• Non ci sono risultati.

Elliptic flow of charged particles in Pb-Pb collisions at √s nn=2.76TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Elliptic flow of charged particles in Pb-Pb collisions at √s nn=2.76TeV"

Copied!
11
0
0

Testo completo

(1)

Elliptic Flow of Charged Particles in Pb-Pb Collisions at

p

ffiffiffiffiffiffiffiffiffi

s

NN

¼ 2:76 TeV

K. Aamodt et al.* (ALICE Collaboration)

(Received 18 November 2010; published 13 December 2010)

We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at ffiffiffiffiffiffiffiffisNN

p ¼

2:76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (jj < 0:8) and transverse momentum range 0:2 < pt< 5:0 GeV=c. The elliptic flow signal v2, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0:087  0:002ðstatÞ  0:003ðsystÞ in the 40%–50% centrality class. The differential elliptic flow v2ðptÞ reaches a maximum of 0.2 near pt¼ 3 GeV=c. Compared to RHIC Au-Au collisions at ffiffiffiffiffiffiffiffisNN

p

¼ 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.

DOI:10.1103/PhysRevLett.105.252302 PACS numbers: 25.75.Ld, 25.75.Gz, 25.75.Nq

The goal of ultrarelativistic nuclear collisions is the creation and study of the quark-gluon plasma (QGP), a state of matter whose existence at high energy density is predicted by quantum chromodynamics. One of the experi-mental observables that is sensitive to the properties of this matter is the azimuthal distribution of particles in the plane perpendicular to the beam direction. When nuclei collide at finite impact parameter (noncentral collisions), the geo-metrical overlap region and therefore the initial matter distribution is anisotropic (almond shaped). If the matter is interacting, this spatial asymmetry is converted via multiple collisions into an anisotropic momentum distri-bution [1]. The second moment of the final state hadron azimuthal distribution is called elliptic flow; it is a response of the dense system to the initial conditions and therefore sensitive to the early and hot, strongly interacting phase of the evolution.

At RHIC large elliptic flow has been observed and is one of the key experimental discoveries [2–6]. Theoretical models, based on ideal relativistic hydrodynamics with a QGP equation of state and zero shear viscosity, fail to describe elliptic flow measurements at lower energies but describe RHIC data reasonably well [7]. Theoretical argu-ments, based on the AdS/CFT conjecture [8], suggest a universal lower bound of 1=4 [9] for the ratio of shear viscosity to entropy density. Recent model studies incor-porating viscous corrections indicate that the shear viscos-ity at RHIC is within a factor of 5 of this bound [10–13]. The pure hydrodynamic models [7,14,15] and models which combine hydrodynamics with a hadron cascade afterburner (hybrid models) [16,17] that successfully

de-scribe flow at RHIC predict an increase of the elliptic flow at the LHC ranging from 10% to 30%, with the largest increase predicted by models which account for viscous corrections [15–18] at RHIC energies. In models with viscous corrections, v2 at RHIC is below the ideal

hydro-dynamic limit [12,17] and therefore can show a stronger increase with energy. In hydrodynamic models the charged particle elliptic flow as a function of transverse momentum does not change significantly [7,14], while the pt-integrated elliptic flow increases due to the rise in

average ptexpected from larger radial (azimuthally

sym-metric) flow. The larger radial flow also leads to a decrease of the elliptic flow at low transverse momentum, which is most pronounced for heavy particles. Models based on a parton cascade [19], including models that take into ac-count quark recombination for particle production [20], predict a stronger decrease of the elliptic flow as a function of transverse momentum compared to RHIC energies. Phenomenological extrapolations [21] and models based on final state interactions [22] that have been tuned to describe the RHIC data predict an increase of the elliptic flow of 50%, larger than other models. A measurement of elliptic flow at the LHC is therefore crucial to test the validity of a hydrodynamic description of the medium and to measure its thermodynamic properties, in particular, shear viscosity and the equation of state [23].

The azimuthal dependence of the particle yield can be written in the form of a Fourier series [24,25]:

Ed 3N d3p¼ 12 d2N ptdptdy  1 þX 1 n¼1 2vncos½nð  RÞ  ; (1) where E is the energy of the particle, p the momentum, pt

the transverse momentum,  the azimuthal angle, y the rapidity, and R the reaction plane angle. The reaction

plane is the plane defined by the beam axis z and the impact parameter direction. In general the coefficients vn¼

hcos½nð  RÞi are pt and y dependent—therefore we

*Full author list given at the end of the article.

Published by The American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

refer to them as differential flow. The integrated flow is defined as an average evaluated with d2N=dptdy used as a

weight. The first coefficient, v1, is called directed flow, and

the second coefficient, v2, is called elliptic flow.

We report the first measurement of elliptic flow of charged particles in Pb-Pb collisions at the center of mass energy per nucleon pair ffiffiffiffiffiffiffiffisNN

p

¼ 2:76 TeV, with the ALICE detector [26–28]. The data were recorded in November 2010 during the first run with heavy ions at the LHC.

For this analysis the ALICE inner tracking system (ITS) and the time projection chamber (TPC) were used to reconstruct the charged particle tracks. The VZERO coun-ters and the silicon pixel detector (SPD) were used for the trigger. The VZERO counters are two scintillator arrays providing both amplitude and timing information, covering the pseudorapidity range 2:8 <  < 5:1 (VZERO-A) and 3:7 <  < 1:7 (VZERO-C). The VZERO time resolu-tion is better than 1 ns. The SPD is the innermost part of the ITS, consisting of two cylindrical layers of hybrid silicon pixel assemblies covering the range of jj < 2:0 and jj < 1:4 for the inner and outer layer, respectively. The minimum-bias interaction trigger required at least two out of the following three conditions [29]: (i) two pixel chips hit in the outer layer of the silicon pixel detectors, (ii) a signal in VZERO-A, (iii) a signal in VZERO-C. The bunch intensity was typically 107 Pb ions per bunch and

each beam had 4 colliding bunches. The estimated lumi-nosity was 5  1023 cm2s1, producing collisions with a

minimum-bias trigger at a rate of 50 Hz including about 4 Hz nuclear interactions, 45 Hz electromagnetic pro-cesses, and 1 Hz beam background.

A removal of background events was carried out off-line using the VZERO timing information and the requirement of two tracks in the central detector. A study based on Glauber model fits to the multiplicity distribution (see also [29]) in the region corresponding to 80% of the most central collisions, where the vertex reconstruction is fully efficient, allows for the determination of the cross section percentile. Only events with a vertex found in jzj < 10 cm were used in this analysis to ensure a uniform acceptance in the central pseudorapidity region jj < 0:8. An event sample of 45  103 Pb-Pb collisions passed the selection

criteria and was used in this analysis. The data are analyzed in centrality classes determined by cuts on the uncorrected charged particle multiplicity, in pseudorapidity acceptance jj < 0:8. Figure1shows the uncorrected charged particle multiplicity in the TPC for these events and indicates the nine centrality bins used in the analysis.

To select charged particles with high efficiency and to minimize the contribution from photon conversions and secondary charged particles produced in the detector ma-terial, the following track requirements were applied for tracks measured with the ITS and TPC. The tracks are required to have at least 70 reconstructed space points out

of the maximum 159 in the TPC and a h2i per TPC cluster

 4 (with 2 degrees of freedom per cluster). Additionally, at least two of the six ITS layers must have a hit associated with the track. Tracks are rejected if their distance of closest approach to the primary vertex is larger than 0.3 cm in the transverse plane and 0.3 cm in the longitudi-nal direction. For the selected tracks the reconstruction efficiency and remaining contamination are estimated by Monte Carlo simulations ofHIJING[30] andTHERMINATOR [31,32] events using aGEANT3[33] detector simulation and event reconstruction. The reconstruction efficiency for tracks with 0:2 < pt< 1:0 GeV=c increases from 60% to

70% after which it stays constant at ð70  5Þ%. The tamination from secondary interactions and photon con-versions is less than 5% for pt¼ 0:2 GeV=c and less than

1% for pt> 1 GeV=c. Both the efficiency and

contamina-tion as a funccontamina-tion of transverse momentum do not change significantly as a function of multiplicity and are therefore the same for all centrality classes.

An alternative analysis was performed with tracks re-constructed using only the TPC information. For these tracks the same selections were applied except for the requirement of hits in the ITS and allowing for a larger closest distance to the primary vertex, smaller than 3.0 cm in the transverse plane and 3.0 cm in the longitudinal direction. The reconstruction efficiency for these tracks with 0:2 < pt< 1:0 GeV=c increases from 70% to 80%

after which it stays constant at ð80  5Þ%. The contami-nation is less than 6% at pt¼ 0:2 GeV=c and drops below

1% at pt> 1 GeV=c. For this track selection the efficiency

and contamination as a function of transverse momentum also do not depend significantly on the track density and are therefore the same for all centrality classes. The rela-tive momentum resolution for tracks used in this analysis was better than 5%, both for the combined ITS-TPC and TPC stand-alone tracks. The results obtained from the

Multiplicity 0 500 1000 1500 2000 2500 3000 -5 10 -4 10 -3 10 -2 10 0 - 5% 5% - 10% 10% - 20% 20% - 30% 30% - 40% 40% - 50% 50% - 60% Probability

FIG. 1. The uncorrected multiplicity distribution of charged particles in the TPC (jj < 0:8). The centrality bins used in the analysis are shown and the cumulative fraction of the total events is indicated in percent. The bins 60%–70% and 70%–80% are not labeled.

(3)

ITS-TPC and TPC stand-alone tracking are in excellent agreement. Because of the smaller corrections for the azimuthal acceptance, the results obtained using the TPC stand-alone tracks are presented in this Letter.

The pt-differential flow was measured for different

event centralities using various analysis techniques. In this Letter we report results obtained with 2- and 4-particle cumulant methods [34], denoted v2f2g and v2f4g. To

cal-culate multiparticle cumulants we used a new fast and exact implementation [35]. The v2f2g and v2f4g

measure-ments have different sensitivity to flow fluctuations and nonflow effects—which are uncorrelated to the initial ge-ometry. Analytical estimates and results of simulations show that nonflow contributions to v2f4g are negligible

[36]. The contribution from flow fluctuations is positive for v2f2g and negative for v2f4g [37]. For the integrated

elliptic flow we also fit the flow vector distribution [38] and use the Lee-Yang zeros method [39], which we denote by v2fq-distg and v2fLYZg, respectively [40]. In addition to

comparing the 2- and 4-particle cumulant results we also estimate the nonflow contribution by comparing to corre-lations of particles of the same charge. Charge correcorre-lations due to processes contributing to nonflow (weak decays, correlations due to jets, etc.) lead to stronger correlations between particles of unlike charge sign than like charge sign.

Figure2(a) shows v2ðptÞ for the centrality class 40%–

50% obtained with different methods. For comparison, we present STAR measurements [41,42] for the same central-ity from Au-Au collisions at ffiffiffiffiffiffiffiffisNN

p

¼ 200 GeV, indicated by the shaded area. We find that the value of v2ðptÞ does

not change within uncertainties from ffiffiffiffiffiffiffiffisNN

p

¼ 200 GeV to 2.76 TeV. Figure2(b)presents v2ðptÞ obtained with the

4-particle cumulant method for three different centralities, compared to STAR measurements. The transverse momen-tum dependence is qualitatively similar for all three cen-trality classes. At low ptthere is agreement of v2ðptÞ with

STAR data within uncertainties.

The integrated elliptic flow is calculated for each cen-trality class using the measured v2ðptÞ together with the

charged particle pt-differential yield. For the

determina-tion of integrated elliptic flow the magnitude of the charged particle reconstruction efficiency does not play a role. However, the relative change in efficiency as a function of transverse momentum does matter. We have estimated the correction to the integrated elliptic flow based on HIJINGandTHERMINATORsimulations. Transverse momen-tum spectra in HIJING and THERMINATOR are different, giving an estimate of the uncertainty in the correction. The correction is about 2% with an uncertainty of 1%. In addition, the uncertainty due to the centrality determina-tion results in a relative uncertainty of about 3% on the value of the elliptic flow.

Figure3shows that the integrated elliptic flow increases from central to peripheral collisions and reaches a

maximum value in the 50%–60% and 40%–50% centrality class of 0:106  0:001ðstatÞ  0:004ðsystÞ and 0:087  0:002ðstatÞ  0:003ðsystÞ for the 2- and 4-particle cumu-lant method, respectively. It is also seen that the measured integrated elliptic flow from the 4-particle cumulant, from fits of the flow vector distribution, and from the Lee-Yang zeros method, are in agreement. The open markers in Fig.3 show the results obtained for the cumulants using particles of the same charge. The 4-particle cumulant results agree within uncertainties for all charged particles and for the same charge particle data sets. The 2-particle cumulant results, as expected due to nonflow, depend weakly on the charge combination. The difference is most pro-nounced for the most peripheral and central events.

The integrated elliptic flow measured in the 20%–30% centrality class is compared to results from lower energies in Fig. 4. For the comparison we have corrected the inte-grated elliptic flow for the pt cutoff of 0:2 GeV=c. The

estimated magnitude of this correction is ð12  5Þ% based on calculations withTHERMINATOR. The figure shows that there is a continuous increase in the magnitude of the elliptic flow for this centrality region from RHIC to LHC energies. In comparison to the elliptic flow measurements in Au-Au collisions at ffiffiffiffiffiffiffiffisNN

p

¼ 200 GeV, we observe about a 30% increase in the magnitude of v2 at ffiffiffiffiffiffiffiffisNN

p ¼ 2:76 TeV. The increase of about 30% is larger than in current ideal hydrodynamic calculations at LHC multiplic-) c (GeV/ t p 1 2 3 4 5 2 v 0.05 0.1 0.15 0.2 0.25 0.3 v2{2} {4} 2 v (STAR) {4} 2 v ) c (GeV/ t p 0 1 2 3 4 5 {4}2 v 0.05 0.1 0.15 0.2 0.25 10%-20% 20%-30% 30%-40% 10%-20%(STAR) 20%-30%(STAR) 30%-40%(STAR) (a) (b) 40%-50% 40%-50%

FIG. 2 (color online). (a) v2ðptÞ for the centrality bin 40%– 50% from the 2- and 4-particle cumulant methods for this measurement and for Au-Au collisions at ffiffiffiffiffiffiffiffisNN

p

¼ 200 GeV. (b) v2f4gðptÞ for various centralities compared to STAR mea-surements. The data points in the 20%–30% centrality bin are shifted in pt for visibility.

(4)

ities [7] but is in agreement with some models that include viscous corrections which at the LHC become less impor-tant [12,15–18].

In summary we have presented the first elliptic flow measurement at the LHC. The observed similarity at RHIC and the LHC of pt-differential elliptic flow at low

ptis consistent with predictions of hydrodynamic models

[7,14]. We find that the integrated elliptic flow increases about 30% from ffiffiffiffiffiffiffiffisNN

p

¼ 200 GeV at RHIC to ffiffiffiffiffiffiffiffisNN

p ¼

2:76 TeV. The larger integrated elliptic flow at the LHC is caused by the increase in the mean pt. Future elliptic flow

measurements of identified particles will clarify the role of radial expansion in the formation of elliptic flow.

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN ac-celerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientı´fico e Tecnolo´gico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundac¸a˜o de Amparo a` Pesquisa do Estado de Sa˜o Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE), and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation, and the Danish National Research Foundation; The European Research Council under the European Community’s Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the ‘‘Region Pays de Loire,’’ ‘‘Region Alsace,’’ ‘‘Region Auvergne,’’ and CEA, France; German BMBF and the Helmholtz Association; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, DGAPA, Me´xico, ALFA-EC, and the HELEN Program (High-Energy physics Latin-American-European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research–NASR (Autoritatea Nat¸ionala˘ pentru Cercetare S¸tiint¸ifica˘–ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation, International Science and Technology Center, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations, and CERN-INTAS; Ministry of Education of Slovakia; CIEMAT, EELA, Ministerio de Educacio´n y Ciencia of Spain, Xunta de Galicia (Consellerı´a de Educacio´n), CEADEN, Cubaenergı´a, Cuba, and IAEA (International Atomic Energy Agency); The Ministry of Science and Technology and the National Research Foundation (GeV) NN s 1 10 102 103 104 2 v -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 ALICE STAR PHOBOS PHENIX NA49 CERES E877 EOS E895 FOPI

FIG. 4 (color online). Integrated elliptic flow at 2.76 TeV in Pb-Pb 20%–30% centrality class compared with results from lower energies taken at similar centralities [40,43].

centrality percentile 0 10 20 30 40 50 60 70 80 2 v 0 0.02 0.04 0.06 0.08 0.1 0.12 {2} 2 v (same charge) {2} 2 v {4} 2 v (same charge) {4} 2 v {q-dist} 2 v {LYZ} 2 v STAR {EP} 2 v STAR {LYZ} 2 v

FIG. 3 (color online). Elliptic flow integrated over the ptrange 0:2 < pt< 5:0 GeV=c, as a function of event centrality, for the 2- and 4-particle cumulant methods, a fit of the distribution of the flow vector, and the Lee-Yang zeros method. For the cumu-lants the measurements are shown for all charged particles (full markers) and same charge particles (open markers). Data points are shifted for visibility. RHIC measurements for Au-Au atffiffiffiffiffiffiffiffi

sNN p

¼ 200 GeV, integrated over the pt range 0:15 < pt< 2:0 GeV=c, for the event plane v2fEPg and Lee-Yang zeros are shown by the solid curves.

(5)

(NRF), South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The U.S. Department of Energy, the U.S. National Science Foundation, the State of Texas, and the State of Ohio.

[1] J. Y. Ollitrault,Phys. Rev. D 46, 229 (1992).

[2] K. H. Ackermann et al. (STAR Collaboration),Phys. Rev. Lett. 86, 402 (2001).

[3] I. Arsene et al. (BRAHMS Collaboration), Nucl. Phys. A757, 1 (2005).

[4] B. B. Back et al. (PHOBOS Collaboration), Nucl. Phys. A757, 28 (2005).

[5] J. Adams et al. (STAR Collaboration),Nucl. Phys. A757, 102 (2005).

[6] K. Adcox et al. (PHENIX Collaboration), Nucl. Phys. A757, 184 (2005).

[7] G. Kestin and U. W. Heinz,Eur. Phys. J. C 61, 545 (2009). [8] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)

[Int. J. Theor. Phys. 38, 1113 (1999)].

[9] P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett. 94, 111601 (2005).

[10] D. Teaney,Phys. Rev. C 68, 034913 (2003).

[11] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007).

[12] H. Masui, J. Y. Ollitrault, R. Snellings, and A. Tang,Nucl. Phys. A830, 463C (2009).

[13] H. Song and U. W. Heinz,J. Phys. G 36, 064033 (2009). [14] H. Niemi, K. J. Eskola, and P. V. Ruuskanen,Phys. Rev. C

79, 024903 (2009).

[15] M. Luzum and P. Romatschke, Phys. Rev. Lett. 103, 262302 (2009).

[16] T. Hirano, P. Huovinen, and Y. Nara,arXiv:1010.6222. [17] T. Hirano, U. W. Heinz, D. Kharzeev, R. Lacey, and Y.

Nara,Phys. Lett. B 636, 299 (2006).

[18] H. J. Drescher, A. Dumitru, and J. Y. Ollitrault,

arXiv:0706.1707.

[19] D. Molnar,arXiv:0707.1251.

[20] D. Krieg and M. Bleicher, Phys. Rev. C 78, 054903 (2008).

[21] W. Busza,J. Phys. G 35, 044040 (2008).

[22] A. Capella, E. G. Ferreiro, A. Kaidalov, and K. Tywoniuk,

arXiv:0706.3315.

[23] N. Armesto et al.,J. Phys. G 35, 054001 (2008). [24] S. Voloshin and Y. Zhang,Z. Phys. C 70, 665 (1996). [25] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58,

1671 (1998).

[26] ALICE Collaboration,JINST 3, S08002 (2008). [27] ALICE Collaboration,J. Phys. G 30, 1517 (2004). [28] ALICE Collaboration,J. Phys. G 32, 1295 (2006). [29] ALICE Collaboration,arXiv:1011.3916.

[30] M. Gyulassy and X.-N. Wang,Comput. Phys. Commun. 83, 307 (1994); X. N. Wang and M. Gyulassy,Phys. Rev. D 44, 3501 (1991).

[31] A. Kisiel, T. Taluc, W. Broniowski, and W. Florkowski,

Comput. Phys. Commun. 174, 669 (2006).

[32] P. Bozek, M. Chojnacki, W. Florkowski, and B. Tomasik,

Phys. Lett. B 694, 238 (2010).

[33] R. Brun et al., CERN Program Library Long Write-up, W5013, GEANT3 Detector Description and Simulation Tool, 1994.

[34] N. Borghini, P. M. Dinh, and J. Y. Ollitrault,Phys. Rev. C 64, 054901 (2001).

[35] A. Bilandzic, R. Snellings, and S. Voloshin,

arXiv:1010.0233.

[36] C. Adler et al. (STAR Collaboration),Phys. Rev. C 66, 034904 (2002).

[37] M. Miller and R. Snellings,arXiv:nucl-ex/0312008. [38] J. Adams et al. (STAR Collaboration),Phys. Rev. Lett. 93,

252301 (2004).

[39] R. S. Bhalerao, N. Borghini, and J. Y. Ollitrault, Nucl. Phys. A727, 373 (2003).

[40] S. A. Voloshin, A. M. Poskanzer, and R. Snellings, in Landolt-Boernstein, Relativistic Heavy Ion Physics Vol. 1/23 (Springer-Verlag, Berlin, 2010), pp 5–54. [41] Y. Bai, Ph.D. thesis, Nikhef and Utrecht University, 2007. [42] B. I. Abelev et al. (STAR Collaboration),Phys. Rev. C 77,

054901 (2008).

[43] A. Andronic et al. (FOPI Collaboration), Phys. Lett. B 612, 173 (2005).

K. Aamodt,1B. Abelev,2A. Abrahantes Quintana,3D. Adamova´,4A. M. Adare,5M. M. Aggarwal,6 G. Aglieri Rinella,7A. G. Agocs,8S. Aguilar Salazar,9Z. Ahammed,10A. Ahmad Masoodi,11N. Ahmad,11 S. U. Ahn,12,bA. Akindinov,13D. Aleksandrov,14B. Alessandro,15R. Alfaro Molina,9A. Alici,16,cA. Alkin,17 E. Almara´z Avin˜a,9T. Alt,18V. Altini,19S. Altinpinar,20I. Altsybeev,21C. Andrei,22A. Andronic,20V. Anguelov,23,d C. Anson,24T. Anticˇic´,25F. Antinori,26P. Antonioli,27L. Aphecetche,28H. Appelsha¨user,29N. Arbor,30S. Arcelli,16 A. Arend,29N. Armesto,31R. Arnaldi,15T. Aronsson,5I. C. Arsene,20A. Asryan,21A. Augustinus,7R. Averbeck,20

T. C. Awes,32J. A¨ ysto¨,33M. D. Azmi,11M. Bach,18A. Badala`,34Y. W. Baek,12S. Bagnasco,15R. Bailhache,29 R. Bala,35,eR. Baldini Ferroli,36A. Baldisseri,37A. Baldit,38F. Baltasar Dos Santos Pedrosa,7J. Ba´n,39R. Barbera,40

F. Barile,19G. G. Barnafo¨ldi,8L. S. Barnby,41V. Barret,38J. Bartke,42M. Basile,16N. Bastid,38B. Bathen,43 G. Batigne,28B. Batyunya,44C. Baumann,29I. G. Bearden,45H. Beck,29I. Belikov,46F. Bellini,16R. Bellwied,47,f

E. Belmont-Moreno,9S. Beole,35I. Berceanu,22A. Bercuci,22E. Berdermann,20Y. Berdnikov,48C. Bergmann,43 L. Betev,7A. Bhasin,49A. K. Bhati,6L. Bianchi,35N. Bianchi,50C. Bianchin,26J. Bielcˇı´k,51J. Bielcˇı´kova´,4 A. Bilandzic,52E. Biolcati,35A. Blanc,38F. Blanco,53F. Blanco,54D. Blau,14C. Blume,29M. Boccioli,7N. Bock,24

(6)

H. Borel,37A. Borissov,47C. Bortolin,26,gS. Bose,58F. Bossu´,35M. Botje,52S. Bo¨ttger,23B. Boyer,59 P. Braun-Munzinger,20L. Bravina,60M. Bregant,61,hT. Breitner,23M. Broz,62R. Brun,7E. Bruna,5G. E. Bruno,19

D. Budnikov,63H. Buesching,29K. Bugaiev,17O. Busch,64Z. Buthelezi,65D. Caffarri,26X. Cai,66H. Caines,5 E. Calvo Villar,67P. Camerini,61V. Canoa Roman,7,iG. Cara Romeo,27F. Carena,7W. Carena,7F. Carminati,7 A. Casanova Dı´az,50M. Caselle,7J. Castillo Castellanos,37V. Catanescu,22C. Cavicchioli,7J. Cepila,51P. Cerello,15 B. Chang,33S. Chapeland,7J. L. Charvet,37S. Chattopadhyay,58S. Chattopadhyay,10M. Cherney,68C. Cheshkov,69

B. Cheynis,69E. Chiavassa,15V. Chibante Barroso,7D. D. Chinellato,70P. Chochula,7M. Chojnacki,71 P. Christakoglou,71C. H. Christensen,45P. Christiansen,72T. Chujo,73C. Cicalo,74L. Cifarelli,16F. Cindolo,27

J. Cleymans,65F. Coccetti,36J.-P. Coffin,46S. Coli,15G. Conesa Balbastre,50,jZ. Conesa del Valle,28,k P. Constantin,64G. Contin,61J. G. Contreras,75T. M. Cormier,47Y. Corrales Morales,35I. Corte´s Maldonado,76 P. Cortese,77M. R. Cosentino,70F. Costa,7M. E. Cotallo,53E. Crescio,75P. Crochet,38E. Cuautle,78L. Cunqueiro,50

G. D. Erasmo,19A. Dainese,79,lH. H. Dalsgaard,45A. Danu,80D. Das,58I. Das,58K. Das,58A. Dash,81S. Dash,15 S. De,10A. De Azevedo Moregula,50G. O. V. de Barros,82A. De Caro,83G. de Cataldo,84J. de Cuveland,18 A. De Falco,85D. De Gruttola,83N. De Marco,15S. De Pasquale,83R. De Remigis,15R. de Rooij,71P. R. Debski,86

E. Del Castillo Sanchez,7H. Delagrange,28Y. Delgado Mercado,67G. Dellacasa,77,aA. Deloff,86V. Demanov,63 E. De´nes,8A. Deppman,82D. Di Bari,19C. Di Giglio,19S. Di Liberto,87A. Di Mauro,7P. Di Nezza,50T. Dietel,43 R. Divia`,7Ø. Djuvsland,1A. Dobrin,47,mT. Dobrowolski,86I. Domı´nguez,78B. Do¨nigus,20O. Dordic,60O. Driga,28

A. K. Dubey,10J. Dubuisson,7L. Ducroux,69P. Dupieux,38A. K. Dutta Majumdar,58M. R. Dutta Majumdar,10 D. Elia,84D. Emschermann,43H. Engel,23H. A. Erdal,88B. Espagnon,59M. Estienne,28S. Esumi,73D. Evans,41

S. Evrard,7G. Eyyubova,60C. W. Fabjan,7,nD. Fabris,89J. Faivre,30D. Falchieri,16A. Fantoni,50M. Fasel,20 R. Fearick,65A. Fedunov,44D. Fehlker,1V. Fekete,62D. Felea,80G. Feofilov,21A. Ferna´ndez Te´llez,76A. Ferretti,35

R. Ferretti,77,oJ. Figiel,42M. A. S. Figueredo,82S. Filchagin,63R. Fini,84D. Finogeev,90F. M. Fionda,19 E. M. Fiore,19M. Floris,7S. Foertsch,65P. Foka,20S. Fokin,14E. Fragiacomo,91M. Fragkiadakis,92U. Frankenfeld,20

U. Fuchs,7F. Furano,7C. Furget,30M. Fusco Girard,83J. J. Gaardhøje,45S. Gadrat,30M. Gagliardi,35A. Gago,67 M. Gallio,35D. R. Gangadharan,24P. Ganoti,92,pM. S. Ganti,10C. Garabatos,20E. Garcia-Solis,93I. Garishvili,2

R. Gemme,77J. Gerhard,18M. Germain,28C. Geuna,37A. Gheata,7M. Gheata,7B. Ghidini,19P. Ghosh,10 P. Gianotti,50M. R. Girard,94G. Giraudo,15P. Giubellino,35,qE. Gladysz-Dziadus,42P. Gla¨ssel,64R. Gomez,95

E. G. Ferreiro,31H. Gonza´lez Santos,76L. H. Gonza´lez-Trueba,9P. Gonza´lez-Zamora,53S. Gorbunov,18 S. Gotovac,96V. Grabski,9R. Grajcarek,64A. Grelli,71A. Grigoras,7C. Grigoras,7V. Grigoriev,55A. Grigoryan,97

S. Grigoryan,44B. Grinyov,17N. Grion,91P. Gros,72J. F. Grosse-Oetringhaus,7J.-Y. Grossiord,69R. Grosso,89 F. Guber,90R. Guernane,30C. Guerra Gutierrez,67B. Guerzoni,16K. Gulbrandsen,45T. Gunji,98A. Gupta,49 R. Gupta,49H. Gutbrod,20Ø. Haaland,1C. Hadjidakis,59M. Haiduc,80H. Hamagaki,98G. Hamar,8J. W. Harris,5

M. Hartig,29D. Hasch,50D. Hasegan,80D. Hatzifotiadou,27A. Hayrapetyan,97,oM. Heide,43M. Heinz,5 H. Helstrup,88A. Herghelegiu,22C. Herna´ndez,20G. Herrera Corral,75N. Herrmann,64K. F. Hetland,88B. Hicks,5

P. T. Hille,5B. Hippolyte,46T. Horaguchi,73Y. Hori,98P. Hristov,7I. Hrˇivna´cˇova´,59M. Huang,1S. Huber,20 T. J. Humanic,24D. S. Hwang,99R. Ichou,28R. Ilkaev,63I. Ilkiv,86M. Inaba,73E. Incani,85G. M. Innocenti,35 P. G. Innocenti,7M. Ippolitov,14M. Irfan,11C. Ivan,20A. Ivanov,21M. Ivanov,20V. Ivanov,48A. Jachołkowski,7

P. M. Jacobs,100L. Jancurova´,44S. Jangal,46R. Janik,62S. Jena,101L. Jirden,7G. T. Jones,41P. G. Jones,41 P. Jovanovic´,41H. Jung,12W. Jung,12A. Jusko,41S. Kalcher,18P. Kalinˇa´k,39M. Kalisky,43T. Kalliokoski,33

A. Kalweit,102R. Kamermans,71,aK. Kanaki,1E. Kang,12J. H. Kang,103V. Kaplin,55O. Karavichev,90 T. Karavicheva,90E. Karpechev,90A. Kazantsev,14U. Kebschull,23R. Keidel,104M. M. Khan,11S. A. Khan,10 A. Khanzadeev,48Y. Kharlov,56B. Kileng,88D. J. Kim,33D. S. Kim,12D. W. Kim,12H. N. Kim,12J. H. Kim,99 J. S. Kim,12M. Kim,12M. Kim,103S. Kim,99S. H. Kim,12S. Kirsch,7,rI. Kisel,23,sS. Kiselev,13A. Kisiel,7 J. L. Klay,105J. Klein,64C. Klein-Bo¨sing,43M. Kliemant,29A. Klovning,1A. Kluge,7M. L. Knichel,20K. Koch,64

M. K. Ko¨hler,20R. Kolevatov,60A. Kolojvari,21V. Kondratiev,21N. Kondratyeva,55A. Konevskih,90E. Kornas´,42 C. Kottachchi Kankanamge Don,47R. Kour,41M. Kowalski,42S. Kox,30G. Koyithatta Meethaleveedu,101 K. Kozlov,14J. Kral,33I. Kra´lik,39F. Kramer,29I. Kraus,102,tT. Krawutschke,64,uM. Kretz,18M. Krivda,41,v F. Krizek,33D. Krumbhorn,64M. Krus,51E. Kryshen,48M. Krzewicki,52Y. Kucheriaev,14C. Kuhn,46P. G. Kuijer,52 P. Kurashvili,86A. Kurepin,90A. B. Kurepin,90A. Kuryakin,63S. Kushpil,4V. Kushpil,4M. J. Kweon,64Y. Kwon,103

P. La Rocca,40P. Ladro´n de Guevara,53,wV. Lafage,59C. Lara,23A. Lardeux,28D. T. Larsen,1C. Lazzeroni,41 Y. Le Bornec,59R. Lea,61K. S. Lee,12S. C. Lee,12F. Lefe`vre,28J. Lehnert,29L. Leistam,7M. Lenhardt,28V. Lenti,84

(7)

I. Leo´n Monzo´n,95H. Leo´n Vargas,29P. Le´vai,8X. Li,106J. Lien,1R. Lietava,41S. Lindal,60V. Lindenstruth,23,s C. Lippmann,7,tM. A. Lisa,24L. Liu,1P. I. Loenne,1V. R. Loggins,47V. Loginov,55S. Lohn,7C. Loizides,100

K. K. Loo,33X. Lopez,38M. Lo´pez Noriega,59E. Lo´pez Torres,3G. Løvhøiden,60X.-G. Lu,64P. Luettig,29 M. Lunardon,26G. Luparello,35L. Luquin,28C. Luzzi,7K. Ma,66R. Ma,5D. M. Madagodahettige-Don,54

A. Maevskaya,90M. Mager,7D. P. Mahapatra,81A. Maire,46D. Mal’Kevich,13M. Malaev,48 I. Maldonado Cervantes,78L. Malinina,44,xP. Malzacher,20A. Mamonov,63L. Manceau,38L. Mangotra,49 V. Manko,14F. Manso,38V. Manzari,84Y. Mao,66,yJ. Maresˇ,107G. V. Margagliotti,61A. Margotti,27A. Marı´n,20 C. Markert,108I. Martashvili,109P. Martinengo,7M. I. Martı´nez,76A. Martı´nez Davalos,9G. Martı´nez Garcı´a,28 Y. Martynov,17S. Masciocchi,20M. Masera,35A. Masoni,74L. Massacrier,69M. Mastromarco,84A. Mastroserio,7

Z. L. Matthews,41A. Matyja,28D. Mayani,78C. Mayer,42G. Mazza,15M. A. Mazzoni,87F. Meddi,110 A. Menchaca-Rocha,9P. Mendez Lorenzo,7I. Menis,92J. Mercado Pe´rez,64M. Meres,62P. Mereu,15Y. Miake,73 J. Midori,111L. Milano,35J. Milosevic,60,zA. Mischke,71D. Mis´kowiec,20,qC. Mitu,80J. Mlynarz,47A. K. Mohanty,7

B. Mohanty,10L. Molnar,7L. Montan˜o Zetina,75M. Monteno,15E. Montes,53M. Morando,26 D. A. Moreira De Godoy,82S. Moretto,26A. Morsch,7V. Muccifora,50E. Mudnic,96S. Muhuri,10H. Mu¨ller,7

M. G. Munhoz,82J. Munoz,76L. Musa,7A. Musso,15B. K. Nandi,101R. Nania,27E. Nappi,84C. Nattrass,109 F. Navach,19S. Navin,41T. K. Nayak,10S. Nazarenko,63G. Nazarov,63A. Nedosekin,13F. Nendaz,69J. Newby,2 M. Nicassio,19B. S. Nielsen,45T. Niida,73S. Nikolaev,14V. Nikolic,25S. Nikulin,14V. Nikulin,48B. S. Nilsen,68 M. S. Nilsson,60F. Noferini,27G. Nooren,71N. Novitzky,33A. Nyanin,14A. Nyatha,101C. Nygaard,45J. Nystrand,1

H. Obayashi,111A. Ochirov,21H. Oeschler,102S. K. Oh,12J. Oleniacz,94C. Oppedisano,15A. Ortiz Velasquez,78 G. Ortona,35A. Oskarsson,72P. Ostrowski,94I. Otterlund,72J. Otwinowski,20K. Oyama,64K. Ozawa,98 Y. Pachmayer,64M. Pachr,51F. Padilla,35P. Pagano,83S. P. Jayarathna,54,aaG. Paic´,78F. Painke,18C. Pajares,31 S. Pal,37S. K. Pal,10A. Palaha,41A. Palmeri,34G. S. Pappalardo,34W. J. Park,20D. I. Patalakha,56V. Paticchio,84 A. Pavlinov,47T. Pawlak,94T. Peitzmann,71D. Peresunko,14C. E. Pe´rez Lara,52D. Perini,7D. Perrino,19W. Peryt,94 A. Pesci,27V. Peskov,7Y. Pestov,112A. J. Peters,7V. Petra´cˇek,51M. Petran,51M. Petris,22P. Petrov,41M. Petrovici,22

C. Petta,40S. Piano,91A. Piccotti,15M. Pikna,62P. Pillot,28O. Pinazza,7L. Pinsky,54N. Pitz,29F. Piuz,7 D. B. Piyarathna,47,bbR. Platt,41M. Płoskon´,100J. Pluta,94T. Pocheptsov,44,ccS. Pochybova,8 P. L. M. Podesta-Lerma,95M. G. Poghosyan,35K. Pola´k,107B. Polichtchouk,56A. Pop,22S. Porteboeuf,38 V. Pospı´sˇil,51B. Potukuchi,49S. K. Prasad,47,ddR. Preghenella,36F. Prino,15C. A. Pruneau,47I. Pshenichnov,90 G. Puddu,85A. Pulvirenti,40V. Punin,63M. Putisˇ,57J. Putschke,5E. Quercigh,7H. Qvigstad,60A. Rachevski,91 A. Rademakers,7O. Rademakers,7S. Radomski,64T. S. Ra¨iha¨,33J. Rak,33A. Rakotozafindrabe,37L. Ramello,77

A. Ramı´rez Reyes,75M. Rammler,43R. Raniwala,113S. Raniwala,113S. S. Ra¨sa¨nen,33K. F. Read,109J. Real,30 K. Redlich,86R. Renfordt,29A. R. Reolon,50A. Reshetin,90F. Rettig,18J.-P. Revol,7K. Reygers,64H. Ricaud,102 L. Riccati,15R. A. Ricci,79M. Richter,1,eeP. Riedler,7W. Riegler,7F. Riggi,40M. Rodrı´guez Cahuantzi,76D. Rohr,18

D. Ro¨hrich,1R. Romita,20F. Ronchetti,50P. Rosinsky´,7P. Rosnet,38S. Rossegger,7A. Rossi,26F. Roukoutakis,92 S. Rousseau,59C. Roy,28,kP. Roy,58A. J. Rubio Montero,53R. Rui,61A. Rivetti,15I. Rusanov,7E. Ryabinkin,14 A. Rybicki,42S. Sadovsky,56K. Sˇafarˇı´k,7R. Sahoo,26P. K. Sahu,81J. Saini,10P. Saiz,7S. Sakai,100D. Sakata,73 C. A. Salgado,31T. Samanta,10S. Sambyal,49V. Samsonov,48X. Sanchez Castro,78L. Sˇa´ndor,39A. Sandoval,9 M. Sano,73S. Sano,98R. Santo,43R. Santoro,84J. Sarkamo,33P. Saturnini,38E. Scapparone,27F. Scarlassara,26 R. P. Scharenberg,114C. Schiaua,22R. Schicker,64C. Schmidt,20H. R. Schmidt,20S. Schreiner,7S. Schuchmann,29

J. Schukraft,7Y. Schutz,28K. Schwarz,20K. Schweda,64G. Scioli,16E. Scomparin,15P. A. Scott,41R. Scott,109 G. Segato,26I. Selyuzhenkov,20S. Senyukov,77J. Seo,12S. Serci,85E. Serradilla,53A. Sevcenco,80I. Sgura,84 G. Shabratova,44R. Shahoyan,7N. Sharma,6S. Sharma,49K. Shigaki,111M. Shimomura,73K. Shtejer,3Y. Sibiriak,14

M. Siciliano,35E. Sicking,7T. Siemiarczuk,86A. Silenzi,16D. Silvermyr,32G. Simonetti,7,ffR. Singaraju,10 R. Singh,49V. Singhal,10B. C. Sinha,10T. Sinha,58B. Sitar,62M. Sitta,77T. B. Skaali,60K. Skjerdal,1R. Smakal,51 N. Smirnov,5R. Snellings,52,ggC. Søgaard,45A. Soloviev,56R. Soltz,2H. Son,99J. Song,115M. Song,103C. Soos,7 F. Soramel,26M. Spyropoulou-Stassinaki,92B. K. Srivastava,114J. Stachel,64I. Stan,80G. Stefanek,86G. Stefanini,7

T. Steinbeck,23,sM. Steinpreis,24E. Stenlund,72G. Steyn,65D. Stocco,28R. Stock,29C. H. Stokkevag,1 M. Stolpovskiy,56P. Strmen,62A. A. P. Suaide,82M. A. Subieta Va´squez,35T. Sugitate,111C. Suire,59 M. Sukhorukov,63M. Sˇumbera,4T. Susa,25D. Swoboda,7T. J. M. Symons,100A. Szanto de Toledo,82I. Szarka,62

A. Szostak,1C. Tagridis,92J. Takahashi,70J. D. Tapia Takaki,59A. Tauro,7M. Tavlet,7G. Tejeda Mun˜oz,76 A. Telesca,7C. Terrevoli,19J. Tha¨der,20D. Thomas,71J. H. Thomas,20R. Tieulent,69A. R. Timmins,47,fD. Tlusty,51

(8)

A. Toia,7H. Torii,111L. Toscano,7F. Tosello,15T. Traczyk,94D. Truesdale,24W. H. Trzaska,33T. Tsuji,98 A. Tumkin,63R. Turrisi,89A. J. Turvey,68T. S. Tveter,60J. Ulery,29K. Ullaland,1A. Uras,85J. Urba´n,57 G. M. Urciuoli,87G. L. Usai,85A. Vacchi,91M. Vajzer,51M. Vala,44,vL. Valencia Palomo,9,hhS. Vallero,64 N. van der Kolk,52M. van Leeuwen,71P. Vande Vyvre,7L. Vannucci,79A. Vargas,76R. Varma,101M. Vasileiou,92

A. Vasiliev,14V. Vechernin,21M. Veldhoen,71M. Venaruzzo,61E. Vercellin,35S. Vergara,76D. C. Vernekohl,43 R. Vernet,116M. Verweij,71L. Vickovic,96G. Viesti,26O. Vikhlyantsev,63Z. Vilakazi,65O. Villalobos Baillie,41 A. Vinogradov,14L. Vinogradov,21Y. Vinogradov,63T. Virgili,83Y. P. Viyogi,10A. Vodopyanov,44K. Voloshin,13 S. Voloshin,47G. Volpe,19B. von Haller,7D. Vranic,20G. Øvrebekk,1J. Vrla´kova´,57B. Vulpescu,38A. Vyushin,63

B. Wagner,1V. Wagner,51R. Wan,46,iiD. Wang,66Y. Wang,64Y. Wang,66K. Watanabe,73J. P. Wessels,43 U. Westerhoff,43J. Wiechula,64J. Wikne,60M. Wilde,43A. Wilk,43G. Wilk,86M. C. S. Williams,27B. Windelband,64

L. Xaplanteris Karampatsos,108H. Yang,37S. Yang,1S. Yasnopolskiy,14J. Yi,115Z. Yin,66H. Yokoyama,73 I.-K. Yoo,115W. Yu,29X. Yuan,66I. Yushmanov,14E. Zabrodin,60C. Zach,51C. Zampolli,7S. Zaporozhets,44 A. Zarochentsev,21P. Za´vada,107N. Zaviyalov,63H. Zbroszczyk,94P. Zelnicek,23A. Zenin,56I. Zgura,80M. Zhalov,48

X. Zhang,66,bD. Zhou,66A. Zichichi,16,jjG. Zinovjev,17Y. Zoccarato,69and M. Zynovyev17 (ALICE Collaboration)

1Department of Physics and Technology, University of Bergen, Bergen, Norway 2

Lawrence Livermore National Laboratory, Livermore, California, USA 3Centro de Aplicaciones Tecnolo´gicas y Desarrollo Nuclear (CEADEN), Havana, Cuba 4Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rˇ ezˇ u Prahy, Czech Republic

5Yale University, New Haven, Connecticut, USA 6Physics Department, Panjab University, Chandigarh, India 7European Organization for Nuclear Research (CERN), Geneva, Switzerland

8KFKI Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences, Budapest, Hungary 9Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico, Mexico City, Mexico

10Variable Energy Cyclotron Centre, Kolkata, India 11Department of Physics Aligarh Muslim University, Aligarh, India 12Gangneung-Wonju National University, Gangneung, South Korea 13Institute for Theoretical and Experimental Physics, Moscow, Russia

14Russian Research Centre Kurchatov Institute, Moscow, Russia 15Sezione INFN, Turin, Italy

16Dipartimento di Fisica dell’Universita` and Sezione INFN, Bologna, Italy 17Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine 18

Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universita¨t Frankfurt, Frankfurt, Germany 19Dipartimento Interateneo di Fisica ‘‘M. Merlin’’ and Sezione INFN, Bari, Italy

20Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fu¨r Schwerionenforschung, Darmstadt, Germany 21V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia

22National Institute for Physics and Nuclear Engineering, Bucharest, Romania 23Kirchhoff-Institut fu¨r Physik, Ruprecht-Karls-Universita¨t Heidelberg, Heidelberg, Germany

24Department of Physics, Ohio State University, Columbus, Ohio, USA 25Rudjer Bosˇkovic´ Institute, Zagreb, Croatia

26Dipartimento di Fisica dell’Universita` and Sezione INFN, Padova, Italy 27

Sezione INFN, Bologna, Italy

28SUBATECH, Ecole des Mines de Nantes, Universite´ de Nantes, CNRS-IN2P3, Nantes, France 29Institut fu¨r Kernphysik, Johann Wolfgang Goethe-Universita¨t Frankfurt, Frankfurt, Germany 30Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Universite´ Joseph Fourier, CNRS-IN2P3,

Institut Polytechnique de Grenoble, Grenoble, France

31Departamento de Fı´sica de Partı´culas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain 32Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

33Helsinki Institute of Physics (HIP) and University of Jyva¨skyla¨, Jyva¨skyla¨, Finland 34Sezione INFN, Catania, Italy

35Dipartimento di Fisica Sperimentale dell’Universita` and Sezione INFN, Turin, Italy 36Centro Fermi - Centro Studi e Ricerche e Museo Storico della Fisica ‘‘Enrico Fermi’’, Rome, Italy

37Commissariat a` l’Energie Atomique, IRFU, Saclay, France

38Laboratoire de Physique Corpusculaire (LPC), Clermont Universite´, Universite´ Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand, France

(9)

39Institute of Experimental Physics, Slovak Academy of Sciences, Kosˇice, Slovakia 40Dipartimento di Fisica e Astronomia dell’Universita` and Sezione INFN, Catania, Italy 41School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 42The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland

43Institut fu¨r Kernphysik, Westfa¨lische Wilhelms-Universita¨t Mu¨nster, Mu¨nster, Germany 44Joint Institute for Nuclear Research (JINR), Dubna, Russia

45Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

46Institut Pluridisciplinaire Hubert Curien (IPHC), Universite´ de Strasbourg, CNRS-IN2P3, Strasbourg, France 47

Wayne State University, Detroit, Michigan, USA 48Petersburg Nuclear Physics Institute, Gatchina, Russia 49Physics Department, University of Jammu, Jammu, India

50Laboratori Nazionali di Frascati, INFN, Frascati, Italy

51Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic 52Nikhef, National Institute for Subatomic Physics, Amsterdam, Netherlands

53Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 54University of Houston, Houston, Texas, USA

55Moscow Engineering Physics Institute, Moscow, Russia 56Institute for High Energy Physics, Protvino, Russia 57Faculty of Science, P. J. Sˇafa´rik University, Kosˇice, Slovakia

58Saha Institute of Nuclear Physics, Kolkata, India

59Institut de Physique Nucle´aire d’Orsay (IPNO), Universite´ Paris-Sud, CNRS-IN2P3, Orsay, France 60Department of Physics, University of Oslo, Oslo, Norway

61Dipartimento di Fisica dell’Universita` and Sezione INFN, Trieste, Italy

62Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia 63

Russian Federal Nuclear Center (VNIIEF), Sarov, Russia

64Physikalisches Institut, Ruprecht-Karls-Universita¨t Heidelberg, Heidelberg, Germany 65Physics Department, University of Cape Town, iThemba Laboratories, Cape Town, South Africa

66Hua-Zhong Normal University, Wuhan, China

67Seccio´n Fı´sica, Departamento de Ciencias, Pontificia Universidad Cato´lica del Peru´, Lima, Peru 68Physics Department, Creighton University, Omaha, Nebraska, USA

69Universite´ de Lyon, Universite´ Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France 70Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

71Nikhef, National Institute for Subatomic Physics and Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands 72Division of Experimental High Energy Physics, University of Lund, Lund, Sweden

73University of Tsukuba, Tsukuba, Japan 74Sezione INFN, Cagliari, Italy

75Centro de Investigacio´n y de Estudios Avanzados (CINVESTAV), Mexico City and Me´rida, Mexico 76Beneme´rita Universidad Auto´noma de Puebla, Puebla, Mexico

77Dipartimento di Scienze e Tecnologie Avanzate dell’Universita` del Piemonte Orientale and Gruppo Collegato INFN, Alessandria, Italy

78Instituto de Ciencias Nucleares, Universidad Nacional Auto´noma de Me´xico, Mexico City, Mexico 79Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy

80Institute of Space Sciences (ISS), Bucharest, Romania 81Institute of Physics, Bhubaneswar, India 82Universidade de Sa˜o Paulo (USP), Sa˜o Paulo, Brazil

83Dipartimento di Fisica ‘‘E. R. Caianiello’’ dell’Universita` and Gruppo Collegato INFN, Salerno, Italy 84Sezione INFN, Bari, Italy

85

Dipartimento di Fisica dell’Universita` and Sezione INFN, Cagliari, Italy 86Soltan Institute for Nuclear Studies, Warsaw, Poland

87Sezione INFN, Rome, Italy

88Faculty of Engineering, Bergen University College, Bergen, Norway 89Sezione INFN, Padova, Italy

90Institute for Nuclear Research, Academy of Sciences, Moscow, Russia 91Sezione INFN, Trieste, Italy

92Physics Department, University of Athens, Athens, Greece 93Chicago State University, Chicago, Illinois, USA 94

Warsaw University of Technology, Warsaw, Poland 95Universidad Auto´noma de Sinaloa, Culiaca´n, Mexico

96Technical University of Split FESB, Split, Croatia 97Yerevan Physics Institute, Yerevan, Armenia

(10)

99Department of Physics, Sejong University, Seoul, South Korea 100Lawrence Berkeley National Laboratory, Berkeley, California, USA

101Indian Institute of Technology, Mumbai, India

102Institut fu¨r Kernphysik, Technische Universita¨t Darmstadt, Darmstadt, Germany 103Yonsei University, Seoul, South Korea

104Zentrum fu¨r Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany 105California Polytechnic State University, San Luis Obispo, California, USA

106China Institute of Atomic Energy, Beijing, China 107

Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic 108Physics Department, The University of Texas at Austin, Austin, Texas, USA

109University of Tennessee, Knoxville, Tennessee, USA

110Dipartimento di Fisica dell’Universita` ‘‘La Sapienza’’ and Sezione INFN, Rome, Italy 111Hiroshima University, Hiroshima, Japan

112Budker Institute for Nuclear Physics, Novosibirsk, Russia 113Physics Department, University of Rajasthan, Jaipur, India

114Purdue University, West Lafayette, Indiana, USA 115Pusan National University, Pusan, South Korea 116Centre de Calcul de l’IN2P3, Villeurbanne, France

aDeceased.

bAlso at Laboratoire de Physique Corpusculaire (LPC), Clermont Universite´, Universite´ Blaise Pascal, CNRS-IN2P3,

Clermont-Ferrand, France.

cNow at Centro Fermi—Centro Studi e Ricerche e Museo Storico della Fisica ‘‘Enrico Fermi’’, Rome, Italy.

dNow at Physikalisches Institut, Ruprecht-Karls-Universita¨t Heidelberg, Heidelberg, Germany and Frankfurt Institute for

Advanced Studies, Johann Wolfgang Goethe-Universita¨t Frankfurt, Frankfurt, Germany.

eNow at Sezione INFN, Turin, Italy.

fNow at University of Houston, Houston, Texas, USA. g

Also at Dipartimento di Fisica dell’Universita´, Udine, Italy.

hNow at SUBATECH, Ecole des Mines de Nantes, Universite´ de Nantes, CNRS-IN2P3, Nantes, France.

iNow at Centro de Investigacio´n y de Estudios Avanzados (CINVESTAV), Mexico City and Me´rida, Mexico and Beneme´rita

Universidad Auto´noma de Puebla, Puebla, Mexico.

jNow at Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Universite´ Joseph Fourier, CNRS-IN2P3, Institut

Polytechnique de Grenoble, Grenoble, France.

kNow at Institut Pluridisciplinaire Hubert Curien (IPHC), Universite´ de Strasbourg, CNRS-IN2P3, Strasbourg, France. lNow at Sezione INFN, Padova, Italy.

mAlso at Division of Experimental High Energy Physics, University of Lund, Lund, Sweden. nAlso at University of Technology and Austrian Academy of Sciences, Vienna, Austria. oAlso at European Organization for Nuclear Research (CERN), Geneva, Switzerland. p

Now at Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

qNow at European Organization for Nuclear Research (CERN), Geneva, Switzerland.

rAlso at Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universita¨t Frankfurt, Frankfurt, Germany. sNow at Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universita¨t Frankfurt, Frankfurt, Germany. tNow at Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fu¨r Schwerionenforschung, Darmstadt,

Germany.

uAlso at Fachhochschule Ko¨ln, Ko¨ln, Germany.

vAlso at Institute of Experimental Physics, Slovak Academy of Sciences, Kosˇice, Slovakia.

wNow at Instituto de Ciencias Nucleares, Universidad Nacional Auto´noma de Me´xico, Mexico City, Mexico. xAlso at M. V. Lomonosov Moscow State University, D. V. Skobeltsyn Institute of Nuclear Physics, Moscow, Russia.

yAlso at Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Universite´ Joseph Fourier, CNRS-IN2P3, Institut

Polytechnique de Grenoble, Grenoble, France.

zAlso at ‘‘Vincˇa’’ Institute of Nuclear Sciences, Belgrade, Serbia. aaAlso at Wayne State University, Detroit, Michigan, USA. bbAlso at University of Houston, Houston, Texas, USA.

ccAlso at Department of Physics, University of Oslo, Oslo, Norway. ddAlso at Variable Energy Cyclotron Centre, Kolkata, India. eeNow at Department of Physics, University of Oslo, Oslo, Norway.

(11)

ggNow at Nikhef, National Institute for Subatomic Physics and Institute for Subatomic Physics of Utrecht University, Utrecht,

Netherlands.

hhAlso at Institut de Physique Nucle´aire d’Orsay (IPNO), Universite´ Paris-Sud, CNRS-IN2P3, Orsay, France. iiAlso at Hua-Zhong Normal University, Wuhan, China.

Riferimenti

Documenti correlati

La scrittrice matura quindi un sempre più crescente attaccamento all’italiano, visto quasi co- me una parte della propria identità, del proprio sguardo sul mondo, e del modo

CLASSE DI ESI GENZA: BENESSERE.. CANDI DATO Pi et ro De Si

The basic hypothesis states that individuals consume a fraction of this permanent income in each period and thus the average propensity to consume should equal the

A questo punto i Protettori uccisi durante la fuga di Yron comunicano nel Pozzo delle Anime con Aeb e riferiscono della fuga del capitano insieme agli elfi e del loro stesso

note that the optical spectrum of PSR B1055−52 brings the contri- bution of both non-thermal emission from the magnetosphere and thermal emission from the neutron star surface and

Driffield and Love (2007) by testing the impact of FDI on productivity of domestic firms, find that UK gains only from FDI with asset exploiting motivations while asset seeking

[r]