• Non ci sono risultati.

Land use and pollution in a two-sector evolutionary model

N/A
N/A
Protected

Academic year: 2021

Condividi "Land use and pollution in a two-sector evolutionary model"

Copied!
12
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Structural

Change

and

Economic

Dynamics

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s c e d

Land

use

and

pollution

in

a

two-sector

evolutionary

model

Angelo

Antoci

a

,

Simone

Borghesi

b,c

,

Gianluca

Iannucci

d,∗

,

Elisa

Ticci

c aDepartmentofEconomicsandBusiness,UniversityofSassari,Italy

bFSRClimate,EuropeanUniversityInstitute,Florence,Italy

cDepartmentofPoliticalandInternationalSciences,UniversityofSiena,Italy dDepartmentofEconomicsandManagement,UniversityofFlorence,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received7March2019

Receivedinrevisedform22May2019 Accepted2June2019

Availableonline6June2019 Keywords: Agriculturalsubsectors Evolutionarymodel Environmentalexternalities Vulnerabilitytopollution

a

b

s

t

r

a

c

t

Thispaperproposesanevolutionarydualmodelinordertostudyheterogeneityofagriculturefroman environmentalperspective.Instandardvisions,landusechangesaredrivenbyproductivity differen-tialsacrossagriculturalsubsectors.Ourmodeladdsothertwofactorswhichcanindirectlyaffectland allocationpatterns:differencesinenvironmentalimpactintensityandenvironmentalvulnerability.By includingthesetwodimensionsinaparsimoniousmodel,weshednewlightonconstraintsorability foraneconomytoreachasectorallandallocationwhichefficientlybalancesenvironmentalburden, environmentalconstraintsandproductivity.

Wefindthat,incaseoftrade-offbetweenthethreedimensions,farmers’welfaregrowsalongstructural changeswhichallocateincreasinglymorelandtotheagriculturalsubsectorwithlowerpollutionintensity regardlessitsresilienceandlandproductivityperformance.

©2019ElsevierB.V.Allrightsreserved.

1. Introduction

Theimportant role ofagriculture foroverall socio-economic

developmentandforpovertyreductionhasbeenlargely

acknowl-edgedbydevelopmenttheoryfordecades(JohnstonandMellor,

1961; Adelman, 1984; Vogel, 1994) and it has been recently

confirmed by further studies (De Janvry and Sadoulet, 2010;

Christiaensenetal.,2011;LigonandSadoulet,2018).Themostly

used conceptual framework compares agriculture with

non-agriculturalactivitiesevenifagricultureisnotamonolithicsector.

Indeed,dualismintheagriculturesectorisnotanewtopicbut,all

overtheworld,agriculturehasbeenexperiencingimportant

evolu-tionswhichgobeyondthestandarddichotomybetweentraditional

and mechanized modern farming. Heterogeneity of agriculture

bothinhighandlow incomecountriesinvolvesseveral

dimen-sions,fromtypeoforganizational models,degreeofintegration

ininternationalmarketstotechnologicalcontent.Empirical

stud-iesshowthatheterogeneityacrossagriculturalsubsectorsmatters

sincenotallagriculturalactivitieshavethesamepotentialforthe

economicdevelopmentofcountries.Diaoetal.(2012),forinstance,

showthatcultivationoffoodstaplesisusuallymoreeffectivethan

exportagriculture at promoting economic growth and poverty

∗ Correspondingauthor.ViadellePandette9,50127Firenze,Italy. E-mailaddresses:antoci@uniss.it(A.Antoci),simone.borghesi@unisi.it

(S.Borghesi),gianluca.iannucci@unifi.it(G.Iannucci),ticci4@unisi.it(E.Ticci).

reduction.Otherauthorshaveinvestigatedthewelfareeffectof

dif-ferentorganizationalmodels,suchascontractfarmingcomparedto

independentsmallholderfarming(Bellemare,2012)oroutgrower

schemescomparedtoplantations(Arndtetal.,2010).

Farmingpracticescandifferalsointermsofresiliencetoshocks,

demandofnaturalresourcesandcreationofenvironmental

dam-age,butourunderstandingonagriculture’sheterogeneityfroman

environmentalviewpointislessadvanced,thoughnotlessrelevant.

Inacontextofgrowingpollution,resourcedepletionandclimate

changemanifestations,thesuccessofdevelopmentisconditional

onitsenvironmentalimpact(DeJanvryandSadoulet,2017).Thus,

theenvironmentalperspectivecannotbeoverlookedand

agricul-tureispartofthisdebatesincethissector,notonlyhasabigpower

for povertyreduction and economicdevelopment,but is alsoa

majoruser(ormisuser)ofnaturalresources.

However,thedistinctionofagriculturesubsectorsby

environ-mentalburdenorconstraintsisanintrinsicallydifficultexercise

furthercompoundedbylackofdata.Inabsenceofrepresentative

datasetandevidence,theoreticalmodels,incombinationwithcase

studies,canbeeffectiveatdelineatingpossibledynamicregimes

emergingintheinextricablenexusbetweenagriculture

composi-tion,environmentandeconomicdevelopment.Thisistheaimof

thiswork.Wecontributetothedebateondifferentialanddynamic

effectsonagriculturalsubsectorsbyconcentratingon

environmen-tallinkages.Thisfocusisthefirstnoveltyofthisworkbutacaveat

isrequired:themodeldoesnotsubstitute,itcomplements

analy-seswithbackwardandforwardeconomiclinkageswhichhereare

https://doi.org/10.1016/j.strueco.2019.06.001

(2)

excludedforreasonsofanalyticaltractability.Secondly,wefocus

oncoordinationproblemsinacontextofenvironmental

external-ities.Despitetheconsensusontheimportanceofenvironmental

regulationandvaluationofnatureandecosystemservices,markets

forenvironmentalqualityinagricultureareusuallyincompleteor

lacking.Manynaturalresourcesandecosystemserviceshavethe

characterofpublicgoods(airquality,rivers,freeaccessforests,fish

stocks,geneticdiversity,environmentalregulatingservices)and,

formanyenvironmentalresources,thecreationandenforcement

ofclearpropertyoruserightsisverydifficult.Asaconsequence,

choiceprocessesinfarmingareoftentakeninacontextofshallow,

nonexistentorincompletemarketswithpervasiveexternalities.

Farmers’decisionsusuallydonotfullyconsiderthe

environmen-talimpactofagriculturalpractices.Forinstancetheyrarelypayfor

dischargeofpollutantsandsedimentintotheenvironmentorfor

soilerosion,degradationorsalinizationduetopoormanagement

practices. These environmental damages do not come without

economicconsequencesonagriculturalactivitiesthemselves.

Pes-ticides,herbicides,fertilizersandotheragrochemicals,forinstance,

cangeneratealonglistofdetrimentaleffectsonproductivityof

either“polluting”farmsorother“victim”farms.Examplesinclude

destructionofnaturalenemiesofpests(Lichtenberg,2002;Pelletier

andTyedmers, 2010),developmentofpesticideresistance, crop

pollinationproblems,honeybeelosses,biodiversity1loss(Baudron

and Giller,2014)that deterioratethestability and resilienceof

agriculturalsystems(see,e.g.,Brittainetal.,2013),orevenlabour

productivitylossduetotheimpactonfarmworkers’health.This

feedback effects can bring about mechanismsof perverse

self-reinforcingsectorspecializationandcrowdingouteffects.Tofix

ideas,wecanmentiontwoexamples,aglobalandalocalone.Let

usconsiderthecoexistenceofsustainableforestryactivitiesand

agriculture.Theimpactofclimatechangeonagriculture

productiv-ityispredominantlynegative,particularlyinlow-incomecountries

thathavehigherclimatevulnerabilityandloweradaptationcapital

stocks,whichhinderstheirprospectsfordevelopment(Bretschger

andValente,2011;BretschgerandSuphaphiphat,2014).However,

themainoptionsthatthissectorusestocounteracttoit–

inten-sificationorland-usechange–furtherincreasesgreenhousegas

emissions.Thisprocesswithself-reinforcingnature(Bajˇzeljand

Richards,2014)canbeassociatedwithcrowdingoutofthesector

lessresponsibleforclimatechangesinceagriculturalland

expan-sionislikelytohappenattheexpenseofforestryactivities.Another

example ofa welfare-reducing specializationand crowding-out

mechanism is related to the ecology of pollinators. Crop

rota-tion,organicfarming (Gabriel andTscharntke, 2007; Bengtsson

etal., 2005), patcheswithhighplantdiversity withinfarmland

(Gigante Carvalheiroet al.,2011)havebeneficialeffectson

pol-linators.However,farmers rarelyadoptthese practices,instead

preferringconventionalfarmingandlarge-scaleagricultural

inten-sification,removingnaturallyoccurringplants.Theexpansionof

theseagriculturalpracticesreducestheproductivityinallsectors

dependingonpollinationservicesandmaygiverisetoan

ineffi-cientspecializationandproductivitylosses.Otherexampleswill

bediscussedlater.

Basedonthisbackground,weproposeatwo-sector

evolution-arymodelinwhicheconomicagentshavetoallocatelandbetween

two agricultural sectors, Aand B. For both sectors, land is the

onlychoicevariableandproductionisdamagedby

environmen-taleffectsgeneratedbytheagriculturalactivitiesthemselves.At

thesametime,sectorsAandBdifferbyproductionelasticitywith

respecttoland,degreeofenvironmentalburdenandby

vulnera-1Theimportanceofbiodiversitymanagementisdiscussedinseveral

contribu-tionsineconomicliterature(see,e.g.,RauscherandBarbier,2010;Vardasand Xepapadeas,2010).

bilitytoenvironmentaldegradation.FollowingIPCC(IPCCGlossary,

2014,p.218),vulnerabilitycanbedefinedasthe“propensityor

pre-dispositiontobeadverselyaffected”,amultidimensionalnotion

which“encompassesavarietyofconceptsincludingsensitivityor

susceptibilitytoharmandlackofcapacitytocopeandadapt”.To

betterfocustheconceptandapplyitinthepresentanalysis,by

‘vulnerability toenvironmentaldegradation’we willmeanhere

theadverseimpactthathigherenvironmentaldegradation

(mea-suredbypollutioninthemodel)hasontheproductionlevelofeach

sector.2

The effects of environmentalimpactare not internalizedby

themarket(i.e.byprices).Themodelisthusveryessentialbutit

generatesmultipleenvironment-sectorcomposition-development

patternsprovidingnontrivial,evenunexpected,results.In

partic-ularweshowunderwhatconditionsthereallocationchoicesof

landendowmentfromonesectortotheotheronemaygiveriseto

awelfare-reducingspecializationcharacterizedbyareductionin

farmers’averagerevenuesandbyuniformityoflandscape.

Therestofthepaperisorganizedasfollows.Section2presents

themodel,Section3carriesouttheanalysisofstabilityproperties

ofstationarystates,whileSection4proposesaclassificationof

pos-sibledynamicregimesproducedbythemodel.Section5performs

someexercisesofcomparativestaticsonparametersrepresenting

twodimensionsofinterest,namelyvulnerabilitytopollutionand

landproductivity.Section6discussesthesocio-economicrelevance

oftheanalyticalresultsandSection7concludes.

2. Themodel

Wemodelasmallopeneconomywithtwoagriculturalsectors,

AandB,inwhichallpricesareexogenouslyset.Landendowment,

measuredbytheparameter ¯L>0,isfixed;LAandLB,LA+LB= ¯L,

indicatetheamountofland(measured,e.g.,inhectares)devotedto

productionactivitiesofsectorAandB.Aggregateoutputsofsectors

AandBaregivenrespectivelybytheconstantreturnsfunctions:3

YA=˛LA

YB=ˇLB

(1)

where the parameters ˛>0 and ˇ>0 measure the production

elasticitieswithrespecttoland(i.e.theyareindicatorsofland

pro-ductivity)insectorsAandB,respectively.Tosimplify,weassume

thatthepricesofthegoodsproducedinsectorsAandBareboth

equal tounity.SoYAand YB alsorepresentthemarketvalueof

aggregateoutputsofsectorsAandB,respectively.4

Indicatingwiththevariablex∈[0,1]theshareofland

endow-ment ¯L usedbysectorA(i.e.,LA=x¯L)andwith1−xtheshareof

2Foradeeperdiscussionontheexistingdefinitionsofvulnerabilityseeweadapt.

org.

3WecanconsiderthefollowingproductionfunctionsasderivingfromaLeontief

functionofthetypeY=min (aL,bK,cW ),whereKandWrepresentphysicalcapital andlabor,whilea,b,c>0areparameters.Supposingthatphysicalcapitalandlabor arenotconstrained(namely,landistheonlyscarcefactor),thenKandWarechosen tosatisfyaL=bK=cW,fromwhichK=aL/bandW=aL/c.Assumingthatbothinputs prices,r(physicalcapital)andw(labor),andoutputpricepofsectorAareconstant andexogenouslygiven(smallopeneconomyhypothesis),thentheaggregate prof-itscanberewrittenas:=paL−r



a/b



−w



a/c



=a



p−r/b−w/c



L.Setting ˛=a



p−r/b−w/c



,consideringthenegativeeffectofpollutionandapplyingthe sametosectorB,weobtainfunctions(1).

4Theresultsofthemodelholdtrueevenifwerelaxtheassumptionofequal

goods’pricesinthetwosectors.Infact,˛andˇcanbeconsideredascomposite parametersthatmeasurepossibledifferencesbetweensectorsAandBinbothland productivityandprices.

(3)

Fig.1. Dynamicregimes.Legend:•sinks,䊐saddlepoints.

¯LusedbysectorB(i.e.,LB=(1−x)¯L),theproductionfunctions(1)

canberewrittenasfollows:

YA=˛x¯L

YB=ˇ(1−x)¯L

Theproductionactivitiesofbothsectorsdeterminethetime

evolu-tionofthevalueofapollutionindex,P∈[0,+∞),accordingtothe

equation:

˙P=ε˛xL+ˇ(1−x)L−P (2)

where ˙PisthetimederivativeofP,theparametersε≥0and≥0

measuretheimpactonthepollutionaccumulationprocessofthe

aggregateoutputs˛x¯L andˇ(1−x)¯L ofsectorsAandB,respectively.

Finally,theparameter>0representsthedecayrateofP.

Followingpreviouscontributionsintheliterature(e.g.Ikefuji

andHorii,2012; Rezaietal., 2012;Hackett andMoxnes, 2015; Bretschger,2017;Daoetal.,2017;BretschgerandPattakou,2019),

weassumeanegativeimpactofpollutionontheoutputofthe

econ-omy.Inparticular,weassumethatashareoftheaggregateoutputs

mustbeusedasdefensiveexpenditurestorepairthedamagesdue

topollutionP,andthatthenetaggregateoutputsaregivenby:

A(P)·YA

B(P)·YB

(3)

whereA(P)andB(P)aretheso-called“damagecoefficients”:5

A(P)= 1 1+P B(P)= 1 1+ıP (4)

Theparameters>0andı>0measurethevulnerabilityto

pol-lution ofsectors A and B,respectively. Notice that thedamage

coefficientsarea decreasingfunctionof thepollution level:the

higheristhepollutionlevel,thelowerthelevelofthesecoefficients,

andthereforetheloweralsotheoutputandincomelevelofthe

cor-respondingsectornetofthedefensiveexpenditures.Thelatter(i.e.

thequantitiesoftheoutputsthatarenotactuallyavailablefor

con-sumptionand/orinvestmentbeingusedasdefensiveexpenditures)

areobviouslygivenbythedifferencebetweentheaggregate(gross)

5Suchcoefficientsarecommonlyusedintheliteratureonclimatechange(cf.,for

instance,GolubandToman,2016;BretschgerandPattakou,2019)tomeasurethe shareofoutputthatisactuallyavailableoncetheenvironmentaldamagesaretaken intoaccount.

(4)

outputofeachsectorandthenetoutputdescribedabove,namely, [1−A(P)]·YAand[1−B(P)]·YB,where: 1−A(P)= P 1+P 1−B(P)= ıP 1+ıP

Weassumethatthedynamicsofthesharexoflandusedinsector

Adependsontheaverage(net)productivitiesoflandemployedin

sectorsAandB: A(x,P)= A(P)·YA xL¯ =1+˛P B(x,P)= B(P)·YB (1−x)L¯ = ˇ 1+ıP

andisgivenbythewell-knownreplicatorequation(see,among

others,HofbauerandSigmund,1988;Weibull,1995):

˙x=x



A(x,P)− (x,P)



(5)

where ˙xindicatesthetimederivativeofx,while:

 (x,P)=xA(x,P)+(1−x)B(x,P) (6)

measuresaveragelandproductivityoftheeconomy.Accordingto

(5),thesharexoflandallocatedinsectorAincreasesiftheaverage

productivityA(x,P) insectorAishigherthantheeconomy-wide

averageproductivity ¯ (x,P).6Viceversaiftheoppositeholds.Itis

easytocheckthatEq.(5)canberewrittenas:

˙x=x(1−x) [A(x,P)−B(x,P)] (7)

Accordingto(7),thevalueofxincreases(decreases)whenA>B

(A<B),whilexremainsconstantwhenA=B.This

specifi-cationmirrorsthefactthat,asintherealworld,profitabilityand

productivityarethemaindriversoffarmers’landusechoices.

VariationsinthesharexaffectthepollutionlevelP,while

vari-ationsinPaffecttherelativeperformanceofsectors,andtherefore

thetimeevolutionofx,accordingtothesystem:

˙x=x(1−x)



˛ 1+P − ˇ 1+ıP



˙P=ε˛xL+ˇ(1−x)L−P (8)

definedintheset:

={(x,P):0≤x≤1, P≥0} (9)

3. Stationarystatesandglobaldynamics

Thestationarystatesofthedynamicsystem(8)aregivenbythe

intersectionpoints,belongingtotheset (see(9)),betweenthe

straightline(22),where ˙P=0andoneofthestraightlinesx=0,

x=1,and(19),where ˙x=0(seeAppendix).Foragraphical

repre-sentationseeFig.1.Forsimplicity,weshalllimitouranalysistothe

casesinwhich˛ı−ˇ =/ 0andε˛−ˇ=/ 0hold.Inthiscontext,

thefollowingpropositionholds:

Proposition 1. In the context in which ˛ı−ˇ =/ 0 and

ε˛−ˇ=/ 0hold,thedynamicsystem(8)admitsatmostthree

sta-tionarystates:

6Verysimilarqualitativedynamicscanbeobtainedbysubstitutingthereplicator

equation(7)witheverypayoff-monotonicdynamics(seeWeibull,1995).

1.the point (0,P0)=



0,ˇ ¯L

, where the land endowment ¯L is

entirelyallocatedtosectorB;

2.the point (1,P1)=



1,ε˛

 ¯L



, where the land endowment ¯L is

entirelyallocatedtosectorA;

3.the point



˜x, ˜P



=



 (ˇ−˛ε)¯L



˛−ˇ ˛ı−ˇ+ˇ¯L

, ˛ı−ˇˇ−˛

, where

bothsectorsAandBcoexist.

Thestationarystates (0,P0) and (1,P1) alwaysexist,whilethe

stationarystate



˜x, ˜P



existsifandonlyifthefollowingtwo

condi-tionshold:

1. ˜P >0,thatis,eithercondition(20)orcondition(21)issatisfied;

2.1> ˜x >0,thatis,eitherP0< ˜P andP1> ˜P (inthecontextof

condition(23))orP0> ˜P andP1< ˜P (inthecontextofcondition

(24))hold.

Thefollowingpropositiondealswiththestabilitypropertiesof

thestationarystates(0,P0),(1,P1),and



˜x, ˜P



.

Proposition2. Accordingtothedynamicsystem(8),thestationary

state(0, P0)islocallyattractiveif:

˛

1+P0−

ˇ

1+ıP0

<0 (10)

whileitisasaddlepoint(withstablemanifoldlyinginthestraightline

x=0)iftheoppositeofcondition(10)holds.

Thestationarystate(1,P1)islocallyattractiveif:



˛ 1+P1 − ˇ 1+ıP1



<0 (11)

whileitisasaddlepoint(withstablemanifoldlyinginthestraightline

x=1)iftheoppositeof(11)holds.

Thestationarystate



˜x, ˜P



islocallyattractiveif:



ε˛−ˇ





˛ı−ˇ



<0 (12)

whileitisasaddlepointiftheoppositeof(12)holds.

Proof. TheJacobianmatrix ofthesystem(8),evaluatedatthe

stationarystate



˜x, ˜P



,canbewrittenasfollows:

J



˜x, ˜P



=

0 ˜x(1− ˜x)

ˇı



1+ı ˜P



2 − ˛



1+ ˜P



2





ε˛−ˇ



¯L −

where: TrJ



˜x, ˜P



=−<0 DetJ



˜x, ˜P



=−˜x(1− ˜x)

ˇı



1+ı ˜P



2− ˛



1+ ˜P



2





ε˛−ˇ



¯L (13)

(5)

Taking into account that, at



˜x, ˜P



, it holds ˛/



1+ ˜P



ˇ/



1+ı ˜P



=0,andtherefore



1+ı ˜P



/



1+ ˜P



=ˇ/˛,wecan

write ˇı



1+ı ˜P



2− ˛



1+ ˜P



2 =



ˇ 1+ı ˜P



ı



1+ı ˜P



− ˛



1+ ˜P







1+ ˜P



=



ˇ 1+ı ˜P



ı



1+ı ˜P



− 



1+ ˜P





=



ˇ 1+ı ˜P



2



ı− 1+ı ˜P 1+ ˜P



=



ˇ 1+ı ˜P



2



ı−ˇ˛



(14) Accordingto(14),wehave:

sign



DetJ



˜x, ˜P



=sign





ε˛−ˇ





˛ı−ˇ



Therefore,



˜x, ˜P



islocallyattractiveif



ε˛−ˇ





˛ı−ˇ



<0,

whileitisasaddlepointiftheoppositeinequalityholds.The

Jaco-bianmatrixevaluatedat (0,P0) is:

J (0,P0)=

˛ 1+P0− ˇ 1+ıP0 0



ε˛−ˇ



¯L −

witheigenvalues−<0(indirectionoftheP−axis)and 1+P˛

0 −

ˇ 1+ıP0.

Analogously,theJacobianmatrixevaluatedat (1,P1) is:

J (1,P1)=



˛ 1+P1 − ˇ 1+ıP1



0



ε˛−ˇ



¯L −

with eigenvalues −<0 (in direction of the P-axis) and



˛ 1+P1 − ˇ 1+ıP1

.䊐

Notethatcondition(10)holdsifP0< ˜P,inthecontext˛ı−ˇ>0,

andifP0> ˜P,inthecontext˛ı−ˇ<0(see(19)and(21)).

Anal-ogously,condition(11)holdsifP1> ˜P,inthecontext˛ı−ˇ>0,

andifP1< ˜P,inthecontext˛ı−ˇ<0.

Thefollowingproposition dealswiththeglobal dynamicsof

system(8).

Proposition3. Everyset⊂ :

={(x,P):0≤x≤1, ¯P≥P≥0}

with ¯P >max



P0,P1



,ispositively invariantunderthe dynamic

system(8).Furthermore,everytrajectorystartingoutsideitentersit

infinitetime.

Proof. Toprovethisproposition,rememberthat ˙x=0holdsfor

x=0andx=1,thereforethesidesofwithx=0andx=1are

invari-ant.Furthermore,everypoint(x, ¯P)liesabovetheisocline ˙P=0

(andconsequently ˙P<0at(x, ¯P))whileeverypoint(x,0)liesbelow

theisocline ˙P=0(andconsequently ˙P >0at(x,0)).Thisprovesthe

positiveinvarianceoftheset.Sincein −nostationarystate

exists,thenbythePoincaré–BendixsonTheorem,everytrajectory

startingin −entersinfinitetime.䊐

Theexistenceoflimitcyclesaroundtheinternalstationarystate



˜x, ˜P



isexcludedwhenitisasaddlepoint(accordingtotheIndex

theory,seee.g.,Lefschetz,1977),whileitcannotbeexcludedwhen



˜x, ˜P



islocally attractive,inthatthedivergence ∂x˙x+∂˙P

∂P is not

alwaysnegativeintheset(see,e.g.,Giné,2014).

4. Dynamicregimes

Wecannowidentifyallpossibledynamicregimesthatmaybe

observedandwecandiscusstheconditionsunderwhicheachof

thememerges.Weexcludetrivialcasesinwhichtheinternal

sta-tionarystate



˜x, ˜P



doesnotexistand,then,either(0,P0)or(1,P1)

isgloballyattractiveintheinterioroftheset .Moreprecisely,the

stationarystate(1,P1)(thestationarystate(0,P0))withcomplete

specializationinsectorA(B)isgloballyattractivewhensectorA

(B)is,atthesametime,less(more)vulnerabletoenvironmental

degradationandmore(less)productivethanB(A),namelywith

˛>ˇ(ˇ>˛)and<ı(>ı).

Movingontothemoreinterestingcasescharacterizedbythe

existenceoftheinternalstationarystate



˜x, ˜P



,theanalysisofthe

isoclines ˙x=0, ˙P=0ofAppendixandstabilityanalysisofSection

3allowsustointroducethefollowingtaxonomy:

• Case(i):sectorAislessvulnerableandmorepollutingthan

sec-torB;thiscaseoccursifconditions(20)and(23)hold.Inother

words,themainweaknessofsectorAisalowproductivity,but

itcanrelyonotherstrengths.Moreprecisely,sectorAissubject

tolowenvironmentalconstraintsanditexertsstrongcrowding

outpressureonsectorBthroughitsenvironmentalimpact.

• Case(ii):sectorAislessvulnerableandlesspollutingthan

sec-torB;thiscaseoccursifconditions(20)and(24)hold.Theonly

differencewithcase(i)isinthatexpansionofsectorAdoesnot

ledtoanetincreaseinpollutionandthereforeitdoesnotcreate

acrowdingouteffectonsectorB.

• Case(iii):sectorAismorevulnerableandmorepollutingthan

sectorB;thiscaseoccursifconditions(21)and(23)hold.Thisis

theoppositetocase(ii).

• Case(iv):sectorAismorevulnerableandlesspollutingthan

sec-torB;thiscaseoccursifconditions(21)and(24)hold.Thisisthe

oppositetocase(i).

InCases(i)and(iv),illustratedinFig.1(a)and(d),respectively,

thestationarystates(0,P0)and(1,P1)arelocallyattractive,while

theinternalstationarystate



˜x, ˜P



isasaddlepoint.Thestable

man-ifoldof



˜x, ˜P



,representedinblue,separatesthebasinsofattraction

of(0,P0)and(1,P1).Therefore,bistableregimesareobservedandthe

economytendstospecialiseeitherinAorinsectorB,accordingto

thestartingpoint (x(0),P(0)).InCases(ii)and(iii),thetwosectors

tendtocoexist(Fig.1(b)and(c)).7 Morespecifically,the

station-arystates(0, P0)and(1, P1)aresaddlepoints,whiletheinternal

stationarystate



˜x, ˜P



isattractive.Fig.1illustratesnumerical

sim-ulationsofdynamicsincases(i)–(iv),respectively.Inthesefigures,

attractivestationarystatesaremarkedbyfulldots(•)andsaddle

pointsbysquares(䊐).

4.1. Averagelandproductivityoftheeconomyinthescenarios

(i)–(iv)

Inthissectionwecomparetheaveragelandproductivityofthe

economy(see(6)):

¯

 (x,P)=xA(x,P)+(1−x)B(x,P)

7Noticethatsectorcoexistencewouldbemorelikelytooccurifvariableprices

anddecreasingreturnstoscalewereassumedsincethemarginalproductivityof landinagivensectorwoulddecreaseanditspricewouldincreaseastheeconomy movestowardfullspecializationinthatsector,thuspushingthesystembacktoward theoppositesector.However,evenundertheseassumptions,thedynamicsofthe modelcanstillgeneratefullspecialization.Indeed,theonlywaytoensuresector coexistenceisbyassumingInadaconditionssothatlandproductivitygoestoinfinity aslandusegoestozero.

(6)

Fig.2.Case(i):basinsofattractionforlow(a)andhigh(b)valueof˛,andlandaverageproductivity(c)ofboundarystationarystates.Parametervalues:ˇ=2,=1,ı=3, ε=3.5,=0.75,=2.5,L=1.Legend:•sinks,䊐saddlepoints.

evaluatedatthestationarystates(0,P0),(1,P1),and



˜x, ˜P



: ¯  (0,P0)=B(0,P0)= ˇ 1+ıP0 ¯  (1,P1)=A(1,P1)= ˛ 1+P1 ¯ 



˜x, ˜P



=A



˜x, ˜P



=B



˜x, ˜P



= ˛ 1+ ˜P= ˇ 1+ı ˜P Fromwhich ¯ (0,P0) < ¯



˜x, ˜P



< ¯ (1,P1) ifandonlyif:

ˇ 1+ıP0 < ˛ 1+ ˜P = ˇ 1+ı ˜P < ˛ 1+P1 (15) and ¯ (0,P0) > ¯



˜x, ˜P



> ¯ (1,P1) ifandonlyif:

ˇ 1+ıP0 > ˛ 1+ ˜P = ˇ 1+ı ˜P > ˛ 1+P1 (16)

Condition(15)holdsifP0>P1;conversely,condition(16)holdsif

P0<P1.Thefollowingpropositionsummarizestheseresults.

Proposition4. InCases(i)and(iii),wherecondition(23)holds,the

stationarystatesarerankedbytheinequality:

¯

 (0,P0) > ¯



˜x, ˜P



> ¯ (1,P1) (17)

InCases(ii)and(iv),wherecondition(24)holds,thestationarystates

arerankedbytheinequality:

¯

 (0,P0) < ¯



˜x, ˜P



< ¯ (1,P1) (18)

The sectoralland allocationwhich ensures thehighest level

ofaveragelandproductivity(andthereforealsothehighesttotal

valueoutput)istheoneassociatedwithlowesttotalpollution

bur-den.Inotherwords,thestationarystates(0,P0),(1,P1),and



˜x, ˜P



canbe orderedby averagelandproductivityaccording totheir

inverseorderbylevelofpollutionP.Thehighestland

productiv-ityisreachedwhentheeconomyisabletospecializeintheclean

sector(Aincases(ii)and(iv)orBincases(i)and(iii)).

5. Simulations

5.1. Changeinoutputelasticitywithrespecttoland

Thissection assesses theimpactof an exogenous changein

parametersrepresentingoutputelasticitywithrespecttoland(˛

insectorAandˇinsectorB)onstationarystates,theirbasinsof

attractionandaveragelandproductivity.Theaimistounderstand

howtheusuallypositiveeffectsofincreasedproductivitychange

onceenvironmentaldimensionsaretakenintoaccount.Cases(i)

and(iv)aresymmetrical,aswellallcases(ii)and(iii).Forthesake

ofsimplicity,wenarrowtheanalysisoncases(i)and(iii),inwhich

sectorAcanbelabelledas“dirty”agriculturesubsector.Cases(ii)

(7)

Fig.3. Case(iii):basinsofattractionforlow(a)andhigh(b)valueof˛,andlandaverageproductivity(c)ofinnerstationarystate.Parametervalues:ˇ=1,=3,ı=1,ε=2, =1,=2.5,L=1.Legend:•sinks,䊐saddlepoints.

IfthedirtysectorAexperiencesanexogenousgrowthinoutput

elasticitywithrespecttoland˛underthebistabledynamicregime

(i),theeffectisanexpansionofbasinofattractionofthe

station-arystate(1,P1)wherelandendowmentisentirelyallocatedtothe

dirtysectorA(seeFig.2(a)and(b)).Inotherwords,theeconomyis

morelikelytofollowawelfare-reducingspecialization

character-izedbylowerfarmers’averagerevenues(seeFig.2(c))thaninthe

alternativeattractivestationarystate(0,P0)(0, P0).

Fig.3showstheeffectofanexogenousgrowthinoutput

elas-ticitywithrespecttoland˛incase(iii),namelywhensectorAis,

notonlymorepolluting,butalsomoreproductiveandmore

envi-ronmentallyvulnerablethansectorB.Inthisscenario,theeffect

isashiftoftheinternalgloballyattractivestationarystate



˜x, ˜P



towardsalargerlandshareallocatedtothedirtysectorA.Despite

theexogenousproductivitygain,alsointhiscasetheresultisa

declineinoverallfarmers’revenueasillustratedinFig.3(c)

report-ingareductioninaveragelandproductivity.

Oppositeresultsareproducedbyanexogenousincreaseinˇ

whichrepresentstheoutputelasticitywithrespecttolandinsector

B,namelythe“clean”sectorunderthedynamicregimes(i)and(iii)

(seeFigs.4and5).

5.2. Changeindegreeofvulnerabilitytoenvironmental

degradation

Wecannowgiveacloserlookattheroleofvulnerabilityto

pol-lution,akeydriverofagriculturedevelopmentinterritoryexposed

toenvironmentalexternalities.Wefocusagainondynamicregimes

(i)and(iii)inwhichthesectorAischaracterizedbyahigher

pollu-tionintensitythansectorB.Iftheeconomyisundermonostable

dynamicregime (case(iii),seeFig.6(c)and (d)),aslongasthe

cleansectorbecomeslessresilienttopollution (i.e.ıincreases),

thegloballyattractiveequilibrium



˜x, ˜P



shiftsandthe

correspond-ingtransitionisassociatedwithanincreaseinthepollutionstock

andintheshareoflandusedinthedirtysector.Iftheeconomy

belongstoabistabledynamicregime(i),asshowninFig.6(a)and

(b),anexogenousgrowthofvulnerabilityofthecleansectorleads

toashrinkingbasinofattractionofthePareto-superiorstationary

state.Inbothcases,thefinaloutcomeisawelfareloss.

6. Interpretationoftheresults

Theresultsoftheanalysisprovideinterestinginsights.Inorder

togivemoresubstancetotheresults,weorganisethediscussion

inaquestion–answerformat.

Outputvalueispositivelyassociatedwithoutputelasticitywith

respecttolandandnegativelyassociatedwithenvironmental

vul-nerability.Specializationinfarmingactivitieswithhighelasticity

withrespecttoland(i.e.highlandproductivity)andlowsensitivity

toenvironmentalpressure would betheideal landuse.

Unfor-tunately,farmingsubsectorsrarelypresentthesetwofeaturesat

thesametime.Incaseoftrade-offbetweenlandproductivityand

resilience(asinallconsidereddynamicregimes(i)–(iv)),should

(8)

sec-Fig.4.Case(i):basinsofattractionforlow(a)andhigh(b)valueofˇ,andlandaverageproductivity(c)ofboundarystationarystates.Parametervalues:˛=1,=1,ı=3, ε=3.5,=0.75,=2.5,L=1.Legend:•sinks,䊐saddlepoints.

torortowardsthemostresilientone?Theansweris“itdepends”.

Ourresultsshowthatanystructuralchangecharacterizedbyan

increaseinlandshareallocatedtothecleanestsubsectorleadsto

anincreaseinaveragelandproductivityandthisistrueinall

sce-narios(i)–(iv).Letconsideragaincases(i)and(iii):inbothregimes,

Aismore pollutingthan B.In case (i),sector Ahasthe

advan-tageofalowenvironmentalvulnerabilityandthedisadvantageof

alow productivity.Thedynamicregimeis bistableandthe

sta-tionarystate(0,P0)(0, P0)withacomplete specializationinthe

cleanersectorBensuresahighertotaloutputvaluethanthe

sta-tionarystate(1,P1)withacompletespecializationinsectorA.In

case(iii),sectorAhastheadvantageofahighproductivityandthe

disadvantageofahighvulnerabilitytopollution.Inthisregime,

theinternalstationarystate



˜x, ˜P



isglobally attractive.Alsoin

thiscase,thestationarystate(0,P0)outperformstheother

station-arystatesintermsofoutputvalue,butit isunstable.Structural

changescanoccurwhenvariationsinparametervaluesmake

inter-nalstationarystate



˜x, ˜P



move.Simulationsonparameter˛are

anexample:anincreasein˛generatesastructuralchangetowards

alargerlandshareofsectorAandtheresultisaloweraverage

landproductivityindicating thefarmers’welfare wouldinstead

improvealong a shifttowardstheclean sectorB.These results

clearlyindicatethatthefirstcriterion inlandallocationchoices

should be the minimization of environmental impact, namely

movinglandallocation towardsthesectorwithlowerpollution

intensity.

In many cases, territorial development tends to landscape

uniformityandspecialization.Inprinciple,analternativeand

suc-cessfullandusepatternwouldbeabalancedcoexistencebetween

moreproductiveandpollutingagriculturalactivitieswithless

pro-ductivebutcleanerones.Whydoesthisscenariorarelyoccur?Inour

model,thisdynamicregimeisadmissibleonlyincases(ii)and(iii),

thatiswhenenvironmentalimpactintensityispositivelyrelatedto

pollutionvulnerability.Intherealworld,thisconditionrarelyholds

and,asresult,anontransientandstablecoexistenceoffarming

sec-torswithdifferentenvironmentalburdenandconstraintsisquite

infrequent.Taketheexampleoforganicandconventionalfarming:

inabsenceofastablepolicysupport,organicfarmingstrugglesto

gainmarketshares.Organicagricultureisoverallmore“integrated”

insurroundingecosystemsfromwhichitderivesseveralnatural

resourceinputsandenvironmentalservices.Itistherefore,notonly

lesspollutingbutalsomoresensitivetopollutionthanconventional

farmingwhich reliesmore onchemical andman-made

“substi-tutes”.Theinteractionsbetweenorganicandconventionalfarming

arethereforebetterdescribedbythedynamicregime(i)or(iv)than

(ii)and(iii).ThesameobservationappliestoGMOandGMO-free

crops.GMcropsgenerateheavyexternalitiesonGMO-free

culti-vations,inparticularonorganicproduction,whichareexposedto

theriskof“contamination”.Alsoconventionalfarmerscanbe

dam-agedincaseofcontamination,especiallyiftransitiontoGMseedsis

accompaniedbyachangeinfarmingpractices.Thesocalled

(9)

Fig.5. Case(iii):basinsofattractionforlow(a)andhigh(b)valueofˇ,andlandaverageproductivity(c)ofinnerstationarystate.Parametervalues:˛=2,=3,ı=1,ε=2, =1,=2.5,L=1.Legend:•sinks,䊐saddlepoints.

mid-1990swiththeintroductionofthetransgenicRoundupReady

(RR)soybeantogetherwithatechnologicalpackage ofchemical

fertilizationandintensiveuseoftheherbicideglyphosate(thenew

GMsoyvarietyisresistanttoit)withheavydetrimentalimpactson

humanhealthoflocalpopulation,soilquality,biodiversityand

for-estcoverage(Leguizamón,2014;PhélinasandChoumert,2017).

Theintroductionof GM soybeanseemstoportraytheeffect of

asuddenincreaseinlandproductivityunderdynamicregime(i)

(ratherthanunderregime(iii))whichleadstheeconomytowards

thespecializationinthesectorwithhigherenvironmentalimpact

(seeparagraphonsimulations)andtowardsanoverallwelfareloss.

CultivationofGMsoybeans,infact,hasexpandedattheexpense

ofcattle,maize,sunflower,andwheatproductionanditsgrowth

hasbeensorampantthatnowitaccountsfor60%oftotalland

cul-tivatedinthecountry(PhélinasandChoumert,2017).However,

despitetheircurrenteconomicsuperiorityintermsofprofitsand

productivitycomparedtonon-GMO,environmentalimplications

ofGMsoybeanmakeeconomicandenvironmentalsustainability

ofthisprocessofspecializationlesscertain,ifnotillusory.

Whatistheroleforpolicy?Wecangiveonlyanindirectanswer

aspolicyinstruments arenot includedin themodel. However,

theresultsoftheanalysisandofsimulationsproduceinteresting

insights.Agentstendtochooselanduseallocationmerely

look-ingatproductivitywithoutfullyconsideringenvironmentalburden

andconstraintsgeneratedbythechoicestakenbyallagents.Thus,

uncoordinatedagents’choicesareunlikelytoconvergetotheland

usecompositioncorrespondingtotheParetosuperiorstationary

state.Thisequilibriumis unstable(cases(ii)and(iii))orcanbe

reachedonlyiftheeconomystartsfromasituationinwhichthe

cleanersectoralreadyaccountsforasufficientlyhighlandshare

(cases(i)and(iv)).Thefirstnormativeimplicationisthat,inorder

toavoidwelfare-reducingandPareto-dominatedlandallocation

configurations,policyshouldfocusonincentivestoinvestinlow

impactfarmingactivities,evenwhentheyarecharacterizedbya

lowlandproductivity.Forthispurpose,severalpolicyinstruments

canbe used dependingonthe specificcase and corresponding

dynamicregimetakenintoaccount.Forinstance,ifthetwosectors

coexistattheequilibrium(i.e.thereisagloballyattractiveinner

stationarystate),adifferentiatedtaxrateontheproductionofthe

twosectors maymodifytherelativepayoffsofthetwosectors,

reducingtherelativeprofitsofthemorepollutingsectorandthus

shiftingeconomicactivitytowardsthecleanersector.If,onthe

con-trary,abistabledynamicregimeemergesfromtheanalysisleading

tofullspecializationinonesector,thenpolicy-makersmight

con-siderinterveningontheinitiallandallocationbetweenthetwo

sectors(e.g.establishingthemaximumshareoftotalavailableland

thatcanbeallocatedtotheclean/dirtysector)sothattheeconomic

systemliesintheattractionbasinofthesociallyoptimalstationary

state.Otherpossiblepolicyinstrumentsthatmaydrivethe

eco-nomicpathwaytowardsaPareto-superiorequilibriumarepublic

investmentsinthecleanersectorthatreduceitsvulnerabilityto

environmentaldegradationand/orincreaseitslandproductivity.

Secondly, policy makers should prevent sudden exogenous

(10)

Fig.6.Vulnerabilities.Legend:•sinks,䊐saddlepoints.

bringingitalonganinefficientandself-reinforcingspecializationin

pollutingagriculturalsubsector.Interestinglythismayoccuralso

asconsequenceofpositiveeconomicshocks,asinthecaseofan

increaseinlandproductivityofthedirtysector(seetheexampleof

the“soybeanization”ofArgentina).

Anegativereversaloflandusepatterncanbecausedalsoby

othertypeofshockssuchasanincreaseinvulnerabilityof

agri-culturalactivitieswithlowerenvironmentalimpact.Inthiscase,

anillustrativereal-worldcaseisrepresented,tosomeextent,by

therapidgrowthofcommercialshrimpculture,experiencedby

southwesterncoastalareasofBangladeshoverthelast30years.

Shrimpfarmingexpansionhasbeendrivennotonlybygrowing

demandandpolicysupport,butalsobyitsgreatersuitabilityto

changingenvironmentalecosystems.Theconstructionofseveral

mega-projectswhich havetransformedwaterresourcesystems,

togetherwithsealevelriseandstormsurges,havedramatically

modifiedenvironmentalconditions(Pouliotteetal.,2009).

Land-basedcropshavebecomemorevulnerabletosaltwaterintrusions.

Productionsysteminseveralvillageshaveundertakenatransition

fromaspecializationinriceandothertraditionalcropstosaltwater

shrimpfarmingwhich,inturns,hasseveralenvironmental

impli-cations,fromdestructionofmangroves,increasedsalinizationand

intensiveuseof chemicals(Islamand Yasmin, 2017).Using our

modelwording,cropproductionandshrimpculturecanbe

rep-resented,respectively, assectorBand sectorA. Theeconomyis

characterizedbythebistabledynamicregime(i)assectorBisless

pollutingandmorevulnerablethansectorA.This“bluerevolution”,

asoftenreferredto,inourmodelcanbeinterpretedastheresult

ofasuddenincreaseinparameterı8sothattheeconomy,

start-inginthebasinofattractionofstationarystate(0,P0),endsupinto

thebasinofattractionof(1,P1)withcompletespecializationinthe

dirtysectorA.Inotherwords,thisexogenousshockmadethe

econ-omy“jump”ontrajectoriesapproachingadifferentstationarystate

andradicallychangedlandusepatternfollowingaprocessof

wel-farereduction,self-reinforcingspecializationinpollutingactivities

andcrowdingoutoftraditionalcropfarming.Indeed,despitethe

immediateeconomicbenefitsofspecializationinshrimpfarming,

increasingconcernshavebeenexpressedonenvironmentaland

socio-economicsustainability(Deb,1998;Pouliotteetal.,2009;

PaulandVogl,2011)ofshrimpingcultureitselfandofoverall

ter-ritorialdevelopmentofBangladesh’scoastalareas.

7. Conclusions

Agriculturaldevelopmentusuallymeanschoosingthebest

per-formingagricultureactivityintermsoflandproductivity.Wehave

8Thisinterpretationobviouslydoesnotneedtoexcludetheroleofother

deter-minantssuchaspolicyactions,growinginternationaldemandforshrimps,big investors’interestforprofitopportunitiesinexportmarkets.

(11)

revisedthisapparenttautologybyintroducingtwomainelements

inaevolutionarymodelofsectorallandallocation:

1.environmentalconstraintsthat, in turn,dependon pollution

intensityandvulnerability.

2.interactionsbetweendifferentfarmingactivities.Each

individ-ual’s decision onthe preferred agriculturalactivitydoes not

occurinanimpermeablesetting.Incontrast,itisinfluencedby

landusechoicesofallfarmers.

Weshowthat multipledynamic regimesarepossible.

How-ever, conditions for the existence of bistable dynamic regimes

seemtobemoreconsistentwithrecurrentfeaturesofreal-world

interactionsbetweenagriculturalsubsectors.Wefindthatinthis

context,theeconomy is atrisk of followinga land usepattern

associatedwithincreasingenvironmentaldegradationandwelfare

declineevenifthisdevelopmentpathoccursalongaspecialization

inthesectorwithhigherlandproductivityorevenifthe

transi-tionispromptedbyapositiveshocksuchasanincreaseinland

productivity.

Ifpolicygoalistoapproachtheeconomytothestationarystates

atwhich well-being is greater,policy action needsto promote

thecleanersectorinordertoheadlandusesectoralcomposition

towardslowlevelsofpollution.Possibleinstrumentsforthis

pur-poseincludedifferentiated(sector-based)taxes/subsidies,landuse

planningestablishingminimum/maximumlandquotasthatcanbe

devotedtodifferentsectorsandpublicinvestmentsinadaptation

activitiesreducingthevulnerabilityofcleansectorsto

environmen-taldegradation.Theseandothersector-specificmeasurescanbe

veryeffectiveindrivingstructuralchange,asshownbytherecent

increaseinorganicfarmingintheEuropeanUnionwhereitis

esti-matedthat56percentofproducersbenefitedfromvarioussupport

measuresbytheEuropeanCommonAgriculturalPolicy(European

Commission,2013,2019).

Thepresentmodeldeliberatelyproposesaverysimple

analyt-icalframeworktoidentifya fewpossiblecausallinks thatmay

generateundesirableoutcomes.Futureresearch,however,should

examinewhetherandhowresultsmaydifferbyrelaxingsomeof

theunderlyingsimplifyingassumptions.Forinstance,itwouldbe

interestingtoseehowresultsmaychangeassumingdifferentand

variablewillingnesstopayforthegoodsproducedbyeach

sec-tor.Indeed,afewpeoplemayinitiallyhavehigherwillingnessto

payfororganicfarmingthanforconventionalfarmingwith

pes-ticides.However,individualwillingnesstopayandtheshareof

environmental-friendlyconsumersmaybeendogenouslyaffected

bytheotherconsumers’preferencesand/orbypolicyinterventions

(e.g.abetterinformationcampaignonhealthconsequencesof

dif-ferentproducts).Thisendogenousmechanismwouldnotprobably

alterthemaindynamicregimesobservedinthemodel,butitcould

generatepricechangesovertime,affectingthevalueofthe

station-arystateandtheirbasinsofattraction.Finally,whileinthemodel

wefocusonauniquekindofpollutant,itwouldbeinterestingto

investigatewhatwouldhappenifweassumethatdifferentsectors

maygeneratedifferentpollutantsand/ordifferentkindsof

environ-mentaldegradation.Weleavetheseanalysestofutureextensions

ofthemodel.

Appendix

Isoclines ˙x=0and ˙P=0

Accordingto(8), ˙x=0holdsforx=0,1andfor:

P= ˜P= ˇ−˛

˛ı−ˇ (19)

if˛ı−ˇ =/ 0,9where ˜P >0ifeithercondition:

˛−ˇ<0 and ˛ı−ˇ>0 (20)

orcondition:

˛−ˇ>0 and ˛ı−ˇ<0 (21)

holds. Notice that condition(20)may besatisfied onlyif <ı,

namelyifsectorAislessvulnerabletopollutionthansectorB.This

meansthatinacontextofheavypollution,thesector(inthiscase

A)whichislesssensitivetoenvironmentalpressureisabletoreach

strongerprofitabilityperformancecomparedtheotherone(B)even

itexhibitslowerlandproductivity.Whencondition(20)applies,

thenabove(below)thestraightline(19),intheplane(x,P),itholds

˙x >0( ˙x <0).Thismeansthattheshareoflandallocatedtosector

Atendstoincreaseforhighlevelsofpollution(foragraphical

rep-resentationseeFig.1reportingdifferentdynamicregimeswhich

willbediscussedlaterinSection4).

Conversely,condition(21)maybesatisfiedonlyif>ı,namely

ifsectorAismorevulnerabletopollutionthansectorB.When

con-dition(21)applies,thenabove(below)thestraightline(19),inthe

plane(x,P),itholds ˙x<0( ˙x>0).Inthiscontext,theshareofland

allocatedtosectorAdecreasesforhighlevelsofpollutionP.

Analogously,accordingto(8), ˙P=0holdsfor:

P=ˇ¯L

 +(ε˛−ˇ)

¯L

x (22)

Itholds ˙P <0abovethestraightline(22),while ˙P >0belowit.

Thestraightline(22)haspositiveslope(i.e.,alongit,Pincreasesif

xincreases,seeFig.1(a)and(c))if:

ε˛ˇ>0 (23)

whileithasnegativeslope(seeFig.1(b)and(d))if:

ε˛−ˇ<0 (24)

Wecanobservethatε˛andˇrepresenttheenvironmentalimpact

ofonelandunitemployedinsectorAandsectorB,respectively.

Thusifcondition(23)holds,thenshiftingtheuseofonelandunit

fromsectorAtosectorBresultsinanetdecreaseinthepollution

stock.

Moreover,forx=0,Eq.(22)gives:

P=P0=

 ¯L>0 (25)

while,forx=1,itgives:

P=P1=

ε˛

 ¯L>0 (26)

References

Adelman,I.,1984.Beyondexport-ledgrowth.WorldDev.12(9),937–949.

Arndt,C.,Benfica,R.,Tarp,F.,Thurlow,J.,Uaiene,R.,2010.Biofuels,poverty,and growth:acomputablegeneralequilibriumanalysisofMozambique.Environ. Dev.Econ.15(1),81–105.

Bajˇzelj,B.,Richards,K.S.,2014.Thepositivefeedbackloopbetweentheimpactsof climatechangeandagriculturalexpansionandrelocation.Land3(3),898–916.

Baudron,F.,Giller,K.E.,2014.Agricultureandnature:troubleandstrife?Biol. Conserv.170,232–245.

Bellemare,M.F.,2012.Asyousow,soshallyoureap:thewelfareimpactsof contractfarming.WorldDev.40(7),1418–1434.

Bengtsson,J.,Ahnström,J.,Weibull,A.-C.,2005.Theeffectsoforganicagriculture onbiodiversityandabundance:ameta-analysis.J.Appl.Ecol.42(2),261–269.

Bretschger,L.,2017.Climatepolicyandeconomicgrowth.Resour.EnergyEcon.49, 1–15.

Bretschger,L.,Pattakou,A.,2019.Asbadasitgets:howclimatedamagefunctions affectgrowthandthesocialcostofcarbon.Environ.Resour.Econ.72(1),5–26.

9When˛ıˇ=0,thenitholds ˙x >0(respectively, ˙x=0and ˙x <0)if˛ˇ>0

(12)

Bretschger,L.,Suphaphiphat,N.,2014.Effectiveclimatepoliciesinadynamic North–Southmodel.Eur.Econ.Rev.69,59–77.

Bretschger,L.,Valente,S.,2011.Climatechangeandunevendevelopment.Scand.J. Econ.113(4),825–845.

Brittain,C.,Williams,N.,Kremen,C.,Klein,A.-M.,2013.Synergisticeffectsof non-Apisbeesandhoneybeesforpollinationservices.Proc.R.Soc.Lond.B280 (1754),20122767.

Christiaensen,L.,Demery,L.,Kuhl,J.,2011.The(evolving)roleofagriculturein povertyreduction-anempiricalperspective.J.Dev.Econ.96(2),239–254.

Dao,N.T.,Burghaus,K.,Edenhofer,O.,2017.Self-enforcingintergenerationalsocial contractsforParetoimprovingpollutionmitigation.Environ.Resour.Econ.68 (1),129–173.

DeJanvry,A.,Sadoulet,E.,2010.Agriculturalgrowthandpovertyreduction: additionalevidence.WorldBankRes.Observer25(1),1–20.

DeJanvry,A.,Sadoulet,E.,2017.DevelpmentEconomics:TheoryandPractice. Routledge,LondonandNewYork.

Deb,A.K.,1998.Fakebluerevolution:environmentalandsocio-economicimpacts ofshrimpcultureinthecoastalareasofBangladesh.OceanCoast.Manage.41 (1),63–88.

Diao,X.,Thurlow,J.,Benin,S.,Fan,S.,2012.StrategiesandPrioritiesforAfrican Agriculture:EconomywidePerspectivesfromCountryStudies.International FoodPolicyResearchInstitute.

EuropeanCommission,2013.OverviewofCAPReform2014–2020.Agricultural PolicyPerspectivesBrief.

EuropeanCommission,2019.OrganicFarmingintheEU.EUAgriculturalMarkets Briefs.

Gabriel,D.,Tscharntke,T.,2007.Insectpollinatedplantsbenefitfromorganic farming.Agric.Ecosyst.Environ.118(1-4),43–48.

GiganteCarvalheiro,L.,Veldtman,R.,Shenkute,A.G.,Tesfay,G.B.,Pirk,C.W.W., Donaldson,J.S.,Nicolson,S.W.,2011.Naturalandwithin-farmlandbiodiversity enhancescropproductivity.Ecol.Lett.14(3),251–259.

Giné,J.,2014.Non-existenceoflimitcyclesforplanarvectorfields.Electron.J.Diff. Eq.2014(75),1–8.

Golub,A.,Toman,M.,2016.Climatechange,industrialtransformation,and “environmentalgrowthtraps”.Environ.Resour.Econ.63(2),249–263.

Hackett,S.B.,Moxnes,E.,2015.Naturalcapitalinintegratedassessmentmodelsof climatechange.Ecol.Econ.116,354–361.

Hofbauer,J.,Sigmund,K.,1988.TheTheoryofEvolutionandDynamicalSystems. CambridgeUniversityPress.

Ikefuji,M.,Horii,R.,2012.Naturaldisastersinatwo-sectormodelofendogenous growth.J.PublicEcon.96,784–796.

IPCCGlossary,2014.ClimateChange2014ReportFifthAssessmentReport. IntergovernmentalPanelonClimateChange.

Islam,M.,Yasmin,R.,2017.Impactofaquacultureandcontemporary environmentalissuesinBangladesh.Int.J.Fish.AquaticStud.5(4).

Johnston,B.F.,Mellor,J.W.,1961.Theroleofagricultureineconomicdevelopment. Am.Econ.Rev.51(4),566–593.

Lefschetz,S.,1977.DifferentialEquations:GeometricTheory.DoverPublication, NewYork,USA.

Leguizamón,A.,2014.ModifyingArgentina:GMsoyandsocio-environmental change.Geoforum53,149–160.

Lichtenberg,E.,2002.Agricultureandtheenvironment.Handb.Agric.Econ.2, 1249–1313.

Ligon,E.,Sadoulet,E.,2018.Estimatingtherelativebenefitsofagriculturalgrowth onthedistributionofexpenditures.WorldDev.109,417–428.

Paul,B.G.,Vogl,C.R.,2011.ImpactsofshrimpfarminginBangladesh:challenges andalternatives.OceanCoast.Manage.54(3),201–211.

Pelletier,N.,Tyedmers,P.,2010.Forecastingpotentialglobalenvironmentalcosts oflivestockproduction2000–2050.Proc.Natl.Acad.Sci.107(43),

18371–18374.

Phélinas,P.,Choumert,J.,2017.IsGMsoybeancultivationinArgentina sustainable?WorldDev.99,452–462.

Pouliotte,J.,Smit,B.,Westerhoff,L.,2009.Adaptationanddevelopment: livelihoodsandclimatechangeinSubarnabad,Bangladesh.Clim.Dev.1(1), 31–46.

Rauscher,M.,Barbier,E.B.,2010.Biodiversityandgeography.Resour.EnergyEcon. 32(2),241–260.

Rezai,A.,Foley,D.K.,Taylor,L.,2012.Globalwarmingandeconomicexternalities. Econ.Theory49(2),329–351.

Vardas,G.,Xepapadeas,A.,2010.Modeluncertainty,ambiguityandthe precautionaryprinciple:implicationsforbiodiversitymanagement.Environ. Resour.Econ.45(3),379–404.

Vogel,S.J.,1994.Structuralchangesinagriculture:productionlinkagesand agriculturaldemand-ledindustrialization.Oxf.Econ.Pap.46(1),136–156.

Riferimenti

Documenti correlati

We evaluated leukocytes, antimicrobial peptides (i.e., alpha- and beta-defensins), cortisol (a catabolic hormone), and testosterone (an anabolic hormone) to evaluate the

on classical logic: the λµ-calculus [117], proof term assignment for classical natural deduction; and three proof term calculi for classical sequent calculus: the λµ µ- e calculus

evidence that female pied flycatchers adopted a comparison deci- sion rule: females visited several males (three, on average) before committing, often returned to a previously

Background: Site of tumour origin, lymph node metastases and lymph node ratio (LNR) are identi fied as important factors determining prognosis in patients

RME: respiratory muscles evaluation. Please refer to the text for more details... results in functional inspiratory muscle weakness by maximally shortening the muscle fibres in the

I risultati di questi studi sono controversi ma alcuni Autori hanno dimostrato che le pazienti con piccole metastasi (micrometastasi o cellule tumorali

This is true first of all as far as the primary aim of charging is concerned, which is generally directed at reducing parking time and at increasing the turnover of cars: an