• Non ci sono risultati.

Loop Lie algebras which are sl2(C)-modules

N/A
N/A
Protected

Academic year: 2021

Condividi "Loop Lie algebras which are sl2(C)-modules"

Copied!
75
0
0

Testo completo

(1)

(2)             !#"$"%'&)(*"% ,+ &-+/.$0&-.$( +21 3 (*"4053 (6"7+/.( 8:9<; =>9?=>@BA CBDFEHGJILKMDFEND/OQPSRTPSR$IUDVKWGYX[ZF\]OLEHDV^Q_LGa`#D/OQPb\$cdDFX[PbGePb\Xa\cLGgf\hPHPS\hKMDicLGkj GaZVDVKMZ/R lmgnVo*p q p$r nFp$s t uvuxw t yz {|}z!~  {€ ‚ ƒ yd„ ƒ {$z ‡†Vˆ$‰Š ‹Œ Ž u  |z‘€)’. “ ”h•—–™˜/šœ›” žŸœ ¡h¢ v£:¤ Ÿœ¥g¦ §¦¨ŸL¦ £ ©dª « DV¬L¬LKbR]GY\#­h®]®¯.

(3)

(4) ° „²±³ u ‚ |z }xzŽ z³´$€ µ·ÍS½á¶¹ÁÓ¸—º¼Í?»—¾V½¹¾Sºd¿·¸—ÉÑÀÂÍSÁUÆ/ÃS¾‡ÄÅÁ[½ÇÆ$¶¹»—Ìؽ¹¶ÇÈbÏÅÉÊÉâÁ'»Ëö¹ÆÅ»ËÉ?ÌÎÍbÍSºdÏ/ÍSÈ7ÏÅÆãÐkÏÅÉåäFÆÅÛŸ—ÉѽæÍSÍ*ÏÅÒÓÍb»ËÍS¶¹¸ËÃ×ÍbÏÅϝºÑ»—ܶÕÝkÔÖÃ×¶¹º·¸Øº¼ÍSÄŽÇç×½Ùç×ÌÅÉÚ¶¹º¼ºØ»Ë¶¹ÌÅÃ×ÉÚÏŽǺLÛÍbÜ:ÏÅÝÞÆ¨ÉßÉÑÏ/ÌÎèÑÍSÃ׺ØÄŸ—àhÍSÉÚç×ÉÑÉåÏ é êÍSÆ/ÉÑïSÏ2ÉÑ»ëÏ2»ËÆÅÄ/ÄŸ—¸¼ÉS¶ÇðÏÅç ê ¾:ìLÌÜîí¨Ü]ÔÖÉѽ¹½ÇÃNÁ[º—ÌŶ¹ÛiÌÎÍ?ï×É ê ÍSÆÅÉØ»—ÌŶǺk»ËÌÅÉÚº—¶ÇºÂÛTÃ׺¼º—¶Çà/½ÇÉãÍSÏ/Æ7ÍßçS¸—É?ÍM» »<ÌÎÍbÍSÏźÂèÑñJàTÉôÌÅÉѶÇÉÑÉÚÏ*ÏÊÏ4ÌÅÀdÍbÉÚͽ¹½ÇÁUêÛÅÍN¶¹ÏžVï×ç º‡ÉÚ¸¼Íbê ¾» Éãç׸—ç×Íb¾iÃ׻˶¹É⺗ÏÅÔÖ¶¹ÄÅç ÆÅ½/Éô»Ë»ËÌÅÃØÍS¸¼ÏÅÃ×òÂÆ*ÄŶÇç×ÄÅÌÅÌ6º¼¶¹ÉѺBÛŻ˺—ÌÅÛTÄÅɍÉÞÛ/èÚÛhóSà ÄÅÃ×ê ¸¸õê»ëÛ/ÁÓÄ/ÍSÏã»<ÍSÍbºëÁ[»—¶Ç¶¹ÌÅÃ×ϝÏÅÇïbÍSÍSÌνd½¹ÍSÄÎÛκœÍSÍSàÅàT¸õ½¹ÉÑ»‡É÷ÉÑÃSÏôÁ[ÔUÌÅÃS»—ÔhÉÚÌÅÏ7ç׶Ǻ¸—ÉâÉÑÁÕï×ÍbÉÚ»œÃ׸¼¸—¶ ¾êÈö»ËÜ ÌÅÛT¶¹Ã×ÝÞÏŸõçÉ é º—ÉÚÉ ê ÉÑÆø»ËÍàhÉëÌÅÃSÛhÉÚ½ÇÉÑê º¼ºÑÜ g Ð Å Ï b Ã Ë » Å Ì Ú É ¸ Ñ É 2 Ï Ë » ¹ ¶ × Ã ø Ï Ç ¶ J º Ö Ô × Ã k ¸ 5 ù S Í ¼ ¸ Ç ¶ Î Ï ã Í k Ð V ï á ¶ < » S Í Å à ¹ ¶ Ç ½ B É [ Á Å Ì Ê Ã — º T Û Ñ É 2 Ï Â »  Í Ç ½ b à [ » S à · Ô — » ¶ B É [ Á ¹ ¶ Ë » Ì É ê ê ê ÆÅ¶¹º—èÑñJÄ/Ìź—º—ÉѶ¹ÏÏÅçôÀBº—ÁÕÉÚïSÃ×ÉÑÄŸ—½¹ÍSÆ4½ú½¹ÍS¶Ç½ÇÈSç×ɍÉÚàÅ»ËÃø¸ËÍb»Ë¶ÇèBÌÎÍbÛÅÏŸ¼Ã×È7àÅÒU½¹É ½æê ÍS¸¼ºJÉÚ»—½ÇÃV»ËÍøÃ×ȝÁ[¶ÇÏŶá»ËçØÌ7ÔÖÃSÁ[¸[Ì/Íôà º¼Ã×½ÇÀgÄ/»—º—¶ÇÛTÃ×ÉÑÏ]Ï2Ü »Í½¹ÃS»‡ÃSÔJ»Ë¶ ɍ¶¹Ï ÛŸ¼Ã×ÉѸ—ÛÎÉÂÍS¸¼ÛŶǽ¹ÏÅÉ?çøÍSº—½ÇÍSÉÚÏ2º—º¼»[Ã×à2ÏžWº¨ÌÅÍbÉÑÏŸ[Æ4ÉÑèÚÏ2Ã×»—¸—ÌV¸¼Ä/ÉѺ—èڶ滗Íb¶Çº ÏÅçÜ ÛÎÍSÛTÉѸ¼ºÑÜ Ðg½¹½d»ËÌŶ¹º÷ºõê »ËÄ/û%ÌÎÍbº÷àTÉÑÉÚÏ ê ÍbÆÅÉ ê ê ÄÅè<Ì ê ÀœÍ ê ÍS½Çº¼Ã÷¶¹ÏÅÆÅÉÚà/»ËÉÚÆßÁ[¶¹»ËÌÊÐgÏÅÆ/ê ¸—É?ÍØü™Ä/èÑè<ÌŶ¹ÏŶTÔÖÃS¸ÕÌŶ¹ºUÄź¼ÉÚÔÖÄŽTº—Ä/ç×ç×ÉѺõ»Ë¶¹Ã×ÏźÓÍbÏÅÆßÌŶ¹º ȝ¶ÇÏÅÆ/ÏÅÉѺ¼ºÞÁ[ÌÅÉÚÏ5ÀÙàhà ê àÎÍS¸¼ÆÅÉÑÆøÌŶ ê Á[¶¹»—Ì ê ÍSÏ2¾ ÆÅ¸—ÍbÔý»ËºJÃbÔ»—ÌŶǺJ»ËÌ/ÉѺ—¶¹ºÑÜ èÑÃSÉÂÄÅÀ߸—¸—º¼ÉÑÉÑÍSÏ/ºÙ½¹ÉÚº—¶ÇÁÕÃ%Ï>ÉÑÉâÒUÆiäVÃ×Éڻ˸¼ÉÚÏÅ»—ÏÅÉÑÃׯ,¸¼ÏÎçSÍ/¾W»—¿×Ìλ—ÍSÍSÌÅÏÅÏÅÉÚÆøÈ¾ºWÉѺ¼Ï2Ìλ˻—Ã'ÍSÌV¸—Ä/ÉÚÍSº—ÆÊ½Ç¶æ½kÍbÁ[º»ËÌŶá»ËÉ*Ì ¶ÇÏWÛTê ÉÑÆÅÉJÃ×ÃSÛÅ»—¶ÇÌŽ¹ÏÅÉ*É[çÀÛŶ¹»Ñ½ÇÉÑê Ü ÍSÉÚº—»øÄŸ¼ÆÅÉ[ÄÅÃS¸¼Ô¶ÇÏÅÆÅçÃS¶ÇÏÅ»ËÌ/ç É6ê »—ÍbÌŻ˸—ÌÅÉÚºœÉ6Íbº¼ÏÅÄ ÆÊêôç×ê ÍNïSÉÚɸ ê íBÄŸ—¶¹ÏÅç ê ¾ß»—¶ ê ÉÂÍSºÞÍÊìLÌÜîí¨Üκ¼»—ÄÅê ÆÅÉÚϝ»g¶ÇÏWñú¸—ÉÑÏ2»—ÃÊÀUÁUÍSº[½ÇÄ/è<ȝ¾WÉÚÏÅÃ×ÄÅçSÌø»—à ê ÉÑÉâ» ê»ËÃãÍS»—Ï2ÌξÊÍSÏÅÛTÈWÉÑÃSÍSÛŽ¹½Ç½ ÉÞê »ËÌξßÍbÃS» þôê èÑÍbÉâÆÅé ê ÉÞÍM»—ÌÅ»ËÉÑÉBºÚ½ÇÿœÍSÐgº¼»ÙÏ2ÔÖ»ËÃ×Ã×ÄÅÏ/¸Ù¶ÇÞ׿ É?g¶Íb¸—ǺJÏÅèÚÍ÷ÉÑÁÕÏ ÚÃ×ÃÅÏÅ¿ÎÆ/ÐgÉѸ¼½¹ÔÖÉSÄ/¿ ½]UÛT¶¹ÉÑàθ—͍¶¹ÃFÍSÆ]ÏÅÜLÆ5µ·ù¶Ç¸¼º¼¶Çè<»—Ì/½¹¾×ÉÑ¿½æÍÀdÁUý»ËÍSÌÅÏ2¶¹»º ¶Çº—ºÙÌ/ÉkÍ뺼è<ÌÎÌÅÍS¸—ÃS¸—ÉÚÏÅÆÊÃ×½ÇÁ[ÃSç×¶á»Ë¶ÇÌèÑÍS½ÅÃ×ÉÓ¸¼»—ÆÅÌÅÉÑÉÞ¸Ù½æÍSÍSÏźõÆÊ»œÛhÀÉÚ»—¸—ÌŶǶÇÃVÏÅÆÈ¨ÃS»—Ô ÌÎÍb»U¾ãùº¼»Ë¶¹Í?è<¾FÌŶ¹ÉÑÏŽÇÍ‡ç‡ÆÅ¶ÇύÉÚº—ñÉÚ¸¼¸¼ÉÑï×Ï2Éڻ˺JÃëÍëÁ[º—ÌÅÛT¶¹ÉÑè<èÑÌ>¶ÇÍSÌν ÍSê ºœÉÑàTÏ2ÉÑ»ËÉÚ¶¹Ã×ÏÊÏ>»ËÌ/Íbɺ ÃêµöÍS×àź¼¶¹»ëÃÅ¿ÎÌÅòÂÉÚèÚ¶Ç»—ÛŶÇèÛTåÃÅÜã¿/ñJü™Ä/ÌÅê è?ÉÑÍ/Ï6¿ ÀgœÉÉåÚäV½Ç¶¹»Ë»—ÉÑè<Ï/ÌÅÆ7ÈSÃ/»Ë¿öÌÅùÍSÏŶ ȝºÂê»ËÃÅÃW¿ ÐgkÏ2ÍS»ËÆÅÃS¶æÏÅÍF¶Ç¿Îà í Í?ïF¶¹ÒUÆÅ¸¼Éë¶ÇºõÍS»ËÏŶÇÏÅÆÍ/ ¿ù5UÍbÉѸ—Û/èÑÉÚÛh½Ç ɽ¹ÃÅ Ü

(5) L½¹ÉÑÏÎÍ/¿ ô ê ê ø ù : ¾ Ë » Å Ì S Í Å Ï  È Ø º b Í Ç ½ — º W Ã × ç. à — » ø Ã Ð Ú É — ¸ ¹ ¶ × ç Å Ã ú ¿  ù ¹ ¶ — ¸ æ ¶ Í S Í / Ï 4 Æ Q ü Å Ä Ú è æ ¶ ß Í Ö Ô × Ã B ¸ Ë » / Ì Ñ É Ç ¶ ë ¸  È Ç ¶ / Ï Å Æ Å Ï Ñ É ¼ º Ø º b Í Å Ï Æ ê ê ÔÖÃ׸ӻ—ÌÅÉѶ¹¸[ÍSº—º¼¶Çº¼»—ÉÑÏÅèÚÉ÷¶¹Ï »ËÌÅɇÍSÆ ê ¶ÇÏ/¶Çº¼»—¸ËÍb»—¶¹ïSÉBÍSÏÅÆW»ËÉÚè<ÌÅÏŶ¹è?ÍS½ ê Íb»—»—ÉѸ¼ºÑÜ · µ Ç ¶ Å Ï S Í Ç ½ á ½ × ¾ Î ¿ J À Ó Á b Í  Ï g » Ë » Ê Ã — » Î Ì S Í Å Ï  È S Í ¹ ½ ™ ½ — » Å Ì ¨ É T Û Ñ É × Ã / Û Ç ½ ë É Ë » Î Ì b Í g » Å Û æ ½ ? Í  ¾ S Í i Ï ¶ T Û × Ã õ ¸ < » S Í 2 Ï Þ » — ¸ × Ã ¹ ½ Ø É ¹ ¶ Ï ¾ ê ê ÍSù5½ ê ÍS¸¼Ã×èѺõÄÅ»¼º[é ÏÅÁ[ÃbÌÅé ê ÃôÍb¶Çº[»—ÌÊÍãÁÕç×Ã׸¼É?¸—½¹ÍbÆ»Jÿ ÔÖ¸¼¶ÇÉÑÏ/ÆÜ ÐgÀÕÁUÏ/ÆÅÍS¸—º[ÉÑÛÅ͍¸¼Á[ÃHïVÌŶ¹ÃÏÅçãÌÎÍb»ËÌźÞÉ àTÉÑÉÚÍSÏ5¶ÇÏßÍbàÅ»—½ÇÌÅÉgÉÑÃ×»—͸¼É ÈSÉÑÉÚÃSÛ5ÔúÌÅ»ËÌ/¶¹º ¶ÇºÓλËÏÅÌ/çSÉÑÉѺ—¸—¶¹º[ºÑð èÚ¸—Ã׺¼º—ÉÑÆøÔÖÃ׸[ÍS½ ê Ã׺õ»JͨÁÕÉÑÉÑÈßÁ[Ì/¶Ç½ÇÉ ù5ÍSÄ/¸—¶ Ú¶ÇèÔÖÃ׸JÌ/¶ÇºJç׸¼ê É?Íb»ÞÛÎÍb»—¶ÇÉÚÏÅèÑɇê ÍSÏÅÆWº¼ÄÅÛÅÛTÃ׸¼»[Á[ÌÅÉÚÏ5ÀÓÍ ê ÔÖÉÑÉڽǶ¹ÏÅçãàŽÇÄ/ÉSÜ ¶.

(6) øùÒU½æ¾ ÍbÄÅÛÅÆÅÍS¶Ç¸—Ã/ÉÚ¿FϝàT»—ºgÉÑèÑÍbÍSÏÅÄÅÆ º—Éëê Ìžßɺ—¶¹ºJ¶¹º¼»—ÍSÉѽáÁÓ¸JÍ?Á[¾VÌź[ÃÊÍbÍS» ½¹ÁUÍ?¾>¾Fº—º[¶¹ÆÅàÎÉSÍb¿/è<ÈS»ËÍSÉÑÈÆ ¶ÇÏÅê çãÉÂèÑÄÅÍSÛ]¸—ÉgÜ ÃSÔ ÉBÁ[¶á»ËÌ ÌŶ¹ºÓ¶ ÉÚÏź—É ê ê êôê ½ÇÃNïSÉSÜ. ¶¹¶.

(7) . u ³´7z ³´$€.  !"#$ %. 7. q. T. %. ÜÜ Qüëò ¶Ç¸—ÉëÍSÛÅÍS½¹ÌÅç׺ØÉÑàÅÜ÷¸—ÍS܇ºÜ÷܇܇܇܇Ü÷Ü÷ÜëÜë܇܇Ü÷Ü÷܇܇Ü÷Ü÷܇܇܇܇Ü÷Ü÷܇܇Ü÷Ü÷܇܇ÜëÜëÜ÷Ü÷܇܇܇܇Ü÷Ü÷܇܇Ü÷Ü÷܇܇܇܇Ü÷Ü÷܇܇ÜëÜëÜ÷Ü÷ÜÜ 8 '/ 9 ) ';:<"#*.>=@?A/B.C)D.C*.>FEG"#.H'=#IJ.CK') 4FÜ 2 ìL¸—ÉѺ¼ÉÑÏ2»<ÍM»Ë¶ÇÃSÏź[¶ÇÏWèѽÇÍSº—ºNMG+OCÓÍSÏÅÆøç׸ËÍSÛ/Ìź Ü÷܇܇Ü÷܇Ü÷܇܇Ü÷܇ÜëÜ÷Ü 4FÜ54 üQ¶ÇÉëÍS½¹ç×ÉÑàŸ—ÍSºJÛŸ¼ÉѺ—ÉÚÏ2»ËÉÑÆà2¾WÛŸ—ÉÚº—ÉÑÏ2»ËÍb»Ë¶¹Ã×Ïź[¶ÇÏWèѽÇÍSº—ºNMQROCk܇Ü÷܇ÜëÜ÷Ü U .0B"+"+EG"#.H'=#IJ.CK')(VW9 "+X9Y'.iº—[½ ZBR\G^]`_a=+.C) S/Ü 2 c ÉÚÛŸ—ÉÚº—ÉÚϝ»ËÍb»Ë¶¹Ã×Ïź[ÃSÔº—½dZR\GiÜ÷܇܇Ü÷܇Ü÷܇ÜëÜ÷܇܇Ü÷܇Ü÷܇܇Ü÷܇ÜëÜ÷Ü S/5Ü 4 µ·¶ÇÏ/¶¹»ËÉÚ½¹¾ôÛŸ¼ÉѺ—ÉÚÏ2»ËÉÑÆiü™¶¹ÉëÍS½ÇçSÉÑàŸ—ÍSºÓÁ[ÌŶÇè<ÌÍS¸¼Éº—½ ZR\G é ê ÃVÆÅÄŽ¹ÉѺ ÜëÜ÷Ü S/hÜ S

(8) ·äÅÍ ê ÛŽ¹ÉѺ Ü÷܇܇Ü÷Üë܇Ü÷܇Ü÷܇܇Ü÷܇Ü÷܇ÜëÜ÷܇܇Ü÷܇Ü÷܇܇Ü÷܇ÜëÜ÷Ü S/hÜ S/Ü 2 ñJÌ/ɇ½¹ÃFÃSÛWÍS½Çç×ÉÚàŸËF Í *i) =kjmlonp T  Ü÷܇ÜëÜ÷܇܇Ü÷܇Ü÷܇܇Ü÷܇ÜëÜ÷Ü &(')*"+,-$-.0/) 2 2 2 54. r 9 .0s.ft'_a/ =+.C). 1 26. 7JL 4!P S 2 Tb Sfe gfS g-g g-g u%. &v"#Kw=+"+JIJ'/ 9?. uJ1. ¶¹¶Ç¶. 3.

(9) ¶¹ï.

(10) i³ ´4$u  „ ´yu ³ x. Àç×ϲ¶áï×ÉÑ»ËÏ#ÌÅÉÚ¶ÇÍS¸¨Ï2¾AÔeÍ êÎÉÑÃ×½¹ÄÅÆ~ºã}hÛοÓÍb¶áÛhԀÉÚ

(11) ¸Hy 2-¶ÇºÊ2Dz Í7¿{

(12) [ÛŸ¼ÜGÉÑ|Tº—ÉÚÜÙÏ2òë»<ÍbÃ×»—½¹¶ÇÃFÃׯ²Ï ÍbÃbÏÅÔÂÆ²ÍSÏ-À<Ü Íbc º—º—ÜGÃV|FèÑÌŶÇÍbÍb»ËÔe¶áÍSï׸—ÉHÉâïV}¶Çéè<ÍbÌ%½Çç×ÛÅÉÚ¸—àÅÃN¸Ëï×ÍiÉÚÆ'Á[¶¹»—»—ÌÎ́Íb»?O ¿ ç×àTÉÚÉ ÏŶÇÉÑ†Ï ¸—ÎÍb»ËÏ/Ã×¶¹»Ë¸¼Éåº[é ÍSÆÅÏŶ ÆøÉÚÍbÏÅ» º—¶¹ê Ã×ÏÎÃ×ÍSº¼‚»½aÜ:ROƒü™]Íb»ËÉÚ2 ‡¸  ZoB¶„ gã¹Ï¸—àhÉÚÉÚ½æÍb¸—çÅ»—¶Ç`¿ Ã×Ï/yˆ4-ºÑ4 ¿Fz »—¿œÌÅÛÅÉ븗ÃNÍSï×½¹ç×ÉÚÉÑÆ%àŸ—»—ͨÌÎÍbÛÅ»,¸—ÉÚ+º—O ÉÚϝ] »—ÉÑ2 Æ Z à„ ¾ g: è?ÍSê ϲÄÅàTºõÉ» ¸—ÉÚÛŽæÍbèÑÉÑÆøà2¾‰O ê Z „ g¶ÇÏ »—ÌÅÉ÷òëÃ×½¹ÃFÆVéŠ|FÌÎÍMÔeÍS¸—ÉâïF¶¹è<Ìß»ËÌÅÉÚÃ׸—É ê Ü ¶ÇÆÅÏ ¶ »—À ÉÚÌÅÏ ÏÅÉ:º—2 ¶¹üQ3fÃ×¶Çe-ÏÎÉieÊÍS½TÍSÝ÷½ÇÏÅç×ŒÜ ¶ÇÉÚ½¹‹ÂÛhàÅÃb¸ËÃVÍb»Ëè<ÉѺßÌÏ2¿ èÑ»ÓÃ×y ü™2Ï2ŽB¶¹»—‚Éz Éâ¿]äV}º¼»*é Ìŏ‡ÍSÃN½ÇÁU¶Çç×Ï ÉÚÉÚàÅÆ6ÛŸËÍS͇»—¸¼ÌÎÁ[»—Íb¶ÇèѶ¹»k»ËÄ/Ì »Ë½æÌÅÍSçS¸ÚɨÉÑ¿JÏź—ÌÅÍ ÉÚêÉ:¸ËÍbɨ»—ÛŶǸ—Ã×ȝÃNÏ ¶ÇïSÏÅÉѸ—ÆiÆ)ÍSÏÅÃb»ËsÈԜÌθ—OÎÍbÉѻѿ/º¼¿kÄÅÁ[½¹¶áÌ/»BԑÉÑè?¸—ÍS‚É Ï:¶¹OWº àT’FÍaÉØ4Fºõλ<¿ÎÏÅÍbÍb¶á»—»ËÏÅÉÑÉâÆÆ é ¸—ÉÚ½æê Íb»—¶ÇÃ×Ï ¸—ÍSÏÅsÈ “V¿/»—ÌÅÉÑÏ “(’FO Z „ g/Ü ÆÅÀ ÏŶ ê ÆÅÉÚüQÉÚÉÑÉÚÏÅÆ»º—¿™¶¹ÄÅÃ×Íʺ™ÏÎÏÅÍSç×½hÃSÉÑÏÅ»ËÏÅɜÉڶǽ¹¸Ë»ËÛhÍbÌÅÃS»—Íb¶Ç»—ÏÅ»™ÉÑç Ï2»ËÌŻ޺õɜ¾VüQèѺ¼¶ÇÃS»ËÉëÉ ÏÅÍSèѽ¹ÉÚç×Û/ÉÑ»Ëà/º¸ËÃbÍSÃSÔÙºÞÔÅÍ ç×ÍSÉÚ¸¼ÎÏÅɇÏÅÉѶ¹Æ/¸—»—ÍbÉ Éâ»ËÎé ¶¹ÆÅÏÅÃ×¶ ÉÚÏëÆ5¸ËÉÑÍSà2ÏÅÏ/¾Wº¼Èë¶ÇÃ×ÄÅÍSÏź¼ÏŶÇÍSÏÅÆ‡½™çãüQ¸—Éѻ˶ǽÇÌ/ɨÍbÉ÷»ËÍb¶¹½ÇÄÅÃ×ç׺¼ÏëÉÚÄÎàŸËÍS¸ËÍS½QÍsÏ/ÛÅÈg)¸¼ÃFÔÖÃ×¶ÇèÚºk¸ ÉÑÆÅÎè?Ä/ÍSÏŽ¹¸—¶á½Ç»ËÉÑÉÚÉâºÚÆ é Ü êñJÌŶÇÏÅɶ ê ç×ÉÑÍSÏŽQÉÚ¶á¸ËÔLÍb»Ë»—ÌŶÇÃ×ÉÚÏ%¸—Éã¸Ë¶¹ÍbºgÏÅÏÅÈ$à ÃSÛÅ‚Ô ¸¼JÃ×ÛTê•¿ ÉÑO¸B” +º¼GÄÅâàſӺ—¶¹É⺍»‡»—ÃSÌÅÔ Éø” è?ÍSÁ[¸¼ÆÅêÌŶǶÇÏÎè<Ì:Íb½Ç¶¹¶¹»ºÂ¾4ÍßÃSç×ÔÂÉÚÍÏÅÉÑê ¸—Íb¶Ç»ËÏŶ¹ÏŶ ê çßÍSº¼½Õ¾Vºõç×»ËÉÑÉ Ï/ê ÉѸËÍMÃS»Ë{Ô ¶ÇÏ/[ç Ü º»Ë¼¾VÌ/ºõÉë»ËÉÔÖ¸¼ê ÉÑÉ÷ÜWüQk¶ÇÉëÃS»—ÍSɍ½¹ç×»—ÉÑÌÎàÅÍb¸—»ÑÍã¿úÃ×¶áÔ{Ï  O>ÌÎç×ÍSÉѺ‡Ï/ÉÑç׸ËÉÑÍMÏ/»ËÉÑÃ׸˸¼ÍM`º »Ë—¶ÇÃS˜BÏ6¸—¸—ÉÚÍS½æÍbÏÅ»—È–¶¹ïSOÎÉB¿»Ë»—ÃôÌÅÍSÉÑÏaÏø¶Ç ÆÅÉѶÇÍSºëŒ½ Í ™öÜÕÔeÍSÀ èÚwÔ »—š‘Ã׸붹ÍSºÞ½¹ç×͍ÉѺ¼àÅÄŸ—àÅÍߺ¼ÉÚÃS» Ô ÃS Ô Á[™ÌÅ»ËÉÑÌÎωÍM»Ó™ôç×¶ÇÉÚºUÏÅÏ/ÉÑÃS¸—Íb»Ó»Ëç×ÉÚÉڛº Ïř>ÉѸ—ÍSÍbºÓ»ËÉÚÍSÆWÏßà¶ÇÆ/¾ßÉ?ÍSÍSÏ2½T¾>ÃSÔ Û/— ¸—ÃטNÛT¿VÉÑÁU¸Óɺ¼èÑÄÅÍSàŽǺ¼½ Éښ »[ÃSÍ Ô ê š¨¶¹ÜLÏÅñJ¶ ê ÌÅÍSÉB½Î¸¼¸¼ÉÑÉѽǽæÍbÍM»Ë»Ë¶¹¶ÇÃ×ÃSÏ>Ï>¸—º¼ÍS¾VÏźõÈô»ËÉ ÃSê Ô [ÃSÔ ¿ “†RGâ¿Î¶¹ºÓ»ËÌÅÉëè?Íb¸—ÆÅ¶¹ÏÎÍS½Ç¶á» ¾ôÃSÔdÍ ê ¶ÇÏŶ ê ÍS½ö¸¼ÉѽæÍM»Ë¶ÇÃSÏ º¼¾Vº¼»—É ê Ü ÃS¶ÇÏÊԜ»ËÉåБÌÅäÅÉkÍ Û/ê º—¸—ÉÑÛÅÃ×Ï/½¹àź—Éѽ¹ÉBºkÉ ê»ËÃSÌÅÔ<ÍbÁ[λUÏÅÌÅ»—¶á¶¹ÌÅ»Ëè<Éå¡ÉÌié œÆÅÍSÄŶ ¸¼ê ¶ÇÃSº¼»—ÉÚÉѶÇÏŝº ÉѺ—Ï2œV¶¹›» Ã×Ä/ÏΓ¶¹»ËÍS„ ɇ½QO ÏÎZ ÏÅÍb¶¹¶¹½ÇºÕ»—ÛTÄÅ»—ÃS¸ËÌÅ»ËÍbÉBÉÚ½ÇÏ2½¹º ¾>»B¶ÇüQÏWÍS¶Ç½¹ÉؽǻËÉÑÌÅÍSºõ¶¹»U½Çº[çSÛTÉÑèÑÃ×àÅÃ׺¼Ï2¸—º—ÍS»Ë¶ÇºÞÉåà/äV½ÇÁ[ÉS»BÜ·¶á¶Ç»Ëº[À Ì~Ïß»ËÌ/ž ÌÅÔÖÉ÷¶ÇÉÚºÕÁ èÚÛÎÃןßÍSÏŸ¼ÛTº¼ÉÑ»—Éѽ渗›¸ ÍMÄŻˋÂèâ¶Ç»ËÃSÃV¶¹ÏÅÃ×è<ºÑÏÌ ¿ ÆÅç×ÉÚÉÚÏź—èÑÉѸ¼¸—¶ÇÍbàT»ËÉѶ¹Ã׺ÙÏØÍB¸—èÑÍS½ÇÏÅÍSº—Ȥwº O¢ÍSÃSÏÅÔhƨü™¸¼¶¹ÉÑÉJ½æÍMÍS»Ë½¹¶Çç×ÃSÉÑÏ÷àŸ—¸—ÍSÍSº·ÏÅȑÁ[¶á“F»Ë¿M̨»ËÌÅ»ËÌ/ÉÚÉJ¸—ÉÓê ÛÅÉ帗ä/Ã×¶¹ÛTº¼»—ÉѺd¸õ» Íg¾Øº¼»—ÉÑÌθ—Íb¶¹ÉÑ»?ºd¿×ÔÖÃbÃSÔ¸·ÎÉ?ÏÅÍb¶áè<»Ë ÌÉâé ÆÅ;¶ £HÉÑ¢BÏ/º—¿S¶ÇÁ[ÃSÏζ¹»—ÍSÌ ½ ÏŶ¹½ÇÛTÃS»ËÉÚϝ»úüQ¶¹ÉœÍS½Çç×ÉÚàŸËÍbº Q¥]Á[¶á»Ë¤Ì N¦Ómÿ §¨:ÍSÏÅ¤Æ O$RQ¥p§©O ¥«ª „ “†RQ¥ŠGZ § O Z “ ] ê 2 RO Z¬¥ ] 2 âÜ ñJ̝ͨÁ[ÄÅÌźÑÃ׿]½¹ç×ɇ¶¹ïSº¼ÉÑÉѸ¼Ïi¶ÇÉÑÍ>º[ü™ÃSÔ·¶¹ÉØüQÍb¶ÇÉë½Çç×ÍSÉÚ½¹àÅç׸ËÉÑ Í à/¸Ë ÍS º Á[Q¶¹»Ë¥ÕÌÁ[º ÌÅê ÉÚÍS¸—ɽǽïbÍS½¹ÄÅɇÃSQÔ “+G O$RG »ËÌ/ÉѸ—É÷¶ÇºÞÛŸ—ÃNïV¶ÇÆ/ÉÑÆ “†RQ¥p „ O$RQ¥Š Z­ “ „ RO Z ] 2 åÜ |V»<Íb¸¼»Ë¶¹ÏÅçÂÔÖ¸—Ã ê »ËÌŶ¹ºL¸—ÉÚº—ÄŽá»?¿Fó/-Ü ®)¶Çº¼½Ç¶ÇèÚÉÑÏ2¾×¿×Á[Ì/Ã÷¶¹Ï»—ÉÑÏź¼¶¹ïSÉѽ¹¾ØÁUÃ׸¼ÈSÉÚÆ>Ã×ύ»ËÌÅÉJ»—Ã×ÛŶÇè ÆÅÄŸ¼¶ÇÏÅçW»ËÌ/ÉʽÇÍSº¼»ë» ÁÕÉÑÏ2» ¾7¾SÉ?ÍS¸¼ºÑ¿·ÁUÍSº÷ÍSàŽ¹É»—Ã5àÅÄ/¶Ç½ÇÆ6Íøº—ÉѸ¼¶ÇÉÚº÷“†ÃSRÔ{#αÏÅp¶á »ËÉâé ÆÅ¶ ê „ ÉÑÏ/º—¶ÇÃSÏÎÍS½ ÏŶ¹½ÇÛTÃS»ËÉÚϝ»ÞüQ¶¹‘É }é ÍS½¹ç×ÉÑà/¸ËÍSºÚ°¿ ¯B+±«²³X´µ¿Îº¼ÄÅè<Ì»—ÌÎÍb»Þ½Ç¶ ê ³¶ · O$R+±Œp Z § 2 gÌÅÃ×½¹ÆÅºÑ¿ 2.

(13) »Ëü™ÌÍbÄŻ˺™ÉÚ¸ÑÃ׿àF¶¹»<ϸÍS¶¹yhÏÅ4 ¶ÇŽÏÅz çÕ¿°®)»ËÌÅɜ¶Çº¼ÍS½Ç¶ÇºõèÚ¾ ÉÑê Ï2¾øÛ/»—ÁÓÃSÍS»Ë¶¹ºëè?ÍSÍb½bàÅÉâ½Çä/ÉØÍS»—èâà »ËÏÅÛÅÉÚ¸—º—ÃNºúïSÃSɨÔF»Ë»—ÌÅÌÅÉãÉLàTº—Í Ã×ÄÅÏÅÉØÆW¸—ÉÑeº¼º¼ÉÑÄÅÉ`½¹»Byˆ4!¶ÇSÏiz »ËÍSÌ/º™ÉãÍÓÍS¸¼º—ÉÚº¼ÔÖÉÚÃF¸—èÚÉѶæÏ/Íb»—èѶ¹ÉïSåÉ Ü ê ÍS½¹ç×ÉÑàŸ—ÍSºJèÑÃSϝ»—ÉâäV»?Ü ¸—ÛÎÉÚÍSº¼ÛT»ËòëÍbÉѸ[»ËÃSÉÚ½Çà2ÆiÃV¾øÆF¶ÇŠéÏøù7|FÆÅÌÅÜö¶¹ÍbµÕûhÔeÜÍSÉѸ¼¸—kÉÑÉâÉâÏ2ïVÁ »g¶Çè<Ì>»—ÉÑÍS»—¸ ÌÅêÏ]ÉÑ¿TºÞÃ×Òg¸¼à2É$Ü ¾ê |FÄ/è<ÔÖÌź—Ã×¶ÇÏÅÏ/¸ÓÉÚçÊàT¶ÇÆÅÃS»ËÉÚÌ/»Ë¸gÌWÉ÷ÍSèÚÍSÏ/Ã׺¼Æº—ÏÅÃVèÑÐ÷èÑÉÚ¶ÇÛ/JÜ Íb»Â|F»Ë¶áÌÎÃSï×ÍSԷɽ¹ÉÑÉÚÍSÏ2ïTÏ/»Ë¿ Ƹ¼yÃ×2 üQÛ2P ¶¹¾5z ÉÂÜ ÃbÍSԜ½ÇçSÍSÉÑÏiàŸ—ÍbÍS½ÇºUç×ÉÚÌÎàÅÍb¸ËºJ͍àh¶ÇÉÚÏÉÑÏÍ ê üQÉÚ(» ¹º§¼» ³B½C¾ ¹Ã³øàhÉÊÍç׸—ÍSÆÅÉÚ¿Æ }é ÍS½Çç×ÉÚàŸËÍF¿™ÁÕÉ>Æ/É ÎÏÅÉÊ»ËÌÅÉôÉÑÏ2»Ë¸¼Ã×Û2¾6ÃS›Ô ¹à¾ À¿#¹ƒ§,½¹¶ ê º¼ÄÅÛ ³*¶ ·ÂÁ ÆÅ¶ Å ê àhÄ Éâ¹`» ÁU³FÜ ÉÚÉÑÏi»ËÌ/É÷ÉÚϝ»—¸—Ã×Û2¾ÃSԜÍôç׸ËÍSÆ/ÉÑÆiÍb½Çç×ÉÚàŸËÅÍ ¹ÍbÏÅÆ5»ËÌ/É J ñ Å Ì Ñ É ¼ ¸ ¨ É Ç ¶ Þ º ô Í Ñ è × Ã Å Ï / Ï Ñ É Ú è — » Ç ¶ × Ã 5 Ï ÝÁ[kÌŶ¹½ÇÉÚàT¸—ÉÑ,É ¸õ»kšxº¼ÉѶ¹¸¼º¨¶ÇÉѻ˺BÌÅÍSÉWº—º¼¸ËÃFÍbè򮁦æ¶ÇÍbÄÅ»—ºãÉÑÆÃbÔg»—ÃßèÚÃ×¶¹Ï2»`ï×¹vÉѸ¼@çׯÇNÉÑÏ/§ÉèÑÉ5È ÃbÔk³*· Ê»—¾ ÌÅeÉ߯/¶ ÔÖvê Ã׸ Ä ¹ÍS³f½ÕËÆ Ûh³ ÃNÿJÁÕ¶¹ÏÉѸôÔeÍSº—èâÉÑ»ƒ¸¼¶ÇÉÚÀ¿ º #¹(¹ƒN#ÆÇ§åÜ2 ñJ„ š¨ÌÅÉ ¿ Ý»<kÍM¶¹»Ë½Ç¶¹àTïSÉÑÉW¸õ»ØÍS½Çº¼çSÉÑÉѸ—àŶ¹ÉѸ—ºãÍiÍbÍSº—Ïź—ÃVÆèѶÇÔÖÍbÃ׻˸¨ÉÚÆ4çS¸ËÍS»ËÃiÆÅÉÚÍSÆ%ϲÍSÍSº—½Çº¼çSÃFÉÑèÚàŶæÍb¸—Í»—¶¹ï×ÌÎÉßÍ?ï×ÍSÉ ½Çç×àTÉÚàÅÉÑÉÚ¸ËÍbÏ$ê ºÑ¿LÁ[¶¹¶Ç»¨ÆÅÉÚº—½¹Ìž6Ã×Ä/º¼»—½ÇƲÄÅÆÅàh¶¹ÉÑÉ Æ¸¼¶ÇÉÑÏ7ç2ÍbèѸ—à ÆÅêôÉÚÆ'ê ÄFÍbºé ÍàTÉÑÌΞ¼çSÍ?ÉÑïVÏŶÇÃ×ÉÚÄ/¸ËÍS¸Þ½¹¶ÇÃbº—ÔdÉÚÆ ÍSÏøÆÅÍS¶ ê ½¹ç×ÉÚÉÑÏÅà/º—¸Ë¶¹Í/Ã׿ÅÏ º¼Ÿ7ÉÑWÉ ÍSÏÅyˆ4 Æ-2Dz ¶¹»ÊÍSº[è?͍Íb¸—¸—¸—Éâ¶¹ÉÑÔÖÉѺ>¸—ÉÚÍSÏŽǽ[èÑÉb»ËÜ ÌÅɶÇÏ/ÔÖÃS¸ ê Íb»Ë¶¹Ã×ϲÃ×Ï)ÍSº¼¾ ê Û/»ËÃb»Ë¶Çè Ì ü¶¹Q»d¶ÇÉë¶ÇºLÀ ÍSÏ4¸—½¹ÉÚç×½æ»ËÉÑÍbÌ/à/»—ÉÑÉÑ¸Ë¶ÇÆãÍS¸‡ºÚ»ËÛοÎÃÂÍS¶ÇÏW»—ÛTÌÅÉÑÛÎÉ[¸‡ÍSÉѸõ»ËÏ2»ËÌŶǻËÉ>èÚ¸¼ÄÅÃ×ÍS½æÛ2ÍbÄ/¾ã¸U»—ÌÅÃS»ËÃ×ÌÅÔT¸—Éâ»Ëº÷¾WÌÅÉÚº¼èÑ»—¶ÇÃ׍¸ÄÅÏ/Æ/œº—¾6ÄÅ¶ÇÆ/ÃS»Ë»—ÉÑÌŶǸJÉÑÉÊÏ2»ËÌÅ»—ÉѺÕÏ2ɇ»ËÍbÉѸ¼ÏÅÏ2Ã×Æã»—Û2¸—¾4»ËÃ×ÌÅÛ2ÃSÉÚ¾WÔ޶ǸLÃSÍbº—Ôº—Ä/º—ÔÖàÎÃV¸—ÉÑèÑÍSɇ¶Ç½ÇÍbçS»ËÍSÉѶόàÅï×ç׸—ÉÊÉÑÍSà/ºÑÍS¸ËQÜ ½ÇÍSçSÍBº[ÉÑàÅÏÅÍS¸—Ï/É[ÍSÆÃSºØÔTÌÅÍb»ËÃNÏÅÌ/Á Æ É ÈSÍ7Éâ¾ çS¸ËÃ×ÍSàÅÆÅº¼ÉÚÉÑÆ-¸õïSüQÍM¶Ç»ËɶÇÃSÍSÏŽǺÑçS¿VÉÑÁ[àŸ—ÌÅaÍ ¶Çè<Ì J¿Ó¸¼Éѻ˽ÇÌŶ¹ÉÑÉÚºÓÏ-ÃS¶¹Ï »—ºÊͨÄÅÛÎÏ/ÍS¶¹ÛTï×ÉÑÉÚ¸Ó¸—º—à2ÍS¾>½kÐØÉÚÏ2Üï×

(14) JÉѽ¹Ü†Ã×UÛŶ¹ÉÑÏŸ¼çÉDÑÏ2ÍS¾X½¹ç×ÎÏYÉÑ¿àÅyÐg ¸—AÍz ¿/¶¹Ñ(ºUR»ËGÌÎôÍM»?ÍS¿/Æ çS¶¹ï×¶¹ÉÚ»ËÏ º Í»ËWÌ/ÏÎÉÚ¾ëÍb»Ëè?Ä/Íb¸ËÏØÍS½LÉâäVç×»—¸—ÉÑÍSÏÅÆÅÆ‡¶¹ÏÅ»Ëç ÌÅÉÙ¶ÇÏŸ—Æ/ÉÚº—ÄÅÄÅèѽáÉÚ»ËÆ7º™»ËÔÖÌŸ—à Éâê¾ëÛŐ ¸—ÃNï×ÍSÉÕÏÅÒÆ ¶ÇÏÂÀ¿»ËÌ/+ÉU{ÍSƒº¼º—§ÓÃVèÑÀ¿¶ÇÍb»ËËÑ(¶áï×ÉÙ+{ÍSǽÇâçSÜôÉÑàÅÐg¸—ÍSº‡ºQÍWèÑÃ×èÑÏ2Ã×»—ÏÅÉ⺼äVDÉ »·œ»—ÄÅÃgÉÚê ÏÅüQèѶÇÉÉ ÍS|F½¹ÌÎç×ÍMÉÑÔeàÅÍS¸—¸—ÍSÉâºÑïFÜd¶¹è<ü™Ì%Éâ»J»—ÌÅÄÅÉѺJÃSºõ¸—»<É Íb»—Égÿø»Ë½ÇÌÅÉÚv»É¸¼ ÉѺ¼ÄÅàT½¹Éø»ÓÍS»—ÌÅÏ'ÉÚ¾>ÍSº—Ã׺¼à/ÃF»ËèÚÍS¶æÍb¶ÇÏ »—¶¹ï×ÍbÉWÏÅÆßÃ׸ô»ËÌÎÍ*ÍM»ÓüQ¶Ç¶ÇºUÉø¸—ÍSÉѽ¹½Çç×ÍbÉÑ»ËàÅÉÚÆ>¸—Íi»ËèÛŸ—»—ÉÚÌź—ÉëÉÚϝò»ËÍbÃ׻˽ÇÃV¶¹ÃׯFÏ é èѓ ÃS­ ϝ»ËOÍSZ¶ÇÏ/„ ¶ÇgÅÏÅÜLç‡À <ÔO¹ çSÉÑÆÅÏÅÉÚÉÚÏŸËÍbÃSê »—»—Ã×ÉѸ—º[ºJ»ËÍbÌÅÏÅɇÆÔÍS½¹“÷ç×ÉÑÌ/àÅà ¸—ê ͨÃSÛÅç׸—ÉÑÉÚÏź—ÉÚÉÚÃ×ϝÄÅ»—ÉÑºÓÆi¸¼ÉÑà2½ÇÔ¾Íb»Ë¶¹Ã×ÏÅ»—ºÙÌÅÉÑÃS,ÏԙÆÅÀ¿ÉÑçS+¸—¹¡ÉÑÉë’ ÍM»Ó2-½ÇÕÉÑÍSº¼»›4‡Á[¶¹»—Ì ¶ÇÆÅº‘¶ ÎüQÏÅÉÚÉÚÏŶá»Ë»÷º—Éâ¶¹éÄÅÃׯÅÏκ÷¶ ÍSê ÃS½aàÅ¿ÚÉѻ˺—Ï/Ì/ÉÚº—¸¼ÉѶÇï×ÃSÏëÉÊÏλËÍSÌŻ˽YÌÎÉLÜøÍbº¼»÷ÀDÉ ÏŜÍWÆÅÄÅÉÚÉÑç×ÉÑÏ/¸ËÆÍbèÑ¿œ ÉÆÅÉѶá¯HÔÞÖÆ ÆÅÍ5¶ }éç×ÍS¸Ë½¹#Íbç×¹`ÆÅÉѳ-ÉÑà/Ƹo¸Ë²Í ³B}´DÌÎé µgÍSÍS½Çº‡¶ÇçSºÉÑÉÑÆÅàÅÏ2^É ¸—»ËÎÍ,¸¼ÏÅÃ×¹¶áÛ2»Ë×¾ ÉÑÿ5½á§Â¡¾ÑÉÑÚ¸¼»ÉÑÃ5¸—Ã/¶á³· ÔÓÜÊñJÍS¾ Ï/¹ÌÆ4Äų5º Ã×¶¹À¿Ïꇽá¾:Î#¹ƒÏŶ¹¶áQÔÕ»ËÉâ§ ¶¹»é ½Ç¶ ê ê ³¶ · Ø Á ÆÅ¶ ê Ä +¹³f‚§ºÙF‰Ü ÍBÏ6»—ÌÅÉÊÅê ÃbÄ»ËÌÅ­ÉÚ¸÷ÌÎÍbÏÅÆ¿ú¶¹›Ô ÀÖ+¹ƒƒ§ºÙ/¿ú»—ÌÅÉÑÏ6ÔÖÃ׸‡Íº¼Ä/þãé èѵζ¹ÄÅÉѸ¼Ï2»—»ËÌÅ½á¾øÉѸ ½æÍS¸¼ÃSç׸—‘É ÉS¿SÚÛà¾¨£aÄź—Ü ¶¹ÏÅÁUçBɨ»ËÌÅçSÉJÉÚ»Bº—Í Æ/¶ Åê ÉJÄ ÍS#¸—¹NçSÄÝ ÉÚÏ22»?¿×¿TÁÕÔÖÃ×ÉJ¸kÃ×ÍSà/½¹½»<ÍbÞ¶ÇϨ’ß»ËÌÅÚ6Íb»L¿h»—¶Ç>ÏÌVÎÄ/ÏÅ¡º ¶¹¹à»—Éâé §áÆÅ¶ »ãÉѳ*âÏÅʺ¼¶Ç¦ Ã×¹Ïų/ÍS½Ü ê ê ê ê }é ÍS½Çç×ÉÚàŸËÍbº¨ÌÎÍ?ï×ÉøÉÑÏ2»Ë¸¼Ã×Û2¾²ç׸ËÍM»ËÉѸãÃS¸ãDÉ œÄÎÍS½Ó»—Ã6ÃSÏÅÉSÜÀ ϲ»ËÌÅÉڶǸ¨ÛÅÍSÛhÉÚ¸ã»ËÌÅÉøÍSÄ/»—ÌÅÃ׸¼º ÌÎŶ¹ÏÅç×¶áÌÅ»ËÉڽǶ¹½¹ç×¾Ì2ç×»[ÉÚ» ÏÅÁUÉÑÃ߸—ÍbÉå»Ëä/ÉÚÍÆ ê ç×Û/¸—½ÇÍSÉÑÆÅºkÉÑÃSÆ ÔœÍSç׺—¸—º¼ÍSÃFÆÅèÚÉÑ¶æÆ–Íb»—}¶¹ï×é ÉøÍS½¹ç×èÑÃÉÑà/¸ËÍSº[ÄFÁ[»<Íb¶¹»—»—¶¹Ì5ï×ÉøÉÑÏ2ÍS»—½¹¸—ç×Ã×ÉÑÛ2à/¾¸ËÍSÃ׺ÏÅÌÎÉSÜkÍ?ï×À É5Ï:èÑÛνÇÍSÉѸõÍS»Ë¸—¶Ç½áèھĎæÉÑÍbÏV¸Ñé ¿ »ËyäS ¸¼zÃ×ÜQÛ2

(15) ·¾ôä/Ã×Í ÏÅÉkÛÅÍS½ÇÏÅÉÚÆÊºJÃS»—ÌÅÔ¶Çç׺ոËÍSÍS½¹Æ/º—ÉÑÃ‡ÆøÌÅüQÃ×½Ç¶ÇÆ/ɺÙÍSÔÖ½¹Ã×ç׸ÕÉÑà/ìL¸ËÀYÍSé ºÓÍS½¹Ãbç×Ô·ÉÑà/ÉÚêÊϝ¸ËÍS»—ê ¸—ºœÃ×ÃNÛ2ï×¾ ÉÚ¸ÓÃSÏÅ‘Í ÉëÅÍSÉѸ—½ÇÆÊÉB»—ÃSÌÅÔQ¶Çè<ÏøÌÎÍbüQ¸Ë¶ÇÍSÉBèâÍS»Ë½ÇÉÑç׸¼ÉڶǺõàŻ˸˶ÇÍb è ºÑÚ¿ÎÉÑüQ¸—Ã/¶ÇÉ ¿ ÍSÍS½¹½¹ç×ç×ÉÑÉÑàÅàŸ—¸—ÍSÍSºëºÑê Ü ÃSÔ ê ÍMäF¶ ê ÍS½dèÚ½æÍSº¼ºØÍSÏ/Æ4½ÇÃVÃ×Û7ÍS½ÇçSÉÑàŸ—ÍSºëÃSNÔ ÎÏŶá»ËÉåé ÆÅ¶ ê ÉÚÏź—¶¹Ã×ÏÎÍS½dº¼¶ ê ÛŽÇÉôüQ¶ÇÉ |F¶ÇÏ/èÑÉ ½ÇÃVÃ×Û4ü™¶¹É ÍS½¹ç×ÉÑàŸ—ÍSº¨Íb¸—É>Á[¶¹ÆÅÉѽᾠê ÉÑÏ2»Ë¶¹Ã×ÏÅÉÚÆ¶ÇÏ4»—ÌŶǺػ—ÌÅÉѺ¼¶ÇºÚ¿dÁUÉ »<ÍbÈSÉß»ËÌ/É è<æ ÌÎÍSÆÅÏ/ÉÚèÑÏÅÉ4ÃS»ËÌ/ÉÉѸ—×Í É6Å»ËÏÅÃ%¶¹»—¸—ÉâÉ é êÆ/¶ ¶¹ÏÅÆ)ÉÑÏź¼ÌŶÇÃNÃ×ÁÏÎÍb½U»ËÌź—Éâ¶ ¾ Û/ÍS½Ç¸—ÉøÉ6üQÆÅ¶ÇÉøÉ ÅÍSÏŽÇÉÑçSåÆ ÉÑàÅÖ¸—º—Í*ÉÚFÉ ÃNïSyäÉÑ3 ¸ßz çÍÍSºÎÍ'Éѽ¹Æ ¸—Éâ}TÔÖÉѿӸ¼ÉѽÇÉâÏÅs» èÚÉ }°âyÐÜÆ ª ÆéüQè É⦠» z ê ê 4.

Riferimenti

Documenti correlati

[r]

[r]

[r]

[r]

Da ciò possiamo evincere come il legislatore abbia dato la possibilità alle pubbliche amministrazioni di utilizzare tale strumento di consulenze ma sempre

Relative humidity Temperature Pressure Petri dishes range (%) range ( ◦ C) range (mbar) exposure time (hh:mm) Exp. coli) in the aerosolized solution and average number of

This suggests recasting the question in the following form: how many families in Mubarakzyanov’s list of solvable Lie algebras contain at least one hypo Lie algebra.. The answer is

The above classifications show that diagonal and σ-diagonal metrics Ricci- flat metrics are quite scarce in the nice nilpotent context, although most of these Lie algebras do admit