• Non ci sono risultati.

Quantum Stochastic Walk models for quantum state discrimination

N/A
N/A
Protected

Academic year: 2021

Condividi "Quantum Stochastic Walk models for quantum state discrimination"

Copied!
4
0
0

Testo completo

(1)

Physics Letters A 384 (2020) 126195

Contents lists available atScienceDirect

Physics

Letters

A

www.elsevier.com/locate/pla

Quantum

Stochastic

Walk

models

for

quantum

state

discrimination

Nicola Dalla Pozza

,

Filippo Caruso

DipartimentodiFisicaeAstronomia,UniversitàdegliStudidiFirenze,I-50019SestoFiorentino,Italy

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Availableonline11December2019 CommunicatedbyM.G.A.Paris Keywords:

QuantumStochasticWalk Quantumstatediscrimination Quantumnetwork

Decoherence

QuantumStochasticWalks(QSW)allowforageneralizationofbothquantumandclassicalrandomwalks bydescribingthedynamicevolutionofanopenquantumsystemonanetwork,withnodescorresponding toquantumstatesofafixedbasis.Weconsidertheproblemofquantumstatediscriminationonsucha system, and we solve it byoptimizing the network topologyweights. Finally,we test iton different quantumnetworktopologiesandcompareitwithoptimaltheoreticalbounds.

©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Quantum Stochastic Walks (QSW) have been proposed as a frameworktoincorporatedecoherenceeffectsintoquantumwalks (QW), which, on the contrary, allow only for a purely unitary evolution of the state [1–3]. Unitary dynamics has been suffi-cienttoprovethecomputationaluniversality[4,5] andthe advan-tages provided by QW for quantum computation and algorithm design [4–7], but it is worthwhile the possibility to include ef-fectsofdecoherence.Indeed,thebeneficialimpactofdecoherence has already been proved in a variety of systems [8–10], in par-ticular in light-harvesting complexes [11–13]. As a consequence, shortlyaftertheirformalizationQSWhavebeeninvestigatedin re-lationtopropagationspeed[14,15],learningspeed-up[16],steady stateconvergence[17,18] andenhancementofexcitationtransport [19–23].

Effectively,thisframeworkallowstointerpolatebetween quan-tumwalksandclassicalrandomwalks[24].TheevolutionofQSW is defined by a Gorini–Kossakowski–Sudarshan–Lindblad master equation[25–27],writtenas d

ρ

dt

= −(

1

p

)

i [H

,

ρ

]

+

p



k



Lk

ρ

Lk

1 2



LkLk

,

ρ



.

(1)

In(1),theHamiltonianH accountsforthecoherentevolution,the setofLindbladoperators Lkaccountsfortheirreversibleevolution, whilethesmoothingparameter p definesalinearcombinationof thetwo.Forp

=

0 weobtainaquantumwalk,forp

=

1 weobtain aclassicalrandomwalk(CRW).

*

Correspondingauthor.

E-mailaddress:nicola.dallapozza@unifi.it(N. Dalla Pozza).

We consider the problem of discriminating a set of known quantumstates

{

ρ

(n)

}

n preparedwithapriori probabilities

{

pn

}

n. Byoptimizing theset ofPositive Operator-ValuedMeasure

{

n

}

n we aimatestimatingthepreparedquantumstate withthe high-est probability ofcorrect detection Pc

=



npnTr





n

ρ

(n)

.In its generalformulationtheproblemrequiresnumericalmethods[28], butcloseanalyticalsolutionsareavailableinthecaseofsymmetric states [29–31]. For instance,in thebinary discrimination ofpure statestheoptimal P(copt) isknownasHelstromboundandit eval-uates Pc(opt)

= (

1

+

1

4p1p2Tr



ρ

(1)

ρ

(2)

)/

2.Forareviewofthe

results of quantum state discrimination in quantum information theory we refer to [32–38], and to [39] for a recent connection withmachinelearning.Inhereweconsidertheproblemina quan-tumsystemrepresentedbyanetwork,andwetestdifferent mod-elsoptimizingthediscriminationonmultipletopologies.

2. QuantumStochasticWalksonnetworks

Weconsideraquantumsystemwhichisrepresentedbya net-work

G = (N ,

E)

, where the nodes

N

i

N

corresponds to the quantumstatesofafixedbasisandthelinks

N

i

N

j

E

depend onthehoppingratesbetweenthenodes.Asinclassicalgraph the-ory, the adjacency matrix A indicates whether a link is present ( Aj,i

=

1), or not ( Aj,i

=

0). In weighted graphs, Ai,j isa weight associated to the link. A symmetric adjacency matrix Ai,j

=

Aj,i referstoanundirected graph,otherwisethegraphissaidtobe di-rected.

In thispaperwe willfocus on thecontinuous version of ran-domwalks.CRWsaredefinedwithatransition-probabilitymatrix

T which represents the possible transitions of a walker from a node onto the connected neighbours.From the adjacency matrix it ispossible todefine T

=

A D−1, where D isthe (diagonal) de-https://doi.org/10.1016/j.physleta.2019.126195

(2)

2 N. Dalla Pozza, F. Caruso / Physics Letters A 384 (2020) 126195

Fig. 1. ExamplesofMNO networkmodels.Ineachsubfigure,theleftlayer (bluecircles)collectstheinputnodes,intherightlayer(purplecircles)the out-putnodesandinbetween(orangecircles)theintermediatenodes.Directedlinks specifyirreversibleprocessestowardsthesinks,plainlinesindicatenon-zero en-triesinAi,j.Bydefault,allthenodesinalayerareconnectedwithalltheother

nodesinthesamelayerandwiththenextone,exceptforthesinknodesthatare connectedonlythroughtheirsinkernode.Whenconsideringareduced connectivity inthegraph,weindicatear nearthenumberofnodes,asin(II).(For interpreta-tionofthecoloursinthefigures,thereaderisreferredtothewebversionofthis article.)

greematrix,with Di

=



jAj,irepresentingthenumberofnodes connectedtoi.Theprobabilitydistributionofthenodeoccupation, writtenasacolumnvector



q

(

t

)

,isevaluatedforacontinuoustime randomwalkas ddtq

= (

T

I

)

q.



QuantumwalksaresimplydefinedbyposingH

=

A,and defin-ingtheevolution as ddtρ

= −

i [H

,

ρ].

Thepopulationon thenodes isobtainedapplyingaprojectiononthebasisoftheHilbertspace associatedwiththenodes.

InthecaseofaQSW,thedynamicsisdefinedfromEq.(1) with

H andLk

=

Li,j

=

Ti,j

|

i



j

|

,with0

Ti,j

1,



iTi,j

=

1.While thisissufficientto definea properLindbladequation,anditalso givesthecorrectlimitingcaseforp

0 and p

1,thereare dif-ferentwaystodefine H andT from A.Forinstance,inboth[20,

24] wehaveH

=

A,T

=

A D−1,withthedifferencethatin[20] the weightscanonlybeunitaryornull.Herewewanttocomparethe performanceofthesemodelswiththecasewhereH andT are re-latedwithA byAi,j

=

0

=⇒

Hi,j

=

0,Ti,j

=

0,withH beingareal symmetricmatrixwithnulldiagonaland T verifying0

Ti,j

1,



iTi,j

=

1.Alternatively, wecan thinkthat Ai,j iseither1 or0, anditactsasamarkeronthelinksthatwewanttooptimize(1) orswitchoff(0).Thisschemerelaxestheconstraintson Hi,j,Ti,j, allowing for additionaldegrees offreedom to exploit inthe dis-crimination.

3. Networkmodel

To define the quantum system, we consider a network orga-nized in layers, which mimics the structure of neural networks [40–42],withM inputnodes, N intermediateancillarynodesand

O output nodesinthemodel M

N

O (seeFig.1). The quan-tum system is initialized only on the input nodes with

ρ

(

0

)

{

ρ

(m)

}

M

m=1.Thus,inputnodesdefineasub-spaceofsize M usedto accessthenetwork,withM ingeneralnotrelatedto

M

.The quan-tumsystemthenevolvesaccordingto(1) throughtheintermediate nodesandintotheoutputnodes.Suchnodesaresink nodeswhere thepopulationgets trapped,that is,thenetworkrealizesan irre-versible one-waytransfer ofpopulation froma sinker node sn to then-thsinkviatheoperatorLn

= |

n



sn

|

.Weaddthesumtotal

2



s M



n=1

|

n



sn

|

ρ

|

sn



n

| −

1 2

{|

sn



sn

|,

ρ

}

(2)

ontheright–handsideofEq.(1),setting



s

=

1 inoursimulations. We considera sinkernode foreach sink, butmore sinkers con-nectedtothesamesinkcouldbeintroduced.However,thenumber ofsinks O mustbeequalto orgreaterthan

M

tohaveasinkfor each hypothesis onthepreparedstates.Infact, attheendofthe time evolutiona measurementis performedby projecting onthe nodesbasis, andiftheoutcome n corresponding tothen-thsink isobtainedweestimatethatthequantumstate

ρ

(n)hasbeen

pre-pared. Thenetworkwillbeoptimizedsuchthattheseestimations work as best aspossible, and if an outcome corresponding to a nodethatisnotasinkoccurs,weconsideritinconclusive. 4. Results

WeconsiderthetwonetworkmodelsrepresentedinFig.1and setuptheoptimizationoftheparametersin H ,T usingfourQSW schemes: (a) Hi,j

0,T

=

H D−1 asin[24],(b) Hi,j

∈ {

0

,

1

}

,T

=

H D−1 as in [20], (c) Hi,j

= −

max

{

Ti,j

,

Tj,i

}

, Hi,i

= −



j =iHj,i andT un–normalizedasin[43] and(d)H ,T independently opti-mized,withtheoptimizationvariablesindicatedby A.

Forthemodel2

2

2,wediscriminatebetweenthepurestate

ρ

(1)andthemixedstate

ρ

(2),writtenintheinputsub-spacebasis

|

1



=

10

,

|

2



=

01

as

ρ

(1)

=



2+√2 4 1+i4 1−i 4 2−√2 4



,

ρ

(2)

=



0

.

68

0

.

13

0

.

13i

0

.

13

+

0

.

13i 0

.

32



,

p1

=

p2

.

Inthecaseofthemodel4r

4

4,wediscriminatebetweenfour equallyprobablequantumstates

ρ

(m)

= (

1

α

)

I

4

+

α

|

ϕ

m



ϕ

m

|

, de-fined as a linearcombination ofthe completely mixedstate and a pure state

|

ϕ

m



=



k4=1e

−i 2πmk 4

2

|

k



, withm

=

1

,

. . .

4 being the

m-th stateinthe mutuallyunbiasedbasis oftheinput nodes

|

k



. For

α

=

1 wewouldhavethediscriminationofthepurestates

|

k



, which wouldhaveatheoretical bound Pc(opt)

=

1 sincethestates areorthogonal.Wetake

α

=

0

.

7 tosimulateanoisypreparationof

|

ϕ

m



.

The optimal probability of correct decision can be evaluated using semi-definite programming [28], andevaluates to Pc(opt)

=

0

.

7795 in the binary case, andto Pc(opt)

=

0

.

7750 inthe

M

-ary discrimination.Weruntheoptimizationforp

∈ [

0

,

1

]

andfor mul-tiplevaluesofthetotalevolutiontime

τ

.Asexpected,for increas-ing valuesof

τ

the performancesalsoincrease sincemore popu-lationcan betransferred fromtheinput nodestothesinknodes. However, theperformances saturate, and we plotthe asymptotic behaviour asafunctionof p inFig.2.Forlower

τ

thetrendin p

issimilar.

5. Discussionandconclusions

We have considered the problem of discriminating a set of quantum states prepared in a quantum system whose dynamics is described by QSW on a network. We have investigated four different schemes to define the GKSL master equation from the network,andoptimizedthecoefficientsoftheHamiltonian H and theLindbladoperatorcoefficientsT asafunctionofp andthe to-talevolutiontime

τ

.Wehavereportedtheasymptoticprobability of correctdetection, where aclear gapcan be seen amongst the four schemes. The setup (d) with H , T independently optimized gives the best performance on the whole range of p due to the increasednumberofdegreesoffreedombutattheexpenses ofa highercomputational costfortheoptimization. Further investiga-tions shouldconsider howtheperformance scales inthenumber

(3)

N. Dalla Pozza, F. Caruso / Physics Letters A 384 (2020) 126195 3

Fig. 2. Asymptoticprobabilityofcorrectdetection(τ=102s)forscheme(a)inyellow(squaredmarkers),(b)inblue(triangularmarkers),(c)inred(circularmarkers)and

(d)ingreen(fulldisks).InreddashedlinethevalueofP(opt)c .

ofnodesandlayers toidentify thebestnetwork topology,which mayalso depend on the quantum statesto discriminate. Finally, ourresults couldbe tested throughalready experimentally avail-able benchmark platforms such as photonics-based architectures [22] andcoldatomsinopticallattices[44].

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

This work was financially supported from Fondazione CR Firenzethroughthe projectQ-BIOSCANandQuantum-AI,PATHOS EU H2020 FET-OPEN grant no. 828946, and UNIFI grant Q-CODYCES.

References

[1]Y.Aharonov,L.Davidovich,N.Zagury,Quantumrandomwalks,Phys.Rev.A48 (1993)1687–1690.

[2]J.Kempe,Quantumrandomwalks:anintroductoryoverview,Contemp.Phys. 44 (4)(2003)307–327.

[3]S.E.Venegas-Andraca,Quantumwalks:acomprehensivereview,QuantumInf. Process.11 (5)(2012)1015–1106.

[4]A.M. Childs, Universal computation byquantum walk, Phys. Rev. Lett. 102 (2009)180501.

[5]A.M.Childs,D.Gosset,Z.Webb,Universalcomputationbymultiparticle quan-tumwalk,Science339 (6121)(2013)791–794.

[6]E.Farhi,S.Gutmann,Quantumcomputationanddecisiontrees,Phys.Rev.A58 (1998)915–928.

[7]A.M.Childs,R.Cleve,E.Deotto,E.Farhi,S.Gutmann,D.A.Spielman, Exponen-tialalgorithmicspeedupbyaquantumwalk,in:ProceedingsoftheThirty-Fifth AnnualACMSymposiumonTheoryofComputing,STOC’03,ACM,NewYork, NY,USA,2003,pp. 59–68.

[8]M.B.Plenio,S.F.Huelga,Dephasing-assistedtransport:quantumnetworksand biomolecules,NewJ.Phys.10 (11)(2008)113019.

[9]J.J.Mendoza-Arenas,T.Grujic,D.Jaksch,S.R.Clark,Dephasingenhanced trans-portinnonequilibriumstronglycorrelatedquantumsystems,Phys.Rev.B87 (2013)235130.

[10]L.D.Contreras-Pulido,M.Bruderer,S.F.Huelga,M.B.Plenio,Dephasing-assisted transportinlineartriplequantumdots,NewJ.Phys.16 (11)(2014)113061. [11]F.Caruso,A.W. Chin, A.Datta,S.F.Huelga,M.B. Plenio,Highlyefficient

en-ergyexcitationtransferinlight-harvestingcomplexes:thefundamentalroleof noise-assistedtransport,J.Chem.Phys.131 (10)(2009)105106.

[12]A.W.Chin,A.Datta,F.Caruso,S.F.Huelga,M.B.Plenio,Noise-assistedenergy transfer inquantum networksand light-harvestingcomplexes,NewJ. Phys. 12 (6)(2010)065002.

[13]F.Caruso,A.W.Chin,A.Datta,S.F.Huelga,M.B.Plenio,Entanglementand en-tanglingpowerofthedynamicsinlight-harvestingcomplexes,Phys.Rev.A81 (2010)062346.

[14]K.Domino,A.Glos,Ostaszewski,Propertiesofquantumstochasticwalksfrom theasymptoticscalingexponent,QuantumInf.Comput.17(2017)973–986. [15]K.Domino,A.Glos,M.Ostaszewski,Ł.Pawela,P.Sadowski,Propertiesof

quan-tum stochastic walks from the asymptotic scaling exponent,Quantum Inf. Comput.18(2018)181–199.

[16]M. Schuld,I.Sinayskiy,F.Petruccione,Quantum walksongraphs represent-ingthefiringpatternsofaquantumneuralnetwork,Phys.Rev.A89(2014) 032333.

[17]E.Sánchez-Burillo,J.Duch,J.Gómez-Gardeñes,D.Zueco,Quantumnavigation andrankingincomplexnetworks,Sci.Rep.2(2012)605.

[18]C.Liu,R.Balu,Steadystatesofcontinuous-timeopenquantumwalks,Quantum Inf.Process.16 (7)(2017)173.

[19]M. Mohseni, P. Rebentrost,S. Lloyd, A.Aspuru-Guzik, Environment-assisted quantum walks in photosynthetic energy transfer, J. Chem.Phys. 129 (17) (2008)174106.

[20]F.Caruso,Universallyoptimalnoisyquantumwalksoncomplexnetworks,New J.Phys.16 (5)(2014)055015.

[21]S.Viciani,M.Lima,M.Bellini,F.Caruso,Observationofnoise-assistedtransport inanall-opticalcavity-basednetwork,Phys.Rev.Lett.115(2015)083601. [22]F.Caruso,A.Crespi,A.G.Ciriolo,F.Sciarrino,R.Osellame,Fastescapeofa

quan-tum walkerfromanintegrated photonicmaze,Nat.Commun.7 (1) (2016) 11682.

[23]H.Park,N.Heldman,P.Rebentrost,L.Abbondanza,A.Iagatti,A.Alessi,B. Pa-trizi,M.Salvalaggio,L.Bussotti,M.Mohseni,F.Caruso,H.C.Johnsen,R.Fusco, P.Foggi,P.F.Scudo,S.Lloyd,A.M.Belcher,Enhancedenergytransportin genet-icallyengineeredexcitonicnetworks,Nat.Mater.15(2015)211.

[24]J.D. Whitfield, C.A.Rodríguez-Rosario, A.Aspuru-Guzik, Quantum stochastic walks:ageneralizationofclassicalrandomwalksandquantumwalks,Phys. Rev.A81(2010)022323.

[25]A.Kossakowski,Onquantumstatisticalmechanicsofnon-Hamiltoniansystems, Rep.Math.Phys.3 (4)(1972)247–274.

[26]G.Lindblad,Onthegeneratorsofquantumdynamicalsemigroups,Commun. Math.Phys.48 (2)(1976)119–130.

[27]V. Gorini,A. Kossakowski, E.C.G.Sudarshan, Completely positive dynamical semigroupsofn-levelsystems,J.Math.Phys.17 (5)(1976)821–825. [28]Y.C. Eldar, A.Megretski, G.C. Verghese, Designing optimal quantum

detec-tors via semidefinite programming, IEEE Trans. Inf. Theory 49 (4) (2003) 1007–1012.

[29]Y.C.Eldar,A.Megretski,G.C.Verghese,Optimaldetectionofsymmetricmixed quantumstates,IEEETrans.Inf.Theory50 (6)(2004)1198–1207.

[30]K.Nakahira,T.S.Usuda,Quantummeasurementforagroup-covariantstateset, Phys.Rev.A87(2013)012308.

[31]N.DallaPozza,G.Pierobon,Optimalityofsquare-rootmeasurementsin quan-tumstatediscrimination,Phys.Rev.A91(2015)042334.

[32]C.Helstrom,QuantumDetectionandEstimationTheory,Mathematicsin Sci-enceandEngineering:ASeriesofMonographsandTextbooks,AcademicPress, NewYork,1976.

[33]A.S. Holevo,Statisticalproblemsinquantumphysics, in:G.Maruyama, Y.V. Prokhorov(Eds.),ProceedingsoftheSecondJapan-USSRSymposiumon Proba-bilityTheory,SpringerBerlinHeidelberg,Berlin,Heidelberg,1973,pp. 104–119. [34]H.Yuen,R.Kennedy,M.Lax,Optimumtestingofmultiplehypothesesin

quan-tumdetectiontheory,IEEETrans.Inf.Theory21 (2)(1975)125–134. [35]A. Chefles, Quantum state discrimination, Contemp. Phys. 41 (6) (2000)

401–424.

[36]J.A.Bergou,Quantum statediscriminationand selectedapplications,J.Phys. Conf.Ser.84(2007)012001.

[37]J.A. Bergou, Discrimination of quantum states, J. Mod. Opt. 57 (3) (2010) 160–180.

[38]S.M.Barnett,S.Croke,Quantumstatediscrimination,Adv.Opt.Photonics1 (2) (2009)238–278.

(4)

4 N. Dalla Pozza, F. Caruso / Physics Letters A 384 (2020) 126195

[39]M.Fanizza,A.Mari,V.Giovannetti,Optimaluniversallearningmachinesfor quantumstatediscrimination,IEEETrans.Inf.Theory65 (9)(2019)5931–5944. [40]C.M.Bishop,NeuralNetworksforPatternRecognition,OxfordUniversityPress,

Inc.,NewYork,NY,USA,1995.

[41]I.Goodfellow,Y.Bengio,A.Courville,DeepLearning,MITPress,2016. [42]T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning,

SpringerSeriesinStatistics,SpringerNewYorkInc.,NewYork,NY,USA,2001.

[43]P.Falloon,J. Rodriguez,J.Wang,QSWalk:aMathematica packagefor quan-tumstochasticwalksonarbitrarygraphs,Comput.Phys.Commun.217(2017) 162–170.

[44]C.D’Errico,M.Moratti,E.Lucioni,L.Tanzi,B.Deissler,M.Inguscio,G.Modugno, M.B.Plenio,F.Caruso,Quantumdiffusionwithdisorder,noiseandinteraction, NewJ.Phys.15 (4)(2013)045007.

Riferimenti

Documenti correlati

larity of beam patterns, in particular their suitability to cover the entire horizon without significant overlap; (2) the array gain associated to each beam, i.e., the improve- ment

The innovative interest of the proposed research is in the use of bond graph as a multidisciplinary tool for dynamic modelling of a different electrical equivalent circuit of

3 azioni previste (sintesi dm 261 e carenza dei contenuti degli accordi regioni- enti locali, in particolare rer, ma anche della toscana e della lombardia). 4 sintesi cneia: -30%

Furthermore, CX516 treatment rescued defects in spatial memory in Tm4sf2 −/y mice, as assessed by the spatial object recognition task for discrimi- nation index (Fig. 5 I

Gait kinematics was assessed before and at the end of the rehabilitation period and after a 3-month follow-up, using concise measures (Gait Profile Score and Gait Variable Score,

These cases recognized rape as a war crime per se in situations where rape may have been seen as ‘just’ one of the available means of inflicting torture� The Kunarac

Abstract: McLean [ML] studied the deformations of compact special Lagrangian submanifolds, showing in particular that they come in smooth moduli spaces whose dimension depends only

Accostando al testo della cancelleria ungherese la traduzione del nota- io padovano possiamo vedere in concreto come, almeno in quel caso, Nicoletto si sia comportato