• Non ci sono risultati.

Measurement of the CP-violating phase phi(s) from B-s(0) -> J/psi pi(+)pi(-) decays in 13 TeV pp collisions

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of the CP-violating phase phi(s) from B-s(0) -> J/psi pi(+)pi(-) decays in 13 TeV pp collisions"

Copied!
12
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

CP -violating

phase

φ

s

from

B

0

s

J

/

ψ

π

+

π

decays

in

13 TeV

pp collisions

.

LHCb

Collaboration

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received26April2019

Receivedinrevisedform15July2019 Accepted15July2019

Availableonline18July2019 Editor: M.Doser

Decays of B0s and B0s mesons into J/ψ

π

+

π

− final statesare studiedinadata samplecorresponding to 1.9 fb−1 of integrated luminosity collected with the LHCb detector in 13 TeV pp collisions. A time-dependentamplitudeanalysisisused todeterminethe final-stateresonancecontributions, the CP -violating phase φs= −0.057±0.060±0.011 rad, the decay-width difference between the heavier massB0

s eigenstateandtheB0mesonof−0.050±0.004±0.004 ps−1,andtheCP -violatingparameter

|λ| =1.01+00..0806±0.03, wherethefirstuncertaintyisstatisticalandthesecondsystematic.Theseresults arecombinedwithpreviousLHCbmeasurementsinthesamedecaychannelusing7 TeVand8 TeVpp collisionsobtainingφs=0.002±0.044±0.012 rad,and|λ|=0.949±0.036±0.019.

©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

MeasurementsofCP violationinfinalstatesthatcanbe popu-latedbothbydirectdecayandviamixingprovideanexcellentway oflookingforphysicsbeyondtheStandardModel(SM)[1].Asyet unobservedheavybosons,light bosonswithextremelysmall cou-plings,orfermionscanbepresentvirtuallyinquantumloops,and thusaffect therelative CP phase. Direct decays into non-flavour-specificfinalstatescaninterferewiththosethatundergo B0

s

B0s mixingpriortodecay.ThisinterferencecanresultinCP violation.

In certain B0s decays one CP -violating phase that can be mea-sured,called

φ

s,canbeexpressedintermsofCabibbo–Kobayashi– Maskawa matrix elements as

2arg



VtsVtb

/V

csVcb



. It is not predictedintheSM,butcanbeinferredwithhighprecision from otherexperimentaldatagivingavalueof

36

.

5+11..32mrad [2].This numberisconsistent withprevious measurements,whichdidnot have enough sensitivity to determine a non-zero value [3–7]. In thispaperwe presenttheresults ofa newanalysisofthe B0

s

J/ψ

π

+

π

− decay using data from 13 TeV pp collisions collected usingthe LHCbdetectorin2015and2016.1 Theexistence ofthis decayanditsuseinCP -violationstudieswassuggestedinRef. [8].

2. Detectorandsimulation

The LHCb detector [9,10] is a single-arm forward spectrome-tercoveringthe pseudorapidity range2

<

η

<

5,designedforthe

1 Inthis papermention ofaparticular finalstateimplies useofthe

charge-conjugatestate,exceptwhendealingwithCP -violatingprocesses.

studyofparticles containingb or c quarks.The detectorincludes ahigh-precisiontrackingsystemconsistingofasilicon-stripvertex detector surroundingthe pp interaction region [11], a large-area silicon-stripdetectorlocated upstreamofa dipole magnetwitha bending power of about 4 Tm, andthree stations of silicon-strip detectorsandstrawdrifttubesplaceddownstreamofthemagnet. The tracking systemprovides a measurement of themomentum,

p,ofchargedparticleswitharelativeuncertaintythatvariesfrom 0.5% at low momentum to 1.0% at 200 GeV.2 The minimum

dis-tance of a track to a primary vertex (PV), the impact parameter (IP),ismeasuredwitharesolutionof

(

15

+

29

/p

T

)

μ

m,wherepTis thecomponentofthemomentumtransversetothebeam,in GeV. Different types ofcharged hadronsare distinguished using infor-mationfromtwo ring-imagingCherenkovdetectors [12]. Photons, electronsandhadronsareidentified byacalorimetersystem con-sistingofscintillating-padandpreshowerdetectors,an electromag-neticandahadroniccalorimeter.Muonsareidentifiedbyasystem composedofalternatinglayersofironandmultiwireproportional chambers [13].The onlineeventselection isperformedby a trig-ger,whichconsistsofahardwarestage,basedoninformationfrom thecalorimeterandmuon systems,followed bya softwarestage, whichappliesafulleventreconstruction.

At the hardware trigger stage, events are required to have a muon with high pT or a hadron, photon or electron with high transverseenergyinthecalorimeters.Thesoftwaretriggeris com-posedof two stages,the firstof whichperforms a partial recon-struction and requires either a pair of well-reconstructed,

oppo-2 Weusenaturalunitswhereh¯=c=1.

https://doi.org/10.1016/j.physletb.2019.07.036

0370-2693/©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

sitely chargedmuonshavingan invariant massabove 2

.

7 GeV,or a single well-reconstructed muon with pT

>

1 GeV and have a large IP significance

χ

2

IP

>

7

.

4. The latter is defined as the dif-ference in the

χ

2 of the vertex fit fora given PVreconstructed withand withoutthe considered particles. The second stage ap-pliesafulleventreconstructionandforthisanalysisrequirestwo opposite-sign muons to form a good-quality vertex that is well-separatedfromallofthePVs,andtohaveaninvariantmasswithin

±

120 MeV oftheknown J/ψ mass [14].

Simulationisrequiredtomodeltheeffects ofthe detector ac-ceptanceandthe imposed selection requirements.In the simula-tion, pp collisionsaregeneratedusingPythia[15] withaspecific LHCb configuration [16].Decaysofunstableparticlesaredescribed by EvtGen [17], in which final-state radiation is generated us-ing Photos [18]. The interaction of the generated particles with thedetector,anditsresponse,areimplementedusingtheGeant4 toolkit [19] asdescribedinRef. [20].

3. Decayamplitude

TheresonancestructureinB0s andB0s

J/ψ

π

+

π

−decayshas beenpreviouslystudiedwithatime-integratedamplitudeanalysis using7and8 TeV pp collisions [21]. Thefinal statewas foundto becompatiblewithbeingentirelyCP -odd,withtheCP -evenstate fractionbelow2

.

3%at95%confidencelevel,whichallowsthe de-terminationofthe decaywidthofthe heavy B0s masseigenstate,



H.The possible presenceofa CP -evencomponentistakeninto accountwhendetermining

φ

s[22].

Thetotaldecayamplitude fora

( )

B0

s mesonatdecaytimeequal to zero is assumed to be the sum over individual

π

+

π

− reso-nanttransversityamplitudes[23],andonenonresonantamplitude, witheach transversity componentlabelledas Ai ( Ai). Because of the spin-1 J/ψ meson in the final state, the three possible po-larizations of the J/ψ generate longitudinal (0), parallel (



) and perpendicular (

) transversity amplitudes.When the

π

+

π

− pair formsaspin-0statethefinalsystemonlyhasalongitudinal com-ponent,andthusisapure CP eigenstate.Theparameter

λ

i

qp

Ai

Ai,

relates CP violation in the interference between mixingand de-cayassociated withthe polarizationstate i for eachresonance in the final state. Here the quantities q and p relate the mass and flavoureigenstates, p

≡ 

B0

s

|

BL



,andq

≡ 

B0s

|

BL



,where

|

BL



isthe lightermasseigenstate [1].Thetotalamplitudes

A

and

A

canbe expressedasthesumsoftheindividual

( ) B0s amplitudes,

A

=



Ai and

A =



qpAi

=



λ

iAi

=



η

i

i

|

e i

sAi,with

η

i beingtheCP

eigenvalue of the state. For each transversity state i there is a

CP -violating phase

φ

si

≡ −

arg

(

η

i

λ

i

)

[24]. Assuming that CP vio-lationin thedecay isthe same forall amplitudes,then

λ

η

i

λ

i and

φ

s

≡ −

arg

(λ)

.Using

|

p/q

| =

1,thedecayratesforB0s and B0s intothe J/ψ

π

+

π

−finalstateare3

( )

 (

t

)

e−st



|

A

|

2

+ |

A

|

2 2 cosh



st 2

±

|

A

|

2

− |

A

|

2 2 cos

(

mst

)

R

e

(

A

A

)

sinh



st 2

I

m

(

A

A

)

sin

(

m st

)



,

(1)

where the – sign before the cos

( m

st) term and

+

signbefore the sin

( m

st) term apply to

(t)

,



s

≡ 

L

− 

H is the decay-width difference between the light and the heavy mass eigen-states,

m

s

mH

mL isthe correspondingmassdifference, and



s

≡ (

L

+ 

H

)/

2 istheaverageB0s mesondecaywidth [26].

3 ThelatestLHCbmeasurementdetermined|p

/q|2=1

.0039±0.0033 [25].

For J

decays to

μ

+

μ

− final states the Ai amplitudes are themselves functionsoffourvariables:the

π

+

π

− invariant mass

mππ , and three angular variables

≡ (

cos

θ

π π

,

cos

θ

J/ψ

,

χ

)

,

de-fined in the helicity basis. These angles are defined as

θ

π π

be-tween the

π

+ directioninthe

π

+

π

− restframe withrespect to the

π

+

π

− directionin the B0

s restframe,

θ

J/ψ betweenthe

μ

+

directioninthe J/ψ restframe withrespecttothe J/ψ direction in the B0

s rest frame,and

χ

betweenthe J

and

π

+

π

− decay planesintheB0

s restframe[22,24].(Thesedefinitionsarethesame for B0s and B0s,namely,using

μ

+and

π

+ todefine theanglesfor both B0s and B0s decays.)The explicitforms ofthe

|

A(mππ

,

)

|

2,

|

A(mππ

,

)

|

2, and

A

(mππ

,

)A(mππ

,

)

terms in Eq. (1) are giveninRef. [22].

The analysis proceedsby performing an unbinned maximum-likelihoodfittothe

π

+

π

− massdistribution,thedecaytime,and helicityanglesofB0s candidatesidentifiedasB0s orB0s bya flavour-taggingalgorithm[27].4 ThefitprovidestheCP -evenandCP -odd

components, and since we include the initial flavour tag, the fit also determines the CP -violating parameters

φ

s and

|λ|

, andthe decaywidth.Inordertoproceed,weneedtoselectacleansample of B0s decays,determineacceptancecorrections,performa calibra-tionofthedecay-timeresolutionineacheventasafunctionofits uncertainty,andcalibratetheflavour-taggingalgorithm.

4. Selectionrequirements

The selection of J/ψ

π

+

π

− right-sign (RS), and wrong-sign (WS) J/ψ

π

±

π

± final states, proceedsintwo phases. Initiallywe impose loose requirements and subsequently use a multivariate analysisto furthersuppressthecombinatorial background.In the first phase we requirethat the J/ψ decaytracks beidentified as muons, have pT

>

500 MeV, and form a good vertex with ver-tex fit

χ

2 lessthan16.The identifiedpions are requiredtohave

pT

>

250 MeV,notoriginatefromanyPV,andforma goodvertex withthemuons.Theresulting B0s candidateisassignedtothePV forwhichithasthesmallest

χ

2

IP.Furthermore,werequirethatthe smallest

χ

2

IPisnotgreaterthan25.TheB 0

s candidateisrequiredto haveitsmomentumvectoralignedwiththevectorconnectingthe PVtothe B0s decayvertex,andtohaveadecaytime greaterthan 0.3 ps.Reconstructedtrackssharingthesamehitsarevetoed.

Inaddition,backgroundfromB+

J

K+ decays,5 wherethe K+ is misidentified as a

π

+ and combined witha random

π

−, is vetoed by assuming that each detected pion is a kaon, com-puting the J/ψK+ mass, andremoving thosecandidates that are within

±

36 MeV of theknown B+ mass [14]. Backgrounds from

B0

J/ψK+

π

− or B0s

J/ψK+K− decays with misidentified kaons result inmasses lower than the B0s peak andthus do not needtobevetoed.

For the multivariate part of the selection, we use a Boosted DecisionTree,BDT [28,29],withtheuBoostalgorithm [30].The al-gorithmisoptimizedtonotfurtherbiasacceptanceonthevariable cos

θ

π π .ThevariablesusedtotraintheBDTarethedifference

be-tween themuon andpionidentifications forthemuon identified withlowerquality,the pT oftheB0s candidate,thesumofthe pT of the two pions,and thenatural logarithms of: the

χ

2

IP of each ofthepions,the

χ

2 ofthe B0

s vertexanddecaytreefits[31],and the

χ

2

IP oftheB 0

s candidate.Inthefit,the B0s momentumvectoris constrainedtopointtothePV, thetwomuonsareconstrainedto

4 Weutilizethesamelikelihoodconstructionthatweusedtodetermineφ sand

|λ|inB0

sJ/ψK+K−decayswithK+K−abovetheφ(1020)massregion [6]. 5 Whendiscussingflavour-specificdecays,mentionofaparticularmodeimplies

(3)

Fig. 1. Resultsofthesimultaneousfittothe J/ψπ π massdistributionsRS(black points)andWS(greypoints)samples.Thesolid(blue)curveshowsthefittothe RSsample,thelongdashed(red)curveshowsthesignal,thedot-dashed(magenta) curveshowsB0Jπ+πdecays,thedot-long-dashed(brown)curveshowsthe combinatorialbackground,thedotted(black)curveshowsthesumofB0

sJ/ψη

andΛ0b background,whilethedot-dot-dashed(green)curveshowsthefittoWS

sample.

the J/ψ mass,andallfourtracksareconstrainedtooriginatefrom thesamevertex.

ImplementinguBoostrequiresatrainingprocedure.Data back-groundin the J/ψ

π

+

π

− massinterval between200to 250MeV abovethe B0

s massandsimulatedsignalare firstused.Then, sep-aratesamples are used to test the BDT performance. We weight thetraining simulationsamplestomatchthetwo-dimensional B0s p and pT distributions,andsmearthevertexfit

χ

2,tomatchthe background-subtractedpreselecteddata.Finally,theminimum re-quirementforBDTpointischosentomaximizesignalsignificance,

S/

S

+

B,whereS(B)istheexpectedsignal(background)yields inarangecorrespondingto

±

2

.

5 timesthemassresolutionaround theknownB0s mass [14].

Todeterminethesignal andbackgroundyields wefitthe can-didate B0

s mass distribution. Backgrounds include combinatorics, whoseshape is estimatedusing WS J

π

±

π

± candidates mod-elled by an exponential function, B0s

J/ψ

η

(

ρ

0

γ

)

decays withthe

γ

ignored,and

Λ

0b

J

p K− decayswithbothhadrons misidentified as pions. The latter backgrounds are modelled us-ingsimulation.The B0s signalshapeisparameterizedbyaHypatia function [32], wherethesignalradiative tailparametersare fixed to values obtained from simulation. The same shape parameters are used for the B0

J/ψ

π

+

π

− decays, with the mean value shiftedby theknown B0

s and B0 mesonmassdifference [14]. Fi-nally,we fitsimultaneouslybothRSandWScandidates,usingthe simulatedshapefor B0s

J/ψ

η

(

ρ

0

γ

)

whoseyieldis allowed tofloat,andfixingboththesizeandshapeofthe

Λ

0b

J/ψp K

component. The results of the fit are shown in Fig. 1. We find 33530

±

220 signalB0s within

±

20 MeV oftheB0s masspeak,with apurityof84%.Thesedecaysareusedforfurtheranalysis.Multiple candidatesinthe sameeventhavea rateof0.20%ina

±

20 MeV intervalaroundthe B0s masspeak,andareretained.

Tosubtract thebackground inthe signal region inthe ampli-tude fit we add negatively weighted events from the WS sam-pleto the RSsample, also accountingforthe differing

π π

mass anddecay-timedistributions.Theweightsaredeterminedby com-paring the RS and WS mass distributions in the upper mass sideband (5420

5550 MeV). In addition, a small component of

B0s

J/ψ

η

(

η

ρ

0

γ

)

decaysisalsosubtracted,sinceitisabsent intheWSsample.

5. Detectorefficiencyandresolution

The correlated efficiencies in mππ and angular variables

are determined fromsimulation. Weweight the simulatedsignal eventstoreproducethe B0

s meson pT and

η

distributionsaswell as the track multiplicity of the events. The latter may influence theefficienciesofthetrackingandparticleidentification.The cal-culatedefficienciesareshowninFig.2alongwiththedetermined efficiency function. The four-dimensional efficiency is parameter-ized by a combination of Legendre and spherical harmonic mo-ments[33],as

ε

(

mπ π

,

cos

θ

π π

,

cos

θ

J/ψ

,

χ

)

=



a,b,c,d



abcdPa

(

cos

θ

π π

)

Ybc

J/ψ

,

χ

)

Pd



2mπ π

m min π π mmaxπ π

mmin π π

1

,

(2)

where Pa andPd areLegendrepolynomials,Ybc arespherical har-monics,mminπ π

=

2mπ+ andmmaxπ π

=

mB0

s

mJ/ψ, and



abcd are ef-ficiencycoefficientsdeterminedfromweightedaveragesofdecays generateduniformlyoverphasespace [6].

The model gives an excellent representation of the simulated data.Theefficiencyisuniformwithin about

±

4%forcos

θ

J/ψ and

about 10% for

χ

variables; however the mππ and cos

θ

π π

vari-ablesshowlargeefficiencyvariationsandcorrelations(seeFig.3), due to the

χ

2

IP

>

4 requirements on the hadrons. The loss of efficiencyinthelowermππ regioncanbe interpretedasthe pro-jectionof the effectsof cutson

χ

2

IP. Events atcos

θ

π π

= ±

1 and mππ

0

.

6

0

.

8 GeV areatthekinematicboundaryofm2

J/ψπ+.One

ofthepionsisalmostatrestin B0s restframe,andthus thepion points to the PV, resultingin a very small

χ

2

IP forthispion.The

χ

2

IP variableisthemostusefultool tosuppresslarge pion combi-natorialbackgroundfromthePV.

The reconstruction efficiency is not constant as a function of

B0

s decay time due to displacement requirements applied to the hadronsintheofflineselectionsandon J/ψ candidatesinthe trig-ger.Itisdeterminedusingthecontrolchannel B0

J/ψK

(

892

)

0, with K

(

892

)

0

K+

π

−, which is known to have a lifetime of

τ

B0

=

1

.

520

±

0

.

004 ps [14].ThesimulatedB0eventsareweighted

toreproducethedistributions inthedatafor pT and

η

ofthe B0 meson,andtheinvariantmassandhelicityangleofK+

π

−system, aswellasthetrackmultiplicityoftheevents.Thesignalefficiency iscalculatedas

ε

B0s data

(t)

=

ε

B0 data

(t)

·

ε

B0 s sim

(t)/

ε

B0 sim

(t)

,where

ε

B0 data

(t)

is the efficiency of the control channel asmeasured by comparing data with the known lifetimedistribution, and

ε

B0s

sim

(t)/

ε

B

0

sim

(t)

is theratio ofefficienciesofthe simulatedsignal andcontrolmode after the full triggerand selection chain havebeen applied. This correctionaccountsforthesmalldifferencesinthekinematics be-tweenthesignalandcontrolmodes.Thedetailsofthemethodare explainedinRef. [4].

The acceptance is checked by measuring the decay width of

B+

J/ψK+ decays. The fitted decay-width difference between the B+ and B0 mesons is



B+

− 

B0

= −

0

.

0475

±

0

.

0013 ps−1,

where the uncertainty is statistical only, in agreement with the knownvalueof

0

.

0474

±

0

.

0023 ps−1[14].

From the measured B0

s candidate momentum and decay dis-tance, the decay time and its event-by-event uncertainty

δ

t are calculated. The calculated uncertainty is imbedded into the res-olution function, which is modelled by the sum of three Gaus-sian functionswithcommonmeansandwidthsproportional toa quadraticfunctionof

δ

t.Theparametersoftheresolutionfunction are determined witha sample of putative prompt J/ψ

μ

+

μ

(4)

Fig. 2. Overallefficiencynormalizedtounityfor(a)mπ π,(b)cosθπ π,(c)cosθJ/ψ and(d)χobservables.ThepointswitherrorbarsarefromtheB0sJ/ψπ+π−simulation,

whilethecurvesshowtheprojectionoftheefficiencyfunction.

Fig. 3. Overallefficiencyfor(a)mπ πvscosθπ πand(b)m2J/ψπ+vsm

2

π π.Theinefficiencyisatthekinematicboundaryofm2J/ψπ+wherethepionisalmostatrestintheB

0 s

frame.

decays combinedwith two pions ofopposite charge. Taking into account the decay-timeuncertainty distributionof the B0s signal, theaverageeffectiveresolutionisfoundtobe41.5 fs.Themethod isvalidatedusingsimulation;weestimatetheaccuracyofthe res-olutiondeterminationtobe

±

3%.

6. Flavourtagging

Knowledge of the

( )

B0s flavour at production is necessary. We use informationfrom decaysof the other b hadron in the event (opposite-side,OS)andfragmentsofthejetthatproducedthe

( )

B0s mesonthat contain a charged kaon,called same-sidekaon (SSK) [27].TheOStaggerinferstheflavouroftheotherb hadroninthe event from the charges of muons, electrons, kaons, and the net chargeoftheparticlesthatformreconstructedsecondaryvertices. The flavour tag,

q

, takes values of

+

1,

1 or 0 if the signal mesonistaggedasB0s,B0soruntagged,respectively.Thewrong-tag probability,

y

,isestimatedevent-by-eventbasedontheoutputofa

neuralnetwork.Itissubsequentlycalibratedwithdatainorderto relateittothetruewrong-tag probabilityoftheeventbyalinear relationas

ω

(y)

=

p0

+

p0 2

+

p1

+

p1 2

· (y − y);

ω

(y)

=

p0

p0 2

+

p1

p1 2

· (y − y),

(3)

where p0, p1,

p

0 and

p

1 arecalibrationparameters,and

ω

(y)

and

ω

(y)

are the calibratedprobabilities for a wrong-tag assign-ment for B0

s and B0s mesons, respectively. The calibration is per-formed separately for the OS and the SSK taggers using B+

J/ψK+ and B0s

Ds

π

+ decays, respectively. When events are tagged by both the OS and the SSK algorithms, a combined tag decisionisformed.Theresultingefficiencyandtaggingpowersare listedinTable1.

(5)

Table 1

Taggingefficiency,εtag,andtaggingpowergivenasthe

efficiency timesdilution squared, εtagD2, where D=

(1−2ω) for each categoryand the total. The uncer-taintiesonεtagarestatisticalonly,andthoseforεtagD2

containbothstatisticalandsystematiccomponents. Category εtag(%) εtagD2(%)

OS only 11.0±0.6 0.86±0.05 SSK only 42.6±0.6 1.54±0.33 OS and SSK 24.9±0.6 2.66±0.19 Total 78.5±0.7 5.06±0.38 Table 2 Resonanceparameters.

Resonance Mass (MeV) Width (MeV) Source f0(500) 471±21 534±53 LHCb[38] f0(980) Varied in fits f2(1270) 1275.5±0.8 186.7+22..25 PDG [14] f0(1500) Varied in fits f2 (1525) 1522.2±1.7 78.0±4.8 LHCb [6] f0(1710) 1723+65 139±8 PDG [14] f0(1790) 1790+4030 270+ 60 −30 BES [37]

7.Descriptionofthe

π

+

π

−massspectrum

Wefittheentire

π

+

π

−massspectrumincludingtheresonance contributions listed in Table 2, and a nonresonant (NR) compo-nent.We use an isobarmodel [21]. All resonances are described by Breit–Wigner amplitudes, exceptfor the f0

(

980

)

state, which ismodelledbya Flattéfunction [34].The nonresonantamplitude istreatedasbeingconstantinmππ .Other theoreticallymotivated amplitude models are also proposed to describe this decay [35, 36]. Theprevious publication [21] usedan unconfirmed f0

(

1790

)

resonance,reported by theBES collaboration [37], instead ofthe

f0

(

1710

)

state.Wetestwhichonegivesabetterfit.

The amplitude AR

(

mππ

)

, generally represented by a Breit– WignerfunctionoraFlattéfunction,isusedtodescribethemass lineshapeofresonanceR.TodescribetheresonancefromtheB0s

decays,theamplitudeiscombinedwiththe B0s andresonance de-caypropertiestoformthefollowingexpression

A

R

(

mπ π

)

=

2 JR

+

1

PRPBF(BLB)FR(LR)AR

(

mπ π

)

×

PB mB

LB

P R m0

LR

.

(4)

HerePB isthe J

momentumintheB0s restframe, PR isthe mo-mentumofeitherofthetwohadronsinthedihadronrestframe,

mB is the B0s mass, m0 is the mass of resonance R,6 JR is the spin of the resonance R, LB is the orbital angular momentum betweenthe J/ψ meson and

π

+

π

− system, and LR the orbital angularmomentuminthe

π

+

π

− system,andthusisthesameas thespin of the

π

+

π

− resonance.The terms F(LB)

B and F (LR)

R are theBlatt–Weisskopfbarrierfactors forthe B0s mesonand R

reso-nance,respectively [39].Theshapeparametersforthe f0

(

980

)

and

f0

(

1500

)

resonancesareallowedtovary.

6 Equation (4) ismodifiedfromthatusedinpreviouspublications [4,21] and

fol-lowstheconventionsuggestedbythePDG[14].

8. Likelihooddefinition

Thedecay-timedistributionincludingflavourtaggingis

R

t

,

mπ π

,

, q

|y) =

1 1

+ |q|

[1

+ q (

1

2

ω

(y))

]

(ˆ

t

,

mπ π

,

)

+

[1

− q (

1

2

ω

¯

(y))

]1

+

AP 1

AP

¯(ˆ

t

,

mπ π

,

)



,

(5)

where

ˆ

t isthetruedecaytime,

(–)



isdefinedinEq. (1), and AP is theproductionasymmetryofB0

s mesons.

Thefitfunction forthesignal ismodifiedto takeintoaccount thedecay-timeresolutionandacceptanceeffectsresultingin

F

(

t

,

mπ π

,, q

|y, δ

t

)

=



R

t

,

mπ π

,

, q

|y) ⊗

T

(

t

− ˆ

t

t

)



ε

B0s

data

(

t

)

ε

(

mπ π

,),

(6) where

ε

(

mππ

,

)

istheefficiencyasafunctionofmππ and angu-larvariables, T

(t

− ˆ

t

t

)

isthedecay-timeresolutionfunction,and

ε

B0s

data

(t)

isthedecay-timeacceptancefunction.Thefreeparameters inthefitare

φ

s,

|λ|

,



H

− 

B0,themagnitudesandphasesofthe

resonances amplitudes, and the shape parameters of some reso-nances.Theotherparameters,including

m

s,and



L,arefixedto theknownvalues[14] orothermeasurementsmentionedbelow.

The signal function is normalized by summing over

q

values andintegratingoverdecaytimet,themassmππ ,andtheangular variables,

,giving

N

t

)

=

2



[(ˆ

t

,

mπ π

,

)

+

1

+

AP 1

AP

¯(ˆ

t

,

mπ π

,

)

]

T

(

t

− ˆ

t

t

)

ε

B 0 s data

(

t

)

ε

(

mπ π

,)

dmπ πd

dt

.

(7) Weassume noasymmetries inthetaggingefficiencies,whichare accountedforinthesystematicuncertainties.Theresultingsignal PDFis

P

(

t

,

mπ π

,, q

|y, δ

t

)

=

1

N

t

)

F

(

t

,

mπ π

,, q

|y, δ

t

).

(8) ThefitterusesatechniquesimilartosPlot [40] tosubtract back-groundfromthelog-likelihoodsum.Eachcandidateisassigneda weight,Wi

= +

1 fortheRSeventsandnegativevaluesfortheWS events.Thelikelihoodfunctionisdefinedas

2 ln

L

= −

2 sW



i

Wiln

P

(

t

,

mπ π

,

, q

|y, δ

t

),

(9)

wheresW



iWi

/



iWi2 isaconstantfactoraccountingforthe effectofthebackgroundsubtractiononthestatisticaluncertainty.

The decay-time acceptance is assumed to be factorized from other variables,butduetothe

χ

2

IP cuton thetwo pions,the de-caytimeiscorrelatedwiththeangularvariables.Toavoidbiason thedeterminationof



Hfromthedecay-timeacceptance,the sim-ulated B0s signal isweightedinordertoreproducethemππ reso-nantstructure observedindataby usingthepreferredamplitude modelthatisdeterminedbytheoverallfit.Aniterativeprocedure isperformedtofinalizethedecay-timeacceptance.Thisprocedure converges in three steps beyondwhich



H doesnot vary. When weapply thismethodtopseudoexperimentsthatincludethe cor-relationmentionedbefore,thefitterreproducestheinputvaluesof

(6)

Table 3

Likelihoodsofvariousresonancemodelfits.Positiveornegativeinterferences(Int) amongthecontributingresonancesareindicated.TheSolutionsareindicatedby#.

# Resonance content Int −2 lnL

I f0(980)+f0(1500)+f0(1790)+f2(1270)+f2 (1525)+NR − −4850 II f0(980)+f0(1500)+f0(1710)+f2(1270)+f2 (1525)+NR + −4834 III f0(980)+f0(1500)+f0(1790)+f2(1270)+f2 (1525)+NR + −4830 IV f0(980)+f0(1500)+f0(1790)+f2(1270)+f2 (1525) − −4828 V f0(980)+f0(1500)+f0(1710)+f2(1270)+f2 (1525) − −4706 Table 4

FitresultsfortheCP -violatingparametersforSolutionI.Thefirstuncertaintiesare statistical,andthesecondsystematic.Thelastthreecolumnsshowthestatistical correlationcoefficientsforthethreeparameters.

Fit result Correlation

Parameter H− B0 |λ| φs

H− B0 ( ps−1) −0.050±0.004±0.004 1.000 0.022 0.038

|λ| 1.01+00..0806±0.03 0.022 1.000 0.065

φs(rad) −0.057±0.060±0.011 0.038 0.065 1.000

9. Fitresults

Wefirstchoosethe resonancesthatbestfitthemππ

distribu-tion. Table 3 lists the different fit components and the value of

2ln

L

.In thesecomparisons,themassandwidthofmost reso-nancesarefixed tothecentralvalueslistedinTable2,exceptfor the f0

(

980

)

and f0

(

1500

)

resonances, whose parameters are al-lowedtovary.Wefindtwotypesoffitresults,onewithapositive integratedsumofallinterferingcomponentsandonewitha nega-tiveone.ThefirstlistedSolutionIisbetterthanSolutionIIbyfour standard deviations, calculated by taking the square root of the

2ln

L

difference. We take Solution I for our measurement and IIforsystematicuncertaintyevaluation.Themodelscorresponding toSolutionsIandIIareverysimilartothosefoundinourprevious analysisofthesamefinalstate [21].

Fig. 5. Datadistributionofmπ πwiththeprojectionoftheSolutionIfitresult over-laid.Thedataaredescribedbythepoints(black)witherrorbars.Thesolid(blue) curveshowstheoverallfit.

ForthefitweassumethattheCP -violationquantities(

φ

s i,

i

|

) arethesameforalltheresonances.Wealsofix

m

stothecentral value of the world average 17

.

757

±

0

.

021 ps−1 [14], and fix



L tothecentralvalueof0

.

6995

±

0

.

0047 ps−1 fromtheLHCb B0

s

J/ψK+K− results [6].

The fit valuesandcorrelations ofthe CP -violating parameters are shown in Table 4 for Solution I. The shape parameters of

f0

(

980

)

and f0

(

1500

)

resonancesare foundtobeconsistentwith our previous results [21]. The angular anddecay-time fit projec-tionsareshowninFig.4.Themππ fitprojectionisshowninFig.5, wherethecontributionsoftheindividualresonancesarealso dis-played.AllsolutionslistedinTable3giveverysimilarfitvaluesfor

φ

s and



H.Wealsofind thatthe CP -odd fractionisgreater than 97% at95% confidencelevel.The resonantcontent forSolutions I andIIarelistedinTable5.

(7)

Table 5

FitresultsoftheresonantstructureforbothSolutionsIandII.Theseresultsdonot supersedethoseinRef. [21] fortheresonantfractionsbecausenosystematic un-certaintiesarequoted.Thesumoffitfractionisnotnecessary100%duetopossible interferencesbetweenresonanceswiththesamespin.

Component Fit fractions (%) Transversity fractions (%)

0  ⊥ Solution I f0(980) 60.09±1.48 100 − − f0(1500) 8.88±0.87 100 − − f0(1790) 1.72±0.29 100 − − f2(1270) 3.24±0.48 13±3 37±9 50±10 f2 (1525) 1.23±0.86 40±13 31±14 29±25 NR 2.64±0.73 100 − − Solution II f0(980) 93.05±1.12 100 − − f0(1500) 6.47±0.41 100 − − f0(1710) 0.74±0.11 100 − − f2(1270) 3.22±0.44 17±4 30±8 53±10 f2 (1525) 1.44±0.36 35±8 31±12 34±17 NR 8.13±0.79 100 − − 10. Systematicuncertainties

ThesystematicuncertaintiesfortheCP -violatingparameters,

λ

and

φ

s,aresmallerthanthestatisticalones.Theyaresummarized inTable6alongwiththeuncertaintyon



H

−

B0.Theuncertainty

onthedecay-timeacceptanceisfoundbyvarying theparameters ofthe acceptancefunction within their uncertainties and repeat-ing the fit.The same procedure is followedfor the uncertainties onthe B0 lifetime,

m

s,



L,mππ and angularefficiencies, reso-nancemassesandwidths,flavour-taggingcalibration,andallowing fora2%productionasymmetry [41];thisuncertaintyalsoincludes anypossibledifferenceinflavourtaggingbetweenB0s andB0s. Sim-ulationisusedtovalidatethemethodforthetime-resolution cali-bration.Theuncertaintiesoftheparametersofthetime-resolution modelareestimatedusingthedifference betweenthesignal sim-ulation andprompt J

simulation. These uncertainties are var-ied to obtain the effects on the physics parameters. Resonance modelling uncertainty includes varying the Breit–Wigner barrier factors, changing the default values of LB

=

1 for the D-wave resonances to one or two, the differencesbetween the two best solutions,and replacingthe NR component by the f0

(

500

)

reso-nance.Furthermore,includinganisospin-violating

ρ

(

770

)

0 compo-nentinthefit,resultsinanegligiblecontributionof

(

1

.

1

±

0

.

3

)

%. Thelargest shiftamongthe modellingvariations is takenas sys-tematicuncertainty.Theinclusion of

ρ

componentsresultsinthe largestshiftsofthethreephysicsparameters quoted.The process

B+c

π

+B0

s canaffectthemeasurementof



H

− 

B0.Anestimate

ofthefractionofthesedecaysinoursampleis0.8% [5].Neglecting theB+c contributionleadstoabiasof0.0005 ps−1,whichisadded asasystematicuncertainty.Otherparametersareunchanged.

Correctionsfrompenguinamplitudesareignoredbecausetheir effects are known to be small [42–44] compared to the current experimentalprecision.

11. Conclusions

Using B0s and B0s

J/ψ

π

+

π

− decays, we measure the CP

-violatingphase,

φ

s

= −

0

.

057

±

0

.

060

±

0

.

011 rad,thedecay-width difference



H

− 

B0

= −

0

.

050

±

0

.

004

±

0

.

004 ps−1, and the

pa-rameter

|λ| =

1

.

01+00..0806

±

0

.

03,wherethequoteduncertaintiesare statistical and systematic. These results are more precise than

Table 6

Absolutesystematicuncertaintiesforthephysicsparameters.

Source H− B0 |λ| φs

[ fs−1] [×10−3] [mrad]

Decay-time acceptance 2.0 0.0 0.3

τB0 0.2 0.5 0.0

Efficiency (mπ π,) 0.2 0.1 0.0 Decay-time resolution width 0.0 4.3 4.0 Decay-time resolution mean 0.3 1.2 0.3

Background 3.0 2.7 0.6 Flavour tagging 0.0 2.2 2.3 ms 0.3 4.6 2.5 L 0.3 0.4 0.4 B+c 0.5 – – Resonance parameters 0.6 1.9 0.8 Resonance modelling 0.5 28.9 9.0 Production asymmetry 0.3 0.6 3.4 Total 3.8 29.9 11.0

those obtainedfromthe previous studyofthismodeusing7 TeV and 8 TeV pp collisions (Run 1) [4]. To combine the Run-1 re-sults with these, we reanalyze them by fixing

m

s

=

17

.

757

±

0

.

021 ps−1fromRef. [14],and



L

=

0

.

6995

±

0

.

0047 ps−1fromthe LHCb B0s

J/ψK+K− results [6]. We remove the Gaussian con-strainton



s andlet



Hvary.Insteadoftakingtheuncertainties offlavourtagginganddecay-timeresolutionintothestatistical un-certainty,weplacethesesourcesinthesystematicuncertaintyand assume100%correlationwithournewresults.Theupdatedresults are:

φ

s

=

0

.

075

±

0

.

065

±

0

.

014 radand

|λ| =

0

.

898

±

0

.

051

±

0

.

013 with a correlation of 0

.

025. We then use the updated

φ

s and

|λ|

Run-1 results as a constraintinto our new

φ

s fit.7 The com-bined resultsare



H

− 

B0

= −

0

.

050

±

0

.

004

±

0

.

004 ps−1,

|λ|

=

0

.

949

±

0

.

036

±

0

.

019, and

φ

s

=

0

.

002

±

0

.

044

±

0

.

012 rad. The correlation coefficientsamongthe fitparameters are 0.025

(

ρ

12

)

,

0

.

001

(

ρ

13

)

,and0.026

(

ρ

23

)

.

OurresultsstillhaveuncertaintiesgreaterthantheSM predic-tion and are slightly more precise than the measurement using

B0s

J/ψK+K− decays,based only on Run-1 data, which hasa precisionof0.049 rad [5].Hencethisisthemostprecise determi-nationof

φ

s todate.

Acknowledgements

We express our gratitude to our colleagues in the CERN ac-celerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb in-stitutes. We acknowledge support from CERN and from the na-tional agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MINECO (Spain); SNSF andSER (Switzerland);NASU (Ukraine); STFC (United King-dom);NSF (USA). We acknowledgethe computingresources that are provided by CERN, IN2P3 (France),KIT andDESY (Germany), INFN(Italy),SURF(Netherlands),PIC(Spain),GridPP(United King-dom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-sourcesoftwarepackagesonwhichwe depend.Individual groups or members have received support from AvH Foundation (Ger-many); EPLANET,MarieSkłodowska-Curie ActionsandERC (Euro-peanUnion);ANR,LabexP2IOandOCEVU, andRégion

Auvergne-7 Wedonotincludeanaveragevalueof

Hsincenosystematicuncertaintywas

(8)

Rhône-Alpes (France); KeyResearch Program ofFrontier Sciences ofCAS,CASPIFI,andtheThousandTalentsProgram(China);RFBR, RSFandYandexLLC(Russia);GVA,XuntaGalandGENCAT(Spain); the Royal Society and the Leverhulme Trust (United Kingdom); Laboratory Directed ResearchandDevelopment program of LANL (USA).

References

[1]I.I.Y.Bigi,A.I.Sanda,CPviolation,Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. 9(2000)1.

[2] CKMfittergroup,J.Charles,etal.,CurrentstatusoftheStandardModelCKMfit andconstraintson F=2 newphysics,Phys.Rev.D91(2015)073007,arXiv: 1501.05013,updatedresultsandplotsavailableathttp://ckmfitter.in2p3.fr/. [3]CDF collaboration, T. Aaltonen, et al., First flavor-tagged determination of

boundsonmixing-inducedCPviolationinB0

sJ/ψφdecays,Phys.Rev.Lett.

100(2008)161802,arXiv:0712.2397;

D0collaboration,V.M.Abazov,etal.,MeasurementofB0

s mixingparameters

fromtheflavor-taggeddecayB0

sJ/ψφ,Phys.Rev.Lett.101(2008)241801,

arXiv:0802.2255;

CDFcollaboration,T.Aaltonen,etal.,MeasurementoftheCP -violatingphase

βsJ/ψ φinB0sJ/ψφdecayswiththeCDFIIdetector,Phys.Rev.D85(2012)

072002,arXiv:1112.1726;

D0collaboration,V.M.Abazov,etal.,MeasurementoftheCP -violatingphase

φsJ/ψ φusingtheflavor-taggeddecay Bs0→J/ψφ in8fb−1ofp p collisions,

Phys.Rev.D85(2012)032006,arXiv:1109.3166.

[4]LHCbcollaboration,R.Aaij,etal.,MeasurementoftheCP -violatingphaseφsin

B0

sJ/ψπ+π−decays,Phys.Lett.B736(2014)186,arXiv:1405.4140.

[5]LHCbcollaboration,R.Aaij,etal., PrecisionmeasurementofCP violationin

B0

sJ/ψK+K−decays,Phys.Rev.Lett.114(2015)041801,arXiv:1411.3104.

[6]LHCbcollaboration,R.Aaij,etal.,ResonancesandCP violationinB0

sandB0s

J/ψK+K−decaysinthemassregionabovetheφ(1020),J.HighEnergyPhys. 08(2017)037,arXiv:1704.08217.

[7]ATLAScollaboration,G.Aad,etal.,MeasurementoftheCP -violatingphaseφs

andtheB0

s mesondecaywidthdifferencewithB0sJ/ψφdecaysinATLAS,

J.HighEnergyPhys.08(2016)147,arXiv:1601.03297;

CMScollaboration, V.Khachatryan,et al.,Measurement ofthe CP -violating

weak phase φs and the decay width difference s using the B0s

J/ψ φ(1020)decaychannelinppcollisionsat√s=8TeV,Phys.Lett.B757

(2016)97,arXiv:1507.07527.

[8]S.Stone,L.Zhang,S-wavesandthemeasurementofCPviolatingphasesinBs

decays,Phys.Rev.D79(2009)074024,arXiv:0812.2832.

[9]LHCbcollaboration,A.A.AlvesJr.,etal.,TheLHCbdetectorattheLHC,J. In-strum.3(2008)S08005.

[10]LHCbcollaboration,R.Aaij,etal.,LHCbdetectorperformance,Int.J.Mod.Phys. A30(2015)1530022,arXiv:1412.6352.

[11]R. Aaij,etal., PerformanceoftheLHCb vertexlocator, J.Instrum. 9(2014) P09007,arXiv:1405.7808.

[12]M.Adinolfi,etal.,PerformanceoftheLHCbRICHdetectorattheLHC,Eur.Phys. J.C73(2013)2431,arXiv:1211.6759.

[13]A.A.AlvesJr.,etal.,PerformanceoftheLHCbmuonsystem,J.Instrum.8(2013) P02022,arXiv:1211.1346.

[14]ParticleDataGroup,M.Tanabashi,etal.,Reviewofparticlephysics,Phys.Rev. D98(2018)030001.

[15]T.Sjöstrand,S.Mrenna,P.Skands,PYTHIA6.4physicsandmanual,J.High En-ergyPhys.05(2006)026,arXiv:hep-ph/0603175;

T.Sjöstrand,S.Mrenna,P.Skands,AbriefintroductiontoPYTHIA8.1,Comput. Phys.Commun.178(2008)852,arXiv:0710.3820.

[16]I.Belyaev,etal.,HandlingofthegenerationofprimaryeventsinGauss,the LHCbsimulationframework,J.Phys.Conf.Ser.331(2011)032047.

[17]D.J.Lange,TheEvtGenparticledecaysimulationpackage,Nucl.Instrum. Meth-odsA462(2001)152.

[18]P.Golonka,Z.Was,PHOTOSMonteCarlo:aprecisiontoolforQEDcorrections inZ andW decays,Eur.Phys.J.C45(2006)97,arXiv:hep-ph/0506026.

[19]Geant4collaboration,J.Allison,etal.,Geant4developmentsandapplications, IEEETrans.Nucl.Sci.53(2006)270;

Geant4collaboration,S.Agostinelli,etal.,Geant4:asimulationtoolkit,Nucl. Instrum.MethodsA506(2003)250.

[20]M.Clemencic,etal.,TheLHCbsimulationapplication,Gauss:design,evolution andexperience,J.Phys.Conf.Ser.331(2011)032023.

[21]LHCb collaboration, R.Aaij, et al., Measurementofresonant and CP

com-ponentsin B0

sJ/ψπ+π− decays,Phys.Rev.D89 (2014)092006, arXiv:

1402.6248.

[22]L.Zhang,S.Stone,Time-dependentDalitz-plotformalismfor B0

qJ/ψh+h−,

Phys.Lett.B719(2013)383,arXiv:1212.6434.

[23]A.S.Dighe,I.Dunietz,H.J.Lipkin,J.L.Rosner,Angulardistributionsandlifetime differencesinB0

sJ/ψφdecays,Phys.Lett.B369(1996)144,arXiv:hep-ph/

9511363.

[24]LHCbcollaboration,R.Aaij,etal., MeasurementofCP violationand the B0

s

mesondecaywidthdifferencewith B0

sJ/ψK+K− and B0sJ/ψπ+π

decays,Phys.Rev.D87(2013)112010,arXiv:1304.2600.

[25]LHCbcollaboration,R.Aaij,etal.,MeasurementoftheCP asymmetryinB0

s–B0s

mixing,Phys.Rev.Lett.117(2016)061803,arXiv:1605.09768.

[26]U.Nierste,ThreelecturesonmesonmixingandCKMphenomenology,arXiv: 0904.1869.

[27]LHCbcollaboration,R.Aaij,etal.,Opposite-sideflavourtaggingofBmesonsat theLHCbexperiment,Eur.Phys.J.C72(2012)2022,arXiv:1202.4979; LHCbcollaboration,R.Aaij,etal.,Anewalgorithmforidentifyingtheflavour ofB0

s mesonsatLHCb,J.Instrum.11(2016)P05010,arXiv:1602.07252;

D.Fazzini,FlavourtaggingintheLHCbexperiment,PoSLHCP2018(2018)230.

[28]L.Breiman,J.H.Friedman,R.A.Olshen,C.J.Stone,ClassificationandRegression Trees,WadsworthInternationalGroup,Belmont,California,USA,1984.

[29]Y.Freund,R.E.Schapire,Adecision-theoreticgeneralizationofon-linelearning andanapplicationtoboosting,J.Comput.Syst.Sci.55(1997)119.

[30]J.Stevens,M.Williams,uBoost:aboostingmethodforproducinguniform se-lectionefficienciesfrommultivariateclassifiers,J.Instrum.8(2013)P12013, arXiv:1305.7248.

[31]W.D.Hulsbergen,DecaychainfittingwithaKalmanfilter,Nucl.Instrum. Meth-odsA552(2005)566,arXiv:physics/0503191.

[32]D.MartínezSantos, F.Dupertuis,Mass distributionsmarginalized over per-eventerrors,Nucl.Instrum.MethodsA764(2014)150,arXiv:1312.5000.

[33]LHCb collaboration, R. Aaij, et al., Observation of the decay B0

s

J/ψ (2S)K+π−,Phys.Lett.B747(2015)484,arXiv:1503.07112.

[34]S.M.Flatté,Onthenatureof0+mesons,Phys.Lett.B63(1976)228.

[35]J.Daub,C.Hanhart,B.Kubis,Amodel-independentanalysisoffinal-state in-teractionsin B0d/sJ/ψπ+π−,J. HighEnergyPhys. 02(2016)009,arXiv:

1508.06841.

[36]S.Ropertz,C.Hanhart,B.Kubis,Anewparametrizationforthescalarpionform factors,Eur.Phys.J.C78(2018)1000,arXiv:1809.06867.

[37]BES collaboration, M. Ablikim, et al., Resonances in J/ψ → φπ+π− and

φK+K−,Phys.Lett.B607(2005)243,arXiv:hep-ex/0411001.

[38]LHCbcollaboration,R.Aaij,etal.,AnalysisoftheresonantcomponentsinB0

J/ψπ+π−,Phys.Rev.D87(2013)052001,arXiv:1301.5347.

[39]LHCbcollaboration,R.Aaij,etal.,AnalysisoftheresonantcomponentsinB0

s

J/ψπ+π−,Phys.Rev.D86(2012)052006,arXiv:1204.5643.

[40]M.Pivk,F.R.Le Diberder,sPlot:astatisticaltooltounfolddatadistributions, Nucl.Instrum.MethodsA555(2005)356,arXiv:physics/0402083;

Y.Xie,sFit:amethodforbackgroundsubtractioninmaximumlikelihoodfit, arXiv:0905.0724.

[41]LHCbcollaboration,R.Aaij,etal., MeasurementofB0, B0

s,B+ andΛ0b

pro-ductionasymmetriesin7 and8 TeV proton-protoncollisions,Phys.Lett.B774 (2017)139,arXiv:1703.08464.

[42]R.Fleischer,Theoretical prospects forB physics, PoSFPCP2015 (2015)002, arXiv:1509.00601.

[43]LHCbcollaboration,R.Aaij,etal.,MeasurementoftheCP -violatingphaseβin

B0Jπ+πdecaysandlimitsonpenguineffects,Phys.Lett.B742(2015)

38,arXiv:1411.1634.

[44]LHCbcollaboration,R.Aaij,etal.,MeasurementofCP violationparametersand polarisationfractionsinB0

sJ/ψK∗0decays,J.HighEnergyPhys.11(2015)

082,arXiv:1509.00400.

LHCbCollaboration

R. Aaij

29

,

C. Abellán Beteta

46

,

B. Adeva

43

,

M. Adinolfi

50

,

C.A. Aidala

77

,

Z. Ajaltouni

7

,

S. Akar

61

,

P. Albicocco

20

,

J. Albrecht

12

,

F. Alessio

44

,

M. Alexander

55

,

A. Alfonso Albero

42

,

G. Alkhazov

41

,

P. Alvarez Cartelle

57

,

A.A. Alves Jr

43

,

S. Amato

2

,

Y. Amhis

9

,

L. An

19

,

L. Anderlini

19

,

G. Andreassi

45

,

M. Andreotti

18

,

J.E. Andrews

62

,

F. Archilli

29

,

J. Arnau Romeu

8

,

A. Artamonov

40

,

M. Artuso

63

,

K. Arzymatov

38

,

E. Aslanides

8

,

M. Atzeni

46

,

B. Audurier

24

,

S. Bachmann

14

,

J.J. Back

52

,

S. Baker

57

,

(9)

V. Balagura

9

,

b

,

W. Baldini

18

,

44

,

A. Baranov

38

,

R.J. Barlow

58

,

G.C. Barrand

9

,

S. Barsuk

9

,

W. Barter

57

,

M. Bartolini

21

,

F. Baryshnikov

73

,

V. Batozskaya

33

,

B. Batsukh

63

,

A. Battig

12

,

V. Battista

45

,

A. Bay

45

,

F. Bedeschi

26

,

I. Bediaga

1

,

A. Beiter

63

,

L.J. Bel

29

,

S. Belin

24

,

N. Beliy

4

,

V. Bellee

45

,

N. Belloli

22

,

i

,

K. Belous

40

,

I. Belyaev

35

,

G. Bencivenni

20

,

E. Ben-Haim

10

,

S. Benson

29

,

S. Beranek

11

,

A. Berezhnoy

36

,

R. Bernet

46

,

D. Berninghoff

14

,

E. Bertholet

10

,

A. Bertolin

25

,

C. Betancourt

46

,

F. Betti

17

,

e

,

M.O. Bettler

51

,

Ia. Bezshyiko

46

,

S. Bhasin

50

,

J. Bhom

31

,

M.S. Bieker

12

,

S. Bifani

49

,

P. Billoir

10

,

A. Birnkraut

12

,

A. Bizzeti

19

,

u

,

M. Bjørn

59

,

M.P. Blago

44

,

T. Blake

52

,

F. Blanc

45

,

S. Blusk

63

,

D. Bobulska

55

,

V. Bocci

28

,

O. Boente Garcia

43

,

T. Boettcher

60

,

A. Bondar

39

,

x

,

N. Bondar

41

,

S. Borghi

58

,

44

,

M. Borisyak

38

,

M. Borsato

14

,

M. Boubdir

11

,

T.J.V. Bowcock

56

,

C. Bozzi

18

,

44

,

S. Braun

14

,

M. Brodski

44

,

J. Brodzicka

31

,

A. Brossa Gonzalo

52

,

D. Brundu

24

,

44

,

E. Buchanan

50

,

A. Buonaura

46

,

C. Burr

58

,

A. Bursche

24

,

J. Buytaert

44

,

W. Byczynski

44

,

S. Cadeddu

24

,

H. Cai

67

,

R. Calabrese

18

,

g

,

R. Calladine

49

,

M. Calvi

22

,

i

,

M. Calvo Gomez

42

,

m

,

A. Camboni

42

,

m

,

P. Campana

20

,

D.H. Campora Perez

44

,

L. Capriotti

17

,

e

,

A. Carbone

17

,

e

,

G. Carboni

27

,

R. Cardinale

21

,

A. Cardini

24

,

P. Carniti

22

,

i

,

K. Carvalho Akiba

2

,

G. Casse

56

,

M. Cattaneo

44

,

G. Cavallero

21

,

R. Cenci

26

,

p

,

D. Chamont

9

,

M.G. Chapman

50

,

M. Charles

10

,

44

,

Ph. Charpentier

44

,

G. Chatzikonstantinidis

49

,

M. Chefdeville

6

,

V. Chekalina

38

,

C. Chen

3

,

S. Chen

24

,

S.-G. Chitic

44

,

V. Chobanova

43

,

M. Chrzaszcz

44

,

A. Chubykin

41

,

P. Ciambrone

20

,

X. Cid Vidal

43

,

G. Ciezarek

44

,

F. Cindolo

17

,

P.E.L. Clarke

54

,

M. Clemencic

44

,

H.V. Cliff

51

,

J. Closier

44

,

V. Coco

44

,

J.A.B. Coelho

9

,

J. Cogan

8

,

E. Cogneras

7

,

L. Cojocariu

34

,

P. Collins

44

,

T. Colombo

44

,

A. Comerma-Montells

14

,

A. Contu

24

,

G. Coombs

44

,

S. Coquereau

42

,

G. Corti

44

,

C.M. Costa Sobral

52

,

B. Couturier

44

,

G.A. Cowan

54

,

D.C. Craik

60

,

A. Crocombe

52

,

M. Cruz Torres

1

,

R. Currie

54

,

C.L. Da Silva

78

,

E. Dall’Occo

29

,

J. Dalseno

43

,

v

,

C. D’Ambrosio

44

,

A. Danilina

35

,

P. d’Argent

14

,

A. Davis

58

,

O. De Aguiar Francisco

44

,

K. De Bruyn

44

,

S. De Capua

58

,

M. De Cian

45

,

J.M. De Miranda

1

,

L. De Paula

2

,

M. De Serio

16

,

d

,

P. De Simone

20

,

J.A. de Vries

29

,

C.T. Dean

55

,

W. Dean

77

,

D. Decamp

6

,

L. Del Buono

10

,

B. Delaney

51

,

H.-P. Dembinski

13

,

M. Demmer

12

,

A. Dendek

32

,

D. Derkach

74

,

O. Deschamps

7

,

F. Desse

9

,

F. Dettori

24

,

B. Dey

68

,

A. Di Canto

44

,

P. Di Nezza

20

,

S. Didenko

73

,

H. Dijkstra

44

,

F. Dordei

24

,

M. Dorigo

44

,

y

,

A.C. dos Reis

1

,

A. Dosil Suárez

43

,

L. Douglas

55

,

A. Dovbnya

47

,

K. Dreimanis

56

,

L. Dufour

44

,

G. Dujany

10

,

P. Durante

44

,

J.M. Durham

78

,

D. Dutta

58

,

R. Dzhelyadin

40

,

,

M. Dziewiecki

14

,

A. Dziurda

31

,

A. Dzyuba

41

,

S. Easo

53

,

U. Egede

57

,

V. Egorychev

35

,

S. Eidelman

39

,

x

,

S. Eisenhardt

54

,

U. Eitschberger

12

,

R. Ekelhof

12

,

L. Eklund

55

,

S. Ely

63

,

A. Ene

34

,

S. Escher

11

,

S. Esen

29

,

T. Evans

61

,

A. Falabella

17

,

C. Färber

44

,

N. Farley

49

,

S. Farry

56

,

D. Fazzini

22

,

i

,

M. Féo

44

,

P. Fernandez Declara

44

,

A. Fernandez Prieto

43

,

F. Ferrari

17

,

e

,

L. Ferreira Lopes

45

,

F. Ferreira Rodrigues

2

,

S. Ferreres Sole

29

,

M. Ferro-Luzzi

44

,

S. Filippov

37

,

R.A. Fini

16

,

M. Fiorini

18

,

g

,

M. Firlej

32

,

C. Fitzpatrick

45

,

T. Fiutowski

32

,

F. Fleuret

9

,

b

,

M. Fontana

44

,

F. Fontanelli

21

,

h

,

R. Forty

44

,

V. Franco Lima

56

,

M. Frank

44

,

C. Frei

44

,

J. Fu

23

,

q

,

W. Funk

44

,

E. Gabriel

54

,

A. Gallas Torreira

43

,

D. Galli

17

,

e

,

S. Gallorini

25

,

S. Gambetta

54

,

Y. Gan

3

,

M. Gandelman

2

,

P. Gandini

23

,

Y. Gao

3

,

L.M. Garcia Martin

76

,

J. García Pardiñas

46

,

B. Garcia Plana

43

,

J. Garra Tico

51

,

L. Garrido

42

,

D. Gascon

42

,

C. Gaspar

44

,

G. Gazzoni

7

,

D. Gerick

14

,

E. Gersabeck

58

,

M. Gersabeck

58

,

T. Gershon

52

,

D. Gerstel

8

,

Ph. Ghez

6

,

V. Gibson

51

,

O.G. Girard

45

,

P. Gironella Gironell

42

,

L. Giubega

34

,

K. Gizdov

54

,

V.V. Gligorov

10

,

C. Göbel

65

,

D. Golubkov

35

,

A. Golutvin

57

,

73

,

A. Gomes

1

,

a

,

I.V. Gorelov

36

,

C. Gotti

22

,

i

,

E. Govorkova

29

,

J.P. Grabowski

14

,

R. Graciani Diaz

42

,

L.A. Granado Cardoso

44

,

E. Graugés

42

,

E. Graverini

46

,

G. Graziani

19

,

A. Grecu

34

,

R. Greim

29

,

P. Griffith

24

,

L. Grillo

58

,

L. Gruber

44

,

B.R. Gruberg Cazon

59

,

C. Gu

3

,

E. Gushchin

37

,

A. Guth

11

,

Yu. Guz

40

,

44

,

T. Gys

44

,

T. Hadavizadeh

59

,

C. Hadjivasiliou

7

,

G. Haefeli

45

,

C. Haen

44

,

S.C. Haines

51

,

B. Hamilton

62

,

X. Han

14

,

T.H. Hancock

59

,

S. Hansmann-Menzemer

14

,

N. Harnew

59

,

T. Harrison

56

,

C. Hasse

44

,

M. Hatch

44

,

J. He

4

,

M. Hecker

57

,

K. Heinicke

12

,

A. Heister

12

,

K. Hennessy

56

,

L. Henry

76

,

M. Heß

70

,

J. Heuel

11

,

A. Hicheur

64

,

R. Hidalgo Charman

58

,

D. Hill

59

,

M. Hilton

58

,

P.H. Hopchev

45

,

J. Hu

14

,

W. Hu

68

,

W. Huang

4

,

Z.C. Huard

61

,

W. Hulsbergen

29

,

T. Humair

57

,

M. Hushchyn

74

,

D. Hutchcroft

56

,

D. Hynds

29

,

P. Ibis

12

,

M. Idzik

32

,

P. Ilten

49

,

A. Inglessi

41

,

A. Inyakin

40

,

K. Ivshin

41

,

R. Jacobsson

44

,

S. Jakobsen

44

,

J. Jalocha

59

,

E. Jans

29

,

B.K. Jashal

76

,

A. Jawahery

62

,

F. Jiang

3

,

M. John

59

,

D. Johnson

44

,

C.R. Jones

51

,

C. Joram

44

,

B. Jost

44

,

N. Jurik

59

,

S. Kandybei

47

,

M. Karacson

44

,

J.M. Kariuki

50

,

S. Karodia

55

,

N. Kazeev

74

,

M. Kecke

14

,

F. Keizer

51

,

M. Kelsey

63

,

M. Kenzie

51

,

T. Ketel

30

,

B. Khanji

44

,

A. Kharisova

75

,

C. Khurewathanakul

45

,

K.E. Kim

63

,

T. Kirn

11

,

V.S. Kirsebom

45

,

S. Klaver

20

,

K. Klimaszewski

33

,

S. Koliiev

48

,

M. Kolpin

14

,

R. Kopecna

14

,

P. Koppenburg

29

,

I. Kostiuk

29

,

48

,

Figura

Fig. 1. Results of the simultaneous fit to the J /ψ π π mass distributions RS (black points) and WS (grey points) samples
Fig. 2. Overall efficiency normalized to unity for (a) m π π , (b) cos θπ π , (c) cos θ J /ψ and (d) χ observables
Fig. 4. Projections of the angular and decay-time variables with the fit result overlaid

Riferimenti

Documenti correlati

Un approfondimento del pensiero religioso di Colonna, difficile da cogliere nella sua adesione allo spiritualismo viterbese e pre-tridentino, si trova nella quarta sezione,

Note generali: Edizione identica alla prima del 1984 con le seguenti differenze (v. indice): nella seconda di copertina, nella prima pagina non numerata, nell’ultima pagina

Below, we exemplify some of these strategies by discussing the interview and the speech through a comparison of both interpreters’ target text (TT) and Morsi and

Infatti, come è già stato preannunciato, mentre nella pittura dell’antichità classica sembra che si dipingessero solo paesaggi tipizzati, senza alcuna volontà di ritrarre

formazione svolto nel periodo Febbraio 2020 – Aprile 2020 da parte di Euroconference dal titolo “Il D.Legisl.. Di fatto, la scelta delle camere, al momento della stesura del

7KLVSDSHUUHSRUWVDSUHOLPLQDU\SHUIRUPDQFHDQDO\VLVRIDFRQFHQWUDWLQJVRODUSODQWGHVLJQHGIRUVXSSO\LQJKHDW

1-left a reduced one-dimensional function corresponding to a two-dimensional problem and the respective trial points produced by GOSH at the interval [0, 1] (red points represent

When we analyzed the top sections (Fig. 4 ), a weak LM14 signal was observed in the cell wall of devel- oping bast fibers (BF) (arrow in Fig. 4a ); by carefully observ- ing the