• Non ci sono risultati.

Dating of ancient kilns: A combined archaeomagnetic and thermoluminescence analysis applied to a brick workshop at Kato Achaia, Greece

N/A
N/A
Protected

Academic year: 2021

Condividi "Dating of ancient kilns: A combined archaeomagnetic and thermoluminescence analysis applied to a brick workshop at Kato Achaia, Greece"

Copied!
12
0
0

Testo completo

(1)

Available

online

at

ScienceDirect

www.sciencedirect.com

Original

article

Dating

of

ancient

kilns:

A

combined

archaeomagnetic

and

thermoluminescence

analysis

applied

to

a

brick

workshop

at

Kato

Achaia,

Greece

Evdokia

Tema

a,∗,b

,

Georgios

Polymeris

c

,

Juan

Morales

d

,

Avto

Goguitchaichvili

d

,

Vassiliki

Tsaknaki

e

aDipartimentodiScienzedellaTerra,UniversitàdegliStudidiTorino,viaValperga35,10125Torino,Italy bALP-AlpineLaboratoryofPalaeomagnetism,viaG.U.LuigiMassa6,12016Peveragno,Italy

cInstituteofNuclearSciences,AnkaraUniversity,TandoganCampus,06100Ankara,Turkey

dLaboratorioInterinstitucionaldeMagnetismoNatural,InstitutodeGeofisica,UNAM,CampusMorelia,Michoacan,Mexico e6thEphorateofPrehistoricandClassicalAntiquities,197,Alex.YpsilantouStreet,26110Patra,Greece

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received6May2014 Accepted29September2014 Availableonline7November2014

Keywords: Dating Archaeomagnetism Thermoluminescence Bricks Secularvariation

a

b

s

t

r

a

c

t

Wepresentherethe resultsofadetailed archaeomagneticand thermoluminescenceinvestigation performedonbricksfromtwoancientkilnsexcavatedatKatoAchaia,Greece.Magneticmineralogy mea-surementshavebeencarriedouttodeterminethemainmagneticcarrierofthesamples.Thedirectionsof thecharacteristicremanentmagnetizationofeachstructurehavebeenobtainedfromstandardthermal demagnetisationproceduresandtheabsolutearchaeointensityhasbeendeterminedwiththeThellier modifiedbyCoemethod,accompaniedbyregularpartialthermoremanentmagnetization(pTRM)checks. Thefullgeomagneticfieldvectorwasusedforthearchaeomagneticdatingofthetwokilns,after compar-isonwiththereferencesecularvariationcurvescalculateddirectlyatthesiteofKatoAchaia.Independent datinghasalsobeenobtainedfromthermoluminescence(TL)analysisonfourbricksamplesfromeach kiln.Thedatingresultsobtainedfromthetwomethodshavebeencomparedandthelastfiringofeach kilnhasbeenestimatedfromthecombinationofthetwotechniques.Usingtheindependentdateoffered byTLdating,thenewarchaeomagneticdatahavebeencomparedwithotherdatafromthesametime periodandtheycanfurtherbeusedasreferencepointstoenrichourknowledgeaboutthepastsecular variationoftheEarth’smagneticfieldinGreece.

©2014ElsevierMassonSAS.Allrightsreserved.

1. Introduction

Datingof archaeological remains is essential in archaeologi-calresearch,inordertoplaceinchronologicalorderfindingsand civilizations.Inscribedobjects sometimesbear an explicitdate, orpreserve thename of a knownindividual (e.g.a kingor an emperor). However, this is not always the case and often the contributionof a scientific dating technique is necessary. Dur-ingthelastdecades,severaldatingmethodssuchasradiocarbon dating,obsidianhydration, dendrochronology, potassium-argon, archaeomagneticandluminescencedatinghavebeenincreasingly usedinarchaeology.Eachoneofthesedatingtechniqueshowever

∗ Correspondingauthor.Tel.:+00390116708395;fax:+00390116708398. E-mailaddresses:evdokia.tema@unito.it(E.Tema),polymers@auth.gr

(G.Polymeris),jmorales@geofisica.unam.mx(J.Morales),avto@geofisica.unam.mx

(A.Goguitchaichvili),vtsaknaki@gmail.com(V.Tsaknaki).

has its own advantages and limitations, mostly related to the availabilityof appropriatematerial,thetype andcharacteristics of the studied samples, their preservation conditions and the chronologicalperiod. For this reason, when possible, the com-binationof more datingtechniques togetherwiththeavailable archaeologicalevidencemayofferthebestapproachfor obtain-ingamoreprecisechronologicalframeworkforanarchaeological site.

Archaeomagnetic dating is based on the principle that the magneticmineralscontainedin manybakedclayarchaeological artefacts(e.g.,kilns,hearths,bricks,pottery),whenheatedathigh temperaturesandcooledinthepresenceoftheEarth’smagnetic field,mayacquireathermalremanentmagnetization(TRM)with directionparallelandmagnitudeproportionaltotheambient mag-netic field. For the regions where a detailed reference secular variation(SV)curveisavailable,archaeomagneticdatingis possi-bleafterthecomparisonoftheremanentmagnetizationmeasured ontheundisturbedarchaeologicalartefactswiththereferenceSV

http://dx.doi.org/10.1016/j.culher.2014.09.013

(2)

Fig.1. a:Generalviewofthestudiedkilns;b,c:kilnsKL3andKL5;d,e:locationofthecollectedbricksamplesrespectively.

curve.Duringlastdecades,importantprogressonarchaeomagnetic datinghasbeendoneandithasbeensuccessfullyappliedinseveral casestudiesintheMediterraneanarea,mainlyinvolvingthestudy ofthedirectionofthegeomagneticfieldvector(e.g.[1–7]).

Inananalogousway,luminescencedatingisbasedonthefact thatnaturally-occurringmineralslikequartzandfeldsparsactas naturaldosimetersandpreservearecordofirradiationdose,i.e. energy perunit mass,receivedthrough time. Thisdose results mainlyfromthedecayofnaturalradionuclides,i.e.,232Th,40Kand naturalU,alongwithcosmicrays,whichprovideaconstantsource oflow-levelionizingradiation.Theaccumulateddoseisstoredby meansoftrappedchargeincrystaldefects,whichisstableoverlong periodsoftimebutcanbereleasedeitherbyheatingorexposingthe crystaltolight.Thisreleasecantakeplaceaccidentallyinanatural wayoralternativelyartificially,atthelaboratory,givingthusrise tothermoluminescence(TL)andopticallystimulatedluminescence (OSL)respectively[8–10].Thebrightnessoftheluminescence sig-nalreflectstheamountoftrappedcharge.Consequently,itisalso proportionaltothetotalirradiationdoseaccumulatedandthusto thetotalage.Thenumberoftrappedelectronsisincreasingaslong asthematerialisirradiated.However,everytimethatthematerial issubjectedtoprolongedheating(asinthecaseoffiringpottery) orintenselightexposure(asinthecaseofsunlight),electronsare evictedand trapsareemptied.Inthat case,thesignalistotally zeroed.Then,energystartstoaccumulateintheformoftrapped electronsinordertorefilltheemptytrapsonceagain.Thetotal numberoftrappedelectronsformsa luminescent“clock”which startsmeasuringfromthebeginning(t=0)everytimethatthese trapsarezeroed.Therefore,light-exposedmaterialscouldbedated totheirlastexposuretolight,whileburntmaterialstotheirlast heating.KilnsbelongtothelattercaseandTLcaneffectivelydate theirlastuse.

Archaeomagnetic and TL dating techniques share the same rationale,datingexactlythesameeventthatisthelastheatingof bakedclayartefacts.Therefore,simultaneousapplicationofboth techniquestothesamearchaeological materials,suchasbricks fromkilns,yieldstheimportantadvantageofcrosscheckingages. Eventhoughtheircombinationcanofferapowerfultoolfordating ofarchaeologicalartefactsduringHolocene,uptonowsuch com-binedstudiesareextremely limited[6,11–13].Wepresent here theresultsofadetailedarchaeomagneticandTLinvestigation per-formedonbrickscollectedfromthestructureoftwoancientkilns excavatedatKatoAchaia,Greece.Thedatingresultsobtainedfrom thetwomethodshavebeencomparedandthelastfiringofeach kilnhasbeenestimatedfromthecombinationof thetwo tech-niques.UsingtheindependentdateofferedbyTLdating,thenew archaeomagneticdatacanbefurtherusedasreferencepointsatthe constructionofthesecularvariationoftheEarth’smagneticfield inthepast.

2. Archaeologicalsiteandsampling

The studiedkilns werediscovered during theworks for the establishmentofthefundamentalsofanewbuildinginthecorner ofParodosAg.IoannouandPapaflessa,KatoAchaia,andarepart oftheextensiveceramicworkshopfoundinthewestpartofthe ancientcityofDyme,situatedatthesamewideplateauofthe mod-erncityofKatoAchaia(38.15oN,21.55oE),Peloponnese,Southern Greece.Thearchaeologicalresearchinthisplotrevealedacluster ofceramickilnsofvariousdimensionswithadditionsand modi-ficationswhichdenotethetimeframeoffunctionandactivityof theworkshopduringthewholeHellenisticperiod.Forthepresent study,twocircularkilnsweresampled,namedKL3andKL5(Fig.1).

(3)

Fig.2.a:IRMacquisitioncurvesforrepresentativesamplesfromKL3(left)andKL5(right)kiln;b:StepwisethermaldemagnetizationofthreeIRMcomponentsfor representativesamplesfrombothstudiedkilns.Symbols:diamond=Soft-(0.1T);triangle=Medium-(0.5T);square=Hard-(1.6T)coercivitycomponent.

KL3issituatedontheN-Saxisandduringitsoriginal construc-tionit wascircular,and internallycovered bya claylayer.The centralheatingchamberis4minexternaldiameter,witha surviv-ingheightofaround1.35–1.50m.Theentranceofthekilnislocated atthenorthandbearstheformofapointedarch,1.48mheight and0.27–0.72mwide(Fig.1b).Duringthesecondphaseofitsuse, theorientationoftheKL3kilnwaschanged.Thecentral mouth-openinginthenorthwasblocked,andanewonewasopenedon thewestside,1.54mheightand0.56mwide.Furthermore,a0.50m widewallmadeof bricks, tilesand soilwasconstructedinside theareaoftheheatingchamberthuslimiting itsdimensionsto 2.30–2.50m.Consequently,anewchamberwithdifferentcapacity wascreated.Theinternaloftheheatingchamberbearssuccessive claylayers,acommonfeatureaimedtoretainasteady tempera-tureandavoidheatdispersal.Cutsontheupperpartofthecircular wallgiveevidenceoftheexistenceofthesupportsofthebaking floor(eschara).KL5issituatedatasmalldistanceandatthe east-ernsideoftheKL3kiln(Fig.1).ItsconstructionissimilartoKL3 witha2mexternaldiameteranda0.70mhighcentral cylindri-calsupportgraduallywideningontheupperpart(Fig.1c).Both KL3andKL5kilnswereprobablyconstructedatthesameperiod andwerecontemporaneouslyusedforalongperiodoftime,afact whichbecomesevidentnotonlybythepotteryfoundinsidebut alsobythefunctionalitydenotedbythecommonorientationofthe mouth-fireentrancesofthetwokilns.Afirstoverviewofthe pot-teryproductsofthetwokilnssuchasfragmentsoftiles,bricks,clay masses,toxylia,andthepotterydepositwestofthefireentrance, datetheabandonmentofthekilnsnotearlierthantheendofthe firstcenturyBC.Morespecifically,andwithreferencetothepottery recoveredfromthekilnsandfromthevicinityareathefollowing

maybededuced.Theexistenceofseveralshapesofcoarseware inpercentage90%comparedtofinewarewithred–blackslipor blackslip,denotedthattheproductionwasconcentratedmostlyin everydayusepots,ratherthaninmoreexpensivefineones.InKL3 twopieceswithcountingmarkswerealsoidentified,acommon practiceforpotters,enablingthemtokeeptrackoftheorders.The majorityofthematerialfounddatesthesitetothemiddleandlate Hellenisticperiod.

Systematic archaeomagnetic sampling was carried out col-lecting 9 brick samples from the first kiln (KL3) and 12 brick samplesfromthesecond kiln(KL5).Allbricksamplescollected werepartofthemainstructureofthekilnsandwereorientedinsitu usinga magneticanda solarcompass. Mostofthebrickswere positionedhorizontallyin thekilns’walls andthecentralpillar (Fig.1d,e).Fromeachindependentlyorientedsample,onetothree cylindricalspecimensofstandarddimensions(diameter=25.4mm, height=22mm)weredrilledinthelaboratory.Fourbricksamples fromeachkilnhavealsobeencollectedforthermoluminescence analysis.

3. Archaeomagneticanalysis

3.1. Magneticmineralogy

Rock-magnetic measurements were carried out on several representativesamplesfrombothkilnsattheALP-Alpine Palaeo-magnetic Laboratory (Peveragno, Italy). Isothermal remanent magnetization(IRM)acquisitioncurveswereobtainedby apply-ingstepwiseincreasingmagneticfieldsupto1.2T,withanASC pulsemagnetizerandthemagneticremanencewasmeasuredwith

(4)

Fig.3.ResultsofstepwisethermaldemagnetizationofrepresentativesamplesrepresentedasZijdervelddiagrams:kilnKL3(upperpart)andKL5(lowerpart).Symbols:full dots=declination;opendots=apparentinclination.ResultshavebeenillustratedandelaboratedusingtheRemasoftsoftware[17].

aJR6spinnermagnetometer(AGICO).Stepwisethermal demag-netisationofacompositethreeaxesIRMwasalsoperformedafter applyingfirstamaximumfield(1.6T)alongthecylinder–axis(Z), thenan intermediatefield (0.5T)along theY-axis andfinally a minimumfield(0.1T)alongtheX-axis.

The IRM curves obtainedfrom different samples from both kilnsindicatethatthesaturationofthemagnetizationis gener-allyreachedatlowfieldsvaryingfrom0.2to0.4T,indicatingthe presenceofalow-coercivitymineralsuchasmagnetiteand/or Ti-magnetite(Fig.2a).Insomesamples(mainlyfromKL5 kilne.g., KL5-4andKL5-6), saturationisnot completelyreachedat1.2T showingthatasmallamountofa high-coercivitymineral,most probablyhematite,mayalsobepresent.Theseresultsarealso con-firmed bythe thermal demagnetisationexperiments of a three componentIRM[14].Theobtaineddemagnetisationcurves(Fig.2b) showthedominanceofthemagneticallysoftfraction(<0.1T)while themediumandhigh-coercivitycomponentsaregenerallyvery small.TheseresultspointtomagnetiteorTi-magnetiteasthemain magneticcarrierinthestudiedsamples,withpossiblysomesmall contentofhematiteinsomecases.

3.2. Archaeomagneticdirection

Thenaturalremanentmagnetization(NRM)ofallspecimens wasmeasuredattheALPlaboratorywithaJR-6spinner magne-tometer.Onetothreespecimensfromeachsample,accordingtothe materialavailability,havebeenstepwisethermallydemagnetized upto560◦C usinga TSD-2Schonstedt furnace.The demagneti-zationresultsareillustratedasorthogonalvectorprojectionsof theremanentmagnetization(Zijderveldplots)(Fig.3).Zijderveld

diagramsshowthatthemagneticremanenceisverystableandit consistsofonewell-definedcharacteristicremanent magnetiza-tion(ChRM).Insomesamples(mainlyfromKL3kiln)asecondary viscouscomponentisalsovisiblebutitiseasilyremovedduring thermaldemagnetization.

The direction of the ChRM has been obtained from princi-palcomponentanalysis[15,16]usingtheRemasoftsoftware[17]. Directionscalculatedatspecimenlevelarewelldefinedwith max-imumangulardeviation(MAD)anglesgenerallylessthat3o(with onlyexceptionsspecimensKL3-3a,KL5-1bandKL5-8a).Allresults atspecimenlevelfromkilnKL3andKL5arereportedinTable1. Mean directions for each sample were calculated according to Fisherstatistics[18]andarereportedinTable1togetherwiththe meanarchaeomagneticdirectioncalculatedforeachkiln. Equal-areaprojectionsof theChRM directionsatsample level(Fig.4) showaverygoodconcentrationaroundthemeanvalue.The cal-culatedmeandirectionforkilnKL3is:D=353.0o,I=56.6o,k=245, ␣95=3.6oandforkilnKL5is:D=350.4o,I=57.7o,k=219,␣95=3.5o. Theverysimilardirectionsobtainedforthetwokilns(statistically indistinguishable)suggestthatthetwokilnswereinuse contem-poraneouslyandwereabandonedatthesametimeperiod.These resultshavebeenpreviouslypresentedby[19]andarehere com-plementedbythearchaeointensitydetermination.

3.3. Archaeointensitydetermination

Archaeointensitydeterminationshavebeencarriedoutatthe LIMNA palaeomagnetic laboratory of UNAM (Campus Morelia, Mexico) withtheclassical Thelliermethod[20] asmodified by Coe[21,22].Onetofourcubicspecimens ofsimilardimensions

(5)

Table1

Archaeomagneticdirectionalresults.

Specimen Temperaturerange(◦C) D(o) I(o) MAD Samplemean

D(o) I(o) KilnKL3 KL3-1a 400–560 348.8 58.6 1.8 KL3-1b 400–560 350.2 56.5 1.8 KL3-1c 280–560 351.9 58.0 1.9 350.3 57.7 KL3-2a 220–480 1.6 52.3 1.1 KL3-2b 220–480 347.7 55.6 2.0 KL3-2c 220–480 343.7 55.9 1.0 351.3 54.9 KL3-3a 320–480 5.8 51.7 6.5 KL3-3b 160–520 337.2 55.3 1.4 352.1 54.4 KL3-4a 280–480 347.7 56.7 1.2 KL3-4b 280–520 351.7 54.0 1.5 349.8 55.4 KL3-6a 400–560 343.3 57.8 0.7 KL3-6b 220–560 340.6 55.2 1.2 341.9 56.5 KL3-7a 220–560 355.9 52.8 1.3 KL3-7b 160–520 350.4 53.4 1.8 KL3-7c 220–560 349.9 50.6 1.2 352.0 52.3 KL3-8a 100–520 340.0 60.8 1.1 KL3-8b 280–520 5.4 56.6 1.6 KL3-8c 280–520 11.4 55.5 1.3 359.9 58.3 KL3-9a 400–520 3.3 61.5 0.6 KL3-9c 220–520 16.1 61.6 1.4 9.69 61.7 Meanvalue N=8 n=20 Dm=353.0o Im=56.6o K=245 ␣95=3.6o KilnKL5 KL5-1a 200–500 351.7 56.0 2.0 KL5-1b 200–500 343.8 56.2 3.6 347.8 56.2 KL5-2a 200–500 347.4 54.8 1.3 KL5-2b 140–500 354.0 52.8 1.1 350.8 53.8 KL5-3a 140–500 358.9 53.8 2.1 KL5-3b 140–500 0.5 54.7 2.9 359.7 54.3 KL5-4a 140–500 356.9 64.9 3.0 356.9 64.9 KL5-5a 140–500 342.3 61.5 1.6 KL5-5b 80–500 348.1 59.0 2.5 345.3 60.3 KL5-7b 200–500 341.1 52.9 1.8 341.1 52.9 KL5-8a 300–500 348.1 59.0 4.3 KL5-8b 200–500 356.1 56.0 3.0 352.3 57.6 KL5-10a 140–500 0.1 60.2 1.8 0.1 60.2 KL5-11a 140–500 342.6 57.3 1.9 KL5-11b 140–500 340.4 57.1 2.9 341.4 57.2 Meanvalue N=9 n=15 Dm=350.4o Im=57.7o k=219 ␣95=3.5o

Columns:specimen;TemperatureintervalusedforthecalculationofthedirectionoftheChRMatspecimenlevel;Declination(o);Inclination(o);MAD:MaximumAngular

Deviation;MeanD(o)andI(o)calculatedatsamplelevel;Meanvalueforeachkiln:N=numberofindependentlyorientedsamples;n=numberofspecimens;D

m=mean

declination;Im=meaninclination;k=precisionparameter;␣95=95%semi-angleofconfidence.

(∼10mmlength)werecut inthelaboratoryfromeach sample, usingtheremainingmaterialofthedrilledcylindricalsamples, pre-viouslyusedfordirectionalanalysis.Atotalof16specimensfrom kilnKL3 and26fromkilnKL5 havebeenpreparedandstudied. AllspecimenswereheatedandcooledinaASCScientificTD48-SC furnaceandtheremanencewasmeasuredwithaJR6spinner mag-netometer.Heating/coolingcycleswereperformedinair.Fourteen temperaturestepsweredistributedfrom25◦Cto490◦C.Adirect laboratoryfieldof65.0±0.05␮Twasappliedduringheatingand

coolingofthedifferentspecimens.TwopTRMcheckswere per-formedinordertodetectpossiblechangesinthepTRMacquisition capacity.Additionally,apTRMtailcheck[23]wasperformedata temperatureof350◦C.CoolingratedependenceofTRMwas inves-tigatedfollowingaproceduresimilartothatdescribedby[24].At theendofthearchaeointensityexperiments,allspecimenswere heatedthreemoretimesat490◦Cinthepresenceofthesame lab-oratoryfieldusedduringthearchaeointensitydetermination.The firsttime,anewTRM(TRM1)wasgiveninthesameconditionsas

(6)

N 90 180 270 N 90 180 270 Down Up

Kiln KL3

Kiln KL5

N 90 180 270 N 90 180 270 Down Up N 90 180 270 N 90 180 270 Down Up

Kiln KL3

Kiln KL5

Fig.4.EqualareaprojectionoftheChRMdirectionsatsamplelevelforkilnKL3(up) andKL5(down).

thatgainedduringthelaststepoftheThellierexperiment,using ashortcoolingtimeofaround45min.ThenasecondTRM(TRM2) wasgivenwithalongercoolingtime(∼6h)andfinallyathirdTRM (TRM3)wascreatedusingthesameshortcoolingtimeasthatused duringtheTRM1(approximately45min).Thecoolingrate correc-tionfactorswerecalculatedasthevariationbetweentheintensity acquiredduringashortandalongcoolingtime[24].Thecooling ratecorrectionwasappliedonlywhenthecorrespondingchange inTRMacquisitioncapacitywasbelow15%.

Theobtainedresults,interpretedusingNRM–TRMplots(Fig.5), arereportedinTable2togetherwiththestatisticalparameters calculated according to [22]. To be considered as trustworthy estimationsoftheancientfield,archaeointensitydeterminations obtainedinthisstudyhadtofulfillthefollowingacceptancecriteria

[25]:

• directionsofnaturalremanentmagnetization(NRM)end-points ateachstepobtainedfromarchaeointensityexperimentshaveto fallalongastraightline,trendingtowardtheoriginintheinterval chosenforarchaeointensitydetermination;

• nosignificantdeviationofNRMdirectionstowardstheapplied field direction should be observed, as revealed in vector (Zijderveld)plots;

• anumberofalignedpoints(N)ontheNRM-pTRMdiagram≥9; • NRMfractionfactor(f,[22])≥0.5.Thismeansthatatleast50per

centoftheinitialNRMwasusedforarchaeointensity determina-tion;

• aqualityfactorq=(f×g)/␤[22]≥5(generallyabove10,Table2); gisthegapfactor[22]and␤therelativestandarddeviationof theslope;

• archaeointensity results obtained from NRM-pTRM diagrams mustnotshowanevidentconcaveupshape,sinceinsuchcases remanenceisprobablyassociatedwiththepresenceofMDgrains

[26,27];

• positivepTRMchecks,i.e.,thedeviationof“pTRM”checksshould belessthan15%.

Average cooling rate correction factors close to 0.98 were applied to raw archaeointensity data. Evaluation of pTRM-tail checkswasinmostcaseslowerthan2%.Althoughindividual inten-sitydeterminationsobtainedrangefrom53.2to74.5␮T forthe kilnKL3andfrom54.9to73.4␮TforkilnKL5,correspondingmean valueperkilnaresimilar:61.3±6.0␮Tand62.4±5.2␮T, respec-tively.

3.4. Archaeomagneticdating

Thefullgeomagneticfieldvector(declination,inclinationand intensity)obtainedforeach kilnhasbeenusedforthe archaeo-magneticdatingofthetwostructuresaftercomparisonwiththe referencesecularvariationcurvescalculatedfromtheSCHA.DIF.3K model[28].TheSCHA.DIF.3Kisaregionalarchaeomagneticmodel thatrepresentsthegeomagneticfieldvariationsinEuropeforthe last3000yearsmodelingtogetherthethreegeomagneticfield ele-ments.It is based onreferencedata comingfrominstrumental measurementsforthelast400yearsandondatafrom archaeo-logicalmaterialforoldertimes.For the400BC-500ADperiods, thedirectionalcurveobtainedfromtheSCHA.DIF.3Kmodelis sta-tisticallythesamewiththeGreekSVcurvecalculatedusingthe Bayesianstatistics[7].Forthisreason,bothcurvesshouldgivethe samedatingresults.Inthisstudy,theSCHA.DIF.3Kmodel refer-encecurvewasusedbecause,inrespecttothelocalSVcurves, itpresentstheadvantagethatpredictsthegeomagneticfieldat the site of interest, avoiding this way any eventual relocation error.

ArchaeomagneticdatingoftheKL3andKL5kilnshasbeen car-riedoutusingtheMatlabarchaeodatingtool[29].ReferenceSV curveshavebeendirectlycalculatedatthegeographiccoordinates ofKatoAchaiaandhavebeenusedforthecalculationof proba-bilitydensityfunctionsseparatelyfordeclination,inclinationand intensity.Thefinaldating ofthetwokilns isobtainedafterthe combination oftheseparatedensityfunctions(Fig.6).For each kilnseveralpossibledatingintervalsoccur.However,takinginto accountthearchaeologicalcontextofthesiteandthe archaeolog-icalfindingsthatproposeaHellenisticage,itissuggestedthatthe lastuseofthekilnsKL3andKL5occurredinthetimeintervals97 BC-133ADand85BC-37ADrespectively,calculatedat95%of probability.

4. Thermoluminescenceanalysis

4.1. Experimentalprocedure

ForTL dating,twodifferentphysicalquantitiesarerequired; thetotalaccumulateddoseduringthepast,termedaspalaeodose orequivalentdose(expressedinunitsofGy),aswellastherate at which this energy-doseis accumulated, termedas doserate (expressedinunitsofGy/yr).Theratioofthesetwoquantities,i.e. thepalaeodose(DE)overthedose-rate(DR),representstheageof thesample.Atotalofeightbricksamples,fourfromeachkiln,were subjectedtoTLdating. Treatmentand preparationwere under-takeninsubduedredfilteredlightconditions.Analmost0.5cm

(7)

Fig.5.RepresentativeexamplesofNRM–TRMdiagramsandassociatedZijderveldplotsfromsuccessfularchaeointensityexperiments.

thick,outerlayerwasremovedfromeachsampleinthelaboratory toeliminatethelight-subjectedportions.Thechemicalprocedure described by [30] was applied for sample preparation. Finally, grainswithdimensionsintherange4–12␮mwereextracted, sus-pendedin acetone and finally precipitatedonto 1cm diameter aluminiumdiscs[31].

For the equivalent dose estimation, the multiple aliquot, additivedoseprocedure (MAAD) in TL wasapplied; a detailed descriptionoftheprocedurecanbefoundin[8,9,32](foranoutline, readerscouldalsoreferto[33]).AllTLmeasurementswerecarried outusingaRisøTL/OSLreader(modelTL/OSLDA-15),equipped witha90Sr/90Ybetaparticlesource,deliveringanominaldoserate of0.071Gy/s.A9635QAphotomultipliertubewasusedforlight detection.The detectionoptics consistedof a combination of a PilkingtonHA-3heatabsorbingandaCorning7–59(320–440nm) bluefilter. AllTL measurements wereperformed in a nitrogen atmospherewithalowconstantheatingrateof1 оC/s,inorder toavoid significanttemperature lag,up tothemaximum tem-peratureof 500 оC.The additivedoses appliedwere7, 15 and 22Gy.

Thedoserateiscalculatedbasedonthedecayofnaturally occur-ringradionuclidesinsidetheclaymatrix,i.e.,40K,232Thandnatural U,alongwithcosmicrays,whichprovideaconstantsourceof low-levelionizing radiation.The lattertwo weremeasuredin units ofpartpermillion(ppm)usingthicksourcealphacounting[34], while40Kcouldbeestimated byScanning ElectronMicroscopy (SEM,[35]).Dose-ratecalculationsweremadeusingtheconversion factorsof[36].

4.2. DEestimation

NaturalTLglowcurvesforallsamplesexhibitthesamemain characteristics, namely a glow curve that has the form of a

continuumwith two prominentoverlapping TLpeaks centered around275and350◦C(Fig.7).Eachglowcurveisthemeanvalue ofthreeindependentlymeasuredglowcurves.Equivalentdoses werecalculatedwith1␴errorvalues;atypicalplotofDEagainst glowcurvetemperatureispresentedinFig.8.Errorsderivedmainly fromtheuncertaintiesincurvefitting,are±1␴andwere calcu-latedbystandarderrorpropagationanalysis[37].Inallcases,DE plateausarewideenough,over90◦Cwide.Theequivalentdoses wereobtainedasthemeanvalues ofthebestplateaus foreach sample.Onlylinearfittingswereperformedtothedoseresponse curves.Thislinearitywasstronglyestablished.IntheinsetAof

Fig.8representative exampleofadditivebuild-upcurveisalso presentedasfilledsquaresforthetemperaturecorrespondingto thetemperatureinthemiddleoftheplateaurange,alongwiththe correspondinglinearfit.Thisinsetfigurestronglysupportsthe lin-earitymonitoredforthecaseofthedoseresponse.In thesame figure,insetBpresentsthecorrespondingsecondglowTL dose responsecurveafterapplyinglowdoses,indicatingthepresence ofsupra-linearityinthelow-doseregion[31].Thecorresponding supra-linearitycorrectionwasestimatedastheinterceptofthe lin-earpartofthesecondglowTLwiththedoseaxis;supra-linearity correction,I,equalstozeroifthisinterceptionpassesfromthe ori-ginoftheaxis.ThevaluesofIarethenplottedversustemperature andameanvalueisyieldedinthesametemperatureregionwhere theplateauismonitored[38].AsummaryoftheTLdatingdatais providedinTable3.InthecaseofkilnKL5,whichyielded supra-linearity,thecorrespondingindexIwasaddedtotheequivalent dosevalue,applyingthiswayaformoftheslidemethod.

Finally,since samples areexpected tocontainfeldspars,the anomalousfadingwasalsoestimated.For thepresentstudythe procedurepreviouslyappliedby [6]wasadopted; howeverthe doseappliedherewassimilartotheequivalentdoseofeachkiln whilethestoragetimewasthreemonths.Noanomalousfadingwas

(8)

Table2

Archaeointensityresults.

Specimen N Tmin-Tmax(◦C) m sigma f g q H(␮T) ␴(␮T) Hcr(␮T)

KilnKL3 KL3-1a 10 20–490 −1.036 0.080 0.529 0.797 5.3 67.3 5.2 66.5 KL3-1b 11 20–490 −0.965 0.026 0.596 0.857 19.6 62.7 1.7 62.8 KL3-1c 9 20–490 −1.014 0.049 0.630 0.782 10.1 65.9 3.2 61.0 KL3-2a 11 20–490 −0.891 0.028 0.932 0.766 25.5 57.9 1.8 56.4 KL3-2b 12 20–490 −0.885 0.038 0.896 0.875 20.6 57.5 2.5 55.9 KL3-3a 9 20–490 −0.936 0.022 0.888 0.492 19.9 60.8 1.4 60.5 KL3-3b 11 20–490 −0.925 0.031 0.885 0.694 19.8 60.1 2.0 59.9 KL3-3c 11 20–490 −0.866 0.036 0.837 0.758 17.6 56.3 2.3 55.5 KL3-4a 10 20–490 −0.828 0.034 0.703 0.863 17.8 53.8 2.2 53.2 KL3-4b 10 20–490 −0.861 0.066 0.657 0.851 8.5 56.0 4.3 – KL3-4c 10 20–490 −0.823 0.038 0.674 0.831 14.7 53.5 2.5 – KL3-6a Rejected KL3-6b Rejected KL3-8a 9 20–490 −0.980 0.044 0.704 0.771 12.3 63.7 2.9 62.7 KL3-8b 10 20–490 −1.061 0.062 0.690 0.788 8.8 69.0 4.0 67.0 KL3-8c 9 20–490 −1.155 0.028 0.699 0.762 19.0 75.1 1.8 74.5 Meanvalue Hm=61.4±6.3 Hm CR=61.3±6.0 KilnKL5 KL5-1a Rejected KL5-1b Rejected KL5-2a 5 20–425 −0.720 0.024 0.738 0.656 20.2 46.8 1.6 – KL5-2b Rejected KL5-3 8 20–490 −0.961 0.063 0.651 0.554 5.7 62.5 4.1 61.8 KL5-4a 10 20–490 −1.006 0.130 0.727 0.789 4.4 65.4 8.5 – KL5-4b 9 20–490 −0.800 0.065 0.908 0.582 8.1 52.0 4.2 – KL5-6a 11 20–490 −0.851 0.055 0.962 0.790 13.8 55.3 3.6 54.9 KL5-6b 11 20–490 −0.991 0.058 0.683 0.855 10.1 64.4 3.8 62.0 KL5-6c 10 20–490 −1.156 0.043 0.736 0.852 14.6 75.1 2.8 73.4 KL5-6d 5 20–400 −0.853 0.017 0.690 0.591 24.0 55.4 1.1 – KL5-7 10 20–490 −0.926 0.027 0.802 0.864 25.7 60.2 1.8 59.3 KL5-8a 10 20–490 −1.016 0.027 0.675 0.855 21.4 66.0 1.8 – KL5-8b 8 20–490 −1.050 0.023 0.669 0.816 23.7 68.3 1.5 – KL5-9a 9 20–490 −0.890 0.052 0.557 0.863 9.2 57.9 3.4 57.8 KL5-9b 9 20–490 −1.060 0.013 0.841 0.855 55.3 68.9 0.8 67.6 KL5-11a 9 20–490 −1.014 0.016 0.897 0.835 46.8 65.9 1.0 65.1 KL5-11b 8 20–490 −1.004 0.027 0.772 0.846 24.2 65.3 1.8 63.9 KL5-12a 6 20–425 −0.711 0.030 0.865 0.722 20.8 46.2 2.0 – KL5-12b 6 20–425 −0.703 0.017 0.853 0.720 36.1 45.7 1.1 – KL5-13a 5 20–425 −0.730 0.043 0.804 0.698 13.1 47.5 2.8 – KL5-13b 5 20–400 −0.766 0.031 0.671 0.747 16.2 49.8 2.0 – KL5-14a 9 20–490 −0.890 0.115 0.682 0.360 2.1 57.9 7.5 57.5 KL5-14b 9 20–490 −0.974 0.028 0.758 0.780 21.1 63.3 1.8 63.0 KL5-15a Rejected KL5-15b Rejected Meanvalue Hm=63.6±5.9 Hm CR=62.4±5.2

Columns:Specimen;N:thenumberofheatingstepsusedfortheintensitydetermination;Tmin–Tmax:minimumandmaximumtemperaturesusedfortheintensity

determination;m:slopeofthebestfit;sigma:standarddeviationofm;f:thefractionofNRMusedforintensitydetermination;g:thegapfactor;q:thequalityfactoras

definedbyCoeetal.(1978)[22];H:Archaeointensitybeforeanycorrection;␴:standarddeviationofH;Hcr:Archaeointensityaftercoolingratecorrection.Themeanvalues

foreachkilnhavebeencalculatedonlyfromspecimensthathavepassedallselectioncriteria(seetextformoreexplanation).

detected.Similarsignalswithoutanomalousfadingformaterials includingfeldsparswerealsoreportedintheliteratureby[39]and

[40].Thislackofanomalousfadinginconjunctionwiththeglow curveprominentpeaks,typicalofquartz,suggeststhedominant presenceofquartzinthestudiedmaterial.

4.3. Doserateassessment

Thedoseratewasassumed tobemainlyderived from natu-ralradioactivityinthekiln.Theannualdosecanbecalculatedas thesumofcontributionstothedosefromalpha,betaandgamma

Table3

AsummaryoftheTLdatingdata,thecontentofnaturalradio-nuclidesaswellastheexperimentallyobtainedagesforeachindividualkilnfragment.Eachvalueisaccompanied bythecorrespondingerrorinsideparenthesis.

Sample DE(Gy) PlateauT(◦C) I(Gy) DE+I(Gy) U(ppm) Th(ppm) K(%) DR(Gy/ka) AgeBP(years)

KilnKL3 KL3-2 8.11(0.53) 95 – 8.11(0.53) 4.12(0.15) 6.48(0.25) 1.15(0.02) 4.102 1977(±175) KL3-4 8.93(0.62) 95 – 8.93(0.62) 4.62(0.18) 6.94(0.27) 1.21(0.03) 4.472 1997(±183) KL3-6 8.52(0.64) 90 – 8.52(0.64) 4.56(0.25) 7.12(0.22) 1.15(0.03) 4.406 1934(±199) KL3-9 8.42(0.63) 90 – 8.42(0.63) 4.53(0.19) 6.82(0.25) 1.13(0.02) 4.329 1944(±195) KilnKL5 KL5-1 5.84(0.36) 110 0.77(0.11) 6.61(0.47) 2.89(0.10) 5.68(0.19) 1.07(0.01) 3.305 1999(±179) KL5-7 6.05(0.35) 95 0.82(0.17) 6.87(0.52) 3.02(0.13) 5.58(0.18) 1.11(0.02) 3.396 2023(±201) KL5-9 5.78(0.29) 100 0.75(0.12) 6.53(0.41) 2.62(0.14) 5.46(0.22) 1.09(0.02) 3.163 2058(±187) KL5-12 5.61(0.33) 110 0.75(0.13) 6.36(0.46) 2.56(0.09) 5.72(0.17) 1.06(0.02) 3.139 2026(±189)

(9)

Fig.6.Archaeomagneticdatingresultsfor(a)KL3and(b)KL5kilns.Datingintervalshavebeencalculatedat95%ofprobabilityusingthematlabarchaeodatingtool[29].

particlesgeneratedduringradioactivedecays.Inthestudiedkilns, thecontributionofthegammaraysmainlyarisesfromthemain bodyofkiln(seesamplespositioninFig.1).Aboutonegramof untreatedclayfromeachsamplewasemployedtoperformthick

sourcealphacountingwithaZnSdetector.Themeasurementswere performedbothintheintegralandinthepaircountingmode,for thediscriminationbetweenThandU[34].It wasassumedthat Uand 232Thconcentrations wereuniformlydistributed allover

(10)

0 100 200 300 400 500 1000 10000

(c)

(d)

(b)

TL

(a.u.)

T (oC)

KL5 - 12

(a)

Fig.7. a:Naturaland(b-d)natural-plus-betadoseglowcurvesforsampleKL5-12. Theadditivedosesdeliveredwere7,15and22Gy(curvesb,candd,respectively). Reheatshavebeensubtracted.Eachglowcurveplottedistheaverageofthree indi-viduallymeasuredglowcurves.

thesample.Measurementswithdurationlongerthan5dayseach werecarriedout,accordingtothemethodologyproposedby[8]. Thesamplegavesealedoverunsealedratioof1.054,whichis con-sideredastorepresentinsignificantRnescapeunderlaboratory conditions[8].Thek-factor,i.e.theefficiencyofthealpha parti-clescomparedtobetaparticleswasadoptedtobe0.1[41].Table3

presentsalsotheoutlineofthedoserateassessmentprocedure.

4.4. TLdating

TLdatingwascalculatedseparatelyforeachoneofthefour sam-plesperkilnandtheobtainedresultsatsamplelevelareanalytically presentedinTable3.Basedontheseresults,thefinaldatinginterval foreachkilnwascalculatedasthemeanvalueofthefourstudied samples:thisis1963(±29)(±96)BPforKL3kilnand2027(±25) (±98)forKL5kiln.Eachmeanvalueisaccompaniedbytwoerrors: a)thestandarddeviationonthemeanvalue;lowvaluesindicate therepeatabilityoftheindividualagesyieldedfromeachsample ofthesamekilnandb)theerrorestimatedaccordingtoeach indi-vidualerrorvalue(around200years)accordingtostandarderror propagationanalysis[37].Takingintoconsiderationbothofthese errors,theageofthelastfiringofKL3kilnis46BC-146ADandfor KL5kiln112BC-84AD.

5. Discussion

ThebricksamplescollectedfromthetwokilnsatKatoAchaia, provedtobeverygoodrecordersof boththepastgeomagnetic fieldandtheTLsignal,suggestingthatthesetwodatingtechniques canbesuccessfullycombinedinthecaseoffiredarchaeological structures, suchas kilns. Directional and archaeointensity data havebeensuccessfullyobtainedforallstudiedsampleswithonly 7rejectedarchaeointensitydeterminations.Thefullgeomagnetic fieldvectorhasbeenusedforthearchaeomagneticdatingofthe twokilnsandtheobtainedageshavebeencomparedwiththeTL dating(Fig.9).ArchaeomagneticandTLdatingresultsareinvery goodagreementsuggestingthatbothkilnswereinuse contempo-raneously,andabandonedmostprobablyattheendofthe1stBC andthebeginningofthe1stADcentury,eventhoughtheKL3kiln couldhavebeenabandonedslightlylater.Theseresultsarealsoin verygoodagreementwiththearchaeologicalfindingsinthesite. Thisstudyshowsthatarchaeomagneticdatingbasedonthefull geomagneticfieldcangivemorepreciseresultscomparedtothe datingbasedonlyondirections[19]andcanofferaverypromising datingtoolforarchaeology,mainlyforthetimeperiodsforwhich

200

300

400

0

5

10

15

20

-15 -10 -5 0 5 10 15 20 25 0 2000 4000 6000 8000 10000 12000 14000 16000 TL (a.u.)

Additive Dose (Gy)

DE (A) 0 1 2 3 4 5 6 7 0 1000 2000 3000 4000 5000 6000

Second Glow TL (a.u.)

Regenerative Dose (Gy)

I (B)

KL5 - 12

D

E

(Gy)

T (

o

C)

Fig.8. Equivalentdoseplateauplottedversustemperaturewherethewide tem-peraturerangeoftheplateaucanbenoticed.Insets:ArepresentativeNTLplusbeta (filledsquares,insetA)andregenerated(secondglow,filleddots,insetB)plotforthe temperatureof300◦C.Thearrowsindicatetheequivalentdoseandsupra-linearity

correctionfrominsetsAandBrespectively.

adetailedreferencecurveisavailable,asforexampleHellenistic andRomanperiodsinEurope.

UsingtheindependentdatingprovidedbytheTLresults,the newarchaeomagneticdatapresentedherearecomparedwith pre-viousliteraturedatafromtheBalkanPeninsula[42].Allavailable dataforthe200BCto200ADperiodhavebeenrelocatedto Thessa-loniki(40.60oN,23.00oE)andplottedinFig.10,togetherwiththe BalkanSVcurvesandtheSCHA.DIF.3KEuropeangeomagneticfield model.Suchcomparisonshowsthatthenewdatafitverywellto theperviousliteraturedataaswellastotheavailableregionaland EuropeanSVcurves.Theyarehighqualitydataandcanbeusedas referencepointstotheGreekSVcurvescontributingtothe enrich-mentoftheGreekdataforthe1stADcentury,forwhichonlyvery fewdirectionaldataareavailable[7].

This study shows that the combination of archaeomagnetic andTLstudiescanbeaverypromisingtoolforbotharchaeology andgeomagnetism.ArchaeomagnetismandTLpresentthegreat advantagetodateexactly thesameeventthat isthelast firing ofabakedclayarchaeologicalartefactandcanthusofferprecise crosscheckeddating,particularlyimportantinthecaseofrescue excavationswherethearchaeologicalsiteusuallygetdestroyed, preventinganypossibilitytofurtherinsituinformation acquisi-tion.Atthesametime,datinginformationofferedbyTLcombined toarchaeomagneticinvestigationofthesamematerialcanbeused forreconstructingthepastgeomagneticfieldvariations.Thisisvery importantmainlyforthetimeperiodsforwhichonlyfewwelldated archaeological findingsareavailable,andthus welldated refer-encearchaeomagneticdataaremissing,e.g.themedievalperiod in Greece. We hope that this study would encourage a closer

(11)

Fig.10.Thenewdeclination(up),inclination(middle)andintensity(down)data obtainedinthisstudyplottedtogetherwithliteraturedatafromtheBalkanareafor the200BC-200ADperiodandtheBalkan(redline)andSCHA.DIF.3k(blueline)SV curves.

collaborationbetweenarchaeologists,archaeomagnetistsandTL physicianscontributingtotherescueofourculturalheritageand improvingourknowledge aboutthepastEarth’smagnetic field variationsduringHolocene.

Acknowledgements

Dr. Christina Rathosi is highly acknowledged for assistance duringthefield sampling.Threeanonymousreviewersarealso acknowledgedfortheircommentsonourmanuscript.

References

[1]N.Jordanova,M.Kovacheva,M.Kostadinova,Archaeomagneticinvestigation anddatingofNeolithicarchaeologicalsite(Kovachevo)fromBulgaria,Phys. EarthPlanet.Int.147(2004)89–102.

[2]E.Schnepp,P.Lanos,ArchaeomagneticsecularvariationinGermanyduringthe past2500years,Geophys.J.Int.163(2005)479–490.

[3]M.Gómez-Paccard,E.Beamud,Recentachievementsinarchaeomagnetic dat-ingintheIberianPeninsula:applicationtoRomanandMediaevalSpanish structures,J.Archaeol.Sci.35(2008)1389–1398.

[4]E.DeMarco,S.Spassov,D.Kondopoulou,I.Zananiri,E.Gerofoka, Archaeomag-neticstudyanddatingofaHellenisticsiteinKaterini(N.Greece),Phys.Chem. Earth33(2008)481–495.

[5]E.Tema,R.Lanza,ArcheaomagneticstudyofalimekilnatBazzano(Northern Italy),Phys.Chem.Earth33(2008)534–543.

[6]E.Tema,F.Fantino,E.Ferrara,A.LoGiudice,J.Morales,A.Goguitchaichvili,P. Camps,F.Barello,M.Gulmini,Combinedarchaeomagneticand thermolumi-nescencestudyofabrickkilnexcavatedatFontanettoPo(Vercelli,Northern Italy),J.Archaeol.Sci.40(4)(2013)2025–2035.

[7]E.DeMarco,E.Tema,Ph.Lanos,D.Kondopoulou,Anupdatedcatalogueof Greekarchaeomagneticdataandadirectionalsecularvariationcurveforthe last4500years,Stud.Geophys.Geod.58(2014)121–147,http://dx.doi.org/ 10.1007/s11200-013-0910-y.

[8]M.J.Aitken,Thermoluminescencedating,AcademicPress,London,1985.

[9]M.J.Aitken,Anintroductiontoopticaldating:thedatingofquaternary sedi-mentsbytheuseofphoton-stimulatedluminescence,OxfordUniversityPress, 1998.

[10]I.Liritzis,A.K.Singhvi,J.Feathers,G.Wagner,A.Kadereit,N.Zacharias,S.H. Li,luminescencedatinginarchaeology,anthropologyangeoarchaeology:an overview,Springer–Verlag,2013.

[11]I.Liritzis,R.Thomas,Palaeointensityandthermoluminescencemeasurements onCretankilnsfrom1300to2000BC,Nature183(1980)54–55.

[12]H.Becker,H.Y.Göksu,D.F.Regulla,Combinationofarchaeomagnetismand thermoluminescence forprecisiondating,Quaternary Sci.Rev. 13(1994) 563–567.

[13]E.Schnepp,R.Pucher,C.Goedicke,A.Manzano,U.Müller,P.Lanos, Paleo-magneticdirectionsandthermoluminescencedatingfromabreadoven-floor sequenceinLübeck(Germany):arecordof450yearsofgeomagnetic sec-ular variation,J.Geophys.Res.108(B2)(2003),http://dx.doi.org/10.1029/ 2002JB001975.

[14]W.Lowrie,Identification offerromagneticminerals inarockby coerciv-ity andunblockingtemperatureproperties,Geophys.Res.Lett.17(1990) 159–162.

[15]J.Zijderveld,ACdemagnetizationofrocks:analysisofresults,in:D.Collinson, K.Creer,S.Runcorn(Eds.),MethodsinPaleomagnetism,Elsevier,NewYork, 1967,pp.254–256.

[16]J.L.Kirschvink,Theleast-squarelineandplaneandtheanalysisof palaeomag-neticdata,Geophys.J.Astron.Soc.62(1980)699–718.

[17]M.Chadima,F.Hrouda,Remasoft3.0auser-friendlypalaeomagneticdata browserandanalyzer,TravauxGeophysiquesXXVII(2006)20–21.

[18]R.A.Fisher,Dispersiononasphere,ProceedingsofRoyalSociety,London217 (1953)295–305.

[19]E.Tema,DetailedarchaeomagneticstudyofaceramicworkshopatKatoAchaia: NewdirectionaldataandarchaeomagneticdatinginGreece,in:Proceedingsof the13thInternationalCongress,Chania,5–8September,2013,Bulletinofthe GeologicalSocietyofGreeceXLVII(2013).

[20]E.Thellier,O.Thellier,Surl’intensitéduchampmagnétiqueterrestredansle passéhistoriqueetgéologique,Ann.Geophys.15(1959)285–376.

[21]R.S. Coe, Paleointensities of the Earth’s magnetic field determined from tertiary and quaternary rocks, J. Geophys. Res. 72 (12) (1967) 3247–3262.

[22]R.S. Coe, S. Grommé, E.A. Mankinen, Geomanetic paleointensities from radiocarbon-dated lava flowson Hawaiiand the questionof the Pacific nondipolelow,J.Geophys.Res.83(B4)(1978)1740–1756.

[23]P. Riisager, J. Riisager, Detecting multidomain magnetic grains in Thel-lier palaeointensity experiments, Phys. Earth Planet. In. 125 (2001) 111–117.

[24]E.Tema,J.Morales,A.Goguitchaichvili,P.Camps,Newarchaeointensitydata fromItalyandgeomagneticfieldintensityvariationintheItalianPeninsula, Geophys.J.Int.193(2)(2013)603–614.

[25]J.Morales,A.Goguitchaichvili,G.Acosta,T.González-Morán,L.Alva-Valdivia, J.Robles-Camacho,M.S.Hernández-Bernal,Magneticpropertiesand archeoin-tensitydeterminationonpre-ColumbianpotteryfromChiapas,Mesoamerica, EarthPlanetsSpace61(2009)83–91.

[26]S.Levi,Theeffectofmagnetiteparticlesizeonpaleointensitydeterminations ofthegeomagneticfield,Phys.EarthPlanet.In.13(1997)245–259.

[27]A.Kosterov,M.Perrin,J.M.Glen,R.S.Coe,Paleointensityoftheearth’smagnetic fieldinearlyCretaceoustime:theParanaBasalt,Brazil,J.Geophys.Res.103 (1998)9739–9753.

[28]F.J.Pavón-Carrasco,M.L.Osete,J.M.Torta,L.R.Gaya-Piqué,Aregional archaeo-magneticmodelforEuropeforthelast3000years,SCHA.DIF.3K:applications toarchaeomagneticdating,Geochem.Geophys.Geosyst.10(3)(2009)Q03013,

http://dx.doi.org/10.1029/2008GC002244.

[29]F.J.Pavón-Carrasco,J.Rodriguez-Gonzalez,M.L.Osete,J.Torta,AMatlabtool forarchaeomagneticdating,J.Archeol.Sci.38(2)(2011)408–419.

[30]E.Vieillevigne,P.Guibert,F.Bechtel,Luminescencechronologyofthemedieval citadelofTermez,Uzbekistan:TLdatingofbricksmasonries,J.Archeol.Sci.34 (2007)1402–1416.

[31]S.Fleming,Thermoluminescencetechniquesinarchaeology,ClarendonPress, 1979.

[32]G.A.Wagner,Agedeterminationofyoungrocksandartifacts:physicaland chemicalclocksinquaternarygeologyandarchaeology,Springer-Verlag,Berlin Heidelberg,1998.

(12)

[33]O.B.Lian,D.J.Huntley,Luminescencedating,in:trackingenvironmentalchange usinglakesediments.Basinanalysis,coringandchronologicaltechniques,1, KluwerAcademicPublishers,Dordrecht,TheNetherlands,2001.

[34]I.Liritzis,A.Vafiadou,CalibrationaspectsofthicksourcealphacounterZnS system,Measurement45(2012)1966–1980.

[35]I.Liritzis,D.Mavrikis,N.Zacharias,A.Sakalis,N.Tsirliganis,G.S.Polymeris, PotassiumdeterminationsusingSEM,FAASandXRF:someexperimentalnotes, Mediterr.Archaeol.Archaeomet.11(No.2)(2011)169–178.

[36]I.Liritzis,K.Stamoulis,C.Papachristodoulou,K.Ioannides,Areevaluationof radiationdoserateconversionfactors,Mediterr.Archaeol.Archaeomet13(No. 3)(2013)1–15.

[37]F.G.Knoll,RadiationDetectionandMeasurements,3rdEd.,J.Wiley&Sons,Inc, 1999.

[38]G.S.Polymeris,A.E.Erginal,N.G.Kiyak,Acomparativemorphological, com-positional and TL study of Tenedos (Bozcaada) and S¸ile aeolianites, 12, MediterraneanArchaeologyandArchaeometry,Turkey,2012,pp.117–131.

[39]I. Liritzis, G. Kitis, R.B. Galloway, A. Vafiadou, N.C. Tsirliganis, G.S. Polymeris, Probing luminescence dating of archaeologically significant carved rock types, Mediterr. Archaeol. Archaeomet 8 (No. 1) (2008) 61–79.

[40]V.Mejdahl,Feldsparinclusiondatingofceramicsandburntstones,PACT9 (1983)351–364.

[41]G.S. Polymeris, D. Afouxenidis, S. Raptis, I. Liritzis, N.C. Tsirliganis, G. Kitis,Relativeresponseof TLand component-resolvedOSL to alphaand betaradiationsin annealedsedimentary quartz,Radiat. Meas. 46(2011) 1055–1064.

[42]E. Tema, D. Kondopoulou, Secular variation of the earth’s magnetic field in the Balkan region during the last eight millennia based on archaeomagnetic data, Geophys. J. Int. 186 (2) (2011) 603–614,

Riferimenti

Documenti correlati

Fr ancesco Leccese

Unica cosa invariata per tutta la composizione sarà il basso, detto, continuo poiché per tutto il tempo della composizione non varierà, a differenza delle voci

{omega}_max_, {Delta}{Omega}_phot_ and alpha_phot_ are reported for 111 late-type stars belonging to loose young stellar associations. For each target, the main physical

This means that, by discarding the modes that are outside the horizon at any fixed beginning of the de Sitter inflationary phase, the amplification of the magnetic field

A dedicated (and often young) clerk or functionary is suspected for the theft, which nobody has witnessed; an authoritative but not altogether stern superior

Comme le met en évidence Tarondeau (1999b), la question est moins traitée en ce qui concerne la flexibilité des stratégies de l’entreprise – où des

Lo studio condotto ha dimostrato che nei consumatori con un alto coinvolgimento nei confronti della categoria di prodotto, se una crisi colpisce la dimensione più

Marzo 2015.. Il credo di vita e di lavoro di Sabine Korth Il fotocollage come linguaggio artistico e strumento per l’indagine di sé: agire, abbina- re, combinare, eliminare,