Contents lists available atScienceDirect
Physics
Letters
B
www.elsevier.com/locate/physletb
Measurement
of
the
CP -violating
phase
φ
s
from
B
0
s
→
J
/
ψ
π
+
π
−
decays
in
13 TeV
pp collisions
.
LHCb
Collaboration
a
r
t
i
c
l
e
i
n
f
o
a
b
s
t
r
a
c
t
Articlehistory: Received26April2019
Receivedinrevisedform15July2019 Accepted15July2019
Availableonline18July2019 Editor: M.Doser
Decays of B0s and B0s mesons into J/ψ
π
+π
− final statesare studiedinadata samplecorresponding to 1.9 fb−1 of integrated luminosity collected with the LHCb detector in 13 TeV pp collisions. A time-dependentamplitudeanalysisisused todeterminethe final-stateresonancecontributions, the CP -violating phase φs= −0.057±0.060±0.011 rad, the decay-width difference between the heavier massB0s eigenstateandtheB0mesonof−0.050±0.004±0.004 ps−1,andtheCP -violatingparameter
|λ| =1.01+−00..0806±0.03, wherethefirstuncertaintyisstatisticalandthesecondsystematic.Theseresults arecombinedwithpreviousLHCbmeasurementsinthesamedecaychannelusing7 TeVand8 TeVpp collisionsobtainingφs=0.002±0.044±0.012 rad,and|λ|=0.949±0.036±0.019.
©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
MeasurementsofCP violationinfinalstatesthatcanbe popu-latedbothbydirectdecayandviamixingprovideanexcellentway oflookingforphysicsbeyondtheStandardModel(SM)[1].Asyet unobservedheavybosons,light bosonswithextremelysmall cou-plings,orfermionscanbepresentvirtuallyinquantumloops,and thusaffect therelative CP phase. Direct decays into non-flavour-specificfinalstatescaninterferewiththosethatundergo B0
s
−
B0s mixingpriortodecay.ThisinterferencecanresultinCP violation.In certain B0s decays one CP -violating phase that can be mea-sured,called
φ
s,canbeexpressedintermsofCabibbo–Kobayashi– Maskawa matrix elements as−
2arg−
VtsVtb∗/V
csVcb∗. It is not predictedintheSM,butcanbeinferredwithhighprecision from otherexperimentaldatagivingavalueof
−
36.
5−+11..32mrad [2].This numberisconsistent withprevious measurements,whichdidnot have enough sensitivity to determine a non-zero value [3–7]. In thispaperwe presenttheresults ofa newanalysisofthe B0s
→
J/ψ
π
+π
− decay using data from 13 TeV pp collisions collected usingthe LHCbdetectorin2015and2016.1 Theexistence ofthis decayanditsuseinCP -violationstudieswassuggestedinRef. [8].2. Detectorandsimulation
The LHCb detector [9,10] is a single-arm forward spectrome-tercoveringthe pseudorapidity range2
<
η
<
5,designedforthe1 Inthis papermention ofaparticular finalstateimplies useofthe
charge-conjugatestate,exceptwhendealingwithCP -violatingprocesses.
studyofparticles containingb or c quarks.The detectorincludes ahigh-precisiontrackingsystemconsistingofasilicon-stripvertex detector surroundingthe pp interaction region [11], a large-area silicon-stripdetectorlocated upstreamofa dipole magnetwitha bending power of about 4 Tm, andthree stations of silicon-strip detectorsandstrawdrifttubesplaceddownstreamofthemagnet. The tracking systemprovides a measurement of themomentum,
p,ofchargedparticleswitharelativeuncertaintythatvariesfrom 0.5% at low momentum to 1.0% at 200 GeV.2 The minimum
dis-tance of a track to a primary vertex (PV), the impact parameter (IP),ismeasuredwitharesolutionof
(
15+
29/p
T)
μ
m,wherepTis thecomponentofthemomentumtransversetothebeam,in GeV. Different types ofcharged hadronsare distinguished using infor-mationfromtwo ring-imagingCherenkovdetectors [12]. Photons, electronsandhadronsareidentified byacalorimetersystem con-sistingofscintillating-padandpreshowerdetectors,an electromag-neticandahadroniccalorimeter.Muonsareidentifiedbyasystem composedofalternatinglayersofironandmultiwireproportional chambers [13].The onlineeventselection isperformedby a trig-ger,whichconsistsofahardwarestage,basedoninformationfrom thecalorimeterandmuon systems,followed bya softwarestage, whichappliesafulleventreconstruction.At the hardware trigger stage, events are required to have a muon with high pT or a hadron, photon or electron with high transverseenergyinthecalorimeters.Thesoftwaretriggeris com-posedof two stages,the firstof whichperforms a partial recon-struction and requires either a pair of well-reconstructed,
oppo-2 Weusenaturalunitswhereh¯=c=1.
https://doi.org/10.1016/j.physletb.2019.07.036
0370-2693/©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.
sitely chargedmuonshavingan invariant massabove 2
.
7 GeV,or a single well-reconstructed muon with pT>
1 GeV and have a large IP significanceχ
2IP
>
7.
4. The latter is defined as the dif-ference in theχ
2 of the vertex fit fora given PVreconstructed withand withoutthe considered particles. The second stage ap-pliesafulleventreconstructionandforthisanalysisrequirestwo opposite-sign muons to form a good-quality vertex that is well-separatedfromallofthePVs,andtohaveaninvariantmasswithin±
120 MeV oftheknown J/ψ mass [14].Simulationisrequiredtomodeltheeffects ofthe detector ac-ceptanceandthe imposed selection requirements.In the simula-tion, pp collisionsaregeneratedusingPythia[15] withaspecific LHCb configuration [16].Decaysofunstableparticlesaredescribed by EvtGen [17], in which final-state radiation is generated us-ing Photos [18]. The interaction of the generated particles with thedetector,anditsresponse,areimplementedusingtheGeant4 toolkit [19] asdescribedinRef. [20].
3. Decayamplitude
TheresonancestructureinB0s andB0s
→
J/ψπ
+π
−decayshas beenpreviouslystudiedwithatime-integratedamplitudeanalysis using7and8 TeV pp collisions [21]. Thefinal statewas foundto becompatiblewithbeingentirelyCP -odd,withtheCP -evenstate fractionbelow2.
3%at95%confidencelevel,whichallowsthe de-terminationofthe decaywidthofthe heavy B0s masseigenstate,H.The possible presenceofa CP -evencomponentistakeninto accountwhendetermining
φ
s[22].Thetotaldecayamplitude fora
( )
B0
s mesonatdecaytimeequal to zero is assumed to be the sum over individual
π
+π
− reso-nanttransversityamplitudes[23],andonenonresonantamplitude, witheach transversity componentlabelledas Ai ( Ai). Because of the spin-1 J/ψ meson in the final state, the three possible po-larizations of the J/ψ generate longitudinal (0), parallel () and perpendicular (⊥
) transversity amplitudes.When theπ
+π
− pair formsaspin-0statethefinalsystemonlyhasalongitudinal com-ponent,andthusisapure CP eigenstate.Theparameterλ
i≡
qpAi
Ai,
relates CP violation in the interference between mixingand de-cayassociated withthe polarizationstate i for eachresonance in the final state. Here the quantities q and p relate the mass and flavoureigenstates, p
≡
B0s
|
BL,andq≡
B0s|
BL,where|
BListhe lightermasseigenstate [1].ThetotalamplitudesA
andA
canbe expressedasthesumsoftheindividual( ) B0s amplitudes,
A
=
Ai andA =
qpAi=
λ
iAi=
η
i|λ
i|
e−iφ isAi,with
η
i beingtheCPeigenvalue of the state. For each transversity state i there is a
CP -violating phase
φ
si≡ −
arg(
η
iλ
i)
[24]. Assuming that CP vio-lationin thedecay isthe same forall amplitudes,thenλ
≡
η
iλ
i andφ
s≡ −
arg(λ)
.Using|
p/q| =
1,thedecayratesforB0s and B0s intothe J/ψπ
+π
−finalstateare3( )
(
t)
∝
e−st|
A
|
2+ |
A
|
2 2 coshst 2
±
|
A
|
2− |
A
|
2 2 cos(
mst)
−
R
e(
A
∗A
)
sinhst 2
∓
I
m(
A
∗A
)
sin(
m st)
,
(1)where the – sign before the cos
( m
st) term and+
signbefore the sin( m
st) term apply to(t)
,s
≡
L−
H is the decay-width difference between the light and the heavy mass eigen-states,m
s≡
mH−
mL isthe correspondingmassdifference, ands
≡ (
L+
H)/
2 istheaverageB0s mesondecaywidth [26].3 ThelatestLHCbmeasurementdetermined|p
/q|2=1
.0039±0.0033 [25].
For J
/ψ
decays toμ
+μ
− final states the Ai amplitudes are themselves functionsoffourvariables:theπ
+π
− invariant massmππ , and three angular variables
≡ (
cosθ
π π,
cosθ
J/ψ,
χ
)
,de-fined in the helicity basis. These angles are defined as
θ
π πbe-tween the
π
+ directionintheπ
+π
− restframe withrespect to theπ
+π
− directionin the B0s restframe,
θ
J/ψ betweentheμ
+directioninthe J/ψ restframe withrespecttothe J/ψ direction in the B0
s rest frame,and
χ
betweenthe J/ψ
andπ
+π
− decay planesintheB0s restframe[22,24].(Thesedefinitionsarethesame for B0s and B0s,namely,using
μ
+andπ
+ todefine theanglesfor both B0s and B0s decays.)The explicitforms ofthe|
A(mππ
,
)
|
2,|
A(mππ
,
)
|
2, andA
∗(mππ
,
)A(mππ
,
)
terms in Eq. (1) are giveninRef. [22].The analysis proceedsby performing an unbinned maximum-likelihoodfittothe
π
+π
− massdistribution,thedecaytime,and helicityanglesofB0s candidatesidentifiedasB0s orB0s bya flavour-taggingalgorithm[27].4 ThefitprovidestheCP -evenandCP -oddcomponents, and since we include the initial flavour tag, the fit also determines the CP -violating parameters
φ
s and|λ|
, andthe decaywidth.Inordertoproceed,weneedtoselectacleansample of B0s decays,determineacceptancecorrections,performa calibra-tionofthedecay-timeresolutionineacheventasafunctionofits uncertainty,andcalibratetheflavour-taggingalgorithm.4. Selectionrequirements
The selection of J/ψ
π
+π
− right-sign (RS), and wrong-sign (WS) J/ψπ
±π
± final states, proceedsintwo phases. Initiallywe impose loose requirements and subsequently use a multivariate analysisto furthersuppressthecombinatorial background.In the first phase we requirethat the J/ψ decaytracks beidentified as muons, have pT>
500 MeV, and form a good vertex with ver-tex fitχ
2 lessthan16.The identifiedpions are requiredtohavepT
>
250 MeV,notoriginatefromanyPV,andforma goodvertex withthemuons.Theresulting B0s candidateisassignedtothePV forwhichithasthesmallestχ
2IP.Furthermore,werequirethatthe smallest
χ
2IPisnotgreaterthan25.TheB 0
s candidateisrequiredto haveitsmomentumvectoralignedwiththevectorconnectingthe PVtothe B0s decayvertex,andtohaveadecaytime greaterthan 0.3 ps.Reconstructedtrackssharingthesamehitsarevetoed.
Inaddition,backgroundfromB+
→
J/ψ
K+ decays,5 wherethe K+ is misidentified as aπ
+ and combined witha randomπ
−, is vetoed by assuming that each detected pion is a kaon, com-puting the J/ψK+ mass, andremoving thosecandidates that are within±
36 MeV of theknown B+ mass [14]. Backgrounds fromB0
→
J/ψK+π
− or B0s→
J/ψK+K− decays with misidentified kaons result inmasses lower than the B0s peak andthus do not needtobevetoed.For the multivariate part of the selection, we use a Boosted DecisionTree,BDT [28,29],withtheuBoostalgorithm [30].The al-gorithmisoptimizedtonotfurtherbiasacceptanceonthevariable cos
θ
π π .ThevariablesusedtotraintheBDTarethedifferencebe-tween themuon andpionidentifications forthemuon identified withlowerquality,the pT oftheB0s candidate,thesumofthe pT of the two pions,and thenatural logarithms of: the
χ
2IP of each ofthepions,the
χ
2 ofthe B0s vertexanddecaytreefits[31],and the
χ
2IP oftheB 0
s candidate.Inthefit,the B0s momentumvectoris constrainedtopointtothePV, thetwomuonsareconstrainedto
4 Weutilizethesamelikelihoodconstructionthatweusedtodetermineφ sand
|λ|inB0
s→J/ψK+K−decayswithK+K−abovetheφ(1020)massregion [6]. 5 Whendiscussingflavour-specificdecays,mentionofaparticularmodeimplies
Fig. 1. Resultsofthesimultaneousfittothe J/ψπ π massdistributionsRS(black points)andWS(greypoints)samples.Thesolid(blue)curveshowsthefittothe RSsample,thelongdashed(red)curveshowsthesignal,thedot-dashed(magenta) curveshowsB0→J/ψπ+π−decays,thedot-long-dashed(brown)curveshowsthe combinatorialbackground,thedotted(black)curveshowsthesumofB0
s→J/ψη
andΛ0b background,whilethedot-dot-dashed(green)curveshowsthefittoWS
sample.
the J/ψ mass,andallfourtracksareconstrainedtooriginatefrom thesamevertex.
ImplementinguBoostrequiresatrainingprocedure.Data back-groundin the J/ψ
π
+π
− massinterval between200to 250MeV abovethe B0s massandsimulatedsignalare firstused.Then, sep-aratesamples are used to test the BDT performance. We weight thetraining simulationsamplestomatchthetwo-dimensional B0s p and pT distributions,andsmearthevertexfit
χ
2,tomatchthe background-subtractedpreselecteddata.Finally,theminimum re-quirementforBDTpointischosentomaximizesignalsignificance,S/
√
S+
B,whereS(B)istheexpectedsignal(background)yields inarangecorrespondingto±
2.
5 timesthemassresolutionaround theknownB0s mass [14].Todeterminethesignal andbackgroundyields wefitthe can-didate B0
s mass distribution. Backgrounds include combinatorics, whoseshape is estimatedusing WS J
/ψ
π
±π
± candidates mod-elled by an exponential function, B0s→
J/ψη
(
→
ρ
0γ
)
decays withtheγ
ignored,andΛ
0b→
J/ψ
p K− decayswithbothhadrons misidentified as pions. The latter backgrounds are modelled us-ingsimulation.The B0s signalshapeisparameterizedbyaHypatia function [32], wherethesignalradiative tailparametersare fixed to values obtained from simulation. The same shape parameters are used for the B0→
J/ψπ
+π
− decays, with the mean value shiftedby theknown B0s and B0 mesonmassdifference [14]. Fi-nally,we fitsimultaneouslybothRSandWScandidates,usingthe simulatedshapefor B0s
→
J/ψη
(
→
ρ
0γ
)
whoseyieldis allowed tofloat,andfixingboththesizeandshapeoftheΛ
0b→
J/ψp K−component. The results of the fit are shown in Fig. 1. We find 33530
±
220 signalB0s within±
20 MeV oftheB0s masspeak,with apurityof84%.Thesedecaysareusedforfurtheranalysis.Multiple candidatesinthe sameeventhavea rateof0.20%ina±
20 MeV intervalaroundthe B0s masspeak,andareretained.Tosubtract thebackground inthe signal region inthe ampli-tude fit we add negatively weighted events from the WS sam-pleto the RSsample, also accountingforthe differing
π π
mass anddecay-timedistributions.Theweightsaredeterminedby com-paring the RS and WS mass distributions in the upper mass sideband (5420−
5550 MeV). In addition, a small component ofB0s
→
J/ψη
(
η
→
ρ
0γ
)
decaysisalsosubtracted,sinceitisabsent intheWSsample.5. Detectorefficiencyandresolution
The correlated efficiencies in mππ and angular variables
are determined fromsimulation. Weweight the simulatedsignal eventstoreproducethe B0
s meson pT and
η
distributionsaswell as the track multiplicity of the events. The latter may influence theefficienciesofthetrackingandparticleidentification.The cal-culatedefficienciesareshowninFig.2alongwiththedetermined efficiency function. The four-dimensional efficiency is parameter-ized by a combination of Legendre and spherical harmonic mo-ments[33],asε
(
mπ π,
cosθ
π π,
cosθ
J/ψ,
χ
)
=
a,b,c,dabcdPa
(
cosθ
π π)
Ybc(θ
J/ψ,
χ
)
Pd 2mπ π−
m min π π mmaxπ π−
mmin π π−
1,
(2)where Pa andPd areLegendrepolynomials,Ybc arespherical har-monics,mminπ π
=
2mπ+ andmmaxπ π=
mB0s
−
mJ/ψ, andabcd are ef-ficiencycoefficientsdeterminedfromweightedaveragesofdecays generateduniformlyoverphasespace [6].
The model gives an excellent representation of the simulated data.Theefficiencyisuniformwithin about
±
4%forcosθ
J/ψ andabout 10% for
χ
variables; however the mππ and cosθ
π πvari-ablesshowlargeefficiencyvariationsandcorrelations(seeFig.3), due to the
χ
2IP
>
4 requirements on the hadrons. The loss of efficiencyinthelowermππ regioncanbe interpretedasthe pro-jectionof the effectsof cutsonχ
2IP. Events atcos
θ
π π= ±
1 and mππ0
.
6−
0.
8 GeV areatthekinematicboundaryofm2J/ψπ+.One
ofthepionsisalmostatrestin B0s restframe,andthus thepion points to the PV, resultingin a very small
χ
2IP forthispion.The
χ
2IP variableisthemostusefultool tosuppresslarge pion combi-natorialbackgroundfromthePV.
The reconstruction efficiency is not constant as a function of
B0
s decay time due to displacement requirements applied to the hadronsintheofflineselectionsandon J/ψ candidatesinthe trig-ger.Itisdeterminedusingthecontrolchannel B0
→
J/ψK∗(
892)
0, with K∗(
892)
0→
K+π
−, which is known to have a lifetime ofτ
B0=
1.
520±
0.
004 ps [14].ThesimulatedB0eventsareweightedtoreproducethedistributions inthedatafor pT and
η
ofthe B0 meson,andtheinvariantmassandhelicityangleofK+π
−system, aswellasthetrackmultiplicityoftheevents.Thesignalefficiency iscalculatedasε
B0s data(t)
=
ε
B0 data(t)
·
ε
B0 s sim(t)/
ε
B0 sim(t)
,whereε
B0 data(t)
is the efficiency of the control channel asmeasured by comparing data with the known lifetimedistribution, andε
B0ssim
(t)/
ε
B0
sim
(t)
is theratio ofefficienciesofthe simulatedsignal andcontrolmode after the full triggerand selection chain havebeen applied. This correctionaccountsforthesmalldifferencesinthekinematics be-tweenthesignalandcontrolmodes.Thedetailsofthemethodare explainedinRef. [4].The acceptance is checked by measuring the decay width of
B+
→
J/ψK+ decays. The fitted decay-width difference between the B+ and B0 mesons isB+
−
B0= −
0.
0475±
0.
0013 ps−1,where the uncertainty is statistical only, in agreement with the knownvalueof
−
0.
0474±
0.
0023 ps−1[14].From the measured B0
s candidate momentum and decay dis-tance, the decay time and its event-by-event uncertainty
δ
t are calculated. The calculated uncertainty is imbedded into the res-olution function, which is modelled by the sum of three Gaus-sian functionswithcommonmeansandwidthsproportional toa quadraticfunctionofδ
t.Theparametersoftheresolutionfunction are determined witha sample of putative prompt J/ψ→
μ
+μ
−Fig. 2. Overallefficiencynormalizedtounityfor(a)mπ π,(b)cosθπ π,(c)cosθJ/ψ and(d)χobservables.ThepointswitherrorbarsarefromtheB0s→J/ψπ+π−simulation,
whilethecurvesshowtheprojectionoftheefficiencyfunction.
Fig. 3. Overallefficiencyfor(a)mπ πvscosθπ πand(b)m2J/ψπ+vsm
2
π π.Theinefficiencyisatthekinematicboundaryofm2J/ψπ+wherethepionisalmostatrestintheB
0 s
frame.
decays combinedwith two pions ofopposite charge. Taking into account the decay-timeuncertainty distributionof the B0s signal, theaverageeffectiveresolutionisfoundtobe41.5 fs.Themethod isvalidatedusingsimulation;weestimatetheaccuracyofthe res-olutiondeterminationtobe
±
3%.6. Flavourtagging
Knowledge of the
( )
B0s flavour at production is necessary. We use informationfrom decaysof the other b hadron in the event (opposite-side,OS)andfragmentsofthejetthatproducedthe
( )
B0s mesonthat contain a charged kaon,called same-sidekaon (SSK) [27].TheOStaggerinferstheflavouroftheotherb hadroninthe event from the charges of muons, electrons, kaons, and the net chargeoftheparticlesthatformreconstructedsecondaryvertices. The flavour tag,
q
, takes values of+
1,−
1 or 0 if the signal mesonistaggedasB0s,B0soruntagged,respectively.Thewrong-tag probability,y
,isestimatedevent-by-eventbasedontheoutputofaneuralnetwork.Itissubsequentlycalibratedwithdatainorderto relateittothetruewrong-tag probabilityoftheeventbyalinear relationas
ω
(y)
=
p0+
p0 2
+
p1+
p1 2
· (y − y);
ω
(y)
=
p0−
p0 2
+
p1−
p1 2
· (y − y),
(3)where p0, p1,
p
0 andp
1 arecalibrationparameters,andω
(y)
andω
(y)
are the calibratedprobabilities for a wrong-tag assign-ment for B0s and B0s mesons, respectively. The calibration is per-formed separately for the OS and the SSK taggers using B+
→
J/ψK+ and B0s→
D−sπ
+ decays, respectively. When events are tagged by both the OS and the SSK algorithms, a combined tag decisionisformed.Theresultingefficiencyandtaggingpowersare listedinTable1.Table 1
Taggingefficiency,εtag,andtaggingpowergivenasthe
efficiency timesdilution squared, εtagD2, where D=
(1−2ω) for each categoryand the total. The uncer-taintiesonεtagarestatisticalonly,andthoseforεtagD2
containbothstatisticalandsystematiccomponents. Category εtag(%) εtagD2(%)
OS only 11.0±0.6 0.86±0.05 SSK only 42.6±0.6 1.54±0.33 OS and SSK 24.9±0.6 2.66±0.19 Total 78.5±0.7 5.06±0.38 Table 2 Resonanceparameters.
Resonance Mass (MeV) Width (MeV) Source f0(500) 471±21 534±53 LHCb[38] f0(980) Varied in fits f2(1270) 1275.5±0.8 186.7+−22..25 PDG [14] f0(1500) Varied in fits f2(1525) 1522.2±1.7 78.0±4.8 LHCb [6] f0(1710) 1723+−65 139±8 PDG [14] f0(1790) 1790+−4030 270+ 60 −30 BES [37]
7.Descriptionofthe
π
+π
−massspectrumWefittheentire
π
+π
−massspectrumincludingtheresonance contributions listed in Table 2, and a nonresonant (NR) compo-nent.We use an isobarmodel [21]. All resonances are described by Breit–Wigner amplitudes, exceptfor the f0(
980)
state, which ismodelledbya Flattéfunction [34].The nonresonantamplitude istreatedasbeingconstantinmππ .Other theoreticallymotivated amplitude models are also proposed to describe this decay [35, 36]. Theprevious publication [21] usedan unconfirmed f0(
1790)
resonance,reported by theBES collaboration [37], instead ofthef0
(
1710)
state.Wetestwhichonegivesabetterfit.The amplitude AR
(
mππ)
, generally represented by a Breit– WignerfunctionoraFlattéfunction,isusedtodescribethemass lineshapeofresonanceR.TodescribetheresonancefromtheB0sdecays,theamplitudeiscombinedwiththe B0s andresonance de-caypropertiestoformthefollowingexpression
A
R(
mπ π)
=
2 JR+
1 PRPBF(BLB)FR(LR)AR(
mπ π)
×
PB mB LBP R m0 LR.
(4)HerePB isthe J
/ψ
momentumintheB0s restframe, PR isthe mo-mentumofeitherofthetwohadronsinthedihadronrestframe,mB is the B0s mass, m0 is the mass of resonance R,6 JR is the spin of the resonance R, LB is the orbital angular momentum betweenthe J/ψ meson and
π
+π
− system, and LR the orbital angularmomentumintheπ
+π
− system,andthusisthesameas thespin of theπ
+π
− resonance.The terms F(LB)B and F (LR)
R are theBlatt–Weisskopfbarrierfactors forthe B0s mesonand R
reso-nance,respectively [39].Theshapeparametersforthe f0
(
980)
andf0
(
1500)
resonancesareallowedtovary.6 Equation (4) ismodifiedfromthatusedinpreviouspublications [4,21] and
fol-lowstheconventionsuggestedbythePDG[14].
8. Likelihooddefinition
Thedecay-timedistributionincludingflavourtaggingis
R
(ˆ
t,
mπ π,
, q
|y) =
1 1+ |q|
[1
+ q (
1−
2ω
(y))
](ˆ
t,
mπ π,
)
+
[1− q (
1−
2ω
¯
(y))
]1+
AP 1−
AP¯(ˆ
t,
mπ π,
)
,
(5)where
ˆ
t isthetruedecaytime,(–)
isdefinedinEq. (1), and AP is theproductionasymmetryofB0
s mesons.
Thefitfunction forthesignal ismodifiedto takeintoaccount thedecay-timeresolutionandacceptanceeffectsresultingin
F
(
t,
mπ π,, q
|y, δ
t)
=
R(ˆ
t,
mπ π,
, q
|y) ⊗
T(
t− ˆ
t|δ
t)
ε
B0sdata
(
t)
ε
(
mπ π,),
(6) whereε
(
mππ,
)
istheefficiencyasafunctionofmππ and angu-larvariables, T(t
− ˆ
t|δ
t)
isthedecay-timeresolutionfunction,andε
B0sdata
(t)
isthedecay-timeacceptancefunction.Thefreeparameters inthefitareφ
s,|λ|
,H
−
B0,themagnitudesandphasesoftheresonances amplitudes, and the shape parameters of some reso-nances.Theotherparameters,including
m
s,andL,arefixedto theknownvalues[14] orothermeasurementsmentionedbelow.
The signal function is normalized by summing over
q
values andintegratingoverdecaytimet,themassmππ ,andtheangular variables,,giving
N
(δ
t)
=
2[(ˆ
t,
mπ π,
)
+
1+
AP 1−
AP¯(ˆ
t,
mπ π,
)
]
⊗
T(
t− ˆ
t|δ
t)
ε
B 0 s data(
t)
ε
(
mπ π,)
dmπ πddt
.
(7) Weassume noasymmetries inthetaggingefficiencies,whichare accountedforinthesystematicuncertainties.Theresultingsignal PDFisP
(
t,
mπ π,, q
|y, δ
t)
=
1
N
(δ
t)
F
(
t,
mπ π,, q
|y, δ
t).
(8) ThefitterusesatechniquesimilartosPlot [40] tosubtract back-groundfromthelog-likelihoodsum.Eachcandidateisassigneda weight,Wi= +
1 fortheRSeventsandnegativevaluesfortheWS events.Thelikelihoodfunctionisdefinedas−
2 lnL
= −
2 sWi
Wiln
P
(
t,
mπ π,
, q
|y, δ
t),
(9)wheresW
≡
iWi/
iWi2 isaconstantfactoraccountingforthe effectofthebackgroundsubtractiononthestatisticaluncertainty.The decay-time acceptance is assumed to be factorized from other variables,butduetothe
χ
2IP cuton thetwo pions,the de-caytimeiscorrelatedwiththeangularvariables.Toavoidbiason thedeterminationof
Hfromthedecay-timeacceptance,the sim-ulated B0s signal isweightedinordertoreproducethemππ reso-nantstructure observedindataby usingthepreferredamplitude modelthatisdeterminedbytheoverallfit.Aniterativeprocedure isperformedtofinalizethedecay-timeacceptance.Thisprocedure converges in three steps beyondwhich
H doesnot vary. When weapply thismethodtopseudoexperimentsthatincludethe cor-relationmentionedbefore,thefitterreproducestheinputvaluesof
Table 3
Likelihoodsofvariousresonancemodelfits.Positiveornegativeinterferences(Int) amongthecontributingresonancesareindicated.TheSolutionsareindicatedby#.
# Resonance content Int −2 lnL
I f0(980)+f0(1500)+f0(1790)+f2(1270)+f2(1525)+NR − −4850 II f0(980)+f0(1500)+f0(1710)+f2(1270)+f2(1525)+NR + −4834 III f0(980)+f0(1500)+f0(1790)+f2(1270)+f2(1525)+NR + −4830 IV f0(980)+f0(1500)+f0(1790)+f2(1270)+f2(1525) − −4828 V f0(980)+f0(1500)+f0(1710)+f2(1270)+f2(1525) − −4706 Table 4
FitresultsfortheCP -violatingparametersforSolutionI.Thefirstuncertaintiesare statistical,andthesecondsystematic.Thelastthreecolumnsshowthestatistical correlationcoefficientsforthethreeparameters.
Fit result Correlation
Parameter H− B0 |λ| φs
H− B0 ( ps−1) −0.050±0.004±0.004 1.000 0.022 0.038
|λ| 1.01−+00..0806±0.03 0.022 1.000 0.065
φs(rad) −0.057±0.060±0.011 0.038 0.065 1.000
9. Fitresults
Wefirstchoosethe resonancesthatbestfitthemππ
distribu-tion. Table 3 lists the different fit components and the value of
−
2lnL
.In thesecomparisons,themassandwidthofmost reso-nancesarefixed tothecentralvalueslistedinTable2,exceptfor the f0(
980)
and f0(
1500)
resonances, whose parameters are al-lowedtovary.Wefindtwotypesoffitresults,onewithapositive integratedsumofallinterferingcomponentsandonewitha nega-tiveone.ThefirstlistedSolutionIisbetterthanSolutionIIbyfour standard deviations, calculated by taking the square root of the−
2lnL
difference. We take Solution I for our measurement and IIforsystematicuncertaintyevaluation.Themodelscorresponding toSolutionsIandIIareverysimilartothosefoundinourprevious analysisofthesamefinalstate [21].Fig. 5. Datadistributionofmπ πwiththeprojectionoftheSolutionIfitresult over-laid.Thedataaredescribedbythepoints(black)witherrorbars.Thesolid(blue) curveshowstheoverallfit.
ForthefitweassumethattheCP -violationquantities(
φ
s i,|λ
i|
) arethesameforalltheresonances.Wealsofixm
stothecentral value of the world average 17.
757±
0.
021 ps−1 [14], and fixL tothecentralvalueof0
.
6995±
0.
0047 ps−1 fromtheLHCb B0s
→
J/ψK+K− results [6].
The fit valuesandcorrelations ofthe CP -violating parameters are shown in Table 4 for Solution I. The shape parameters of
f0
(
980)
and f0(
1500)
resonancesare foundtobeconsistentwith our previous results [21]. The angular anddecay-time fit projec-tionsareshowninFig.4.Themππ fitprojectionisshowninFig.5, wherethecontributionsoftheindividualresonancesarealso dis-played.AllsolutionslistedinTable3giveverysimilarfitvaluesforφ
s andH.Wealsofind thatthe CP -odd fractionisgreater than 97% at95% confidencelevel.The resonantcontent forSolutions I andIIarelistedinTable5.
Table 5
FitresultsoftheresonantstructureforbothSolutionsIandII.Theseresultsdonot supersedethoseinRef. [21] fortheresonantfractionsbecausenosystematic un-certaintiesarequoted.Thesumoffitfractionisnotnecessary100%duetopossible interferencesbetweenresonanceswiththesamespin.
Component Fit fractions (%) Transversity fractions (%)
0 ⊥ Solution I f0(980) 60.09±1.48 100 − − f0(1500) 8.88±0.87 100 − − f0(1790) 1.72±0.29 100 − − f2(1270) 3.24±0.48 13±3 37±9 50±10 f2(1525) 1.23±0.86 40±13 31±14 29±25 NR 2.64±0.73 100 − − Solution II f0(980) 93.05±1.12 100 − − f0(1500) 6.47±0.41 100 − − f0(1710) 0.74±0.11 100 − − f2(1270) 3.22±0.44 17±4 30±8 53±10 f2(1525) 1.44±0.36 35±8 31±12 34±17 NR 8.13±0.79 100 − − 10. Systematicuncertainties
ThesystematicuncertaintiesfortheCP -violatingparameters,
λ
and
φ
s,aresmallerthanthestatisticalones.Theyaresummarized inTable6alongwiththeuncertaintyonH
−
B0.Theuncertaintyonthedecay-timeacceptanceisfoundbyvarying theparameters ofthe acceptancefunction within their uncertainties and repeat-ing the fit.The same procedure is followedfor the uncertainties onthe B0 lifetime,
m
s,L,mππ and angularefficiencies, reso-nancemassesandwidths,flavour-taggingcalibration,andallowing fora2%productionasymmetry [41];thisuncertaintyalsoincludes anypossibledifferenceinflavourtaggingbetweenB0s andB0s. Sim-ulationisusedtovalidatethemethodforthetime-resolution cali-bration.Theuncertaintiesoftheparametersofthetime-resolution modelareestimatedusingthedifference betweenthesignal sim-ulation andprompt J
/ψ
simulation. These uncertainties are var-ied to obtain the effects on the physics parameters. Resonance modelling uncertainty includes varying the Breit–Wigner barrier factors, changing the default values of LB=
1 for the D-wave resonances to one or two, the differencesbetween the two best solutions,and replacingthe NR component by the f0(
500)
reso-nance.Furthermore,includinganisospin-violatingρ
(
770)
0 compo-nentinthefit,resultsinanegligiblecontributionof(
1.
1±
0.
3)
%. Thelargest shiftamongthe modellingvariations is takenas sys-tematicuncertainty.Theinclusion ofρ
componentsresultsinthe largestshiftsofthethreephysicsparameters quoted.The processB+c
→
π
+B0s canaffectthemeasurementof
H
−
B0.Anestimateofthefractionofthesedecaysinoursampleis0.8% [5].Neglecting theB+c contributionleadstoabiasof0.0005 ps−1,whichisadded asasystematicuncertainty.Otherparametersareunchanged.
Correctionsfrompenguinamplitudesareignoredbecausetheir effects are known to be small [42–44] compared to the current experimentalprecision.
11. Conclusions
Using B0s and B0s
→
J/ψπ
+π
− decays, we measure the CP-violatingphase,
φ
s= −
0.
057±
0.
060±
0.
011 rad,thedecay-width differenceH
−
B0= −
0.
050±
0.
004±
0.
004 ps−1, and thepa-rameter
|λ| =
1.
01−+00..0806±
0.
03,wherethequoteduncertaintiesare statistical and systematic. These results are more precise thanTable 6
Absolutesystematicuncertaintiesforthephysicsparameters.
Source H− B0 |λ| φs
[ fs−1] [×10−3] [mrad]
Decay-time acceptance 2.0 0.0 0.3
τB0 0.2 0.5 0.0
Efficiency (mπ π,) 0.2 0.1 0.0 Decay-time resolution width 0.0 4.3 4.0 Decay-time resolution mean 0.3 1.2 0.3
Background 3.0 2.7 0.6 Flavour tagging 0.0 2.2 2.3 ms 0.3 4.6 2.5 L 0.3 0.4 0.4 B+c 0.5 – – Resonance parameters 0.6 1.9 0.8 Resonance modelling 0.5 28.9 9.0 Production asymmetry 0.3 0.6 3.4 Total 3.8 29.9 11.0
those obtainedfromthe previous studyofthismodeusing7 TeV and 8 TeV pp collisions (Run 1) [4]. To combine the Run-1 re-sults with these, we reanalyze them by fixing
m
s=
17.
757±
0.
021 ps−1fromRef. [14],andL
=
0.
6995±
0.
0047 ps−1fromthe LHCb B0s→
J/ψK+K− results [6]. We remove the Gaussian con-straintons andlet
Hvary.Insteadoftakingtheuncertainties offlavourtagginganddecay-timeresolutionintothestatistical un-certainty,weplacethesesourcesinthesystematicuncertaintyand assume100%correlationwithournewresults.Theupdatedresults are:
φ
s=
0.
075±
0.
065±
0.
014 radand|λ| =
0.
898±
0.
051±
0.
013 with a correlation of 0.
025. We then use the updatedφ
s and|λ|
Run-1 results as a constraintinto our newφ
s fit.7 The com-bined resultsareH
−
B0= −
0.
050±
0.
004±
0.
004 ps−1,|λ|
=
0
.
949±
0.
036±
0.
019, andφ
s=
0.
002±
0.
044±
0.
012 rad. The correlation coefficientsamongthe fitparameters are 0.025(
ρ
12)
,−
0.
001(
ρ
13)
,and0.026(
ρ
23)
.OurresultsstillhaveuncertaintiesgreaterthantheSM predic-tion and are slightly more precise than the measurement using
B0s
→
J/ψK+K− decays,based only on Run-1 data, which hasa precisionof0.049 rad [5].Hencethisisthemostprecise determi-nationofφ
s todate.Acknowledgements
We express our gratitude to our colleagues in the CERN ac-celerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb in-stitutes. We acknowledge support from CERN and from the na-tional agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MINECO (Spain); SNSF andSER (Switzerland);NASU (Ukraine); STFC (United King-dom);NSF (USA). We acknowledgethe computingresources that are provided by CERN, IN2P3 (France),KIT andDESY (Germany), INFN(Italy),SURF(Netherlands),PIC(Spain),GridPP(United King-dom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-sourcesoftwarepackagesonwhichwe depend.Individual groups or members have received support from AvH Foundation (Ger-many); EPLANET,MarieSkłodowska-Curie ActionsandERC (Euro-peanUnion);ANR,LabexP2IOandOCEVU, andRégion
Auvergne-7 Wedonotincludeanaveragevalueof
Hsincenosystematicuncertaintywas
Rhône-Alpes (France); KeyResearch Program ofFrontier Sciences ofCAS,CASPIFI,andtheThousandTalentsProgram(China);RFBR, RSFandYandexLLC(Russia);GVA,XuntaGalandGENCAT(Spain); the Royal Society and the Leverhulme Trust (United Kingdom); Laboratory Directed ResearchandDevelopment program of LANL (USA).
References
[1]I.I.Y.Bigi,A.I.Sanda,CPviolation,Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. 9(2000)1.
[2] CKMfittergroup,J.Charles,etal.,CurrentstatusoftheStandardModelCKMfit andconstraintson F=2 newphysics,Phys.Rev.D91(2015)073007,arXiv: 1501.05013,updatedresultsandplotsavailableathttp://ckmfitter.in2p3.fr/. [3]CDF collaboration, T. Aaltonen, et al., First flavor-tagged determination of
boundsonmixing-inducedCPviolationinB0
s→J/ψφdecays,Phys.Rev.Lett.
100(2008)161802,arXiv:0712.2397;
D0collaboration,V.M.Abazov,etal.,MeasurementofB0
s mixingparameters
fromtheflavor-taggeddecayB0
s→J/ψφ,Phys.Rev.Lett.101(2008)241801,
arXiv:0802.2255;
CDFcollaboration,T.Aaltonen,etal.,MeasurementoftheCP -violatingphase
βsJ/ψ φinB0s→J/ψφdecayswiththeCDFIIdetector,Phys.Rev.D85(2012)
072002,arXiv:1112.1726;
D0collaboration,V.M.Abazov,etal.,MeasurementoftheCP -violatingphase
φsJ/ψ φusingtheflavor-taggeddecay Bs0→J/ψφ in8fb−1ofp p collisions,
Phys.Rev.D85(2012)032006,arXiv:1109.3166.
[4]LHCbcollaboration,R.Aaij,etal.,MeasurementoftheCP -violatingphaseφsin
B0
s→J/ψπ+π−decays,Phys.Lett.B736(2014)186,arXiv:1405.4140.
[5]LHCbcollaboration,R.Aaij,etal., PrecisionmeasurementofCP violationin
B0
s→J/ψK+K−decays,Phys.Rev.Lett.114(2015)041801,arXiv:1411.3104.
[6]LHCbcollaboration,R.Aaij,etal.,ResonancesandCP violationinB0
sandB0s→
J/ψK+K−decaysinthemassregionabovetheφ(1020),J.HighEnergyPhys. 08(2017)037,arXiv:1704.08217.
[7]ATLAScollaboration,G.Aad,etal.,MeasurementoftheCP -violatingphaseφs
andtheB0
s mesondecaywidthdifferencewithB0s→J/ψφdecaysinATLAS,
J.HighEnergyPhys.08(2016)147,arXiv:1601.03297;
CMScollaboration, V.Khachatryan,et al.,Measurement ofthe CP -violating
weak phase φs and the decay width difference s using the B0s →
J/ψ φ(1020)decaychannelinppcollisionsat√s=8TeV,Phys.Lett.B757
(2016)97,arXiv:1507.07527.
[8]S.Stone,L.Zhang,S-wavesandthemeasurementofCPviolatingphasesinBs
decays,Phys.Rev.D79(2009)074024,arXiv:0812.2832.
[9]LHCbcollaboration,A.A.AlvesJr.,etal.,TheLHCbdetectorattheLHC,J. In-strum.3(2008)S08005.
[10]LHCbcollaboration,R.Aaij,etal.,LHCbdetectorperformance,Int.J.Mod.Phys. A30(2015)1530022,arXiv:1412.6352.
[11]R. Aaij,etal., PerformanceoftheLHCb vertexlocator, J.Instrum. 9(2014) P09007,arXiv:1405.7808.
[12]M.Adinolfi,etal.,PerformanceoftheLHCbRICHdetectorattheLHC,Eur.Phys. J.C73(2013)2431,arXiv:1211.6759.
[13]A.A.AlvesJr.,etal.,PerformanceoftheLHCbmuonsystem,J.Instrum.8(2013) P02022,arXiv:1211.1346.
[14]ParticleDataGroup,M.Tanabashi,etal.,Reviewofparticlephysics,Phys.Rev. D98(2018)030001.
[15]T.Sjöstrand,S.Mrenna,P.Skands,PYTHIA6.4physicsandmanual,J.High En-ergyPhys.05(2006)026,arXiv:hep-ph/0603175;
T.Sjöstrand,S.Mrenna,P.Skands,AbriefintroductiontoPYTHIA8.1,Comput. Phys.Commun.178(2008)852,arXiv:0710.3820.
[16]I.Belyaev,etal.,HandlingofthegenerationofprimaryeventsinGauss,the LHCbsimulationframework,J.Phys.Conf.Ser.331(2011)032047.
[17]D.J.Lange,TheEvtGenparticledecaysimulationpackage,Nucl.Instrum. Meth-odsA462(2001)152.
[18]P.Golonka,Z.Was,PHOTOSMonteCarlo:aprecisiontoolforQEDcorrections inZ andW decays,Eur.Phys.J.C45(2006)97,arXiv:hep-ph/0506026.
[19]Geant4collaboration,J.Allison,etal.,Geant4developmentsandapplications, IEEETrans.Nucl.Sci.53(2006)270;
Geant4collaboration,S.Agostinelli,etal.,Geant4:asimulationtoolkit,Nucl. Instrum.MethodsA506(2003)250.
[20]M.Clemencic,etal.,TheLHCbsimulationapplication,Gauss:design,evolution andexperience,J.Phys.Conf.Ser.331(2011)032023.
[21]LHCb collaboration, R.Aaij, et al., Measurementofresonant and CP
com-ponentsin B0
s→J/ψπ+π− decays,Phys.Rev.D89 (2014)092006, arXiv:
1402.6248.
[22]L.Zhang,S.Stone,Time-dependentDalitz-plotformalismfor B0
q→J/ψh+h−,
Phys.Lett.B719(2013)383,arXiv:1212.6434.
[23]A.S.Dighe,I.Dunietz,H.J.Lipkin,J.L.Rosner,Angulardistributionsandlifetime differencesinB0
s→J/ψφdecays,Phys.Lett.B369(1996)144,arXiv:hep-ph/
9511363.
[24]LHCbcollaboration,R.Aaij,etal., MeasurementofCP violationand the B0
s
mesondecaywidthdifferencewith B0
s→J/ψK+K− and B0s→J/ψπ+π−
decays,Phys.Rev.D87(2013)112010,arXiv:1304.2600.
[25]LHCbcollaboration,R.Aaij,etal.,MeasurementoftheCP asymmetryinB0
s–B0s
mixing,Phys.Rev.Lett.117(2016)061803,arXiv:1605.09768.
[26]U.Nierste,ThreelecturesonmesonmixingandCKMphenomenology,arXiv: 0904.1869.
[27]LHCbcollaboration,R.Aaij,etal.,Opposite-sideflavourtaggingofBmesonsat theLHCbexperiment,Eur.Phys.J.C72(2012)2022,arXiv:1202.4979; LHCbcollaboration,R.Aaij,etal.,Anewalgorithmforidentifyingtheflavour ofB0
s mesonsatLHCb,J.Instrum.11(2016)P05010,arXiv:1602.07252;
D.Fazzini,FlavourtaggingintheLHCbexperiment,PoSLHCP2018(2018)230.
[28]L.Breiman,J.H.Friedman,R.A.Olshen,C.J.Stone,ClassificationandRegression Trees,WadsworthInternationalGroup,Belmont,California,USA,1984.
[29]Y.Freund,R.E.Schapire,Adecision-theoreticgeneralizationofon-linelearning andanapplicationtoboosting,J.Comput.Syst.Sci.55(1997)119.
[30]J.Stevens,M.Williams,uBoost:aboostingmethodforproducinguniform se-lectionefficienciesfrommultivariateclassifiers,J.Instrum.8(2013)P12013, arXiv:1305.7248.
[31]W.D.Hulsbergen,DecaychainfittingwithaKalmanfilter,Nucl.Instrum. Meth-odsA552(2005)566,arXiv:physics/0503191.
[32]D.MartínezSantos, F.Dupertuis,Mass distributionsmarginalized over per-eventerrors,Nucl.Instrum.MethodsA764(2014)150,arXiv:1312.5000.
[33]LHCb collaboration, R. Aaij, et al., Observation of the decay B0
s →
J/ψ (2S)K+π−,Phys.Lett.B747(2015)484,arXiv:1503.07112.
[34]S.M.Flatté,Onthenatureof0+mesons,Phys.Lett.B63(1976)228.
[35]J.Daub,C.Hanhart,B.Kubis,Amodel-independentanalysisoffinal-state in-teractionsin B0d/s→J/ψπ+π−,J. HighEnergyPhys. 02(2016)009,arXiv:
1508.06841.
[36]S.Ropertz,C.Hanhart,B.Kubis,Anewparametrizationforthescalarpionform factors,Eur.Phys.J.C78(2018)1000,arXiv:1809.06867.
[37]BES collaboration, M. Ablikim, et al., Resonances in J/ψ → φπ+π− and
φK+K−,Phys.Lett.B607(2005)243,arXiv:hep-ex/0411001.
[38]LHCbcollaboration,R.Aaij,etal.,AnalysisoftheresonantcomponentsinB0→
J/ψπ+π−,Phys.Rev.D87(2013)052001,arXiv:1301.5347.
[39]LHCbcollaboration,R.Aaij,etal.,AnalysisoftheresonantcomponentsinB0
s→
J/ψπ+π−,Phys.Rev.D86(2012)052006,arXiv:1204.5643.
[40]M.Pivk,F.R.Le Diberder,sPlot:astatisticaltooltounfolddatadistributions, Nucl.Instrum.MethodsA555(2005)356,arXiv:physics/0402083;
Y.Xie,sFit:amethodforbackgroundsubtractioninmaximumlikelihoodfit, arXiv:0905.0724.
[41]LHCbcollaboration,R.Aaij,etal., MeasurementofB0, B0
s,B+ andΛ0b
pro-ductionasymmetriesin7 and8 TeV proton-protoncollisions,Phys.Lett.B774 (2017)139,arXiv:1703.08464.
[42]R.Fleischer,Theoretical prospects forB physics, PoSFPCP2015 (2015)002, arXiv:1509.00601.
[43]LHCbcollaboration,R.Aaij,etal.,MeasurementoftheCP -violatingphaseβin
B0→J/ψπ+π−decaysandlimitsonpenguineffects,Phys.Lett.B742(2015)
38,arXiv:1411.1634.
[44]LHCbcollaboration,R.Aaij,etal.,MeasurementofCP violationparametersand polarisationfractionsinB0
s→J/ψK∗0decays,J.HighEnergyPhys.11(2015)
082,arXiv:1509.00400.
LHCbCollaboration