Structural,
rheological
and
dynamics
insights
of
hydroxypropyl
guar
gel-like
systems
Chiara
Berlangieri
a,
Giovanna
Poggi
a,
Sergio
Murgia
b,
Maura
Monduzzi
b,
Luigi
Dei
a,
Emiliano
Carretti
a,∗aDepartmentofChemistry“UgoSchiff”&CSGIConsortium,UniversityofFlorence,viadellaLastruccia,3,50019SestoFiorentino,Florence,Italy bDepartmentofChemicalandGeologicalSciencesandCSGI,UniversityofCagliari,ss554bivioSestu,09042Monserrato,Cagliari,Italy
a
r
t
i
c
l
e
i
n
f
o
Articlehistory: Received3October2017
Receivedinrevisedform9January2018 Accepted11February2018
Availableonline13February2018 Keywords:
Guargum Borax Hydrogel Cleaning
Culturalheritageconservation
a
b
s
t
r
a
c
t
Adynamic,rheological,andstructuralcharacterizationofaqueousgel-likesystemscontaining hydrox-ypropylguargum(HPG),boraxandglycerolispresentedinthispaper.Theroleofglycerol,whichis introducedasaplasticizerintheformulation,isinvestigatedbymeansof11BNMRand1HNMRPGSTE
measurementsinordertoclarifyitscontributiontothegelnetworkformationanditsinteractionwith borax,withwhomitformsacomplex.Theeffectofgelscomponentsontherheologicalbehaviourandon theactivationenergyrelatedtotherelaxationprocessofthesystemwasassessedbymeansofrheology. Theresultsobtainedsuggestthatthemechanicalpropertiesofthesegelscanbetunedandcontrolled bymodulatingtheformulationinawiderangeofcompositions.Moreover,astructuralcharacterisation hasbeenalsocarriedoutbymeansofSmallAngleX-rayScattering(SAXS)tohighlighttheroleofthe variouscomponentsonthemeshsizeofthenetwork.Thestructuralandmechanicalcharacteristicsof thesesystemssuggesttheirpotentialuseforapplicativepurposes.Inthisregard,oneofthegelsetup hasbeensuccessfullytestedascleaningagentonthesurfaceofaXIXstuccofragmentcomingfromthe LaFenicetheatre(Venice,Italy)fortheremovalofadirtlayercomposedbydustandparticulatedmatter originatedduringafirein1996.
©2018ElsevierB.V.Allrightsreserved.
1. Introduction
Hydroxypropylguargum (HPG) is a derivativeof guargum inwhichseveralfreehydroxylsaresubstitutedbyhydroxypropyl groupsuponetherification(Fig.1A).Itisanaturalpolysaccharide extractedfromtheseedsofCyamopsistetragolonoba,anditis com-posedbyalinearchainofmannoseunitslinkedby-1,4bonds. Thisbackboneisfunctionalizedbygalactoseresidues␣-1,6-linked, randomlyattached,formingshortside-branches.Itischeap, non-toxic,biocompatible,biodegradable,easyavailableandsolublein water,whereitformsviscoussolutionsevenatlowconcentrations [1–5].Forthesereasonsguargumhasseveralapplicationsinfood, paper,textile,pharmaceuticalandpetroleumindustries.
HPGtogetherwithsimilarpolysaccharideshasbeenrecently usedfortheformulationofversatileandwell-performingmaterials withvariousfieldsofapplication[1,6–10].Gel-likesystems con-tainingionicsurfactantsandmodifiedguarcovalentlycrosslinked
∗ Correspondingauthor.
E-mailaddresses:[email protected]fi.it,emiliano.carretti@unifi.it(E.Carretti).
havealsobeenproposedasagentsforremovingsolidparticles,able toperformagentlemechanicalsurfacecleaningofsensitive mate-rialssuchasceramic,wood,glassandmetals[11].Hydrogelsmade byguarandHPGcrosslinkedwithionssuchastitanateandborax arewidelyusedintheoilandgasindustry,mainlyasaproppant transportagentinhydraulicfracturingprocess[1,6–10].
Furthermore,theefficacyofboraxascrosslinkerforpolymers bearing hydroxyl groups is well known (see Fig. 1B) [12,13]. The nature of this linkage is debated: according to the model proposedbyShibayamaforpolyvinylalcohol[14]andfor scleroglu-cans[15,16],mixedphysical/chemicallinkagesoccur;nevertheless, morerecentstudiessuggestthepresenceofchemical crosslinks onlybetweenboraxandpolymericchainswiththeformationof chemicalbridgesbytransientcovalentbonds[17,18].Moreover, beingthelifetimeofthesecovalentcrosslinksintheorderof sec-onds[13,19],theguar-boratenetworksareusuallycharacterized byself-healingproperties.
Itiswellknownthatglycerolincreasestheflexibilityof poly-mericmaterialsbyincreasingtheinterchainspacing;duetothis andtoitslargeavailability,glycerolisusedasplasticizerfor poly-mericmaterialsin manyfields,as foodpackaging[20,21] orto
https://doi.org/10.1016/j.colsurfb.2018.02.025
Fig.1. (A)Chemicalstructureofhydroxypropylguar(HPG).(B)Crosslinkingreactionleadingtotheformationofagelatornetwork.
improvetheplasticityofproteinandpolysaccharidesbasedfilms [20,21].Itcanalsoleadtoanincreaseoftheelongationatbreakof materials,resultinginsystemsthatcanresisttoacertainstretching beforebreaking[20,21].
In this paper, a dynamic, rheological, and structural charac-terizationofaqueousgel-likesystemscontainingHPG,boraxand glycerolis presented.In thelast decades,severalpapers focus-ingonthestudyofthemechanicalpropertiesandtheapplicative performancesofHPGaqueoussolutions[22]andgel-likesystems [8–10,23,24]havebeenpublished.However,toourknowledge,a systematicstudyofthesimultaneousroleofbothboraxand glyc-erolonthestructuralandonthemechanicalpropertiesofaqueous HPGbasedgels, whichisthemain subjectofthis paper,is still lacking.Theroleofglycerolinthecrosslinkingmechanismandits interactionswithboraxwerestudiedheresystematicallyforthe firsttimebyusingacombinedapproachbasedonboth11BNMR, 1HNMRPGSTEandrheologicalmeasurements.Inparticular
rheo-logicalinvestigationsallowedtoobtaininformationontheeffect ofgelscomponentsontheviscoelasticbehaviour,ontheactivation energyrelatedtotherelaxationprocessofthesystemandonthe criticalpolymericconcentration,abovewhichanextended three-dimensionalpolymernetworkisformed.Furthermore,information abouttheroleofallthecomponentsonthestructureofHPG-based systems,wereobtainedbyaSmallAngleX-rayScattering(SAXS) investigation.
Thisapproachallowedtoidentifyseveralofthekeyfactorsthat controlthenatureofthematerialsandtheresultsobtained sug-gestthatthemechanicalpropertiesofthesegel-likefluidscanbe tunedbymodulatingtheircomposition.Theextendedstructural andmechanicalcharacterizationofthesegel-likesystemsshows thattheirpropertiescanbewidelycontrolledandtuned,bytuning theconcentrationofthecomponents.Thisfeaturehasimportant applicativeimplicationsmainlyin thefieldof CulturalHeritage conservationwheretheHPG/glycerol/boraxsystemscanbeused fortheselectiveandgentlecleaningofpaintedsurfacesof histor-icalandartisticinterest.Inthisregard,apreliminaryapplicative testwascarriedoutonasamplecollectedfromastuccodecoration ofLaFenicetheatre,inVenice.Agel-likeformulationwas success-fullyusedfortheremovalofadarkpatinaresultedfromthefire thatalmostdestroyedthetheatrein1996.
2. Materialsandmethods 2.1. Chemicals
Hydroxypropylguargum (HPG,Mw=90KDa) witha substi-tutionlevelof1.2waskindlyprovidedbyAmetechSrl;glycerol (Merck,purity99%)andsodiumtetraboratedecahydrate,(Sigma Aldrich,purity99.5–100%)wereusedasreceivedbythesuppliers.
2.2. Samplespreparation
Sampleswithoutplasticizerwerepreparedthroughthe follow-ingprocedure:HPGwasplacedinwaterandthenstirredandheated at65◦Ctofavoursolubilization.Anaqueoussolutionofboraxat 4%wasthenaddedandthesamplewasstirredwithaVortexto obtaina homogenousgelation.For samplescontainingthe plas-ticizer,HPGwasaddedtoaglycerolaqueoussolution.Inallthe samplescontainingborax,theratiopolymer/boraxwasfixedto4/1 asreportedinliteraturefortheformulationofcrosslinkedsystems [10,23],exceptfortheseriesinwhichthecrosslinkereffectwas investigated.
2.3. Rheologicaltests
OscillatoryshearmeasurementswerecarriedoutonaTA Instru-ment HybridRheometer DISCOVERY HR-3, using a plate–plate geometry(FlatPlate40mmdiameter)andaPeltierfortemperature control.Theminimumgapbetweentheplatesatzeroradial posi-tionwas500m.Thecellwasclosedbyloweringtheheadtothe measuringpositioninthezaxisforcecontrolledmode;the max-imumsqueezingforcewas1.0N.Beforestartingtheexperiments, thesampleswerelefttoequilibratefor30minat25◦C.Frequency sweepmeasurementswerecarriedoutwithinthelinear viscoelas-ticrange(5%strain),determinedbymeansofanamplitudesweep test(see Fig.S1).Thestorageand lossmoduli(G’ andG”)were measuredoverthefrequencyrangeof0.001–100Hz.
TimeTemperatureSuperposition(TTS)procedurewascarried out to observethe temperature-dependence of the mechanical propertiesoftheviscoelasticmaterials.Intheseexperiments,the Storagemodulus(G’)andLoss modulus(G”)weremonitoredas a functionoffrequencyin thelinearviscoelasticregionat vari-oustemperaturesbymeansofisothermalfrequencysweeptests. TTSprincipleimpliesthatcurvesobtainedatvarioustemperatures canbesuperimposedbyshiftingthedataintheverticaland/or horizontaldirections;allthecurvescanbecombinedinasingle mastercurvechoosingareferencetemperature(T0).Allthe
sys-temswereanalysedbykeeping25◦Casthereferencetemperature. The shape ofthemaster curvedoesnot changewith tempera-ture,butthecurveappearstobeonlyshifted[23,25].Themaster curvegeneratedbythesoftware(TRIOSDataAnalysis,TA Instru-ment)representsthetimeresponseofthematerialatthereference temperature.Thesoftwarecananalysetheshiftfactorsusingthe ArrheniusEq.(1)tocalculatetheActivationEnergyoftherelaxation process: lnaT=
−ER1T −T1 0 (1)water at 25◦C using a Bruker Advance 300MHz (7.05T) spec-trometerattheoperating frequenciesof300.13and96.29MHz, respectively.11BNMRchemicalshiftswerereferencedwithrespect
toanexternalBF3–OEt2standardat0.0ppm.
AstandardBVT3000variabletemperaturecontrolunitwithan accuracyof±0.5◦Cwasused.Self-diffusioncoefficientswere
deter-minedusingaBrukerDIFF30probe suppliedbya BrukerGreat 1/40amplifierthatcangeneratefieldgradientsupto1.2Tm−1. Thepulse-gradientstimulatedecho(PGSTE) sequencewasused [26,27].Self-diffusioncoefficients wereobtainedbyvaryingthe gradientstrength(g)whilekeepingthegradientpulselength(ı) andthegradientpulseintervalsconstantwithineach experimen-talrun.ThedatawerefittedaccordingtotheStejskal-TannerEq. (2):
I/I0=exp(-Dq2t) (2)
whereIandI0arethesignalsintensitiesrespectivelyinthepresence
andabsenceoftheappliedfieldgradient,q=gıistheso-called scatteringvector(beingthegyromagneticratiooftheobserved nucleus),t=(−ı/3) is thediffusiontime, isthedelay time betweentheencodinganddecodinggradients,andDisthe self-diffusioncoefficienttobeextracted.Errorsontheself-diffusion coefficientswereestimatedaround 2%onthebasis ofrepeated measurements.Areasofthe11BNMRresonances,assumingthey
camera(Kratky-type)equippedwitha position-sensitive detec-tor (OED 50M) containing 1024 channels of width 54mm. Cu K␣radiation(=1.542Å)wasprovidedbyanultrabrilliantpoint micro-focusX-raysource(GENIX-Fox3D,Xenocs,Grenoble), oper-ating at a maximum power of 50W (50kV and 1mA). The sample-to-detectordistancewas281mm.Thespacebetweenthe sampleandthedetectorwaskeptundervacuumduringthe mea-surementstominimizescatteringfromtheair.Scatteringcurves wereobtainedintheq-rangebetween0.01and0.54Å−1.Gel sam-ples were placed into 1mm demountable cells having Kapton filmsaswindows.Thetemperaturewasmaintainedat25±0.1◦C byaPeltiercontroller. Theeffectofthebeamontothesamples duringthecollectionofSAXScurveswasevaluatedbycollecting somespectraatdifferentacquisitiontimesandnodifferenceswere observed,indicatingthatthesampleswerenotdamaged bythe beam.AllSAXScurvesweremodelledaccordingtoaLorentzian model(Eq.(3)).
I (q) = I0
1+ (qL)2+bkg (3)
where I0 is thescatteringintensityatq=0,L isthecorrelation
lengthwhichcorrespondsinasemi-dilutedsolutiontothe aver-agedistancebetweenneighbouringentanglementpointsandbkg isaq-independentinstrumentalbackgroundterm.[28–30]
Fig.2.A)FrequencysweepmeasurementsonHPG/watersamplebefore(blackcurves)andafterboraxaddition(graycurves).TheratioHPGwt%/Boraxwt%wasfixedat4/1. Theoscillationamplitudewas5%.G’(䊏),G”(䊉).(B)Frequencysweepmeasurementsonsampleswithincreasingamountofglycerol,HPG3wt%andaratioHPGwt%/Borax wt%fixedat4/1.Theoscillationamplitudewas5%.G’(䊏),G”(䊉).(C)Storagemodulusvaluesat1Hzplottedagainstglycerolconcentration.(D)Entanglementdensity(E)
3. Resultsanddiscussion
3.1. Formulationandcharacterization
ThedynamicmechanicalpropertiesofHPG-basedsystemswere investigatedbymeansoffrequencysweeposcillationtests.They provideinformationaboutthedependenceofthestoragemodulus (G’)andofthelossmodulus(G”)onthefrequencyoftheapplied shearperturbation.Fig.2Ashowsthetrendofthestoragemodulus G’andthelossmodulusG”ataconstantstrainof5%asafunction oftheappliedshearperturbation.Thepolymerconcentrationin bothsampleswas3wt%whiletheratioHPGwt%/Boraxwt%was fixedat4/1asreportedinliteraturefortheformulationofsimilar crosslinkedsystems[10,23].
ThemechanicalbehaviourofHPG/watersystemwas investi-gatedbeforeandaftertheadditionofboraxthatactsascrosslinker. Borate anions induce the formation of covalent intermolecular junctionsbetweenthepolymerchainsthroughadi-diol condensa-tionreaction.Thisresultsinamorerigidnetworkandinadecrease oftheviscouscharacterofthesamples:thesecovalentcrosslinks, together with theintramolecular and intermolecular hydrogen bondinginteractionsthatoccurbetweenthehydroxylgroupsof theHPGchains,leadtoanincreaseoftheelasticbehaviourandof systemsstiffness.Fromtherheologicalpointofview,theincrease ofboraxdeterminestheincreaseofthesolidlikebehaviourofthe system,withahugeincreaseintheStoragemodulusG’asclearly indicatedbythefrequencysweepcurvesreportedinFig.S2.
To modify the system’s stiffness, tuning the mechanical behaviourofthesample,glycerolwasintroducedasplasticizer, anditsroleintheviscoelasticpropertiesoftheformulationwas systematicallyinvestigatedbymeansofoscillatingrheologicaltest. Frequencysweeptestswerecarriedoutonsystemscontaining dif-ferent glycerolconcentrations, whilekeeping HPGat3wt%and boraxat0.75wt%.ThetrendoftheStorageandoftheLoss mod-uliG’andG”,ataconstantstrainof5%(inthelinearviscoelastic range),asafunctionofthefrequencyisreportedinFig.2B,where thechangeoftheelasticityofthesystemsinducedbytheaddition ofglycerolcanbeobserved.InFig.2C,theStoragemodulus(G’)at 1Hzisplottedasafunctionofglycerolconcentration.Thepresence oftwodifferentregimesisevident:atglycerolconcentrationslower than1wt%,aprogressiveincreaseofthestiffnessofthesystemis observedindicatingastructuringroleofthisadditive.Abovethis threshold,theplasticizingeffectofglycerolprevailsasindicated bythedecreaseofG’.Fig.2Dshowsthetrendoftheentanglement densityEasafunctionoftheglycerolcontent.Theentanglement
densityisequaltokTG’1HzwherekistheBoltzmanconstant,Tis
theabsolutetemperatureandG’1Hzisthevalueoftheelastic
mod-ulusG’at1Hz[28].TheincreaseofEatlowglycerolcontent(up
to1wt%)indicatesanincreaseofthecomplexityofthenetwork
confirmingthestructuringroleofglycerolatlowconcentrations.A highercontentofthisplasticizerinducesaprogressivedecreaseof theentanglementdensity.
Systems containing differentglycerol amounts were deeper investigatedasafunctionoftemperaturebetween25◦Cand60◦C bymeansoftheTimeTemperatureSuperposition(TTS)approach, toobservethetemperature-dependenceofviscoelasticproperties ofthesefluidsand,accordingtoEq.(1),tocalculatethe Activa-tionEnergyassociatedtotherelaxationprocess.InFigs.S3–S7the isothermalfrequencysweepmeasurementsandthemastercurves for samplescontainingHPG(3wt%)/borax(0.75wt%)/water and increasingamountsofglycerolarereported.TheActivationEnergy trendisreportedinFig.3A:weobservedthattheEaprogressively decreasesasglycerolconcentrationincreasesabove1wt% confirm-ingthatabovethisthresholdthedrivingfactoristheplasticizing roleofglycerolthatcauseadecreaseoftheEaoftheinvestigated systems.
Withtheaimofclarifyingtheroleofglycerolinthe crosslink-ingmechanism,anextensive11BNMRstudywascarriedouton
samplescontainingincreasingamountofglycerol.Thereare sev-eralpapersinliteratureabouttheinteractionbetweenboraxand hydroxyl groups[31andrefs therein]Severalofthem focuson crosslinkedsystemssuchasgel-likematerialsbasedonpoly(vinyl alcohol) (PVA)[18,32] and onborax-galactomannan based gels [12].
As shown in Fig. 4A, the 11B NMR spectrum of the HPG
polymer/boraxsysteminwaterischaracterizedbyoneintense res-onanceat11.60ppmandasmallresonanceemergingat5.55ppm, beingthedownfieldresonanceduetotheborate/boricacid molec-ularspecies, and theothertothe cross-linkedborate [33].The additionofglycerol(0.5wt%)causesstrongalterationsoftheNMR spectrum,namelyadownfieldshiftofthefreeboronspecies res-onanceat13.88ppm,andtheappearanceofanewNMRsignalat 9.77ppmthatcanbeassignedtotheformationofaglycerol-borate complex(seebelow).Adramaticincreaseofthecross-linkedborate specieswithrespecttothefreeborate/boricacid,asdeterminedby theareaoftheNMRresonancesignalsat13.88and5.55ppm(see TableS1),isalsoobserved.Withincreasingglycerolconcentration, wenoticeaprogressivedecreaseoftheamountofnon-complexed boronspecieswhoseNMR signalundergoesasignificant down-field shift, whereas no significant chemical shift changes are observedforthetwocomplexedBoratespecies[33].Conversely, theamountof glycerol-boratecomplex increases,whereas that ofHPG-crosslinkedincreasesupto2wt%ofglycerol.Forglycerol contenthigherthan2wt%onlytheamountofglycerol-borate com-plexincreasessuggestingaveryhighstabilityofthisnewcomplex. Remarkably,thesignificantdownfieldshiftofthenon-complexed boronspeciesindicatesachangeintheborate/boricacidratio,with anincreaseintheunchargedspecies[33].Suchaphenomenonwas
Fig.3. (A)ActivationEnergyvaluesobtainedfromrheologicalmeasurements()andGlycerol-BoratecomplexAreaobtainedfrom11BNMRmeasurements()areplotted
againstglycerolconcentration.Allsamplescontain3wt%ofHPGand0.75wt%ofborax.(B)Storagemodulusvaluesat1Hzobtainedfromrheologicalmeasurements(䊏)and HPG-CrosslinkedBorateAreaoftheresonancepeaksobtainedfrom11BNMRmeasurements()areplottedagainstglycerolconcentration.
Fig.4.(A)11BNMRstackedplotspectraofthepolymer/watersystemcontaining
3wt%ofHPG,0.75wt%ofboraxandincreasingamountsofglycerol(indicatedas wt%).Peaksattribution:non-complexedboron(1),glycerol-boratecomplex(2), HPG-crosslinkedborate(3).(B)1HNMRstackedplotspectraoftheglycerol/water
systemcontainingincreasingamountsofborax(wt%).Thestarindicatesanew resonanceattributedtotheglycerol-boratecomplex.
previouslysuggestedtoberelatedtothelessattractive environ-menttoborateionsoriginatedbytheadditionoforganicliquids [18,34].
In other words, the addition of glycerol deeply affects the borate/boric acid equilibrium since the B(OH)4− anion is
pref-erentiallyinvolvedin theformationof boththeglycerol-borate complexandtheHPG-crosslinkedspecies.Clearlytheadditionof glycerol,eveninsmallamount,mayalsoalterthesolvent proper-tiessuchas,forinstance,thedielectricconstant.NMRdataallow ustodeeperunderstandthemeaningofrheologicaldata.From Fig.3Bweobservehowtheadditionofglycerolupto1%induced anincreaseofentanglementdensityresultinginanincreaseof sys-temelasticbehaviour,whileastrongdecreaseofG’occurredat higherconcentrations.Inthesamegraph,wecanseethatthearea ofthecrosslinkedborate,measuredby11BNMR,followsthesame
trend,indicatingthatafractionofboraxisnotanymoreactingasa crosslinkerinthepolymericnetwork.
Thisbehaviourmaybeascribedtoa possibledouble role of glycerol in the crosslinking mechanism. On one hand, at low concentrations,glycerolmolecules seem toact asa structuring agent,inducingthecrosslinkingofboraxandimprovingthe elas-ticbehaviourofthesystem.Ontheotherhand,atconcentration higher than 1wt%, glycerolseems tobehave mainly asa plas-ticizer,reducing thedensityof thecovalentboratebridges and thencausingadecreaseinthesamplestiffness.Thetrendoftan␦ (wheretan␦=G”/G’)at1Hz,reportedinFig.S8,confirmsachange intheviscoelasticbehaviourfor HPG/H2O/boraxbased systems
uponincreasingtheamountofglycerol.Inparticular,above1%,an increaseofG”modulusisobserved,resultinginlessrigidsamples.
in11BNMRmeasurements(Fig.3B).Thetwophenomena,which
contributetothevariationofG’,seemtoproceedinthesame direc-tionuptoaglycerolconcentrationbetween1%and2%,thenthe formationoftheglycerol-boratecomplexbecomesfavouredover theboraxcrosslinkingmechanism.
To confirm the glycerol-borate complex formation, glycerol aqueoussolutionswereinvestigatedbeforeandafterborax addi-tionmeasuringtheself-diffusioncoefficientDofglycerolby1H
PGSTENMR.Intheanalysedsamplesglycerolwasmaintainedat afixedconcentrationindeuteratedwater,whiletheamountof boraxwasincreased.AsreportedinTableS2thestronginteraction betweenglycerolandborateinducesanevidentdecreaseinthe glycerolmotionsthatcanbealreadyobservedatlow glycerol-to-boratemolecularratio,andbecomesmoresignificantastheborate concentrationincreases.Interestingly,upontheadditionofborax anewdownfieldresonancestartedtogrow(seeFig.4B).Itisworth noticingthatboraxin(deuterated)waterdoesnotshowany1H
NMRsignal.Therefore,thenewsignalwasattributedtotheglycerol boratecomplex,andimplicitlyaccountsforitshighstability,being thefingerprintofastablecomplexratherthanalooseassemblyin fastexchangebetweentheboundandfreeform.Inaddition,the formationoftheglycerolboratecomplexisconfirmedbythe pro-gressivebroadeningofthewidthathalfhighandtheconsequent coalescenceoftheNMRsignalsobservedinthe1HNMRspectraas
theboraxconcentrationisincreased(Fig.4B).Indeed,suchalossof resolutionisrelatedtothemorerapidspin–spinrelaxationrates, inturn,causedbya)thereducedmobilityexperiencedbythe glyc-erolmoleculesbecauseoftheformationofthecomplexwithborate ions,andparticularlybyb)theeffectofthequadrupolarrelaxation oftheboronnucleusonthenearbynuclei.
After the dynamical characterization of systems containing increasing amount of glycerol, we focused on the role of the polymerinourformulations.TounderstandtheeffectofHPG con-centrationonthemechanicalpropertiesoftheHPGbasedsystems, frequencysweepmeasurementswerecarriedoutonaseriesof samplesprepared withdifferentamountof HPG (Fig. 5), while keepingtheHPG/boraxratioat4/1andglycerolat3.5wt%.This valuewasselectedinviewofapotentialapplication[18].
Fig.5AindicatesthattheincreaseinHPGconcentrationdoesn’t significantlyaltertheshapeoftheshearmodulialthoughitsvalue increasesuponincreasingtheHPGconcentration,asalsoindicated by thedecrease in thetan␦ values (see Fig. S9). Moreover,for HPGconcentrationslowerthat3wt%,twodifferentregimescanbe observed(Fig.5A):atω>ωc(whereωcisthecrossoverfrequency betweentheG’andG”curves),G’>G”,meaningthattheelastic behaviourprevails;atω<ωcwhereG’<G”,theviscouscharacteris
predominant.Fig.5AalsoshowsthatuponincreasingtheHPG con-centrationthecrossoverbetweenG’andG”curvesshiftstowards lowerfrequencyvalues,indicatinganincreaseofthemean relax-ationtimethatisequalto1/ωc.Inparticular,themeanrelaxation timemovesfrom1.6sforthesampleHPG1%to28.6sforHPG2%. Thesevaluesareusuallyrelatedtostickyreptationdynamics[28]. Furthermore,foraHPGcontenthigherthan3wt%,thecrossover betweenG’andG”movestonotinstrumentallyaccessible frequen-cies,indicatinganincreaseofthesolid-likecharacterofthesystem. MoreovertheincreaseofG’observedbyincreasingtheHPG con-centrationindicatesanincreaseinthecomplexityofthestructure oftheinvestigatedsystemsandanincreaseinthestrengthofthe 3Dnetworkduetotheincreaseofthespatialdensityofthe
borate-Fig.5. (A)FrequencysweepmeasurementsonsampleswithHPG(from1to4%),glycerol3.5%andtheratioHPGwt%/Boraxwt%fixedat4/1.Theoscillationamplitudewas 5%.G’(䊏),G”(䊉).(B)Storagemodulusvaluesat1HzasafunctionofHPGconcentration.(C)Entanglementdensity(E)valuesasafunctionofHPGconcentration.
modulatedcross-linking(e)betweentheHPGchains[35].Fig.5B
reportsthetrendoftheelasticmodulusG’at1Hzasafunction oftheHPGconcentration;thegraphshowsthatG’(1Hz)isnearly constantupto2wt%ofHPG,whileabovethisthreshold(indicated asC*),thedrasticincreaseinG’(1Hz),thatreachesavalueof600Pa at4wt%HPG,indicatestheformationofanextended3Dpolymer network.Thisisalsoconfirmedbythetrendoftheentanglement densityEvaluethatstronglyincreasesforaHPGcontenthigher
than2wt%(Fig.5C).
Thereis a considerable literature onthedependence ofthe G modulus onpolymer concentration in solution [35 and refs therein].Inmostcases,thedependenceofGisdescribedbyapower law:G∝n(4)where;isthepolymerconcentrationexpressed
aswt%[36].Forrigidnetworkshavingafibrillarymorphologythe exponentnis strictlyrelatedtothefractal dimensionDFofthe
objectconnectingatthejunction(5)[37–39].
G’∝n (4)
G’∝(3+DF)/(3−DF) (5)
InFig.S10thetrendoftheG’valuesat1Hzareplottedona log/logscaleasafunctionofthepolymerconcentration.Fromthe obtainedslope(n),afractaldimensionof1.6iscalculated,andthis suggests,accordinglytoJonesandMarquestheory[38],anetwork withobjectsconnectedbyrigidjunctions,forwhichanenthalpic elasticityoccurs[37].
TherheologicalpropertiesofaselectedsystemcontainingHPG 3%/borax0.75%/glycerol3.5%werealsoinvestigatedasafunctionof temperaturebetween25◦Cand60◦C,todeepenthe temperature-dependenceofviscoelasticpropertiesofthesefluidsandtoobtain the activation energy (Ea) associated to the relaxation process throughtheTTSapproach(Eq.(1)).Thefrequencysweepcurves andthemastercurvesforsamplesinvestigatedarereportedinFigs.
S3,S6,S11andS12,whiletheactivationenergyvaluesforsamples withandwithoutglycerolandboraxarelistedinTableS3.
TheadditionofboraxtotheHPGdispersioninwater(sample 2andsample1,respectively)leadtoanincreaseoftheEavalue, confirmingtheabilityofboraxinincreasingthesystems’stiffness (seeTableS3).Theadditionofglyceroltosample2determineda significantdecreaseoftheEavalue(sample3).Itisworthnoting thatboththeformulationscontainingglycerol(samples3and4), arecharacterizedbyactivationenergyvaluesthataremuchlower thanthoseofthecorrespondingsystemsthatdon’tcontain glyc-erol(system2and1,respectively).Asamatteroffact,over2wt%, glycerolcreatesastablecomplexwithborate,resultinginlessrigid systems,asshownbyNMRmeasurements.NMRresultsarealso confirmedbythecomparisonbetweenEavaluesofsamples3and 4:theadditionofboraxtoasystemcontainingglyceroldoesnot increasesignificantlytheactivationenergyoftherelaxation pro-cess,differentlyfromwhathappenedforsamples2and1.Thisis duetothefactthatborateispartiallysequesteredbyglyceroland itisnotentirelyinvolvedinthecrosslinkingofHPG.
SAXScurveshavebeencollectedonHPGaqueousbinary solu-tions before and after the addition of the plasticizer and the crosslinkertobetterunderstandtherole ofthecomponentson thestructureofthestudiedsystems.InFig.6,SAXSprofilesand thebestfitting curvesaccordingtoEq. (3) arereported.Fitting resultsarereportedinTable1.Asreportedinliterature[30],in asemi-dilutedpolymericsolution,themeshsize(indicatedbythe ScreeningLength(L))correspondstotheaveragedistancebetween neighbouringcrosslinkingpointsofthe3Dpolymericnetwork.
Forwhatconcernsamples1and2,theadditionofboraxdoesnot significantlychangethemeshsizeoftheHPGaqueousdispersion, eveniftheentanglementdensityincreasesofalmosttwoorderof magnitude.Thisindicatesthatintheabsenceofglycerol,the inter-actionsoccurringbetweentheHPGchainsarethedrivingfactor indeterminingthemeshsizeofthenetwork,whilethevalueofE
Fig.6. ComparisonbetweenSAXScurvessamplescontainingHPG/water(1),HPG/borax/water(2),HPG/glycerol/borax/water(3)andHPG/glycerol/water(4).
Table1
LorentzparametersassociatedwiththebestfitstotheSAXScurvesandtheentanglementdensityEforsamplescontainingHPGandHPG/glycerolaqueousdispersion,with andwithoutboraxascrosslinker.
SAMPLE COMPOSITION ScalefactorI0 ScreeningLengthL(Å) Bkg E(1/m3)
1 HPG3wt%inwater 0.19±0.03 14.5±0.4 0.03 4.1×1020
2 HPG3wt%/borax/water 0.31±0.04 15.2±0.3 0.04 95×1021
3 HPG3wt%/glycerol3.5wt%/borax/water 0.30±0.06 24.5±0.6 0.05 80×1021
4 HPG3wt%/glycerol3.5wt%inwater 0.34±0.07 28.9±0.7 0.04 1.6×1020
mainlydependsuponthepresenceofthecrosslinkingagent.Onthe
contrary,inthepresenceofglycerol(sample3and4),boraxleads
toasignificantdecreaseinthescreeninglengthofthepolymeric
network.Moreover,theadditionofglycerolleadstoahugeincrease
ofthemeshsize(comparesample1withsample4andsample2
withsample3),confirmingtheabilityofthisadditivetointerpose
amongHPGchains,reducingtheentityoftheinteractionsbetween
theHPGmonomers(mainlyduetoHbonds),thereforeactingasa
plasticizer.
3.2. Applicationtest
Inthelastdecades,severaladvancedandinnovativesystemsfor
theconservationofculturalheritagehavebeenproposed[40–42].
Inparticularhydroandorganogelshavebeenproposedasafeasible alternativetoovercomethelimitsoftraditionalmethodsforthe selectiveremovalofpatinasfromsurfacesofartisticandhistorical interest[43–47].
The characterization of HPG/glycerol/borax gel-like systems showsthattheirpropertiescanbetuned, evendramatically,by varyingtheconcentrationofthecomponents.Fromthe applica-tivepointofviewthisisaveryattractivefeatureofthesesystems. Therefore,apreliminaryapplicativetestusingagel-like
formula-tionwithHPG(3wt%),borax(0.75wt%),andglycerol(3.5wt%)was carriedout.Thissystemwaschosenbecauseitcanbestretched withoutbreaking(seeFig.S13),whichisanappealingfeaturefor theapplication on curved surfaces. Moreover,the valueof the intrinsicelasticmodulusofthissystemallowsitspeelingfromthe cleanedsurfaceinonestep[18].Itisworthnotingthatthis formu-lationhasapHbetween8and9,whichiscompletelycompatible withmostofobjectsofhistoricalandartisticinterest.
AfterthefirethatalmostdestroyedLaFenicetheatre(Venice) in1996,artworksanddecorationsthatbelongedtothebeautiful historicalbuildingwerealteredbyadarkcoating,resultedfrom dustandparticulatemattergeneratedfromthefire.Thestuccoof LaFenicetheatreisarough,porousmaterial,ascanbeseenfrom Fig.7A.Thefirstattempttoremove thesurfacepatinawas car-riedoutbyfollowingatraditionalprocedurebasedontheuseof acottonswabsoakedwithdemineralizedwater. Inthatway,it waspossibletoobtainthesofteningofthedirtlayer,whichwas thenabsorbedbytheporousmatrix,resultinginanunsatisfactory cleaningofthedecoration(Fig.7B).Asecondcleaningtestwasthen carriedoutbymeansofagel-likeHPG-systemthat,accordingto theWashburnequation,duetoitshighviscosity,allowedthe min-imizationofthepenetrationofthewaterintotheporoussupport. TheHPG/glycerol/boraxsystemwasappliedonthestuccosurface
Fig.7.Detailofthesampleregionbefore(A),during(B)andafter(C)theapplicationasdescribedinthetext.Comparisonbetweenthecleaningperformanceofawetcotton swab(1)andoftheHPGbasedsystem(2).
withaspatulaandleftonthesurfaceforabout1min(seeFig.7B); aftertheapplication,thesystemwasremovedinonestepthrougha simplepeelingaction.Thecomparisonbetweenthecleaningaction ofoursystemandthatofneatwaterappliedbymeansofawet cottonswabcanbeobservedinFig.7C.Thepromisingresultsof thispreliminarytestsuggestapossibleapplicationofthis formula-tionfortheselectivecleaningofthesurfacemakingthesegel-like systemsparticularlyinterestinginthefieldofrestoration.
4. Conclusions
Arheological,dynamic,andstructuralcharacterizationofwater basedgel-likesystemscontaininghydroxypropylguargum(HPG), borax,andglycerolisreported.Fromrheologicalmeasurements, we observed that the addition of borax to aqueous HPG dis-persionsleadtosystemswithincreasedstiffness,beingboraxa well-knownefficientcrosslinkerforhydroxyl-richpolymers.With theaimof tuningthemechanical properties ofHPG/borax gel-likesystems, variableamounts of glycerolwere addedand the overall effect onthe systems was studied.Surprisingly, at low concentration(below1%),glycerolactsastructuringagent, increas-ing thestorage modulus.Above 1%,it behavesas a plasticizer, asitmightbeexpected.Wethendecidedtodeepentheroleof glycerol in network formation and its interactions with borax, using11BNMRand1HNMRPGSTE.Inparticular,from11BNMR,
theformationofaglycerol-boratecomplexwasobserved.When glycerolishigherthan1%,thecomplexformationactasa driv-ingforceandoccursattheexpensesofthecrosslinkingbetween boraxandpolymerchains,resultinginthedecreaseofthe Stor-agemodulus, as observed fromrheological measurements.The formationofastableglycerol-boratecomplexwasconfirmedby
1H PGSTE NMR measurements, from which we calculated the
diffusionof glycerolin boraxaqueous solutions. Theactivation energiesoftherelaxationprocessobtainedbyTimeTemperature Superposition(TTS)allow usto calculatethe fractal dimension of theinvestigated systems that resultedto bethe onetypical ofanetworkwithobjectsconnectedbyrigidjunctions.A struc-turalcharacterizationcarriedoutbySAXSexperimentsprovided insight about the mesh size, which is influenced by both the presenceofboraxandglycerol.Apreliminaryapplicativetestfor theremovalofadarkpatinafromastuccodecorationbelonging toLaFenicetheatre (Venice)wasthenperformed.The promis-ingresultsobtainedin thesepreliminaryexperimentssuggesta possiblefuture applicationof theseformulationsin thefield of restoration.
Conflictofinterest None.
Funding
This work was supportedby Centerfor colloid and surface science and by the European Union’s Horizon 2020 research and innovation programme under grant agreementNo 646063 [NanorestartProject].SergioMurgiaandMauraMonduzzithank Fondazione Banco di Sardegna and Regione Autonoma della Sardegna(ProgettiBiennalidiAteneoAnnualità2016,Fondazione Sardegna CUP F72F16003070002 and F72F16003060002). All authors greatefully thankthe friend Prof. Piero Baglioni for its friendshipanditsconstantfundamentalcontributiontothefield ofSoft Matterand thenanotechnologiesappliedtotheCultural HeritageConservation.
AppendixA. Supplementarydata
Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttps://doi.org/10.1016/j.colsurfb.2018.02. 025.
References
[1]R.K.Proud’homme,V.Costien,S.Knoll,Theeffectofshearhystoryonthe rheologyofhydroxypropylguargels,Polym.AqueousMediaPerform.Assoc. (1989)89–112.
[2]J.E.Fox,Seedgums,thick,GellingAgentsFood26(1997)262–283.
[3]C.H.Kucera,D.N.DeMott,Drillingfluidcontainingcrosslinkedpolysaccharide derivative,USpatent4257903,1981.
[4]T.Coviello,F.Alhaique,A.Dorigo,P.Matricardi,M.Grassi,Two
galactomannansandscleroglucanasmatricesfordrugdelivery:preparation andreleasestudies,Eur.J.Pharm.Biopharm.66(2007)200–209.
[5]H.Kono,F.Otaka,M.Ozaki,Preparationandcharacterizationofguargum hydrogelsascarriermaterialsforcontrolledproteindrugdelivery,Carbohydr. Polym.111(2014)830–840.
[6]T.Coviello,P.Matricardi,C.Marianecci,F.Alhaique,Polysaccharidehydrogels formodifiedreleaseformulations,J.Control.Release119(2007)5–24.
[7]G.Milcovich,F.E.Antunes,R.Farra,M.Grassi,F.Asaro,Modulating
carbohydrate-basedhydrogelsasviscoelasticlubricantsubstituteforarticular cartilages,Int.J.Biol.Macromol.102(2017)796–804.
[8]Y.Cheng,K.M.Brown,R.K.Prud’homme,Characterizationandintermolecular interactionsofhydroxypropylguarsolutions,Biomacromolecules3(2002) 456–461.
[9]D.Risica,A.Barbetta,L.Vischetti,C.Cametti,M.Dentini,Rheological propertiesofguaranditsmethyl,hydroxypropylandhydroxypropyl-methyl derivativesinsemidiluteandconcentratedaqueoussolutions,Polymer (Guildf)51(2010)1972–1982.
[10]S.Wang,H.Tang,J.Guo,K.Wang,EffectofpHontherheologicalpropertiesof boratecrosslinkedhydroxypropylguargumhydrogelandhydroxypropyl guargum,Carbohydr.Polym.147(2016)455–463.
[11]R.Dietrich,M.Flury,Agentforremovingsolidparticles,USpatent7541325, 2009.
[12]E.Pezron,A.Ricard,F.Lafuma,R.Audebert,Reversiblegelformationinduced byioncomplexation.1.Borax-galactomannaninteractions,Macromolecules 21(1988)1121–1125.
[13]T.Coviello,P.Matricardi,F.Alhaique,R.Farra,G.Tesei,S.Fiorentino,etal., Guargum/boraxhydrogel:rheological,lowfieldNMRandrelease characterizations,E-XPRESSPolym.Lett.7(2013)733–746.
[14]M.Shibayama,H.Yoshizawa,H.Kurokawa,H.Fujiwara,S.Nomura,Sol-gel transitionofpoly(vinylalcohol)-boratecomplex,Polymer28(1988) 2066–2071.
experimentalandtheoreticalstudiesofanunexpectedsimilarity,J.Phys. Chem.B114(2010)13059–13068.
[18]L.Angelova,B.Berrie,K.DeGhetaldi,A.Kerr,R.G.Weiss,Partiallyhydrolised poly(vinylacetate)-boraxbasedgel-likematerialsforconservationofart: characterizationandapplications,Stud.Conserv.60(2015)227–244.
[19]E.Pezron,A.Ricard,L.Leibler,Rheologyofgalactomannan-boraxgels,J. Polym.Sci.PartBPolym.Phys.28(1990)2445–2461.
[20]V.Epure,M.Griffon,E.Pollet,L.Avérous,Structureandpropertiesof glycerol-plasticizedchitosanobtainedbymechanicalkneading,Carbohydr. Polym.83(2011)947–952.
[21]C.Gao,E.Pollet,L.Av,FoodHydrocolloidsPropertiesofglycerol-plasticized alginatefilmsobtainedbythermo-mechanicalmixing,FoodHydrocoll.63 (2017)414–420.
[22]M.Kapoor,D.Khandal,R.Gupta,P.Arora,G.Seshadri,S.Aggarwal,etal., Certainrheologicalaspectsoffunctionalizedguargum,Int.J.Carbohydr. Chem.2013(2013)1–15.
[23]S.Kesavan,R.K.Proud’homme,RheologyofguarandHPGcross-linkedby borate,Macromolecules2(1992)2026–2032.
[24]M.Rietjens,P.A.Steenbergen,Crosslinkingmechanismofboricacidwithdiols revisited,Eur.J.Inorg.Chem.116(2005)1162–1174.
[25]J.Dealy,D.Plazek,Timetemperaturesuperposition–auserguide,Rheol.Bull. 78(2009)16–31.
[26]S.Murgia,M.Monduzzi,F.Lopez,G.Palazzo,Mesoscopicstructurein mixturesofwaterand1-butyl-3-methylimidazoliumtetrafluoborate:a multinuclearNMRstudy,J.SolutionChem.42(2013)1111–1122.
[27]S.Murgia,G.Palazzo,M.Mamusa,S.Lampis,M.Monduzzi,Aerosol-OTin waterformsfully-branchedcylindricaldirectmicellesinthepresenceofthe ionicliquid1-butyl-3-methylimidazoliumbromide,Phys.Chem.Chem.Phys. 13(2011)9238–9245.
[28]E.Carretti,C.Matarrese,E.Fratini,P.Baglioni,L.Dei,Physicochemical characterizationofpartiallyhydrolyzedpoly(vinylacetate)-borateaqueous dispersions,SoftMatter10(2014)4443–4450.
[29]M.Shibayama,Structure-mechanicalpropertyrelationshipoftough hydrogels,SoftMatter8(2012)8030–8038.
[30]P.G.DeGennes,ScalingConceptsinPolymerPhysics,CornellUniversityPress, Ithaca,NewYork,1979.
[31]P.J.P.Sci,ComplexFormationinPolymer-IonSolutions.1.Polymer ConcentrationEffects,(1989)1169–1174.
hydrolyzedpoly(vinylacetate)-boratenetworks:applicationstocleaning paintedsurfaces,Langmuir27(2011)13226–13235.
[35]B.A.Schubert,E.W.Kaler,N.J.Wagner,Themicrostructureandrheologyof mixedcationic/anionicwormlikemicelles,Langmuir19(2003)4079–4089.
[36]P.G.deGennes,P.Pincus,Scalingtheoryofpolymeradsorption,J.Phys.37 (1976)1445–1452.
[37]J.-M.Guenet,Structureversusrheologicalpropertiesinfibrillar
thermoreversiblegelsfrompolymersandbiopolymers,J.Rheol.(N.Y.N.Y.) 44(2000)947–960.
[38]J.L.Jones,C.M.Marques,Rigidpolymernetworkmodels,J.Phys.France51 (1990)1113–1127.
[39]M.Pääkkö,M.Ankefors,H.Kosonen,A.N ¨ykanen,S.Ahola,M.Östeberg,etal., Enzymatichydrolysiscombinedwithmechanicalshearingandhigh-pressure homogenizationfornanoscalecellulosefibrilsandstronggels,
Biomacromolecules8(2007)1934–1941.
[40]T.Duncan,B.Berrie,R.G.Weiss,Soft,peelableorganogelsfrompartially hydrolyzedpoly(vinylacetate)andbenzene-1,4-diboronicacid:applications tocleanworksofart,ACSAppl.MaterInterfaces9(2017)28069–28078.
[41]P.Baglioni,D.Chelazzi(Eds.),NanosciencefortheConservationofWorksof Art,TheRoyalSocietyofChemistry,London,UK,2013.
[42]G.Poggi,N.Toccafondi,D.Chelazzi,P.Canton,R.Giorgi,P.Baglioni,Calcium hydroxidenanoparticlesfromsolvothermalreactionforthedeacidificationof degradedwaterloggedwood,J.ColloidInterfaceSci.473(2016)1–8.
[43]E.Carretti,L.Dei,Gelsascleaningagentsinculturalheritageconservation,in: P.Terech,R.G.Weiss(Eds.),MolecularGels:MaterialswithSelf-Assembled FibrillarNetworks,Springer,NewYork,USA,2005,pp.929–938.
[44]L.Angelova,M.Leskes,B.Berrie,R.G.Weiss,Selectiveformationoforgani, organo-aqueous,andhydrogel-likematerialsfrompartiallyhydrolysed poly(vinylacetate)sbasedondifferentboron-containingcrosslinker,Soft Matter11(2015)5060–5066.
[45]P.Baglioni,E.Carretti,D.Chelazzi,Nanomaterialsforartconservation,Nat. Nanotechnol.10(2015)287–290.
[46]C.Mazzuca,G.Poggi,N.Bonelli,L.Micheli,P.Baglioni,A.Palleschi,Innovative chemicalgelsmeetenzymes:asmartcombinationforcleaningpaper artworks,J.ColloidInterfaceSci.502(2017)153–164.
[47]C.Berlangieri,E.Andrina,C.Matarrese,E.Carretti,R.Traversi,M.Severi,etal., Chelatorsconfinedinto80pvac-boraxhighlyviscousdispersionsforthe removalofgypsumdegradationlayers,PureAppl.Chem.89(2017)97–109.