofAeRSV-infectedN.benthamianamesophyllcells. (A)Vesiculate-vacuolatecytoplasmicinclusionbodies(IB)nexttothenucleus(N). (B)Portionofanucleus(N),showingenlargementoftheoutermembrane(arrow). (C)Virus-containingtubularstructuresconnectedwithplasmodesmata(arrow)and insidedevelopingcellwalloutgrowth(doublearrow).Bars=250nm.
Fig.3.StructuralcomponentsofAeRSV.(A)SDS-polyacrylamidegelelectrophoresis ofdissociatedvirusparticles.AsingletypeofCPsubunitsca.54kDainsizeis visi-ble(lane2).Lane1,molecularweightmarkers.(B)GenomicRNA1andRNA2from purifiedunfractionatedparticlesvisualizedafterethidiumbromidestaining(left)or hybridizationwithaDIG-labelledprobe(right).(C)NorthernblotofRNAextracted frominfectedN.benthamiana(lane1)andAeonium(lane2)leaves;hybridization asinpanelB.TheasteriskmarkstheadditionalRNAspeciesfoundonlyinAeonium
extracts.
competentcells.The5′terminusoftheviralgenomewas
deter-minedusinga5′rapidamplificationofcDNAends(RACE)(Roche,
USA).The5′ RACEproductswereclonedintopGEM-TEasy
vec-tor(Promega,USA).Recombinantplasmidswerepurifiedwiththe
NucleoSpinkit(Macherey-Nagel,Germany)andcustomsequenced
inbothdirections(EurofinsMWGOperon,Germany).Sequences
thusobtainedwerebridgedbyRT-PCRusingspecificprimersand
highfidelityTaqDNApolymerase(Roche,USA).Sequenceswere
assembledandanalyzedusingtheDNAStridersoftware(Marck,
1988)andfurtherexaminedbycomparisonwithknownnucleotide
andproteinsequencesusingBLAST(Altschuletal.,1990).Pairwise
comparisonsweremadeusingEMBOSSintheEBIpackage(Rice
etal.,2000).Sequencesoftheencodedproteinswerealignedand
tentativephylogenetictreeswereconstructedwithClustalW
pro-gramme(Thompsonetal.,1994)andvisualizedbytheTreeView
programme(Page,1996).
RNA1consistsof7549nts,excludingthepoly(A)tail(GenBank
accessionno.JX304792).ThefirstAUGstartcodonisatntposition
104inacontextfavourabletoenhancetranslationineukaryotic
cells,withanAinposition−3,aCinposition−2andaGinposition
+4(Kozak,2005).AssumingthattranslationbeginsatthisAUG,it
wouldterminateattheUAAstopcodonatposition7046–7048,thus
yieldingatranslationproduct(P1)of2314aminoacids(aa)with
acalculatedMr of257,168(257kDa)(Fig.4).Computer-assisted
analysisshowedthatP1containsthecharacteristicmotifsofthe
putativeviralproteasecofactor(PRO-co),theNTP-binding(NTP-B),
Fig.4.PutativeschematicgenomeorganizationofAeRSV.Greyzonesindicate conservedmotifsinnepoviruses.Putativecleavagesitesdeducedbysequence com-parisonareindicatedbytheverticallines.Dotsinthe2Aregionindicatetheposition oftwoproline-richsequences.BlackcirclesindicatetheputativeVPg.RNA2′
repre-sentsthesmallerRNA2species,havinga179aadeletionintheMP.
cysteineprotease(PRO)andtheRNA-dependentRNApolymerase
(POL)coredomains,indicatingthatthepredictedpolypeptideis
cleaved by a viral protease togive maturefunctional products
(Fig.4).Theputativeviralproteasecofactormotif(F-x21-W-x11
-L-x22-L-x-Tbetweenaaatpositions525–590)isslightlydifferent
from theconsensus sequence for this motif (Rottet al., 1995),
themajordifferencebeingthesubstitutionofthelastaa(EtoT).
Theputative NTP-bindingmotif(Gorbalenyaand Koonin,1989)
islocatedbetweenaa827and878,intwosites:siteAbetween
positions 827and 834(G-x4-GKS) and site B (DD)at positions
877–878.Theputativeviralcysteineproteasemotif(H-x35-E-x98
-CG-x8-G-x5-G) is locatedbetween aa positions1324 and 1475.
TheunderlinedaaH,EandCformtheputativecatalytictriadof
theenzyme(DessensandLomonossoff, 1991;Gorbalenyaetal.,
1989;MargisandPinck,1992).TheC-terminalregionofP1
con-tainsthesequencecharacterizingtheputativeRNA-dependentRNA
polymerase (RdRp) (Argos, 1988)(D-x4-D-x69-G-x3-T-x3-N-x33
-GDD-x33-DK)betweenaapostitions1782and1936.Theconsensus
sequencereportedbyMayoandFritsch(1994)forthe
genome-linkedprotein(VPg)wasnotfound.
Aminoacid alignmentsof AeRSV-encodedP1 with the
com-parable protein of selectednepoviruses allowed theprediction
ofputative cleavagesitesandpositionsofmatureproducts. For
instance,comparisonwiththeexperimentallyvalidatedstructure
oftheN-proximalregionofarabismosaicvirus(ArMV)P1(Wetzel
etal.,2008),indicatesthattheN-terminalproteasecofactorofthe
virusunderstudywouldbecleavedatthesiteC651/G652toseparate
fromtheNTBprotein,andanadditionalcleavagesite(C450/S451)
wouldproducetwoproteindomainsof450 and201aa,
respec-tively,denotedX1andX2.VPgislocatedbetweentheNTP-binding
and proteaseproteins,beginningataaposition1254,as
identi-fiedbycomparison withthechemicallydeterminedN-terminal
sequenceofTRSVVPg(Zallouaetal.,1996).However,therestof
thesequenceandthecleavagesitescouldnotbeestablishedwith
certaintyduetothelowdegreeofconservationofthissmallprotein.
AcleavagesiteC1499/S1500separatingtheprotease(ca.215aa)and
RdRp(815aa)proteinsispredictedbycomparisonwiththe
corre-spondingregionofgrapevinefanleafvirus(GFLV)P1(Ritzenthaler
etal.,1991;Margisetal.,1994).
RNA2 is 4010 nts in length, excluding the 3′-poly(A) tail
(JQ670669).ItsfirstAUGstartcodonatposition124–126is
pre-cededbyaCinposition−2andfollowedbyaGinposition+4,i.e.
inalessfavourabletranslationcontextthanthatofRNA1.The
sin-gleORFofRNA2extendsfromnt124tont3508–3510,yieldinga
putativepolyproteinP2of1128aaandaMrof125,601(126kDa)
(Fig.4).Thepolypeptidecontainsthe“P”motifconservedinthe
movementproteins(MP)ofnepovirusesandotherplantviruses
(Kooninetal.,1991;Mushegian,1994)ataaposition442and,ataa
1120–1123themotifFWGR,thatisveryclosetothenepovirusCP
motifFYGR(LeGalletal.,1995).TheN-terminalpeptide
(approx-imately260aa)shareslowsequencehomologywithprotein2AHP
ofGFLVinvolvedinthereplicationofRNA2(Margisetal.,1993;
Gaireetal.,1999;Ritzenthaleretal.,2002),includingtheproline
motifsthatarealsopresentintomatoringspotvirus(ToRSV)P2
N-terminalprotein(Carrieretal.,2001),suggestingthisproteinto
havearoleinthelocalizationandreplicationofRNA2.Comparison
ofAeRSVCPsequencewiththechemicallydeterminedsequence
ofTRSVCP(Buckleyetal.,1993,1995)indicatedtheAresidueat
position616astheN-terminalaaandacleavagesiteM615/A616
betweentheMPandCPproteins.SuchM/Acleavagesitebetween
MPandCPisunusualandwasreportedonlyforanothernepovirus
(Tomitakaetal.,2011).
ThesmallerRNAspeciespresentonlyininfectedAeoniumplants
(Fig.3C)wasamplifiedbyRT-PCRfrompurifiedviralRNAextracted
fromAeoniumusingprimerscorrespondingtothefirstandlast17
RNAis3472ntsinlengthandhasasequenceidenticaltothatof
RNA2butlacks537ntsfromposition1286to1822.Thisadditional
RNA2(RNA2′)hasasingleORFthatextendsfromtheAUGat
pos-itions124–126andcodesforaputativeproteinof949aawithaMr
of105,726(106kDa)(Fig.4).Putativematurationproductsofthe
polyproteinencodedbyRNA2′aretheN-terminalprotein(2A)and
CPofthesamesizeasthoseencodedbyRNA2,andaMPwitha
dele-tionof179aa,fromposition389toposition567.Atleasttwomore
examplesofvariabilityofnepoviralRNAsareknown:onearising
fromRNA2ofArMV(Loudesetal.,1995;Wetzeletal.,2002)and onefromRNA1ofTBRV(Hasiów-Jaroszewskaetal.,2012).
How-ever,onlyinthelattercasesomeevidenceofapossibilebiological
significancewasobtained.ThebiologicalroleofAeRSVRNA2′has
notyetbeeninvestigated.
Sequences ofthe5′ UTR regions of theRNA1 (103nts) and
RNA2(123nts)were53.2%identical.Inparticular,thefirst17nts
(UUGAAAAUUCUCUCACA) are100%identical andcontainthe5′
end consensussequencefor nepovirusRNAs (underlined;Fuchs
etal.,1989).Theconservedrepeatsofthemotifsequences
capa-bletoformstem-loopstructuresinthe5′untranslatedregionsof
othernepoviruses(Wetzeletal.,2001)werenotfound.Comparison
betweenthe3′UTRofRNA1(501nts)andRNA2(500nts)showed
98.6%identity.
Particle morphology, cytopathological features and genome
organization support the classification of AeRSV in the genus
Nepovirus(familySecoviridae,orderPicornavirales;Sanfac¸onetal.,
2012), ataxoncomprisingthree subgroupsofspeciesidentified
bydifferencesinthecleavagesitesrecognizedbytheirproteinase
andsizeofRNA2:(i)subgroupA3700–4000nts;(ii)subgroupB
4440–4700 nts;(iii)subgroupC6400–7300nts.Basedonthese
parameters,AeRSVfitswellinsubgroupA,alikelihoodsupported
byitsallocationnexttoTRSVinacladeofthephylogenetictree
constructedwithCPsequences(Fig.S2).
SpeciesdemarcatingcriteriainthefamilySecoviridaesetbythe
International CommitteonTaxonomyofViruses(ICTV)include,
among others,lack ofserological relationhip andless than75%
Table1
Percentageofsequenceidentitybetweentheaminoacidsequencesofvarious regionsofAeRSVgenomeandthoseofothernepoviruses.
Virus P1 P2 Pro-Pol CP SubgroupA ArMV 31 23 44 27 GDefV 30 20 42 25 GFLV 30 20 42 25 MMMoV 31 29 44 29 RpRSV 28 23 31 25 TRSV 78 70 84 66 SubgroupB BRSV 26 17 38 20 CNSV 28 19 36 20 GCMV 27 20 38 21 TBRV 27 20 40 25 SubgroupC BRV 27 17 38 23 CLRV 25 15 37 21 GBLV 27 16 42 21 ToRSV 27 15 38 23
GenBank accession numbers are: ArMV (arabis mosaic virus; NC006057, NC006056);GDefV(grapevinedeformationvirus;NC017939,NC017938);GFLV (grapevine fanleafvirus;NC003615,NC003623);MMMoV (melonmild mot-tlevirus;AB518485,AB518486);RpRSV(raspberryringspotvirus;NC005266, NC005267);TRSV(tobaccoringspotvirus;NC005097,NC005096);BRSV(beet ringspot virus; NC003693, NC003694); CNSV (cycas necrotic stunt virus; NC003791,NC003792);GCMV (grapevine chromemosaic virus; NC003622, NC003621);TBRV(tomatoblackringvirus;NC004439,NC004440);BRV (black-currant reversion virus; NC003509, NC003502); CLRV(cherry leafroll virus; NC015414, NC015415); GBLV (grapevine Bulgarianlatent virus; NC015492, NC015493);ToRSV(tomatoringspotvirus;NC003840,NC003839).
identity in theaa sequence of CP and less than 80% in theaa
sequence of the Pro-Pol region, defined as “the sequence
con-tainedbetweentheproteaseCGandthepolymeraseGDDmotifs”
(Sanfac¸onet al., 2012). When these and the whole P1 and P2
sequenceswerecomparedwiththoseofnepovirusesofthethree
subgroups,thedivergencebetweenAeRSVandalltheotherviruses
appearedtobewellbelowthethresholdforCP,whereasthePro-Pol
domainofTRSVwasslightlyabove(84vs.80%)(Table1).However,
comparisonofeachsingledomainofTRSVandAeRSVpolyproteins
disclosedarelativelylowpercentageofidentitythroughout(Table
S2).
Themoleculardata,thedifferentreactionofinfectedN.
ben-thamianaplants,andthelackofserologicalrelationshipssupport
thenotionthatAeRSVisanovelnepovirusspeciesphylogenetically
closetobutclearlydistinctfromTRSV.
Acknowledgements
GratefulthanksareexpressedtoMrsA.Antonacciforthe
skil-fultechnicalhelp,Dr.D.Boscia(IVV,Bari,Italy)forthepreparation
oftheantiserum,Dr.M.Fuchs(CornellUniversity,Geneva,USA)
for providing the TRSV inoculum and antiserum and Prof. G.P.
Martelliforusefulsuggestionsandrevisionofthemanuscript.This
studywaspartiallysupportedbyMIPAAFprojectOIGA-IN.OR.QUA
(2009–2012).
AppendixA. Supplementarydata
Supplementary data associated with this article can be
found,intheonlineversion,athttp://dx.doi.org/10.1016/j.virusres.
2013.08.012. References
Altschul,S.F.,Gish,W.,Miller,W.,Myers,E.W.,Lipman,D.J.,1990.Basiclocal align-mentsearchtool.J.Mol.Biol.215,403–410.
Argos,P.,1988.Asequencemotifinmanypolymerases.NucleicAcidsRes.33, 145–156.
Buckley,B.,Silva,S.,Singh,S.,1993.Nucleotidesequenceandinvitroexpressionof thecapsidproteingeneoftobaccoringspotvirus.VirusRes.30,335–349.
Buckley,B.,Silva,S.,Singh,S.,1995.Corrigendumto“Nucleotidesequenceand invitroexpressionofthecapsidproteingeneoftobaccoringspotvirus.Virus Res.30,335–349”.VirusRes.35,111.
Carrier,K.,Xiang,Y.,Sanfac¸on,H.,2001.GenomicorganizationofRNA2ofTomato ringsptvirus:processingatathirdcleavagesiteintheN-terminalregionofthe polyproteininvitro.J.Gen.Virol.82,1785–1790.
Dalmay,T.,Rubino,L.,Burgyan,J.,Kollar,A.,Russo,M.,1993.Functionalanalysisof cymbidiumringspotvirusgenome.Virology164,697–704.
Dessens,J.T.,Lomonossoff,G.P.,1991.Mutationalanalysisoftheputativecatalytic triadofthecowpeamosaicvirus23Kprotease.Virology184,738–746.
Fuchs,M.,Pinck,M.,Serghini,M.A.,Ravelonandro,M.,Walter,B.,Pinck,L.,1989.The nucleotidesequenceofsatelliteRNAingrapevinefanleafvirus,strainF13.J.Gen. Virol.70,955–962.
Gaire,F.,Schmitt,C.,Stussi-Garaud,C.,Pinck,L.,Ritzenthaler,C.,1999.Protein2Aof grapevinefanleafnepovirusisimplicatedinRNA2replicationandcolocalizesto thereplicationsite.Virology264,25–36.
Gokalp,K.,Digiaro,M.,Cigsar,I.,AbouGhanem-Sabanadzovic,N.,DeStradis,A., Boscia,D.,Martelli,G.P.,2003.Propertiesofapreviouslyundescribednepovirus fromSouth-EastAnatolia.J.PlantPathol.85,35–41.
Gorbalenya,A.E.,Koonin,E.V.,1989.ViralproteinscontainingNTP-bindingsequence pattern.NucleicAcidsRes.17,8413–8440.
Gorbalenya,A.E.,Donchenko,A.P.,Blinov,V.M.,Koonin,E.V.,1989.Cysteine pro-teasesofpositivestrandRNAvirusesandchymotrypsin-likeserineproteases. FEBSLett.243,103–114.
Hasiów-Jaroszewska,B.,Borodynko,N.,Figlerowicz,M.,Pospieszny,H.,2012.Two typesofdefectiveRNAsarisingfromthetomatoblackringvirusgenome.Arch. Virol.157,569–572.
Koonin,E.V.,Mushegian,A.R.,Ryabov,E.V.,Dolja,V.V.,1991.Diversegroupsof plantRNAandDNAvirusessharerelatedmovementproteinsthatmaypossess chaperone-likeactivity.J.Gen.Virol.72,2895–2903.
Kozak,M.,2005.RegulationoftranslationviamRNAstructureinprokaryotesand eukaryotes.Gene361,13–37.
Laemmli,U.K.,1970.Cleavageofstructuralproteinsduringtheassemblyofthehead ofbacteriophageT4.Nature227,680–685.
LeGall,O.,Candresse,T.,Dunez,J.,1995.Amultiplealignmentofthecapsidprotein sequencesofnepovirusesandcomovirusessuggestsacommonstructure.Arch. Virol.140,2041–2053.
Loudes,A.M.,Ritzenthaler,C.,Pinck,M.,Serghini,M.A.,Pinck,L.,1995.The119kDa and124kDapolyproteinsofarabismosaicnepovirus(isolateS)areencodedby twodistinctRNA2species.J.Gen.Virol.76,899–906.
Marck,C.,1988.DNAStrider:aCprogrammeforthefastanalysisofDNAandprotein sequencesontheAppleMacintoshfamilycomputers.NucleicAcidsRes.16, 1829–1836.
Margis,R.,Pinck,L.,1992.Effectsofsite-directedmutagenesisonthepresumed catalytictriadandsubstrate-bindingpocketofgrapevinefanleafnepovirus 24-kDaproteinase.Virology190,884–888.
Margis,R.,Ritzenthaler,C.,Reinbolt,J.,Pinck,M.,Pinck,L.,1993.Genome organiza-tionofgrapevinefanleafnepovirusRNA2deducedfromthe122Kpolyprotein P2invitrocleavageproducts.J.Gen.Virol.74,1919–1926.
Margis,R.,Viry,M.,Pinck,M.,Bardonnet,N.,Pinck,L.,1994.Differentialproteolytic activitiesofprecursorandmatureformsofthe24Kproteinaseofgrapevine fanleafnepovirus.Virology200,79–86.
Martelli, G.P., Russo, M., 1984. Use of thin sectioning for the visualiza-tion and identification of plantviruses. In: Maramorosch,K., Koprowski, H. (Eds.), Methods in Virology, vol. 8. Academic Press, New York, USA, pp.143–224.
Mayo,M.A.,Fritsch,C.,1994.ApossibleconsensussequenceforVPgofvirusesinthe familyComoviridae.FEBSLett.354,129–130.
Milne,R.G.,Lesemann,D.E.,1984.Immunosorbentelectronmicroscopyinplant virusstudies.In:Maramorosch,K.,Koprowski,H.(Eds.),MethodsinVirology, vol.8.AcademicPress,NewYork,USA,pp.85–101.
Mushegian,A.R.,1994.TheputativemovementdomainencodedbynepovirusRNA-2 isconservedinallsequencednepoviruses.Arch.Virol.135,437–441.
Noordam,D.,1973.IdentificationofPlantViruses.Methods&Experiments.Centre forAgriculturalPublishingandDocumentation,Wageningen,TheNetherlands.
Page,R.D.,1996.TreeView:anapplicationtodisplayphylogenetictreesonpersonal computers.Comput.Appl.Biosci.12,357–358.
Pinck,L.,Fuchs,M.,Pinck,M.,Ravelonandro,M.,Walter,B.,1988.AsatelliteRNAin grapevinefanleafvirusstrainF13.J.Gen.Virol.69,233–239.
Rice,P.,Longden,I.,Bleasby,A.,2000.EMBOSS:theEuropeanMolecularBiology OpenSoftwareSuite.TrendsGenet.16,276–277.
Ritzenthaler,C.,Viry,M.,Pinck,M.,Margis,R.,Fuchs,M.,Pinck,L.,1991.Complete nucleotidesequenceandgeneticorganizationofgrapevinefanleafnepovirus RNA1.J.Gen.Virol.72,2357–2365.
Ritzenthaler,C.,Laporte,C.,Gaire,F.,Dunoyer,P.,Schmitt,C.,Duval,S.,Piéquet, A.,Loudes,A.M.,Rohfritsch,O.,Stussi-Garaud,C.,Pfeiffer,P.,2002.Grapevine fanleafvirusreplicationoccursonendoplasmicreticulum-derivedmembranes. J.Virol.76,8808–8819.
Rott,M.E.,Gilchrist,A.,Lee,L.,Rochon,D.M.,1995.Nucleotidesequenceoftomato ringspotvirusRNA1.J.Gen.Virol.76,465–473.
Sanfac¸on, H.,Gorbalenya,A.R.,Knowles,N.J., Chen,J.P.,2012.Order Picornavi-rales.In:King,A.M.Q.,Adams,M.J.,Carstens,E.B.,Lefkowitz,E.J.(Eds.),Virus Taxonomy.ClassificationandnomenclatureofViruses.NinthReportofthe Inter-nationalCommitteeonTaxonomyofViruses.ElsevierInc.,pp.835–839.
Sorrentino,R.,Alioto,D.,Russo,M.,Rubino,L.,2012.Presenceoftobaccoringspot virusinAeoniumspp.J.PlantPathol.94,S4.103.
Thompson,J.D.,Higgins,D.G.,Gibson,T.J.,1994.ClustalW:improvingthe sensitiv-ityofprogressivemultiplesequencealignmentthroughsequenceweighting, position-specificgappenaltiesandweightmatrixchoice.NucleicAcidsRes.22, 4673–4680.
Tomitaka,Y.,Usugi,T.,Yasuda,F.,Okayama,H.,Tsuda,S.,2011.Anovelmemberof thegenusNepovirusisolatedfromCucumismeloinJapan.Phytopathology101, 316–322.
Wetzel,T.,Meunier,L.,Jaeger,U.,Reustle,G.M.,Krczal,G.,2001.Completenucleotide sequencesoftheRNAs2ofGermanisolatesgrapevinefanleafandArabismosaic nepoviruses.VirusRes.75,139–145.
Wetzel,T.,Fuchs,M.,Bobko,M.,Krczal,G.,2002.Sizeandsequencevariabilityofthe Arabismosaicvirusprotein2A.Arch.Virol.147,1643–1653.
Wetzel,T.,Chislom,J.,Bassler,A.,Sanfac¸on,H.,2008.Characterizationofproteinase cleavagesitesintheN-terminalregionoftheRNA1-encodedpolyproteinfrom arabismosaicvirus(subgroupAnepovirus).Virology375,159–169.
Zalloua,P.A.,Buzayan,J.M.,Bruening,G.,1996.Chemicalcleavageof5′-linked
pro-teinfromtobaccoringspotvirusgenomicRNAsandcharacterizationofthe protein-RNAlinkage.Virology219,1–8.