• Non ci sono risultati.

Effect of an ethanol cross-linker on universal adhesive

N/A
N/A
Protected

Academic year: 2021

Condividi "Effect of an ethanol cross-linker on universal adhesive"

Copied!
10
0
0

Testo completo

(1)

Available

online

at

www.sciencedirect.com

ScienceDirect

j ou rn a l h o m epa ge :w w w . i n t l . e l s e v i e r h e a l t h . c o m / j o u r n a l s / d e m a

Effect

of

an

ethanol

cross-linker

on

universal

adhesive

Allegra

Comba

a

,

Tatjana

Maravi´c

a

,

Virginia

Villalta

a

,

Serena

Tozzola

a

,

Claudia

Mazzitelli

a

,

Vittorio

Checchi

b

,

Edoardo

Mancuso

a

,

Nicola

Scotti

c

,

Franklin

R.

Tay

d

,

Lorenzo

Breschi

a,∗

,

Annalisa

Mazzoni

a

aDepartmentofBiomedicalandNeuromotorSciences,DIBINEM,UniversityofBologna,AlmaMaterStudiorum,Via

SanVitale59,40125Bologna,Italy

bDepartmentofSurgery,Medicine,DentistryandMorphologicalSciencesWithTransplantSurgery,Oncologyand

RegenerativeMedicineRelevanceUnitofDentistryandOral-Maxillo-FacialSurgery,UniversityofModena&Reggio

Emilia,Modena,Italy

cDepartmentofSurgicalSciences,UniversityofTurin,Turin,Italy

dDepartmentofEndodontics,TheDentalCollegeofGeorgia,AugustaUniversity,1430JohnWesleyGilbertDrive,

Augusta,GA30912,USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Accepted6October2020 Keywords: Cross-Linkers

Dentinbondingsystems Matrixmetalloproteinases N,N’-dicyclohexylcarbodiimide Universaladhesives

a

b

s

t

r

a

c

t

Objective.ToevaluatetheeffectsofN,N’-dicyclohexylcarbodiimide(DCC),anethanol-based

dentincross-linker,ontheimmediateandlong-termmicrotensilebondstrength(␮TBS)and nanoleakageexpressionofauniversaladhesiveemployedinself-etchmode(SE)or etch-and-rinsemode(ER).TheeffectofDCConthedentinalMMPactivitywasalsoinvestigated bymeansofin-situzymography.

Methods.Eighty freshlyextractedhuman molarsweresectionedto exposemid-coronal

dentinsurfaces.Theteethwereassignedtooneofthefollowinggroups,accordingtothe dentinsurfacepriming/adhesiveapproach:(G1):DCCpre-treatmentandScotchbond Uni-versal(SBU)inERmode;(G2):SBUinERmode;(G3):DCCpretreatmentandSBUinSEmode; (G4):SBUinSEmode.␮TBStestwasperformedimmediately(T0)orafter1-yearaging(T12)

inartificialsaliva.Tenadditionalteethpergroupwerepreparedfornanoleakageevaluation

(N=5)andforin-situzymography(N=5).

Results.Three-factoranalysisofvariancerevealedsignificantdifferenceforthevariables

DCCpretreatment,applicationmodeandaging(p<0.05)forbothmicrotensilebondstrength testingandin-situzymography.Nanoleakageanalysisrevealedreducedmarginalinfiltration ofDCCexperimentalgroupsbothatT0andT12.

Significance.Theuseofanethanol-basedprimercontainingDCCappearstobepromisingin

preservingthestabilityoftheadhesiveinterfaceofauniversaladhesive,especiallyinthe SEmode.

©2020TheAcademyofDentalMaterials.PublishedbyElsevierInc.Allrightsreserved.

Correspondingauthor.

E-mailaddress:lorenzo.breschi@unibo.it(L.Breschi). https://doi.org/10.1016/j.dental.2020.10.004

(2)

1.

Introduction

Adhesion between resin composite restorations and den-tal substrate is achieved through the infiltration of resin monomers into the demineralized dentin collagen matrix afterpartialdissolutionofthe mineralinorganic phase[1]. Theneedforaretentivecavitybecamelesscriticalafterthe adventofadhesive dentistry, withdentinbondingsystems provide reasonable immediate bond strength to the den-talsubstrate[2,3].Despitenearlysixdecadesofrefinement ofadhesivematerialsandprotocols,theinterdiffusionarea betweendentinandtheadhesiveresin,knownasthehybrid layer, stillremains the weakest region ofadhesively-based restorations[4–8].

The potential reasons behind the degradation of resin-dentinbond over time had been examined byin vitro and

invivostudies.Hydrolyticorenzymaticbreakdownofthe poly-merizedresincompoundsandendogenousprotease-initiated degradationofthedemineralizeddentincollagenmatrixhave emergedasthemostlikelycontributorsofinterfacial degra-dation[9–12].

Thedentinsubstratecontainscollagenfibrilswithbound non-collagenousproteinssuchasgrowthfactorsand endoge-nous proteases such as matrix-metalloproteinases (MMPs) and cysteine-cathepsin [13–16]. Endogenous proteases play an important role during dentin maturation and become trappedandinactivatedaftermineralizationofthecollagen matrix[17].Theseenzymesareexposedandreactivated dur-ingdemineralizationofthemineralizeddentin,progressively degradingthecollagenfibrilsthatarenotprotectedby adhe-siveresinwithinthehybridlayer,eventuallyresultinginthe lossofretention ofthe adhesive restorations[4,18–20]. For this reason, muchefforts have been devoted to increasing theresistanceoftheresin-sparse,water-richcollagenfibrils withinthehybridlayeragainstMMPs,withtheintentionof increasingthelongevityofadhesiverestorations[21].

Matrixmetalloproteinases,particularlyMMP-2and MMP-9,aremostlyresponsibleforthedegradationofthedentinal organicmatrix[22].Forthisreason,mucheffortshavebeen devotedtoincreasingtheresistanceoftheresin-sparse, water-richcollagenfibrilswithinthehybridlayeragainstMMPs,with theintensionofincreasingthelongevityofadhesive restora-tions[4,11,12,23–27].

DifferentMMPinhibitorssuchasquaternaryammonium methacrylates[17,28],andbenzalkonium chloride[12]have been used experimentallyto increasethe durability ofthe resin-dentininterface[29]. Collagencross-linkers havealso been used to enhance the mechanical properties of the demineralized collagen network as well as bond durabil-ity incoronal [11,30–33]and radicular dentin[34]. Because cross-linkingofthecollagenmatrix isanaturally-occurring phenomenonindentin,scientistshaveresortedtothe use ofchemicalsubstanceswithcross-linkingpropertiesto ren-derthedentincollagenmatrixlesssusceptibletoproteolytic attack[4,35].

Among the cross-linking reagents, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide(EDC),hasdemonstrated promisingresultsinthepreservationoftheintegrityofhybrid layersover time. Thisfeature was attributedto the ability

ofEDCtocross-linkpeptideswithoutintroducingadditional linkage groups [11,32,36]. N,N’-dicyclohexylcarbodiimide (DCC)isacrosslinkerbelongingtothesamefamilyasEDC, but with a different solubility behavior. Whereas EDC is solubleinwater,DCC issolubleinorganicsolventssuchas ethanoloracetone[37].Itisenvisagedthattheethanol-based cross-linkeragentmayhelpcounteractthedeleteriouseffects ofwaterduringdentinbondingandpreservethehybridlayer. Accordingly, the objective of the present in vitro study wastoevaluatetheabilityofanethanolsolutionofDCCto improvethebondstrengthofauniversaladhesiveemployed eitherinself-etchoretch-and-rinsemode,andtostabilizethe adhesiveinterfaces overtime.TheDDCwasappliedbefore adhesiveprocedurestocross-linkdentinalcollagen.Theeffect ofDCC ondentinMMPactivity wasfurtherinvestigatedby

in-situzymography.Thenullhypothesestestedwerethat

pre-conditioningofdentinwithDCCpriortoadhesiveapplication 1)doesnotbenefittheimmediatebondingperformanceofa universaladhesivetodentin,2)doesnotpreventinterfacial degradation over time,and 3) doesnotinhibit endogenous dentinMMPactivity.

2.

Materials

and

methods

Freshly-extractedsoundhumanthirdmolars(N=120)were obtainedfromanonymousindividualsfollowingtheirsigned consentundertheprotocolASLBON◦ 0013852,approvedon 02/01/2019bytheEthicsCommittee.

2.1. Microtensilebondstrengthtest(TBS)

Eighty teeth were selected to conduct ␮TBS testing. The occlusal surface ofeach tooth was cuttransversely to the long axisto expose mid-coronal dentinusing a low-speed diamondsaw(Micromet,Remet,Bologna,Italy)withcopious watercooling.Astandardizedsmearlayerwascreatedwith 600-gritsilicon-carbidepaperoneachtoothsurface.The pol-ishedteethwererandomlyassignedtooneofthefollowing groupsaccordingtothedentinsurfacetreatmentand adhe-siveapproachperformed(N=20;Table1):

Group1(G1):DCCpre-treatmentandScotchbondUniversal adhesive(SBU;3MESPE,St.Paul,MN,USAusedinthe etch-and-rinsemode(ER).Thedentinsurfacewasetchedwith32% H3PO4(ScotchbondUniversalEtchant,3MESPE)for15s,

pre-treatedwithanethanolsolutionof0.5MDCCfor1min, air-driedandbondedwithSBUaccordingtothemanufacturer’s instructions(Table1).

Group 2 (G2):SBU inERmode. NoDCC was appliedon dentin;SBUapplicationwasthesameasG1.

Group3(G3):DCCpre-treatmentandSBUinself-etchmode (SE).Thedentinsurfacewaspre-treatedasinG1;insteadof etchingwith32%H3PO4,SBUwasapplieddirectlytothesmear

layer-covereddentinandagitatedfor20s.Theadhesivewas air-dried.Withoutlight-curing,DCCwasappliedfor1min.The secondlayerofuniversaladhesivewassubsequentlyapplied, air-driedandlight-cured(Table1).

Group 4 (G4): SBUinSE mode. NoDCC was appliedon dentin.SBUapplicationwasthesameasG3.

(3)

Table1–Adhesivesystem,compositecompositionandapplicationmode.

Material Composition ERmode DCC+ERmode SEmode DCC+SEmode

Scotchbond Universal(SBU;3M ESPE)

1.Etchant:32%phosphoricacid,water, syntheticamorphoussilica,polyethylene glycol,aluminumoxide(Scotchbond UniversalEtchant)2.Adhesive: methacryloyloxydecyldihydrogen phosphate(MDP)phosphatemonomer, dimethacrylateresins,2-hydroxyethyl methacrylate(HEMA),

methacrylate-modifiedpolyalkenoicacid copolymer,filler,ethanol,water, initiators,andsilane

1.Applyetchant for15s2.Rinse for10s3.Airdry 5s4.Applythe adhesivetothe entire

preparationwith amicrobrush andrubitinfor 20s5.Directa gentlestreamof airoverthe liquidfor5s untilitnolonger movesandthe solventis evaporated completely6. Repeatsteps4 and57. Light-curefor20 s 1.Apply0.5M DCC ethanol-based primerand brushitfor1min 2.Directagentle streamofair overtheliquid for5s3.Apply adhesiveasfor theERmode 1.Applyadhesive totheentire preparationwith amicrobrush andrubitinfor 20s2.Directa gentlestreamof airoverthe liquidfor5s untilitnolonger movesandthe solventis evaporated completely3. Repeatsteps2 and34. Light-curefor20 s 1.Applyfirstcoat ofadhesive2. Apply0.5MDCC ethanol-based primerand brushitfor1min 3.Directagentle streamofair overtheliquid for5s3.Apply adhesiveasfor theSEmode

FiltekZ250(3MESPE) Triethyleneglycoldimetacrylate (TEGDMA)<1–5%; Bisphenol-A-glycidylmethacrylate (Bis-GMA)<1–5%;Bisphenol-A polyethylenglycol dietherdimethacrylate(Bis-EMA) 5–10%;Urethanedimethacrylate (UDMA)5–10%Fillers:

Zirconia/silica;60vol%inorganic fillers(particlesize0.01–3.5␮m)

Eachbondedspecimen waslight-curedfor 20s using a light-emitting diodecuring light (DemiTM Plus, Kerr Corp., Brea,CA,USA)aftersolventevaporation.Four1-mmthick lay-ersofamicro-hybridresincomposite(FiltekZ250;3MESPE) wereincrementallyplacedoverthebondeddentinand indi-viduallypolymerized for20s each toobtain a4-mm thick composite build up for ␮TBS testing. Each specimen was serially-sectionedtoobtainapproximately1-mmthicksticks, each containing resin composite and dentin and with the adhesiveinterfaceinbetween,inaccordancewiththe non-trimmingtechniqueofthe␮TBStest.Thedimensionofeach stick(0.9 mm× 0.9mm± 0.01mm)wasrecorded using a pairofdigitalcalipers.Thebondedareawascalculated for subsequentconversionofmicrotensilestrength valuesinto unitsofstress(MPa).Sticksfromeachtoothwererandomly assignedtotwostoragegroups:24h(T0)or1year(T12)of stor-ageinartificialsalivaat37◦C.Theartificialsalivaconsistedof CaCl2(0.7mmoles/L),MgCl26H2O(0.2mmoles/L),KH2PO4(4.0 mmoles/L),KCl(30mmoles/L),NaN3(0.3mmoles/L)inHEPES buffer[38].

Eachstick wasstressed tofailureundertensionusing a simplifieduniversaltestingmachine(Bisco,Inc.,Schaumburg, IL,USA)atacrossheadspeedof1mm/min.Thenumberof prematurely-debondedsticksineachgroupwasrecorded,but thosenullvalueswerenotincludedinthestatistical analy-sis.Thisisbecauseallprematurefailuresoccurredduringthe cuttingprocedureand thosefailuresdidnotexceedthe3% ofthetotalnumberoftestedspecimensandweresimilarly

distributed withinthe groups. A singleobserver evaluated the failuremodesunderastereomicroscope (Stemi2000-C; CarlZeissGmbH,Jena,Germany)at30×magnification.Failure modeswereclassifiedsadhesivefailure(A),cohesivefailurein dentin(CD),cohesivefailureincomposite(CC)ormixedfailure (M).

Statistical analysis was performed using the tooth as the statistical unit. Bond strength data from each tooth were averaged to obtain the mean bond strength for that tooth.Theacquireddatawereevaluatedforcompliancewith the normalityassumptionusing Shapiro-Wilktest,and the homoscedasticityassumptionusingthemodifiedLevenetest priortotheuseofparametricanalyticalmethods.Athree-way analysisofvariance(ANOVA)wasperformedtoidentifythe effectsofthreevariables,DCCpre-treatment(with/without), adhesiveapplicationmode(ER/SE)andaging(T0/T12)andtheir

interactions on bond strength.Post-hoc comparisonswere conductedusingTukeytest.Additionally,one-wayANOVAwas conductedtoevaluatedifferenceswithineachvariable.Forall tests,statisticalsignificancewaspre-setat˛=0.05. Statisti-calanalyseswereperformedusingStata12.0softwareforMac (StataCorp,CollegeStation,TX,USA).

2.2. Nanoleakageexpression

Twentyteeth(N=5)wereusedforexaminationof nanoleak-agewithintheresin-dentininterface.Mid-coronaldentinwere bondedinthesamemannerdescribedfor␮TBStesting.Each

(4)

Fig.1–Schematicoftoothpreparationforin-situ

zymography.Adentindisk(1-mmthick)wasdividedinto fourquadrants,enablingbondingproceduresofthefour controlandexperimentalgroupstobeperformedonthe samedentinsubstrate.

specimenwascutverticallyinto1-mm-thickslabstoexpose theresin-dentininterface.Afterstorageinartificialsalivaat 37◦C for24h(T0)or12months(T12),thespecimenswere

immersedin50wt.%ammoniacalAgNO3solutionfor24hin

thedark,followingtheprotocoldescribedbyTayetal.[39].The specimenswerethenthoroughlyrinsedindistilledwaterand immersedinaphoto-developingsolutionfor8hundera flu-orescentlighttoreducesilverionsintometallicsilvergrains withinvoidsalongthebondedinterfaces.

For light microscopy, the specimens were fixed, dehy-drated,embeddedinepoxyresin(LRWhiteresin, Millipore-Sigma, Burlington, MA, USA), fixed on glass slides using cyanoacrylateglue,flattenedonagrindingdevice(LS2;Remet, Bologna, Italy) under water irrigation and polished with a gradedseriesofsiliconcarbideabrasivepapersofincreasing fineness(180-,600-,1200-,2400-,and4000-grit).Thepresence ofthe silver tracer was examined along the bonded inter-faceusinglightmicroscopy(E800;Nikon,Tokyo,Japan),at20× magnification.Interfacialnanoleakageexpressionwasscored bytwotrainedinvestigatorsbasedonthepercentageof adhe-sivesurfaceshowingAgNO3deposition,followingthemethod

ofSaboiaetal.[40].Ascale0–4wasusedforevaluation:(0)no nanoleakage;(1)<25%surfacewithnanoleakage;(2)25–50% surfacewithnanoleakage;(3)50–75%surfacewith nanoleak-age;and(4)>75%surfacewithnanoleakage.Intra-examiner reliabilitywasevaluatedusingtheCohen’skappa(␬)statistic. Statisticaldifferencesamongnanoleakagescoreswere ana-lysedwiththechi-squarestatistic.Statisticalsignificancewas pre-setat˛=0.05.

2.3. In-situzymography

Twentyfreshly-extracted humanthirdmolars(N = 5) were

used for in-situ zymography. One mm-thick slabs of

mid-dle/deepdentinwereprepared.Eachslabwasfurtherdivided intofourpartstotestthe4controllandexperimentalgroups onthesamesubstrate(Fig.1).Siliconcarbidepaper(600-grit)

wasusedtocreateastandardizedsmearlayeroneachdentin surface.Onesurfaceofeachquarterofaslabwastreatedwith theadhesivesystemsasdescribedfor␮TBStesting.

Theprocedurewasperformedusingthemethodpreviously reportedbyMazzonietal.[24,41].Afteragingforthe desig-nated period(24h or 1year), each bondedslabwas glued to aglass slideand polished to producean approximately 40-␮m thick section. To produce the substrate, 1.0mg/mL of a stock solution containing self-quenched fluorescein-conjugated gelatin (E-12055;Molecular Probes,Eugene, OR, USA)waspreparedbyadding1.0mLdeionizedwatertothe vial containing the lyophilized gelatin. The substrate was stored at−20 ◦C until use. Thegelatin stock solution was

diluted10timeswithdilutionbuffer(NaCl150mm,CaCl25

mm,Tris–HCl50mm,pH8.0),followedbytheadditionofan anti-fading agent(Vectashieldmountingmediumwith4 ,6-diamidino-2-phenylindole; Vector Laboratories, Burlingame, CA, USA). Then, 50 ␮L of the fluorescent gelatin mixture wasplacedontopofeachpolisheddentinsectionand pro-tected with a cover slip. The glass slide assemblies were light-protectedandincubatedinahumidifiedchamberat37

Cfor48h.

Detection of endogenous gelatinolytic enzyme activity within the hybrid layer was based on hydrolysis of the quenchedfluorescein-conjugatedgelatinsubstrate.The pro-cess was evaluated by examining the glass slides with a multi-photonconfocallaserscanningmicroscope(LSM5Pa; CarlZeiss),usinganexcitationwavelengthof495nmandan emissionwavelengthof515nm.Sampleswereimagedusinga HCXPLAPO40×/1.25NAoilimmersionobjective.Seriesof x-y-zimages(0.145*0.145*1␮m3voxelsize)werecollected.Laser poweranddetectorgainweresetatthebeginningofthe exper-imentandkeptthesameforallspecimensinordertohavethe possibilitytocomparedifferentgroups.Sixteento20optical sectionswereacquiredforeachspecimen.Thestackedimages wereanalyzed,quantified,andprocessedwithZEN2009 soft-ware(CarlZeiss).Thefluorescenceintensityemittedbythe hydrolyzed fluorescein-conjugatedgelatin wasisolated and quantifiedusingImageJ(ImageJ;NationalInstituteofHealth, Bethesda,MD,USA).Theamountofgelatinolyticactivitywas expressedasapercentageofthegreenfluorescencewithinthe hybridlayer.

Negative controlsections were similarlyincubated,with the exception that 250 mLethylenediaminetetraacetic acid (EDTA)or2mM1,10-phenanthrolinewasdissolvedinthe mix-tureofquenchedfluorescein-conjugatedgelatin.The EDTA-and1,10-phenanthroline-containinggelatinwereusedas neg-ative controls.Inaddition,standardnon-fluorescentgelatin wasusedasthethirdnegativecontrol.

Becausethein-situzymographydatacomplied with nor-mality and homoscedasticity assumptionsafter non-linear transformation,athree-wayANOVAwasusedtoidentifythe effects ofthe threevariables,DCC pre-treatment, adhesive applicationmodeandaging, onthe densityoffluorescence signals.Additionalone-wayANOVAwasconductedto eval-uatedifferenceswithineachvariable.Statisticalsignificance waspre-setat˛=0.05.

(5)

Table2–Resultsof␮TBStestatT0andT12.SBU(ER):ScotchbondUniversalusedintheetch-and-rinsemode;SBU(SE):

ScotchbondUniversalusedintheself-etchmode.G1:0.5MDCCSBU(ER);G2:SBU(ER),control;G3:0.5MDCC+SBU(SE); G4:SBU(SE),control.T0:Dataobtainedafter24hofstorageat37C.T12:Dataobtainedafter1yearofaginginartificial

salivaat37C.

Applicationmode SBU(ER)a SBU(SE)a

Pre-treatment G1 G2 G3 G4

T0 46.0±15.3A,a 37.1±12.5A,b 39.4±11.1A,a,b 26.,3±11.4A,c

T12 33.5B±13.9B,a 31.0±11.0B,a 35.3±13.9A,a 13.4±9.1B,b

Differentsuperscriptupper-caselettersindicatedifferences(p<0.05)withinthecolumns. Differentsuperscriptlowercaselettersindicatedifferences(p<0.05)withintherows.

a Valuesaremeans±standarddeviations(inMPa).

Table3–Percentagesoffailuresmodeamongthedifferentgroups.

Applicationmode SBU(ER) SBU(SE)

Pre-treatment G1: G2: G3: G4:

T0 68%A32%M 35%A8%CD57%M 81%A1%CD18%M 74%A36%M

T12 45%A55%M 58%A42%M 53%A47%M 60%A40%M

3.

Results

3.1. Microtensilebondstrength

Microtensile bonds strengths of the four groups tested at T0andT12 aresummarizedinTable2.Three-factorANOVA revealed significant difference for the variables DCC pre-treatment,adhesive applicationmodeand aging(p <0.05), as well as forthe interaction between DCC pre-treatment and adhesive application mode (p < 0.05). Post-hoc com-parisons showed that the use of a 0.5 M DCC-containing ethanolsolutionbeforeadhesiveapplicationimprovedbond strength ofSBU (G1and G3)vs controlgroups(G2 andG4) (p<0.05),irrespectiveoftheadhesiveapplicationmodeand aging.Additionally,SBUgeneratedhigherbondstrengthwhen employedintheERmodevs theSEmode(p <0.05).Aging significantlyreduced␮TBSamongall theadhesive applica-tionmode/dentinpre-treatmentcombinations,exceptforG3 (p < 0.05). One-way ANOVA indicatedthat atT0, DCC

pre-treatmentsignificantlyimproved␮TBSinbothexperimental groupscomparedtothecontrolgroups(G146.0±15.3;G237.1 ±12.5;G339.4±11.1;G426.3±11.4).Afteraging,DCC pre-treatmentshowedapreservationofthebondstrengthwhen SBUwasappliedintheSEmode(T0=39.4±11.1andT12=

35.3±13.9)thus,shovingafinalMPavalueafteraging compa-rabletothatoftheSBUERgroups.ForallgroupsatT0orT12

thepredominantfailuremodesweretheadhesivefailureand themixedfailure.Atbaseline,forallgroups,exceptforG2the adhesivefailurewerearound70%ofthefailure.Afteraging, thenumberofmixedfailureincreasedbetween40%and55% inthedifferentgroups(Table3).

3.2. Nanoleakageexpression

Descriptivestatistics ofinterfacialleakagescoresare repre-sentedinFig.2.Statisticallysignificantdifferenceswerefound amongthefourgroupsintheextentofsilvernitrate penetra-tionalongtheadhesiveinterfaces(p<0.05).Specimensthat werepretreatedwithDCC-containingsolutionpriorto

adhe-siveapplicationshowedlowernanoleakageexpressioninboth the ERandSEmodes,comparedtocontrolgroups,atboth T0andT12(p<0.05).AtbaselineSBUERandSBUSEshowed

anhigherpercentageofmarginalinfiltrationcomparedtothe experimentalgroups.However,SBUSEperformedworstthan SBUER.Afteraginginartificialsaliva,DCCpretreatedgroups shovedasignificantlylowermarginalleakagethanthe con-trolgroups.Inaddition,DCCSBUgroupsshowedcomparable resultsamongthem.

3.3. In-situzymography

Representativemicrographicimagesofthedifferentgroups are shown in Fig. 3 for time T0 and Fig. 4 for time

T12. The percentages of hybrid layers exhibiting

hydroly-sis of the quenched fluorescein-conjugated gelatin at T0

and T12 are shown in Fig. 5. For all specimens, the

high-est enzymatic activity appeared to be concentrated in the hybridlayerandthedentinaltubulesunderneaththehybrid layer.

Statistical analysis of the in-situ zymography identified significant differencesforthe variables DCC pre-treatment, adhesiveapplicationmodeandaging(p<0.05),andforthe interaction betweenapplicationmode andaging (p< 0.05). Forthevariable“DCCpre-treatment”,post-hoccomparisons showedthatDCCpre-treatmentsignificantlyreduced fluores-cenceatthelevelofthehybridlayer,comparedtonon-treated groups(p<0.05),irrespectiveoftheadhesiveapplicationmode andtheagingperiod.Forthevariable“adhesiveapplication mode”,ERgroupsresultedinasignificantlyhigherenzymatic activity compared tothe SE groups (p < 0.05), irrespective ofDCCapplicationandagingperiod.Forthevariable“aging period”,especiallywhenassociatedwithERmode,significant increasesinfluorescenceatthelevelofthehybridlayerwas identifiedwiththeERmodeatbothT0andT12(p<0.05).

One-way ANOVA calculated across all groups indicated thatatT0,therewasreducedfluorescencewithinthehybrid

layers,irrespectiveoftheadhesiveapplicationmode,when 0.5MDCCsolutionwasappliedpriortoadhesiveapplication

(6)

Fig.2–Distributionofinterfacialnanoleakage(in%)intheresin-dentininterfacescreatedwiththeScotchbondUniversal (SBU)adhesiveintheetch-and-rinsemode(ER)ortheself-etchmode,withorwithoutDCCpre-treatmentofdentin.Testing wasperformedafter24h(T0)orafteroneyearofaginginartificialsaliva(T12).

Fig.3–Representativeexamplesofin-situzymographyoftheresin-dentininterfacesatT0.DentintreatedwithSBU

adhesiveintheSEmode(a,b);SBU(SE)+DCC0.5M(c,d);SBUintheERmode(e,f);SBU(ER)+DCC0.5M(g,h).D:dentin;HL: hybridLayer;R:resincomposite.

Fig.4–Representativeexamplesofin-situzymographyoftheresin-dentininterfacesatT12(agingfor12monthsinartificial

saliva).DentintreatedwithSBUadhesiveintheSEmode(a,b);SBU(SE)+DCC0.5M(c,d);SBUintheERmode(e,f);SBU(ER) +DCC0.5M(g,h).D:dentin;HL:hybridLayer;R:resincomposite.

(G1andG3).However,thedecreasewasnotstatistically sig-nificantfortheSEmode(Fig.5).AtT12,bothexperimental(G3

andG4)andcontrolgroups(G1andG2)showedcomparable endogenousenzymaticactivityfortheERgroup(Fig.5).When SBUwasappliedintheSEmode,0.5MDDCsolution signifi-cantlyreducedtheactivitywithinthehybridlayer(Fig.5).

No fluorescence was detected in two negative con-trol groups prepared with non-specific inhibitors (EDTA or

1,10-phenanthroline) or when non-fluorescent gelatin was employed(datanotshown).

4.

Discussion

Theresultsofthepresentstudyshowedthatbondstrength wasincreasedbyexposingdentinsurfacesto0.5MDCC treat-ment priorto bonding with SBU at T0, irrespective of the

(7)

Fig.5–Gelatinolyticactivity,expressedastheintensityof greenfluorescence(pixels/␮m2)withinthehybridlayers (HL)createdwithSBUinERmodeorSEmodeforthe experimental(DCCpre-treatment)andcontrol(noDCC pre-treatment)groupsatT0andT12.Valuesaremeansand standarddeviations.Forcomparisonofthefactor“adhesive applicationmode”,columnslabelledwiththesameupper caseletters(T0)orlowercaseletters(T12)arenot

significantlydifferent(p>0.05).Forcomparisonofthe factor“DCCpre-treatment”,columnslabelledwiththe samenumeralsarenotsignificantlydifferent(p>0.05)(For interpretationofthereferencestocolourinthisfigure legend,thereaderisreferredtothewebversionofthis article).

adhesiveapplicationmode.Furthermore,dentinspecimens pre-treatedwiththeethanol-basedDCC cross-linker exhib-itedlessinterfacialnanoleakage comparedtospecimensin thecontrolgroups.Thus,thefirstnullhypothesisthat “pre-conditioningofdentinwithDCCpriortoadhesiveapplication doesnotbenefitimmediatetensile bondstrengthofa uni-versaladhesivetodentin”hastoberejected.Likewise,the applicationofDCCbeforeSBUresultedinhigherbondstrength andlowernanoleakageattheadhesiveinterfaceinspecimens thathas been agedfor12 months.Hence, thesecond null hypothesisthat“pre-conditioningofdentinwithDCCpriorto adhesiveapplicationdoesnotpreventinterfacialdegradation overtime”alsohastoberejected.

To our knowledge, this is the first study that utilized ethanolic DCC as dentincollagen cross-linker. This is dif-ferent from the water-based cross-linkers that had been usedin previous studies,such asEDC, grape seedextract, riboflavin, proanthocyanidin and chitosan [11,42–44]. N,N’-dicyclohexylcarbodiimide is an organic compound whose primaryuseistocoupleaminoacidsduringartificialpeptide synthesis.Understandardconditions,itexistsintheformof whitecrystalswithaheavy,sweetodor.Thiscross-linkeris commonlyusedasacondensationreagentinamidesynthesis oresterificationreactions[45].UnlikeEDC,DCChasthe dis-tinctadvantageofbeinginsolubleinwaterbutiswellsoluble inotherpolarorganicsolventssuchasethanolandacetone. ThisenablesDCCtobemorerealisticallyblendedwith exist-ingadhesivesystems,withouttheneedforrinsingoffpriorto theapplicationethanol-baseduniversaladhesive.

Eachcollagenmoleculehasaprimaryaminegroup( NH2) at the N-terminus, and a carboxyl group ( COOH) at the

C-terminusofthe polypeptidechain, bothofwhichare on thesurfaceoftheproteinstructure,makingthemaccessible fortheconjugationofproteins[46].EDCandDCCconjugate carboxylates toprimary amines directlyand cross-link the neighboring collagen molecules, without becoming part of thefinalcross-linkedtargetmolecules.Hence,theyare zero-length cross-linkingagents [47]. Similarlytoan EDC-based dentinprimer,[11,34],theresultsofthepresentstudyshowed thattheuseofanethanol-basedDCCprimerimprovedboth bondstrengthandresininfiltrationaswellaspreservedbond strengthandminimizednanoleakageafteroneyearofaging inartificialsaliva.

Inpreviousstudies,improvementinthebonddurabilityby EDCinbothcoronalandradiculardentinwasnotattributed onlytostrengtheningofthedemineralizedcollagenmatrix, but alsotoinactivationofthecatalyticsitesofendogenous MMPspresentindemineralizeddentin.Thelatterisachieved bymodifyingthethree-dimensionalconformationoftheMMP enzymes[48–51].InactivationofMMPsinducedbyacollagen cross-linkerisanon-specificmechanisminvolvingcovalent bondsthatareclaimedtobeverystableovertime[16,52].For thisreason,theeffectof0.5MDCConMMPactivitywas fur-ther investigatedusingin-situzymography.Atbaseline(T0),

Decreaseofendogenousenzymaticactivitywasidentifiedin thebaseline(T0)specimensaftertheuseofDCC,althoughthe

reductionwasstatisticallysignificant onlyintheERgroup. Afteraging(T12),onlytheDCC/SEgroupshowedsignificant

reduction in MMP activity. For this reason, the third null hypothesisthat “pre-conditioningofdentinwithDCCprior toadhesiveapplicationdoesnotinhibitendogenousdentin MMPactivity”canonlybepartially-rejected.

In-situzymographyshowedclearlydetectablegelatinolytic

activitywithinthehybridlayersoftheexperimentalgroups bothatT0andT12.Theseactivitiesweresignificantlylower

forthegroupsbondedintheSEmode,irrespectiveofthe stor-agetimeortheuseofDCC.Thegelatinolyticactivitywithin thehybridlayerswereeithermaintainedorincreasedafter1 yearofstorageinartificialsalivaforthecontrolgroups with-out DCCpre-treatment.TheeffectivenessofDCC usedasa conditioning primerwas evidentintheDCC/SE group(G3), withsignificantlylowergelatinolyticactivitywithinthehybrid layersafter1yearstorageinartificialsaliva.Itcouldbe spec-ulated that, theDCC primerappliedbetweentwolayersof adhesiveandnotaftertheetchingstep,asforthe experimen-talERgroup,couldleadtoalongerperiodofactivity ofthe molecule.Indeed,DCCcouldremainboundinsidethehybrid layerforalongerperiodoftimeandslowlyreleasedwith age-ing,similarlytootherexperimentalmoleculesblendedinside theadhesive[12].

The present study also showed that more endogenous MMPswereactivatedwhentheuniversaladhesivewasapplied inthe ERmode [53].When amulti-mode adhesiveisused in the ER mode, acid-etching with phosphoric acid com-pletelyremovesthemineralcomponentsofthedentinmatrix, exposesthe collagenfibrilscompletelywithincreased acti-vation of the endogenous enzymes. Similarly to a 2-step etch-and-rinseadhesive,theenzymaticactivity ishigh and localizedatthebottomofthehybridlayer.Thisisprobablydue totheinabilityoftheadhesiveresinmonomerstocompletely infiltratethedemineralizeddentinmatrix[24,54].Conversely,

(8)

whenSBUisusedintheSEmode,thehybridlayeris simulta-neouslydemineralizedandinfiltratedbytheacidicadhesive resinmonomers.Inaddition,thereislesscompletelydenuded collagenfibrilswithinthethinnerhybridlayers.Becausethe apatitecrystallites areonlypartially-dissolved, hereis pre-sumablylessactivationoftheendogenousMMPs[55].Ithas beenreportedthatmoreMMPsareactivatedwhenthepHof thedentinmatrixislower[56],asthedropinpHvalueturns onthecysteineswitchmechanismandcausestheMMP pro-formstobeactivatedintofully-functionalMMPs[57].

Because dentin MMP activity could be reduced by the application of DCC, the results of the present study sug-gest that the ethanolic collagen cross-linker stabilizes the adhesive interface by strengthening of the collagen and inactivatingendogenousdentinproteases[4].Severe, albeit non-fatal limitation ofthe present study isthat no exper-iment was performed to confirm that there was increase incross-linking of the collagen matrix afterpre-treatment with DCC. This should be performed in future studies to identify the type and quantity of cross-links involved and to determine if the cross-linking produced by the use of DCC is reversible or irreversible. It would also be interesting to compare the degree of cross-linking pro-duced by the water-based EDC versus the ethanol-based DCC.

Another important aspect related to the use of DCC is that ethanol is used as the solvent instead of water. The use of an ethanol-based cross-linking agent may result in betterinfiltration of the collagen matrix byadhesive resin monomers,comparedwiththeuse ofawater-based cross-liningagent[58].Afteracid-etching,thedentincollagenfibrils are in a wet environment saturated with residual water. Tosubstitutewaterwithwater-insolubleadhesive resins,a primeragentbasedonavolatilesolventsuchasethanolor acetone is required. Formation of an ideal hybrid layer in dentinrequiressubstitutionofallunboundwaterwithresin monomers.However,completeremovalofallresidualwater cannotbeachievedduetothepresenceofboundwaterthat intrinsicallywet thecollagen fibrils.Thisprocess,however, maybeimprovedbyfirstreplacingtheunboundwaterwitha non-water-containingpolarsolventwhichiscapableof solu-bilizingtheadhesiveresinmonomers[59].Previousstudieson the“ethanol-wetbonding”conceptdemonstratedthatbetter resininfiltrationoccurredwithahighercontentofethanolin theadhesiveprimer[60].Whendentinisfullysaturatedwith ethanol,ethanol-solublehydrophobicresin monomersmay beintroducedinto ademineralized collagenmatrix [61,62]. Infiltrationofhydrophobicmonomersdecreaseswater sorp-tion/solubilityandresinplasticization,butalso,ithasbeen suggestedthattheeliminationofresidualwatercouldreduce oreliminateenzyme-catalyzedhydrolyticcollagen degrada-tion[63].TheethanolintheDCCprimerusedinthepresent research probablycontributes to furtherdissolution ofthe adhesiveresinmonomers,reducingtheviscosityandthe wet-tabilityofthemixture,andfacilitatingitsdiffusionintothe dentin.Inaddition,apossibleinhibitoryeffectofethanolon MMPsactivitycouldnotbeexcluded,althoughtheapplication oftheethanol-basedDCCprimerwasnotperformedfollowing thetraditional“ethanol-wet”protocolthatimpliesincreasing concentrationsofethanol(50%, 70%,80%,95% and 3100%

ethanolapplicationsfor30seach)appliedondentinal sub-strate.

In lightofthe favorableresults obtainedwithDCC pre-treatment, it is envisaged that DCC may be incorporated intoethanol-basedadhesivesystemstoproduceself-priming adhesivesthatcross-linksthecollagenmatrixastheadhesive infiltratesthecompletely-orpartially-demineralizeddentin. This removesanadditionalstepand furthersimplifies the bonding procedures. However, further studies on different adhesivesystemsandprotocolsarerequiredtoclarifytherole ofDCConpreservingtheadhesivebondovertimeandto val-idatethepossibilitytoincorporateDCCintocurrentadhesive systemswithoutcompromisingtheiradhesiveproperties.

5.

Conclusions

Withinthelimitations ofthe presentstudy,it maybe con-cludedthattheuseoftheethanolicDCCcollagencross-linker improves bond strength and reduces nanoleakage when a universal adhesive is applied on coronal dentin in the etch-and-rinsemodeorself-etchmode.TheuseofDCC pre-treatmentpriortotheapplicationofauniversaladhesivedoes notadverselyaffectbaselineMMPactivity.Whentheadhesive isemployedintheself-etchmode,theuseof0.5MDCCfurther helpsinpreventingthedegradationofdentinorganicmatrix byinhibitingendogenousdentinmatrixmetalloproteinases.

r

e

f

e

r

e

n

c

e

s

[1] MatudaLS,MarchiGM,AguiarTR,LemeAA,Ambrosano GM,Bedran-RussoAK.Dentaladhesivesandstrategiesfor displacementofwater/solventsfromcollagenfibrils.Dent Mater2016;32:723–31,

http://dx.doi.org/10.1016/j.dental.2016.03.009.

[2] BuonocoreMG.Asimplemethodofincreasingtheadhesion ofacrylicfillingmaterialstoenamelsurfaces.JDentRes 1955;34:849–53,

http://dx.doi.org/10.1177/00220345550340060801. [3] CadenaroM,MaravicT,CombaA,MazzoniA,FanfoniL,

HiltonT,etal.Theroleofpolymerizationinadhesive dentistry.DentMater2019;35:e1–22,

http://dx.doi.org/10.1016/j.dental.2018.11.012.

[4] BreschiL,MaravicT,CunhaSR,CombaA,CadenaroM, TjäderhaneL,etal.Dentinbondingsystems:fromdentin collagenstructuretobondpreservationandclinical applications.DentMater2018;34:78–96,

http://dx.doi.org/10.1016/j.dental.2017.11.005.

[5] TjäderhaneL.Dentinbonding:canwemakeitlast?Oper Dent2015;40:4–18,10-2341/14-095-BL.

[6] VanMeerbeekB,YoshiharaK,YoshidaY,MineA,DeMunck J,VanLanduytKL.Stateoftheartofself-etchadhesives. DentMater2011;27:17–28,

http://dx.doi.org/10.1016/j.dental.2010.10.023.

[7] MaravicT,MazzoniA,CombaA,ScottiN,ChecchiV,Breschi L.Howstableisdentinasasubstrateforbonding?CurrOral HealthRep2017;4:248–57.

[8] FeitosaVP,SauroS,ZenobiW,SilvaJC,AbunaG,Van MeerbeekB,etal.Degradationofadhesive-dentininterfaces createdusingdifferentbondingstrategiesafterfive-year simulatedpulpalpressure.JAdhesDent2019;21(3):199–207, http://dx.doi.org/10.3290/j.jad.a42510.

(9)

[9] ArmstrongSR,VargasMA,ChungI,PashleyDH,Campbell JA,LaffoonJE,etal.Resin-dentininterfacialultrastructure andmicrotensiledentinbondstrengthafterfive-yearwater storage.OperDent2004;29:705–12.

[10] HashimotoM,OhnoH,KagaM,EndoK,SanoH,OguchiH. Invivodegradationofresin-dentinbondsinhumansover1 to3years.JDentRes2000;79:1385–91,

http://dx.doi.org/10.1177/00220345880670080601. [11] MazzoniA,AngeloniV,CombaA,MaravicT,CadenaroM,

Tezvergil-MutluayA,etal.Cross-linkingeffectondentin bondstrengthandMMPsactivity.DentMater2018;34:288–95, http://dx.doi.org/10.1016/j.dental.2017.11.009.

[12] CombaA,MaravicT,ValenteL,GirlandoM,CunhaSR, ChecchiV,etal.Effectofbenzalkoniumchlorideondentin bondstrengthandendogenousenzymaticactivity.JDent 2019;85:25–32,http://dx.doi.org/10.1016/j.dental.2019.04.008. [13] LiuY,TjäderhaneL,BreschiL,MazzoniA,LiN,MaoJ,etal.

Limitationsinbondingtodentinandexperimental strategiestopreventbonddegradation.JDentRes

2011;90:953–68,http://dx.doi.org/10.1177/0022034510391799. [14] HannasAR,PereiraJC,GranjeiroJM,TjäderhaneL.Therole

ofmatrixmetalloproteinasesintheoralenvironment.Acta OdontolScand2007;65:1–13,

http://dx.doi.org/10.1080/00016350600963640.

[15] VidalCM,TjäderhaneL,ScaffaPM,TersariolIL,PashleyDH, NaderHB,etal.AbundanceofMMPsandcysteine

cathepsinsincaries-affecteddentin.JDentRes

2014;93:269–74,http://dx.doi.org/10.1177/0022034513516979. [16] NascimentoFD,MinciottiCL,GeraldeliS,CarrilhoMR,

PashleyDH,TayFR,etal.Cysteinecathepsinsinhuman cariousdentin.JDentRes2011;90:506–11,

http://dx.doi.org/10.1177/0022034510391906. [17] BreschiL,MartinP,MazzoniA,NatoF,CarrilhoM,

TjäderhaneL,etal.UseofaspecificMMP-inhibitor (galardin)forpreservationofhybridlayer.DentMater 2010;26:571–8,http://dx.doi.org/10.1016/j.dental.2010.02.007. [18] NakabayashiN.Bondingofrestorativematerialstodentine:

thepresentstatusinJapan.IntDentJ1985;35:145–54. [19] PereiraPN,Bedran-de-CastroAK,DuarteWR,YamauchiM.

Removalofnoncollagenouscomponentsaffectsdentin bonding.JBiomedMaterResBApplBiomater2007;80:86–91, http://dx.doi.org/10.1002/jmb.b.30572.

[20] Bedran-RussoAK,PashleyDH,AgeeK,DrummondJL, MiesckeKJ.Changesinstiffnessofdemineralizeddentin followingapplicationofcollagencrosslinkers.JBiomed MaterResBApplBiomater2008;86:330–4,

http://dx.doi.org/10.1002/jbm.b.31022.

[21] Tezvergil-MutluayA,Seseogullari-DirihanR,FeitosaVP,Tay FR,WatsonTF,PashleyDH,etal.Zoledronateand

ion-releasingresinsimpairdentincollagendegradation.J DentRes2014;93(10):999–1004,

http://dx.doi.org/10.1177/0022034514546043. [22] TjäderhaneL,NascimentoFD,BreschiL,MazzoniA,

TersariolIL,GeraldeliS,etal.Strategiestoprevent hydrolyticdegradationofthehybridlayer-Areview.Dent Mater2013;29:999–1011,

http://dx.doi.org/10.1016/j.dental.2013.07.016. [23] TjäderhaneL,NascimentoFD,BreschiL,MazzoniA,

TersariolILS,GeraldeliS,etal.Optimizingdentinbond durability:controlofcollagendegradationby

matrixmetalloproteinasesandcysteinecathepsins.Dent Mater2013;29:116–35,

http://dx.doi.org/10.1016/j.dental.2012.08.004.

[24] MazzoniA,NascimentoFD,CarrilhoM,TersariolI,PapaV, TjaderhaneL,etal.MMPactivityinthehybridlayer detectedwithinsituzymography.JDentRes2012;91:467–72, http://dx.doi.org/10.1177/0022034512439210.

[25] CarrilhoMRO,CarvalhoRM,deGoesMF,diHipólitoV, GeraldeliS,TayFR,etal.Chlorhexidinepreservesdentin bondinvitro.JDentRes2007;86:90–4,

http://dx.doi.org/10.1177/154405910708600115.

[26] CarrilhoMRO,GeraldeliS,TayF,deGoesMF,CarvalhoRM, TjaderhaneL,etal.Invivopreservationofthehybridlayer bychlorhexidine.JDentRes2007;86:529–33,

http://dx.doi.org/10.1177/154405910708600608. [27] NishitaniY,YoshiyamaM,WadgaonkarB,BreschiL,

MannelloF,MazzoniA,etal.Activationof

gelatinolytic/collagenolyticactivityindentinbyself-etching adhesives.EurJOralSci2006;114:160–6,

http://dx.doi.org/10.1111/j.1600-0722.2006.00342.x. [28] BreschiL,MazzoniA,NatoF,CarrilhoM,VisintiniE,

TjäderhaneL,etal.Chlorhexidinestabilizesthe adhesiveinterface:a2-yearinvitrostudy.DentMater 2010;26:320–5,http://dx.doi.org/10.1016/j.dental.2009.11.153. [29] PerdigãoJ,ReisA,LoguercioAD.DentinadhesionandMMPs:

acomprehensivereview.JEsthetRestorDent 2013;25:219–41,http://dx.doi.org/10.1111/jerd.12016. [30] PariseGréC,PedrolloLiseD,AyresAP,DeMunckJ,

Tezvergil-MutluayA,Seseogullari-DirihanR,etal.Do collagencross-linkersimprovedentin’sbonding receptiveness?DentMater2018;34:1679–89, http://dx.doi.org/10.1016/j.dental.2018.08.303.

[31] De-PaulaDM,LomonacoD,PonteAMP,CordeiroKE,Moreira MM,MazzettoSE,etal.Influenceofcollagencross-linkers additioninphosphoricacidondentinbiomodificationand bondingofanetch-and-rinseadhesive.DentMater 2020;36:e1–8,http://dx.doi.org/10.1016/j.dental.2019.11.019. [32] MazzoniA,AngeloniV,SartoriN,DuarteJrS,MaravicT,

TjäderhaneL,etal.Substantivityofcarbodiimideinhibition ondentinalenzymeactivityovertime.JDentRes

2017;96:902–8,http://dx.doi.org/10.1177/0022034517708321. [33] CadenaroM,FontaniveL,NavarraCO,GobbiP,MazzoniA,Di

LenardaR,etal.Effectofcarboidiimideonthermal denaturationtemperatureofdentincollagen.DentMater 2016;32:492–8,http://dx.doi.org/10.1016/j.dental.2015.12.006. [34] CombaA,ScottiN,MazzoniA,MaravicT,RibeiroCunhaS,

MichelottoTempestaR,etal.Carbodiimideinactivationof matrixmetalloproteinasesinradiculardentine.JDent 2019;82:56–62,http://dx.doi.org/10.1016/j.dent.2017.11.006. [35] Dávila-SánchezA,GutierrezMF,BermudezJP,Méndez-Bauer

ML,HilgembergB,SauroS,etal.Influenceofflavonoidson long-termbondingstabilityoncaries-affecteddentin.Dent Mater2020;36(9):1151–60,

http://dx.doi.org/10.1016/j.dental.2020.05.007.

[36] LeeJM,EdwardsHHL,PereiraCA,SamiiSI.Crosslinkingof tissue-derivedbiomaterials

in1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide(EDC).J MaterSciMaterMed1996;7:531–41,

http://dx.doi.org/10.1007/BF00122176.

[37] JeffreyAlbertS,AndrewHamiltonD,AmyHartC,Xiaoming Feng,LiliLin,ZhenWang.1,3-Dicyclohexylcarbodiimide. eEROS2017,

http://dx.doi.org/10.1002/047084289X.rd146.pub3. [38] SabatiniC,OrtizPA,PashleyDH.Preservationof

resin-dentininterfacestreatedwithbenzalkoniumchloride adhesiveblends.EurJOralSci2015;123(Apr(2)):108–15, http://dx.doi.org/10.1111/eos.12176.

[39] TayFR,PashleyDH,SuhBI,CarvalhoRM,ItthagarunA. Single-stepadhesivesarepermeablemembranes.JDent 2002;30:371–82,

http://dx.doi.org/10.1016/s0300-5712(02)00064-7.

[40] SaboiaV,NatoF,MazzoniA,OrsiniG,PutignanoA,Giannini M.Adhesionofatwostepetch-and-rinseadhesiveon collagen-depleteddentin.JAdhesDent2008;10:419–22.

(10)

[41] MazzoniA,ApolonioFM,SaboiaVPA,SantiS,AngeloniV, ChecchiV,etal.CarbodiimideinactivationofMMPsand effectondentinbonding.JDentRes2014;93:263–8, http://dx.doi.org/10.1177/0022034513513516465. [42] CastellanCS,PereiraPN,GrandeRH,Bedran-RussoAK.

Mechanicalcharacterizationofproanthocyanidin-dentin matrixinteraction.DentMater2010;26:968–73,

http://dx.doi.org/10.1016/j.dental.2010.06.001.

[43] HassV,Luque-MartinezIV,GutierrezMF,MoreiraCG,Gotti VB,FeitosaVP,etal.Collagencross-linkersondentin bonding:stabilityoftheadhesiveinterfaces,degreeof conversionoftheadhesive,cytotoxicityandinsituMMP inhibition.DentMater2016;32:732–41,

http://dx.doi.org/10.1016/j.dental.2016.03.008. [44] BaenaE,CunhaSR,Maravi ´cT,CombaA,PaganelliF,

Alessandri-BonettiG,etal.Effectofchitosanasa

cross-linkeronmatrixmetalloproteinaseactivityandbond stabilitywithdifferentadhesivesystems.MarDrugs 2020;18(5):263,http://dx.doi.org/10.3390/md18050263. [45] ChenJ,ZhangJ,ZhangW,ChenZ.Sensitivedetermination

ofthepotentialbiomarkersarcosineforprostatecancerby LC-MSwithN,N’-dicyclohexylcarbodiimidederivatization.J SepSci2014;37:14–9,

http://dx.doi.org/10.1002/jssc.201301043. [46] YamauchiM,ShiibaM.Lysinehydroxylationand

crosslinkingofcollagen.MethodsMolBiol2002;194:277–90, http://dx.doi.org/10.1385/1-59259-181-7:277.

[47] HwangY-J,GranelliJ,LyubovitskyJ.Effectsofzero-length andnon-zero-lengthcross-linkingreagentsontheoptical spectralpropertiesandstructuresofcollagenhydrogels. ApplMaterInterfaces2011;4:261–7,

http://dx.doi.org/10.1021/am2013147.

[48] BreschiL,FerracaneJL,CadenaroM,MazzoniA,HiltonTJ, Fundam.Oper.Dent.AContemp.ApproachAdhesionto enamelanddentin.fourthed;2013.

[49] Bedran-RussoAKB,PereiraPNR,DuarteWR,DrummondJL, YamaychiM.Applicationofcrosslinkerstodentincollagen enhancestheultimatetensilestrength.JBiomedMaterRes -PartBApplBiomater2007;80:260–72,

http://dx.doi.org/10.1002/jbm.b.30593.

[50] MazzoniA,PashleyDH,NishitaniY,BreschiL,MannelloF, TjäderhaneL,etal.Reactivationofinactivatedendogenous proteolyticactivitiesinphosphoricacid-etcheddentineby etch-and-rinseadhesives.Biomaterials2006;27:4470–6, http://dx.doi.org/10.1016/j.biomaterials.2006.01.040. [51] ZhangZ,MutluayM,Tezvergil-MutluayA,TayFR,Pashley

DH,ArolaD.EffectsofEDCcrosslinkingonthestiffnessof dentinhybridlayersevaluatedbynanoDMAovertime.Dent Mater2017;33:904–14,

http://dx.doi.org/10.1016/j.dental.2017.04.006. [52] TersariolI,GeraldeliS,MinciottiCL,NascimentoFD,

PääkkönenV,MartinsMT,etal.Cysteinecathepsinsin humandentin-pulpcomplex.JEndod2010;36:475–81, http://dx.doi.org/10.1016/j.joen.2009.12.034.

[53] Maravi ´cT,CombaA,CunhaSR,AngeloniV,CadenaroM, VisinitiniE,etal.Long-termbondstrengthandendogenous enzymaticactivityofachlorhexidine-containing

commerciallyavailableadhesive.JDent2019;84:60–6, http://dx.doi.org/10.1016/j.dent.2019.03.004.

[54] BreschiL,MazzoniA,RuggeriA,CadenaroM,DiLenardaR, DeStefanoDorigoE.Dentaladhesionreview:agingand stabilityofthebondedinterface.DentMat2008;24:90–101, http://dx.doi.org/10.1016/j.dental.2007.02.009.

[55] MazzoniA,ScaffaP,CarrilhoM,TjäderhaneL,DiLenardaR, PolimeniA,etal.Effectsofetch-and-rinseandself-etch adhesivesondentinMMP-2andMMP-9.JDentRes 2013;92:82–6,http://dx.doi.org/10.1177/0022034512467034. [56] TjäderhaneL,LarjavaH,SorsaT,UittoVJ,LarmasM,SaloT.

Theactivationandfunctionofhostmatrix

metalloproteinasesindentinmatrixbreakdownincaries lesions.JDentRes1998;77:1622–9,

http://dx.doi.org/10.1177/00220345980770081001.

[57] Chaussain-MillerC,FiorettiF,GoldbergM,MenashiS.The roleofmatrixmetalloproteinases(MMPs)inhumancaries.J DentRes2006;85:22–32,

http://dx.doi.org/10.1177/154405910608500104.

[58] CuiF,LiuX,MaL,ChibaA,LiB,ZhouJ,etal.Applicationof ethanolimprovestheresin-dentinbondstrengthofa two-bottle,self-etchingprimer-adhesive.AmJDent 2015;28:224–8.

[59] AgeeKA,PrakkiA,Abu-HaimedT,NaguibGH,NawaregMA, Tezvergil-MutluayA,etal.Waterdistributionindentin matrices:boundvs.Unboundwater.DentMater 2015;31:205–16,

http://dx.doi.org/10.1016/j.dental.2014.12.007.

[60] SadekFT,BragaRR,MuenchA,LiuY,PashleyDH,TayFR. Ethanolwet-bondingchallengescurrentanti-degradation strategy.JDentRes2010;89:1499–504,

http://dx.doi.org/10.1177/0022034510385240.

[61] HosakaK,TagamiJ,NishitaniY,YoshiyamaM,CarrilhoM, TayFR,etal.Effectofwetvs.Drytestingonthemechanical propertiesofhydrophilicself-etchingprimerpolymers.EurJ OralSci2007;115:239–45,

http://dx.doi.org/10.1111/j.1600-0722.2007.00430.x.

[62] CadenaroM,AntoniolliF,SauroS,TayFR,DiLenardaR,Prati C,etal.Degreeofconversionandpermeabilityofdental adhesives.EurJOralSci2005;113:525–30,

http://dx.doi.org/10.1111/j.1600-0722.2005.00251.x. [63] TjäderhaneL,NascimentoFD,BreschiL,MazzoniA,

TersariolIL,GeraldeliS,etal.Strategiestoprevent hydrolyticdegradationofthehybridlayer-Areview.Dent Mater2013;29(October(10)):999–1011,

Riferimenti

Documenti correlati

Small bowel occlusion due to giant perineal hernia: abdominal approach with plastic perineal reconstruction.. RIASSUNTO: Occlusione del piccolo intestino da ernia perineale

Enhancement, 3-D Virtual Objects, Accessibility/Open Access, Open Data, Cultural Heritage Availability, Heritage at Risk, Heritage Protection, Virtual Restoration

Considering that more research needs to be developed in order to reduce the uncertainties that those materials impose on the conservation practises in museums and collections

For the purpose, we enrolled CD and UC patients naive to IFX and tested sTNF-α, percentage of circulating TNF-α positive monocytes and lymphocytes, MFI of tmTNF-α in

If Wills is right, if there is truly a predominant social bloc with a cultural sealant incorporating antagonism towards the theory of evolution and qualms about scientific thinking

Se Wills ha ragione, se davvero nel paese leader esiste un blocco sociale maggioritario che ha nell’avversione alla teoria dell’evoluzione biologica e nella diffidenza per il

results con…rm that highly literate investors are more likely to monitor advisor activity than those with low …nancial literacy (scoring zero to three): In the subsample of