• Non ci sono risultati.

Structural, rheological and dynamics insights of hydroxypropyl guar gel-like systems

N/A
N/A
Protected

Academic year: 2021

Condividi "Structural, rheological and dynamics insights of hydroxypropyl guar gel-like systems"

Copied!
9
0
0

Testo completo

(1)

Structural,

rheological

and

dynamics

insights

of

hydroxypropyl

guar

gel-like

systems

Chiara

Berlangieri

a

,

Giovanna

Poggi

a

,

Sergio

Murgia

b

,

Maura

Monduzzi

b

,

Luigi

Dei

a

,

Emiliano

Carretti

a,∗

aDepartmentofChemistry“UgoSchiff”&CSGIConsortium,UniversityofFlorence,viadellaLastruccia,3,50019SestoFiorentino,Florence,Italy bDepartmentofChemicalandGeologicalSciencesandCSGI,UniversityofCagliari,ss554bivioSestu,09042Monserrato,Cagliari,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received3October2017

Receivedinrevisedform9January2018 Accepted11February2018

Availableonline13February2018 Keywords:

Guargum Borax Hydrogel Cleaning

Culturalheritageconservation

a

b

s

t

r

a

c

t

Adynamic,rheological,andstructuralcharacterizationofaqueousgel-likesystemscontaining hydrox-ypropylguargum(HPG),boraxandglycerolispresentedinthispaper.Theroleofglycerol,whichis introducedasaplasticizerintheformulation,isinvestigatedbymeansof11BNMRand1HNMRPGSTE

measurementsinordertoclarifyitscontributiontothegelnetworkformationanditsinteractionwith borax,withwhomitformsacomplex.Theeffectofgelscomponentsontherheologicalbehaviourandon theactivationenergyrelatedtotherelaxationprocessofthesystemwasassessedbymeansofrheology. Theresultsobtainedsuggestthatthemechanicalpropertiesofthesegelscanbetunedandcontrolled bymodulatingtheformulationinawiderangeofcompositions.Moreover,astructuralcharacterisation hasbeenalsocarriedoutbymeansofSmallAngleX-rayScattering(SAXS)tohighlighttheroleofthe variouscomponentsonthemeshsizeofthenetwork.Thestructuralandmechanicalcharacteristicsof thesesystemssuggesttheirpotentialuseforapplicativepurposes.Inthisregard,oneofthegelsetup hasbeensuccessfullytestedascleaningagentonthesurfaceofaXIXstuccofragmentcomingfromthe LaFenicetheatre(Venice,Italy)fortheremovalofadirtlayercomposedbydustandparticulatedmatter originatedduringafirein1996.

©2018ElsevierB.V.Allrightsreserved.

1. Introduction

Hydroxypropylguargum (HPG) is a derivativeof guargum inwhichseveralfreehydroxylsaresubstitutedbyhydroxypropyl groupsuponetherification(Fig.1A).Itisanaturalpolysaccharide extractedfromtheseedsofCyamopsistetragolonoba,anditis com-posedbyalinearchainofmannoseunitslinkedby␤-1,4bonds. Thisbackboneisfunctionalizedbygalactoseresidues␣-1,6-linked, randomlyattached,formingshortside-branches.Itischeap, non-toxic,biocompatible,biodegradable,easyavailableandsolublein water,whereitformsviscoussolutionsevenatlowconcentrations [1–5].Forthesereasonsguargumhasseveralapplicationsinfood, paper,textile,pharmaceuticalandpetroleumindustries.

HPGtogetherwithsimilarpolysaccharideshasbeenrecently usedfortheformulationofversatileandwell-performingmaterials withvariousfieldsofapplication[1,6–10].Gel-likesystems con-tainingionicsurfactantsandmodifiedguarcovalentlycrosslinked

∗ Correspondingauthor.

E-mailaddresses:[email protected]fi.it,emiliano.carretti@unifi.it(E.Carretti).

havealsobeenproposedasagentsforremovingsolidparticles,able toperformagentlemechanicalsurfacecleaningofsensitive mate-rialssuchasceramic,wood,glassandmetals[11].Hydrogelsmade byguarandHPGcrosslinkedwithionssuchastitanateandborax arewidelyusedintheoilandgasindustry,mainlyasaproppant transportagentinhydraulicfracturingprocess[1,6–10].

Furthermore,theefficacyofboraxascrosslinkerforpolymers bearing hydroxyl groups is well known (see Fig. 1B) [12,13]. The nature of this linkage is debated: according to the model proposedbyShibayamaforpolyvinylalcohol[14]andfor scleroglu-cans[15,16],mixedphysical/chemicallinkagesoccur;nevertheless, morerecentstudiessuggestthepresenceofchemical crosslinks onlybetweenboraxandpolymericchainswiththeformationof chemicalbridgesbytransientcovalentbonds[17,18].Moreover, beingthelifetimeofthesecovalentcrosslinksintheorderof sec-onds[13,19],theguar-boratenetworksareusuallycharacterized byself-healingproperties.

Itiswellknownthatglycerolincreasestheflexibilityof poly-mericmaterialsbyincreasingtheinterchainspacing;duetothis andtoitslargeavailability,glycerolisusedasplasticizerfor poly-mericmaterialsin manyfields,as foodpackaging[20,21] orto

https://doi.org/10.1016/j.colsurfb.2018.02.025

(2)

Fig.1. (A)Chemicalstructureofhydroxypropylguar(HPG).(B)Crosslinkingreactionleadingtotheformationofagelatornetwork.

improvetheplasticityofproteinandpolysaccharidesbasedfilms [20,21].Itcanalsoleadtoanincreaseoftheelongationatbreakof materials,resultinginsystemsthatcanresisttoacertainstretching beforebreaking[20,21].

In this paper, a dynamic, rheological, and structural charac-terizationofaqueousgel-likesystemscontainingHPG,boraxand glycerolis presented.In thelast decades,severalpapers focus-ingonthestudyofthemechanicalpropertiesandtheapplicative performancesofHPGaqueoussolutions[22]andgel-likesystems [8–10,23,24]havebeenpublished.However,toourknowledge,a systematicstudyofthesimultaneousroleofbothboraxand glyc-erolonthestructuralandonthemechanicalpropertiesofaqueous HPGbasedgels, whichisthemain subjectofthis paper,is still lacking.Theroleofglycerolinthecrosslinkingmechanismandits interactionswithboraxwerestudiedheresystematicallyforthe firsttimebyusingacombinedapproachbasedonboth11BNMR, 1HNMRPGSTEandrheologicalmeasurements.Inparticular

rheo-logicalinvestigationsallowedtoobtaininformationontheeffect ofgelscomponentsontheviscoelasticbehaviour,ontheactivation energyrelatedtotherelaxationprocessofthesystemandonthe criticalpolymericconcentration,abovewhichanextended three-dimensionalpolymernetworkisformed.Furthermore,information abouttheroleofallthecomponentsonthestructureofHPG-based systems,wereobtainedbyaSmallAngleX-rayScattering(SAXS) investigation.

Thisapproachallowedtoidentifyseveralofthekeyfactorsthat controlthenatureofthematerialsandtheresultsobtained sug-gestthatthemechanicalpropertiesofthesegel-likefluidscanbe tunedbymodulatingtheircomposition.Theextendedstructural andmechanicalcharacterizationofthesegel-likesystemsshows thattheirpropertiescanbewidelycontrolledandtuned,bytuning theconcentrationofthecomponents.Thisfeaturehasimportant applicativeimplicationsmainlyin thefieldof CulturalHeritage conservationwheretheHPG/glycerol/boraxsystemscanbeused fortheselectiveandgentlecleaningofpaintedsurfacesof histor-icalandartisticinterest.Inthisregard,apreliminaryapplicative testwascarriedoutonasamplecollectedfromastuccodecoration ofLaFenicetheatre,inVenice.Agel-likeformulationwas success-fullyusedfortheremovalofadarkpatinaresultedfromthefire thatalmostdestroyedthetheatrein1996.

2. Materialsandmethods 2.1. Chemicals

Hydroxypropylguargum (HPG,Mw=90KDa) witha substi-tutionlevelof1.2waskindlyprovidedbyAmetechSrl;glycerol (Merck,purity99%)andsodiumtetraboratedecahydrate,(Sigma Aldrich,purity99.5–100%)wereusedasreceivedbythesuppliers.

2.2. Samplespreparation

Sampleswithoutplasticizerwerepreparedthroughthe follow-ingprocedure:HPGwasplacedinwaterandthenstirredandheated at65◦Ctofavoursolubilization.Anaqueoussolutionofboraxat 4%wasthenaddedandthesamplewasstirredwithaVortexto obtaina homogenousgelation.For samplescontainingthe plas-ticizer,HPGwasaddedtoaglycerolaqueoussolution.Inallthe samplescontainingborax,theratiopolymer/boraxwasfixedto4/1 asreportedinliteraturefortheformulationofcrosslinkedsystems [10,23],exceptfortheseriesinwhichthecrosslinkereffectwas investigated.

2.3. Rheologicaltests

OscillatoryshearmeasurementswerecarriedoutonaTA Instru-ment HybridRheometer DISCOVERY HR-3, using a plate–plate geometry(FlatPlate40mmdiameter)andaPeltierfortemperature control.Theminimumgapbetweentheplatesatzeroradial posi-tionwas500␮m.Thecellwasclosedbyloweringtheheadtothe measuringpositioninthezaxisforcecontrolledmode;the max-imumsqueezingforcewas1.0N.Beforestartingtheexperiments, thesampleswerelefttoequilibratefor30minat25◦C.Frequency sweepmeasurementswerecarriedoutwithinthelinear viscoelas-ticrange(5%strain),determinedbymeansofanamplitudesweep test(see Fig.S1).Thestorageand lossmoduli(G’ andG”)were measuredoverthefrequencyrangeof0.001–100Hz.

TimeTemperatureSuperposition(TTS)procedurewascarried out to observethe temperature-dependence of the mechanical propertiesoftheviscoelasticmaterials.Intheseexperiments,the Storagemodulus(G’)andLoss modulus(G”)weremonitoredas a functionoffrequencyin thelinearviscoelasticregionat vari-oustemperaturesbymeansofisothermalfrequencysweeptests. TTSprincipleimpliesthatcurvesobtainedatvarioustemperatures canbesuperimposedbyshiftingthedataintheverticaland/or horizontaldirections;allthecurvescanbecombinedinasingle mastercurvechoosingareferencetemperature(T0).Allthe

sys-temswereanalysedbykeeping25◦Casthereferencetemperature. The shape ofthemaster curvedoesnot changewith tempera-ture,butthecurveappearstobeonlyshifted[23,25].Themaster curvegeneratedbythesoftware(TRIOSDataAnalysis,TA Instru-ment)representsthetimeresponseofthematerialatthereference temperature.Thesoftwarecananalysetheshiftfactorsusingthe ArrheniusEq.(1)tocalculatetheActivationEnergyoftherelaxation process: lnaT=



−ER





1T −T1 0



(1)

(3)

water at 25◦C using a Bruker Advance 300MHz (7.05T) spec-trometerattheoperating frequenciesof300.13and96.29MHz, respectively.11BNMRchemicalshiftswerereferencedwithrespect

toanexternalBF3–OEt2standardat0.0ppm.

AstandardBVT3000variabletemperaturecontrolunitwithan accuracyof±0.5◦Cwasused.Self-diffusioncoefficientswere

deter-minedusingaBrukerDIFF30probe suppliedbya BrukerGreat 1/40amplifierthatcangeneratefieldgradientsupto1.2Tm−1. Thepulse-gradientstimulatedecho(PGSTE) sequencewasused [26,27].Self-diffusioncoefficients wereobtainedbyvaryingthe gradientstrength(g)whilekeepingthegradientpulselength(ı) andthegradientpulseintervalsconstantwithineach experimen-talrun.ThedatawerefittedaccordingtotheStejskal-TannerEq. (2):

I/I0=exp(-Dq2t) (2)

whereIandI0arethesignalsintensitiesrespectivelyinthepresence

andabsenceoftheappliedfieldgradient,q=gıistheso-called scatteringvector(beingthegyromagneticratiooftheobserved nucleus),t=(−ı/3) is thediffusiontime, isthedelay time betweentheencodinganddecodinggradients,andDisthe self-diffusioncoefficienttobeextracted.Errorsontheself-diffusion coefficientswereestimatedaround 2%onthebasis ofrepeated measurements.Areasofthe11BNMRresonances,assumingthey

camera(Kratky-type)equippedwitha position-sensitive detec-tor (OED 50M) containing 1024 channels of width 54mm. Cu K␣radiation(␭=1.542Å)wasprovidedbyanultrabrilliantpoint micro-focusX-raysource(GENIX-Fox3D,Xenocs,Grenoble), oper-ating at a maximum power of 50W (50kV and 1mA). The sample-to-detectordistancewas281mm.Thespacebetweenthe sampleandthedetectorwaskeptundervacuumduringthe mea-surementstominimizescatteringfromtheair.Scatteringcurves wereobtainedintheq-rangebetween0.01and0.54Å−1.Gel sam-ples were placed into 1mm demountable cells having Kapton filmsaswindows.Thetemperaturewasmaintainedat25±0.1◦C byaPeltiercontroller. Theeffectofthebeamontothesamples duringthecollectionofSAXScurveswasevaluatedbycollecting somespectraatdifferentacquisitiontimesandnodifferenceswere observed,indicatingthatthesampleswerenotdamaged bythe beam.AllSAXScurvesweremodelledaccordingtoaLorentzian model(Eq.(3)).

I (q) = I0

1+ (qL)2+bkg (3)

where I0 is thescatteringintensityatq=0,L isthecorrelation

lengthwhichcorrespondsinasemi-dilutedsolutiontothe aver-agedistancebetweenneighbouringentanglementpointsandbkg isaq-independentinstrumentalbackgroundterm.[28–30]

Fig.2.A)FrequencysweepmeasurementsonHPG/watersamplebefore(blackcurves)andafterboraxaddition(graycurves).TheratioHPGwt%/Boraxwt%wasfixedat4/1. Theoscillationamplitudewas5%.G’(䊏),G”(䊉).(B)Frequencysweepmeasurementsonsampleswithincreasingamountofglycerol,HPG3wt%andaratioHPGwt%/Borax wt%fixedat4/1.Theoscillationamplitudewas5%.G’(䊏),G”(䊉).(C)Storagemodulusvaluesat1Hzplottedagainstglycerolconcentration.(D)Entanglementdensity(␳E)

(4)

3. Resultsanddiscussion

3.1. Formulationandcharacterization

ThedynamicmechanicalpropertiesofHPG-basedsystemswere investigatedbymeansoffrequencysweeposcillationtests.They provideinformationaboutthedependenceofthestoragemodulus (G’)andofthelossmodulus(G”)onthefrequencyoftheapplied shearperturbation.Fig.2Ashowsthetrendofthestoragemodulus G’andthelossmodulusG”ataconstantstrainof5%asafunction oftheappliedshearperturbation.Thepolymerconcentrationin bothsampleswas3wt%whiletheratioHPGwt%/Boraxwt%was fixedat4/1asreportedinliteraturefortheformulationofsimilar crosslinkedsystems[10,23].

ThemechanicalbehaviourofHPG/watersystemwas investi-gatedbeforeandaftertheadditionofboraxthatactsascrosslinker. Borate anions induce the formation of covalent intermolecular junctionsbetweenthepolymerchainsthroughadi-diol condensa-tionreaction.Thisresultsinamorerigidnetworkandinadecrease oftheviscouscharacterofthesamples:thesecovalentcrosslinks, together with theintramolecular and intermolecular hydrogen bondinginteractionsthatoccurbetweenthehydroxylgroupsof theHPGchains,leadtoanincreaseoftheelasticbehaviourandof systemsstiffness.Fromtherheologicalpointofview,theincrease ofboraxdeterminestheincreaseofthesolidlikebehaviourofthe system,withahugeincreaseintheStoragemodulusG’asclearly indicatedbythefrequencysweepcurvesreportedinFig.S2.

To modify the system’s stiffness, tuning the mechanical behaviourofthesample,glycerolwasintroducedasplasticizer, anditsroleintheviscoelasticpropertiesoftheformulationwas systematicallyinvestigatedbymeansofoscillatingrheologicaltest. Frequencysweeptestswerecarriedoutonsystemscontaining dif-ferent glycerolconcentrations, whilekeeping HPGat3wt%and boraxat0.75wt%.ThetrendoftheStorageandoftheLoss mod-uliG’andG”,ataconstantstrainof5%(inthelinearviscoelastic range),asafunctionofthefrequencyisreportedinFig.2B,where thechangeoftheelasticityofthesystemsinducedbytheaddition ofglycerolcanbeobserved.InFig.2C,theStoragemodulus(G’)at 1Hzisplottedasafunctionofglycerolconcentration.Thepresence oftwodifferentregimesisevident:atglycerolconcentrationslower than1wt%,aprogressiveincreaseofthestiffnessofthesystemis observedindicatingastructuringroleofthisadditive.Abovethis threshold,theplasticizingeffectofglycerolprevailsasindicated bythedecreaseofG’.Fig.2Dshowsthetrendoftheentanglement density␳Easafunctionoftheglycerolcontent.Theentanglement

densityisequaltokTG’1HzwherekistheBoltzmanconstant,Tis

theabsolutetemperatureandG’1Hzisthevalueoftheelastic

mod-ulusG’at1Hz[28].Theincreaseof␳Eatlowglycerolcontent(up

to1wt%)indicatesanincreaseofthecomplexityofthenetwork

confirmingthestructuringroleofglycerolatlowconcentrations.A highercontentofthisplasticizerinducesaprogressivedecreaseof theentanglementdensity.

Systems containing differentglycerol amounts were deeper investigatedasafunctionoftemperaturebetween25◦Cand60◦C bymeansoftheTimeTemperatureSuperposition(TTS)approach, toobservethetemperature-dependenceofviscoelasticproperties ofthesefluidsand,accordingtoEq.(1),tocalculatethe Activa-tionEnergyassociatedtotherelaxationprocess.InFigs.S3–S7the isothermalfrequencysweepmeasurementsandthemastercurves for samplescontainingHPG(3wt%)/borax(0.75wt%)/water and increasingamountsofglycerolarereported.TheActivationEnergy trendisreportedinFig.3A:weobservedthattheEaprogressively decreasesasglycerolconcentrationincreasesabove1wt% confirm-ingthatabovethisthresholdthedrivingfactoristheplasticizing roleofglycerolthatcauseadecreaseoftheEaoftheinvestigated systems.

Withtheaimofclarifyingtheroleofglycerolinthe crosslink-ingmechanism,anextensive11BNMRstudywascarriedouton

samplescontainingincreasingamountofglycerol.Thereare sev-eralpapersinliteratureabouttheinteractionbetweenboraxand hydroxyl groups[31andrefs therein]Severalofthem focuson crosslinkedsystemssuchasgel-likematerialsbasedonpoly(vinyl alcohol) (PVA)[18,32] and onborax-galactomannan based gels [12].

As shown in Fig. 4A, the 11B NMR spectrum of the HPG

polymer/boraxsysteminwaterischaracterizedbyoneintense res-onanceat11.60ppmandasmallresonanceemergingat5.55ppm, beingthedownfieldresonanceduetotheborate/boricacid molec-ularspecies, and theothertothe cross-linkedborate [33].The additionofglycerol(0.5wt%)causesstrongalterationsoftheNMR spectrum,namelyadownfieldshiftofthefreeboronspecies res-onanceat13.88ppm,andtheappearanceofanewNMRsignalat 9.77ppmthatcanbeassignedtotheformationofaglycerol-borate complex(seebelow).Adramaticincreaseofthecross-linkedborate specieswithrespecttothefreeborate/boricacid,asdeterminedby theareaoftheNMRresonancesignalsat13.88and5.55ppm(see TableS1),isalsoobserved.Withincreasingglycerolconcentration, wenoticeaprogressivedecreaseoftheamountofnon-complexed boronspecieswhoseNMR signalundergoesasignificant down-field shift, whereas no significant chemical shift changes are observedforthetwocomplexedBoratespecies[33].Conversely, theamountof glycerol-boratecomplex increases,whereas that ofHPG-crosslinkedincreasesupto2wt%ofglycerol.Forglycerol contenthigherthan2wt%onlytheamountofglycerol-borate com-plexincreasessuggestingaveryhighstabilityofthisnewcomplex. Remarkably,thesignificantdownfieldshiftofthenon-complexed boronspeciesindicatesachangeintheborate/boricacidratio,with anincreaseintheunchargedspecies[33].Suchaphenomenonwas

Fig.3. (A)ActivationEnergyvaluesobtainedfromrheologicalmeasurements()andGlycerol-BoratecomplexAreaobtainedfrom11BNMRmeasurements()areplotted

againstglycerolconcentration.Allsamplescontain3wt%ofHPGand0.75wt%ofborax.(B)Storagemodulusvaluesat1Hzobtainedfromrheologicalmeasurements(䊏)and HPG-CrosslinkedBorateAreaoftheresonancepeaksobtainedfrom11BNMRmeasurements()areplottedagainstglycerolconcentration.

(5)

Fig.4.(A)11BNMRstackedplotspectraofthepolymer/watersystemcontaining

3wt%ofHPG,0.75wt%ofboraxandincreasingamountsofglycerol(indicatedas wt%).Peaksattribution:non-complexedboron(1),glycerol-boratecomplex(2), HPG-crosslinkedborate(3).(B)1HNMRstackedplotspectraoftheglycerol/water

systemcontainingincreasingamountsofborax(wt%).Thestarindicatesanew resonanceattributedtotheglycerol-boratecomplex.

previouslysuggestedtoberelatedtothelessattractive environ-menttoborateionsoriginatedbytheadditionoforganicliquids [18,34].

In other words, the addition of glycerol deeply affects the borate/boric acid equilibrium since the B(OH)4− anion is

pref-erentiallyinvolvedin theformationof boththeglycerol-borate complexandtheHPG-crosslinkedspecies.Clearlytheadditionof glycerol,eveninsmallamount,mayalsoalterthesolvent proper-tiessuchas,forinstance,thedielectricconstant.NMRdataallow ustodeeperunderstandthemeaningofrheologicaldata.From Fig.3Bweobservehowtheadditionofglycerolupto1%induced anincreaseofentanglementdensityresultinginanincreaseof sys-temelasticbehaviour,whileastrongdecreaseofG’occurredat higherconcentrations.Inthesamegraph,wecanseethatthearea ofthecrosslinkedborate,measuredby11BNMR,followsthesame

trend,indicatingthatafractionofboraxisnotanymoreactingasa crosslinkerinthepolymericnetwork.

Thisbehaviourmaybeascribedtoa possibledouble role of glycerol in the crosslinking mechanism. On one hand, at low concentrations,glycerolmolecules seem toact asa structuring agent,inducingthecrosslinkingofboraxandimprovingthe elas-ticbehaviourofthesystem.Ontheotherhand,atconcentration higher than 1wt%, glycerolseems tobehave mainly asa plas-ticizer,reducing thedensityof thecovalentboratebridges and thencausingadecreaseinthesamplestiffness.Thetrendoftan␦ (wheretan␦=G”/G’)at1Hz,reportedinFig.S8,confirmsachange intheviscoelasticbehaviourfor HPG/H2O/boraxbased systems

uponincreasingtheamountofglycerol.Inparticular,above1%,an increaseofG”modulusisobserved,resultinginlessrigidsamples.

in11BNMRmeasurements(Fig.3B).Thetwophenomena,which

contributetothevariationofG’,seemtoproceedinthesame direc-tionuptoaglycerolconcentrationbetween1%and2%,thenthe formationoftheglycerol-boratecomplexbecomesfavouredover theboraxcrosslinkingmechanism.

To confirm the glycerol-borate complex formation, glycerol aqueoussolutionswereinvestigatedbeforeandafterborax addi-tionmeasuringtheself-diffusioncoefficientDofglycerolby1H

PGSTENMR.Intheanalysedsamplesglycerolwasmaintainedat afixedconcentrationindeuteratedwater,whiletheamountof boraxwasincreased.AsreportedinTableS2thestronginteraction betweenglycerolandborateinducesanevidentdecreaseinthe glycerolmotionsthatcanbealreadyobservedatlow glycerol-to-boratemolecularratio,andbecomesmoresignificantastheborate concentrationincreases.Interestingly,upontheadditionofborax anewdownfieldresonancestartedtogrow(seeFig.4B).Itisworth noticingthatboraxin(deuterated)waterdoesnotshowany1H

NMRsignal.Therefore,thenewsignalwasattributedtotheglycerol boratecomplex,andimplicitlyaccountsforitshighstability,being thefingerprintofastablecomplexratherthanalooseassemblyin fastexchangebetweentheboundandfreeform.Inaddition,the formationoftheglycerolboratecomplexisconfirmedbythe pro-gressivebroadeningofthewidthathalfhighandtheconsequent coalescenceoftheNMRsignalsobservedinthe1HNMRspectraas

theboraxconcentrationisincreased(Fig.4B).Indeed,suchalossof resolutionisrelatedtothemorerapidspin–spinrelaxationrates, inturn,causedbya)thereducedmobilityexperiencedbythe glyc-erolmoleculesbecauseoftheformationofthecomplexwithborate ions,andparticularlybyb)theeffectofthequadrupolarrelaxation oftheboronnucleusonthenearbynuclei.

After the dynamical characterization of systems containing increasing amount of glycerol, we focused on the role of the polymerinourformulations.TounderstandtheeffectofHPG con-centrationonthemechanicalpropertiesoftheHPGbasedsystems, frequencysweepmeasurementswerecarriedoutonaseriesof samplesprepared withdifferentamountof HPG (Fig. 5), while keepingtheHPG/boraxratioat4/1andglycerolat3.5wt%.This valuewasselectedinviewofapotentialapplication[18].

Fig.5AindicatesthattheincreaseinHPGconcentrationdoesn’t significantlyaltertheshapeoftheshearmodulialthoughitsvalue increasesuponincreasingtheHPGconcentration,asalsoindicated by thedecrease in thetan␦ values (see Fig. S9). Moreover,for HPGconcentrationslowerthat3wt%,twodifferentregimescanbe observed(Fig.5A):atω>ωc(whereωcisthecrossoverfrequency betweentheG’andG”curves),G’>G”,meaningthattheelastic behaviourprevails;atω<ωcwhereG’<G”,theviscouscharacteris

predominant.Fig.5AalsoshowsthatuponincreasingtheHPG con-centrationthecrossoverbetweenG’andG”curvesshiftstowards lowerfrequencyvalues,indicatinganincreaseofthemean relax-ationtimethatisequalto1/ωc.Inparticular,themeanrelaxation timemovesfrom1.6sforthesampleHPG1%to28.6sforHPG2%. Thesevaluesareusuallyrelatedtostickyreptationdynamics[28]. Furthermore,foraHPGcontenthigherthan3wt%,thecrossover betweenG’andG”movestonotinstrumentallyaccessible frequen-cies,indicatinganincreaseofthesolid-likecharacterofthesystem. MoreovertheincreaseofG’observedbyincreasingtheHPG con-centrationindicatesanincreaseinthecomplexityofthestructure oftheinvestigatedsystemsandanincreaseinthestrengthofthe 3Dnetworkduetotheincreaseofthespatialdensityofthe

(6)

borate-Fig.5. (A)FrequencysweepmeasurementsonsampleswithHPG(from1to4%),glycerol3.5%andtheratioHPGwt%/Boraxwt%fixedat4/1.Theoscillationamplitudewas 5%.G’(䊏),G”(䊉).(B)Storagemodulusvaluesat1HzasafunctionofHPGconcentration.(C)Entanglementdensity(␳E)valuesasafunctionofHPGconcentration.

modulatedcross-linking(e)betweentheHPGchains[35].Fig.5B

reportsthetrendoftheelasticmodulusG’at1Hzasafunction oftheHPGconcentration;thegraphshowsthatG’(1Hz)isnearly constantupto2wt%ofHPG,whileabovethisthreshold(indicated asC*),thedrasticincreaseinG’(1Hz),thatreachesavalueof600Pa at4wt%HPG,indicatestheformationofanextended3Dpolymer network.Thisisalsoconfirmedbythetrendoftheentanglement density␳EvaluethatstronglyincreasesforaHPGcontenthigher

than2wt%(Fig.5C).

Thereis a considerable literature onthedependence ofthe G modulus onpolymer concentration in solution [35 and refs therein].Inmostcases,thedependenceofGisdescribedbyapower law:G∝␾n(4)where␾;isthepolymerconcentrationexpressed

aswt%[36].Forrigidnetworkshavingafibrillarymorphologythe exponentnis strictlyrelatedtothefractal dimensionDFofthe

objectconnectingatthejunction(5)[37–39].

G’∝n (4)

G’∝(3+DF)/(3−DF) (5)

InFig.S10thetrendoftheG’valuesat1Hzareplottedona log/logscaleasafunctionofthepolymerconcentration.Fromthe obtainedslope(n),afractaldimensionof1.6iscalculated,andthis suggests,accordinglytoJonesandMarquestheory[38],anetwork withobjectsconnectedbyrigidjunctions,forwhichanenthalpic elasticityoccurs[37].

TherheologicalpropertiesofaselectedsystemcontainingHPG 3%/borax0.75%/glycerol3.5%werealsoinvestigatedasafunctionof temperaturebetween25◦Cand60◦C,todeepenthe temperature-dependenceofviscoelasticpropertiesofthesefluidsandtoobtain the activation energy (Ea) associated to the relaxation process throughtheTTSapproach(Eq.(1)).Thefrequencysweepcurves andthemastercurvesforsamplesinvestigatedarereportedinFigs.

S3,S6,S11andS12,whiletheactivationenergyvaluesforsamples withandwithoutglycerolandboraxarelistedinTableS3.

TheadditionofboraxtotheHPGdispersioninwater(sample 2andsample1,respectively)leadtoanincreaseoftheEavalue, confirmingtheabilityofboraxinincreasingthesystems’stiffness (seeTableS3).Theadditionofglyceroltosample2determineda significantdecreaseoftheEavalue(sample3).Itisworthnoting thatboththeformulationscontainingglycerol(samples3and4), arecharacterizedbyactivationenergyvaluesthataremuchlower thanthoseofthecorrespondingsystemsthatdon’tcontain glyc-erol(system2and1,respectively).Asamatteroffact,over2wt%, glycerolcreatesastablecomplexwithborate,resultinginlessrigid systems,asshownbyNMRmeasurements.NMRresultsarealso confirmedbythecomparisonbetweenEavaluesofsamples3and 4:theadditionofboraxtoasystemcontainingglyceroldoesnot increasesignificantlytheactivationenergyoftherelaxation pro-cess,differentlyfromwhathappenedforsamples2and1.Thisis duetothefactthatborateispartiallysequesteredbyglyceroland itisnotentirelyinvolvedinthecrosslinkingofHPG.

SAXScurveshavebeencollectedonHPGaqueousbinary solu-tions before and after the addition of the plasticizer and the crosslinkertobetterunderstandtherole ofthecomponentson thestructureofthestudiedsystems.InFig.6,SAXSprofilesand thebestfitting curvesaccordingtoEq. (3) arereported.Fitting resultsarereportedinTable1.Asreportedinliterature[30],in asemi-dilutedpolymericsolution,themeshsize(indicatedbythe ScreeningLength(L))correspondstotheaveragedistancebetween neighbouringcrosslinkingpointsofthe3Dpolymericnetwork.

Forwhatconcernsamples1and2,theadditionofboraxdoesnot significantlychangethemeshsizeoftheHPGaqueousdispersion, eveniftheentanglementdensityincreasesofalmosttwoorderof magnitude.Thisindicatesthatintheabsenceofglycerol,the inter-actionsoccurringbetweentheHPGchainsarethedrivingfactor indeterminingthemeshsizeofthenetwork,whilethevalueof␳E

(7)

Fig.6. ComparisonbetweenSAXScurvessamplescontainingHPG/water(1),HPG/borax/water(2),HPG/glycerol/borax/water(3)andHPG/glycerol/water(4).

Table1

LorentzparametersassociatedwiththebestfitstotheSAXScurvesandtheentanglementdensity␳EforsamplescontainingHPGandHPG/glycerolaqueousdispersion,with andwithoutboraxascrosslinker.

SAMPLE COMPOSITION ScalefactorI0 ScreeningLengthL(Å) Bkg E(1/m3)

1 HPG3wt%inwater 0.19±0.03 14.5±0.4 0.03 4.1×1020

2 HPG3wt%/borax/water 0.31±0.04 15.2±0.3 0.04 95×1021

3 HPG3wt%/glycerol3.5wt%/borax/water 0.30±0.06 24.5±0.6 0.05 80×1021

4 HPG3wt%/glycerol3.5wt%inwater 0.34±0.07 28.9±0.7 0.04 1.6×1020

mainlydependsuponthepresenceofthecrosslinkingagent.Onthe

contrary,inthepresenceofglycerol(sample3and4),boraxleads

toasignificantdecreaseinthescreeninglengthofthepolymeric

network.Moreover,theadditionofglycerolleadstoahugeincrease

ofthemeshsize(comparesample1withsample4andsample2

withsample3),confirmingtheabilityofthisadditivetointerpose

amongHPGchains,reducingtheentityoftheinteractionsbetween

theHPGmonomers(mainlyduetoHbonds),thereforeactingasa

plasticizer.

3.2. Applicationtest

Inthelastdecades,severaladvancedandinnovativesystemsfor

theconservationofculturalheritagehavebeenproposed[40–42].

Inparticularhydroandorganogelshavebeenproposedasafeasible alternativetoovercomethelimitsoftraditionalmethodsforthe selectiveremovalofpatinasfromsurfacesofartisticandhistorical interest[43–47].

The characterization of HPG/glycerol/borax gel-like systems showsthattheirpropertiescanbetuned, evendramatically,by varyingtheconcentrationofthecomponents.Fromthe applica-tivepointofviewthisisaveryattractivefeatureofthesesystems. Therefore,apreliminaryapplicativetestusingagel-like

formula-tionwithHPG(3wt%),borax(0.75wt%),andglycerol(3.5wt%)was carriedout.Thissystemwaschosenbecauseitcanbestretched withoutbreaking(seeFig.S13),whichisanappealingfeaturefor theapplication on curved surfaces. Moreover,the valueof the intrinsicelasticmodulusofthissystemallowsitspeelingfromthe cleanedsurfaceinonestep[18].Itisworthnotingthatthis formu-lationhasapHbetween8and9,whichiscompletelycompatible withmostofobjectsofhistoricalandartisticinterest.

AfterthefirethatalmostdestroyedLaFenicetheatre(Venice) in1996,artworksanddecorationsthatbelongedtothebeautiful historicalbuildingwerealteredbyadarkcoating,resultedfrom dustandparticulatemattergeneratedfromthefire.Thestuccoof LaFenicetheatreisarough,porousmaterial,ascanbeseenfrom Fig.7A.Thefirstattempttoremove thesurfacepatinawas car-riedoutbyfollowingatraditionalprocedurebasedontheuseof acottonswabsoakedwithdemineralizedwater. Inthatway,it waspossibletoobtainthesofteningofthedirtlayer,whichwas thenabsorbedbytheporousmatrix,resultinginanunsatisfactory cleaningofthedecoration(Fig.7B).Asecondcleaningtestwasthen carriedoutbymeansofagel-likeHPG-systemthat,accordingto theWashburnequation,duetoitshighviscosity,allowedthe min-imizationofthepenetrationofthewaterintotheporoussupport. TheHPG/glycerol/boraxsystemwasappliedonthestuccosurface

(8)

Fig.7.Detailofthesampleregionbefore(A),during(B)andafter(C)theapplicationasdescribedinthetext.Comparisonbetweenthecleaningperformanceofawetcotton swab(1)andoftheHPGbasedsystem(2).

withaspatulaandleftonthesurfaceforabout1min(seeFig.7B); aftertheapplication,thesystemwasremovedinonestepthrougha simplepeelingaction.Thecomparisonbetweenthecleaningaction ofoursystemandthatofneatwaterappliedbymeansofawet cottonswabcanbeobservedinFig.7C.Thepromisingresultsof thispreliminarytestsuggestapossibleapplicationofthis formula-tionfortheselectivecleaningofthesurfacemakingthesegel-like systemsparticularlyinterestinginthefieldofrestoration.

4. Conclusions

Arheological,dynamic,andstructuralcharacterizationofwater basedgel-likesystemscontaininghydroxypropylguargum(HPG), borax,andglycerolisreported.Fromrheologicalmeasurements, we observed that the addition of borax to aqueous HPG dis-persionsleadtosystemswithincreasedstiffness,beingboraxa well-knownefficientcrosslinkerforhydroxyl-richpolymers.With theaimof tuningthemechanical properties ofHPG/borax gel-likesystems, variableamounts of glycerolwere addedand the overall effect onthe systems was studied.Surprisingly, at low concentration(below1%),glycerolactsastructuringagent, increas-ing thestorage modulus.Above 1%,it behavesas a plasticizer, asitmightbeexpected.Wethendecidedtodeepentheroleof glycerol in network formation and its interactions with borax, using11BNMRand1HNMRPGSTE.Inparticular,from11BNMR,

theformationofaglycerol-boratecomplexwasobserved.When glycerolishigherthan1%,thecomplexformationactasa driv-ingforceandoccursattheexpensesofthecrosslinkingbetween boraxandpolymerchains,resultinginthedecreaseofthe Stor-agemodulus, as observed fromrheological measurements.The formationofastableglycerol-boratecomplexwasconfirmedby

1H PGSTE NMR measurements, from which we calculated the

diffusionof glycerolin boraxaqueous solutions. Theactivation energiesoftherelaxationprocessobtainedbyTimeTemperature Superposition(TTS)allow usto calculatethe fractal dimension of theinvestigated systems that resultedto bethe onetypical ofanetworkwithobjectsconnectedbyrigidjunctions.A struc-turalcharacterizationcarriedoutbySAXSexperimentsprovided insight about the mesh size, which is influenced by both the presenceofboraxandglycerol.Apreliminaryapplicativetestfor theremovalofadarkpatinafromastuccodecorationbelonging toLaFenicetheatre (Venice)wasthenperformed.The promis-ingresultsobtainedin thesepreliminaryexperimentssuggesta possiblefuture applicationof theseformulationsin thefield of restoration.

Conflictofinterest None.

Funding

This work was supportedby Centerfor colloid and surface science and by the European Union’s Horizon 2020 research and innovation programme under grant agreementNo 646063 [NanorestartProject].SergioMurgiaandMauraMonduzzithank Fondazione Banco di Sardegna and Regione Autonoma della Sardegna(ProgettiBiennalidiAteneoAnnualità2016,Fondazione Sardegna CUP F72F16003070002 and F72F16003060002). All authors greatefully thankthe friend Prof. Piero Baglioni for its friendshipanditsconstantfundamentalcontributiontothefield ofSoft Matterand thenanotechnologiesappliedtotheCultural HeritageConservation.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttps://doi.org/10.1016/j.colsurfb.2018.02. 025.

References

[1]R.K.Proud’homme,V.Costien,S.Knoll,Theeffectofshearhystoryonthe rheologyofhydroxypropylguargels,Polym.AqueousMediaPerform.Assoc. (1989)89–112.

[2]J.E.Fox,Seedgums,thick,GellingAgentsFood26(1997)262–283.

[3]C.H.Kucera,D.N.DeMott,Drillingfluidcontainingcrosslinkedpolysaccharide derivative,USpatent4257903,1981.

[4]T.Coviello,F.Alhaique,A.Dorigo,P.Matricardi,M.Grassi,Two

galactomannansandscleroglucanasmatricesfordrugdelivery:preparation andreleasestudies,Eur.J.Pharm.Biopharm.66(2007)200–209.

[5]H.Kono,F.Otaka,M.Ozaki,Preparationandcharacterizationofguargum hydrogelsascarriermaterialsforcontrolledproteindrugdelivery,Carbohydr. Polym.111(2014)830–840.

[6]T.Coviello,P.Matricardi,C.Marianecci,F.Alhaique,Polysaccharidehydrogels formodifiedreleaseformulations,J.Control.Release119(2007)5–24.

[7]G.Milcovich,F.E.Antunes,R.Farra,M.Grassi,F.Asaro,Modulating

carbohydrate-basedhydrogelsasviscoelasticlubricantsubstituteforarticular cartilages,Int.J.Biol.Macromol.102(2017)796–804.

[8]Y.Cheng,K.M.Brown,R.K.Prud’homme,Characterizationandintermolecular interactionsofhydroxypropylguarsolutions,Biomacromolecules3(2002) 456–461.

[9]D.Risica,A.Barbetta,L.Vischetti,C.Cametti,M.Dentini,Rheological propertiesofguaranditsmethyl,hydroxypropylandhydroxypropyl-methyl derivativesinsemidiluteandconcentratedaqueoussolutions,Polymer (Guildf)51(2010)1972–1982.

[10]S.Wang,H.Tang,J.Guo,K.Wang,EffectofpHontherheologicalpropertiesof boratecrosslinkedhydroxypropylguargumhydrogelandhydroxypropyl guargum,Carbohydr.Polym.147(2016)455–463.

[11]R.Dietrich,M.Flury,Agentforremovingsolidparticles,USpatent7541325, 2009.

[12]E.Pezron,A.Ricard,F.Lafuma,R.Audebert,Reversiblegelformationinduced byioncomplexation.1.Borax-galactomannaninteractions,Macromolecules 21(1988)1121–1125.

[13]T.Coviello,P.Matricardi,F.Alhaique,R.Farra,G.Tesei,S.Fiorentino,etal., Guargum/boraxhydrogel:rheological,lowfieldNMRandrelease characterizations,E-XPRESSPolym.Lett.7(2013)733–746.

[14]M.Shibayama,H.Yoshizawa,H.Kurokawa,H.Fujiwara,S.Nomura,Sol-gel transitionofpoly(vinylalcohol)-boratecomplex,Polymer28(1988) 2066–2071.

(9)

experimentalandtheoreticalstudiesofanunexpectedsimilarity,J.Phys. Chem.B114(2010)13059–13068.

[18]L.Angelova,B.Berrie,K.DeGhetaldi,A.Kerr,R.G.Weiss,Partiallyhydrolised poly(vinylacetate)-boraxbasedgel-likematerialsforconservationofart: characterizationandapplications,Stud.Conserv.60(2015)227–244.

[19]E.Pezron,A.Ricard,L.Leibler,Rheologyofgalactomannan-boraxgels,J. Polym.Sci.PartBPolym.Phys.28(1990)2445–2461.

[20]V.Epure,M.Griffon,E.Pollet,L.Avérous,Structureandpropertiesof glycerol-plasticizedchitosanobtainedbymechanicalkneading,Carbohydr. Polym.83(2011)947–952.

[21]C.Gao,E.Pollet,L.Av,FoodHydrocolloidsPropertiesofglycerol-plasticized alginatefilmsobtainedbythermo-mechanicalmixing,FoodHydrocoll.63 (2017)414–420.

[22]M.Kapoor,D.Khandal,R.Gupta,P.Arora,G.Seshadri,S.Aggarwal,etal., Certainrheologicalaspectsoffunctionalizedguargum,Int.J.Carbohydr. Chem.2013(2013)1–15.

[23]S.Kesavan,R.K.Proud’homme,RheologyofguarandHPGcross-linkedby borate,Macromolecules2(1992)2026–2032.

[24]M.Rietjens,P.A.Steenbergen,Crosslinkingmechanismofboricacidwithdiols revisited,Eur.J.Inorg.Chem.116(2005)1162–1174.

[25]J.Dealy,D.Plazek,Timetemperaturesuperposition–auserguide,Rheol.Bull. 78(2009)16–31.

[26]S.Murgia,M.Monduzzi,F.Lopez,G.Palazzo,Mesoscopicstructurein mixturesofwaterand1-butyl-3-methylimidazoliumtetrafluoborate:a multinuclearNMRstudy,J.SolutionChem.42(2013)1111–1122.

[27]S.Murgia,G.Palazzo,M.Mamusa,S.Lampis,M.Monduzzi,Aerosol-OTin waterformsfully-branchedcylindricaldirectmicellesinthepresenceofthe ionicliquid1-butyl-3-methylimidazoliumbromide,Phys.Chem.Chem.Phys. 13(2011)9238–9245.

[28]E.Carretti,C.Matarrese,E.Fratini,P.Baglioni,L.Dei,Physicochemical characterizationofpartiallyhydrolyzedpoly(vinylacetate)-borateaqueous dispersions,SoftMatter10(2014)4443–4450.

[29]M.Shibayama,Structure-mechanicalpropertyrelationshipoftough hydrogels,SoftMatter8(2012)8030–8038.

[30]P.G.DeGennes,ScalingConceptsinPolymerPhysics,CornellUniversityPress, Ithaca,NewYork,1979.

[31]P.J.P.Sci,ComplexFormationinPolymer-IonSolutions.1.Polymer ConcentrationEffects,(1989)1169–1174.

hydrolyzedpoly(vinylacetate)-boratenetworks:applicationstocleaning paintedsurfaces,Langmuir27(2011)13226–13235.

[35]B.A.Schubert,E.W.Kaler,N.J.Wagner,Themicrostructureandrheologyof mixedcationic/anionicwormlikemicelles,Langmuir19(2003)4079–4089.

[36]P.G.deGennes,P.Pincus,Scalingtheoryofpolymeradsorption,J.Phys.37 (1976)1445–1452.

[37]J.-M.Guenet,Structureversusrheologicalpropertiesinfibrillar

thermoreversiblegelsfrompolymersandbiopolymers,J.Rheol.(N.Y.N.Y.) 44(2000)947–960.

[38]J.L.Jones,C.M.Marques,Rigidpolymernetworkmodels,J.Phys.France51 (1990)1113–1127.

[39]M.Pääkkö,M.Ankefors,H.Kosonen,A.N ¨ykanen,S.Ahola,M.Östeberg,etal., Enzymatichydrolysiscombinedwithmechanicalshearingandhigh-pressure homogenizationfornanoscalecellulosefibrilsandstronggels,

Biomacromolecules8(2007)1934–1941.

[40]T.Duncan,B.Berrie,R.G.Weiss,Soft,peelableorganogelsfrompartially hydrolyzedpoly(vinylacetate)andbenzene-1,4-diboronicacid:applications tocleanworksofart,ACSAppl.MaterInterfaces9(2017)28069–28078.

[41]P.Baglioni,D.Chelazzi(Eds.),NanosciencefortheConservationofWorksof Art,TheRoyalSocietyofChemistry,London,UK,2013.

[42]G.Poggi,N.Toccafondi,D.Chelazzi,P.Canton,R.Giorgi,P.Baglioni,Calcium hydroxidenanoparticlesfromsolvothermalreactionforthedeacidificationof degradedwaterloggedwood,J.ColloidInterfaceSci.473(2016)1–8.

[43]E.Carretti,L.Dei,Gelsascleaningagentsinculturalheritageconservation,in: P.Terech,R.G.Weiss(Eds.),MolecularGels:MaterialswithSelf-Assembled FibrillarNetworks,Springer,NewYork,USA,2005,pp.929–938.

[44]L.Angelova,M.Leskes,B.Berrie,R.G.Weiss,Selectiveformationoforgani, organo-aqueous,andhydrogel-likematerialsfrompartiallyhydrolysed poly(vinylacetate)sbasedondifferentboron-containingcrosslinker,Soft Matter11(2015)5060–5066.

[45]P.Baglioni,E.Carretti,D.Chelazzi,Nanomaterialsforartconservation,Nat. Nanotechnol.10(2015)287–290.

[46]C.Mazzuca,G.Poggi,N.Bonelli,L.Micheli,P.Baglioni,A.Palleschi,Innovative chemicalgelsmeetenzymes:asmartcombinationforcleaningpaper artworks,J.ColloidInterfaceSci.502(2017)153–164.

[47]C.Berlangieri,E.Andrina,C.Matarrese,E.Carretti,R.Traversi,M.Severi,etal., Chelatorsconfinedinto80pvac-boraxhighlyviscousdispersionsforthe removalofgypsumdegradationlayers,PureAppl.Chem.89(2017)97–109.

Riferimenti

Documenti correlati

Nel mito alternativo a quello narrato nelle Metamorfosi Dafne è una naiade, figlia del fiume Ladone e della Terra; per evitare la violenza di Apollo la giovane prega la

In Chapter 4, we construct the Donaldson functional for Higgs bundles over com- pact K¨ ahler manifolds following a construction similar to that of Kobayashi and we present some

Tale aggregato, integrato con gli eventuali contributi statali ed europei alla produzione (di varia origine), costituisce il totale delle entrate dei settori produttivi e coincide, nel

The ability of endothelial differentiated clones to generate epithe- lial tumours in vivo may suggest that in the endothelial differentiated breast cancer stem cells

riferimento che ci forniscono un'indicazione sulla relativa forma delle arcate del paziente, si rilevano significative discrepanze tra le diverse popolazioni ed

La prima figura a partire da sinistra è quella di un albero che sorge dal terreno grigio-verde, che costituisce la base dell’intera scena inferiore; i numerosi rami

generated a conditional knockout mouse model to silence expression of p75 NTR specifically in Schwann cells, subsequently showing that Schwann cell p75 NTR is not critical for

(A, B, C) Coronal and transaxial and (D, E, F) positron emission tomography, computed tomography, and fused positron emission tomography and computed tomography images of