• Non ci sono risultati.

Different agronomic and fertilization systems affect polyphenolic profile, antioxidant capacity and mineral composition of lettuce

N/A
N/A
Protected

Academic year: 2021

Condividi "Different agronomic and fertilization systems affect polyphenolic profile, antioxidant capacity and mineral composition of lettuce"

Copied!
10
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Scientia

Horticulturae

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / s c i h o r t i

Different

agronomic

and

fertilization

systems

affect

polyphenolic

profile,

antioxidant

capacity

and

mineral

composition

of

lettuce

Adriano

Sofo

a,∗

,

Bengt

Lundegårdh

b

,

Anna

Mårtensson

b

,

Michele

Manfra

c

,

Giacomo

Pepe

d

,

Eduardo

Sommella

d

,

Mauro

De

Nisco

e

,

Gian

Carlo

Tenore

f

,

Pietro

Campiglia

d

,

Antonio

Scopa

a

aSchoolofAgricultural,Forestry,FoodandEnvironmentalSciences,UniversityofBasilicata,Vialedell’AteneoLucano,10,I-85100Potenza,Italy bDepartmentofSoilandEnvironment,SLU—SwedishUniversityofAgriculturalSciences,Ullsväg17Ultuna,SE-75007Uppsala,Sweden cDepartmentofScience,UniversityofBasilicata,Vialedell’AteneoLucano10,I-85100Potenza,Italy

dDepartmentofPharmacy,UniversityofSalerno,ViaGiovanniPaoloII132,I-84084Fisciano,Salerno,Italy

ePharmaco-ChemicalDepartment,FacultyofPharmacy,UniversityofMessina,VialeAnnunziata,I-98168Messina,Italy fDepartmentofPharmacy,UniversityofNapoliFedericoII,ViaD.Montesano49,I-80131Napoli,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18November2015 Receivedinrevisedform3April2016 Accepted4April2016

Availableonline14April2016 Keywords: Flavonols Lettuce Minerals Organicfarming Phenolicacids

a

b

s

t

r

a

c

t

Thepresentpaperaimstoinvestigatephenolicprofiles,antioxidantcapacityandmineralcomposition oflettuce(LactucasativaL.,var.‘MaravilladeVerano’)grownunderconventional(CON)andanorganic (ORG)systemswithfourdifferentfertilizationtreatments.Thepolyphenolicprofilesofleafextractswere determinedbyultra-high-performanceliquidchromatography(UHPLC),thelevelsofmineralelements bymeansofinductivelycoupledplasmamassspectrometry,whereastotalphenoliccontentand antiox-idantcapacityweredeterminedspectrophotometrically.Yield,soilandmeteorologicalparameterswere measured.Inallthefertilizationtreatments,totalphenolicacidsandflavonolsinCONweresignificantly highercomparedtoORG.Atrendparalleltothatofsinglephenolswasobservedfortotalphenolic con-tentandtotalantioxidantcapacity.PlantmineraldistributionrevealedsignificantchangesbetweenCON andORGsystemsinsomeplantmacronutrients(N,Mg,S,Na,Fe)andmicronutrients(Se,Mn,Mo).The differencesamongfertilizationtreatmentsforalltheparametersconsideredwerealsodiscussed.From theoverallanalysisoftheresults,thehighercontentofphenolicsobservedinCONsystemcouldbe asso-ciatedtothepresenceofmorestressfulconditions,intermsofplantand/orsoilmineraldeficits.Onthe otherhand,theadoptionofanorganicmanagementdeterminedhigheryieldsandabetterplantmineral balance.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Green lettuce (Lactuca sativa L.) is primarily consumed as

wholeheads or fresh-cutproduct (Romaniet al.,2002).As

let-tuceworldwide consumption hassteadily increasedin the last

decades(Heimleretal.,2012),aseriesofstudieshavebeenrecently

conducted for studying its nutraceutical and health-promoting

Abbreviations: CON,conventionalsoilmanagement;DPPH•, 2,2-diphenyl-1-picrylhydrazylradical;ORG,organicsoilmanagement;DW,dryweight;FRAP, ferricreducingabilityofplasma;FW,freshweight;GAE,gallicacidequivalents; PAR,photosyntheticallyactiveradiation;TE,Troloxequivalents;UHPLC, ultra-high-performanceliquidchromatography.

∗ Correspondingauthor.

E-mailaddress:adriano.sofo@unibas.it(A.Sofo).

compounds(Ribas-Agustíetal.,2011;Heimleretal.,2012;

Abu-Reidahetal.,2013;Durazzoetal.,2014;Pepeetal.,2015).

Itwasdemonstratedthat lettuceisparticularlyrichof some

classes of polyphenols, plant secondary metabolites with free

radical-scavengingpropertiesthathaveevolvedforfacingabiotic

andbioticstressesexperiencedbytheplantsinthesurrounding

environment(Romanietal.,2002;Ohetal.,2009a).Polyphenols

are also important in humandiet, preventing cancer and

car-diovasculardiseases (Manachet al., 2004;Hooper and Cassidy,

2006).The health-promoting properties of lettuce polyphenols

wererecentlytestedbyPepeetal.(2015)andAdessoetal.(2016),

who demonstrated thatlettuce leaf extractsare abletoreduce

boththeinflammatoryandoxidativestressinmurinemonocyte

macrophagecells, bydecreasing reactiveoxygen species, nitric

oxiderelease,induciblenitricoxidesynthaseandcycloxygenase-2

expression,andpromotingthenucleartranslocationofthenuclear

http://dx.doi.org/10.1016/j.scienta.2016.04.003 0304-4238/©2016ElsevierB.V.Allrightsreserved.

(2)

Table1

Compostandrockdustappliedeveryyear(2011–2013)forthedifferentfertilizationtreatments. Fertilization

treatment

Compost(tha−1yr−1) Rockdust(tha−1 yr−1) Calciumnitrate (kgNha−1yr−1) A Nofertilization 0 0 0 B Manure 12 0 0 C Rockdust 0 28.8 0

D Manure+rockdust 12 28.8 0

K Mineralfertilization(control) 0 0 150

factorsNrf2andNF-␬B.Consideringthatlettuceisacheapand pop-ularfoodwidelyconsumedfreshworldwideandthatthelackof cookingpreservethedegradationofthemorethermolabile chem-icalspeciesandavoidthelossofwater-solublecompounds,this vegetableisofkeyimportanceforthedietarysupply ofnatural antioxidants(Pepeetal.,2015).

Inlettuce,twoclassesofpolyphenolsaremainlypresent:

phe-nolicacidsandflavonols(Manachetal.,2004;Baslametal.,2013;

Lópezetal.,2014).Phenolicacidsarerarelyfoundinlettuce in

thefreeform,beingmostlypresentasboundforms,mainly

gly-cosylated derivatives or esters (e.g. chlorogenic acid, from the

combination of caffeic and quinic acids) (DuPont et al., 2000;

Mulabagaletal.,2010;Ribas-Agustíetal.,2011;MaiandGlomb,

2013). Flavonols are very frequent in lettuce, and their main

representativesaretheglycosylatedderivativesofquercetinand

kaempferol(Romanietal.,2002;HooperandCassidy,2006).

Greenhouse and soilless lettuce culture systems are today

increasingly widespread than open-air-grown lettuce (Romani

etal.,2002;Heimleretal.,2012;Durazzoetal.,2014).Whilethis

warrantsahigheryieldandbetterclimatic,phytopathogical,water

andnutritionalcontrol,itnotalwaysensuresagood

phytochemi-calprofileinthefinalproduct(Tomas-Barberanetal.,1997;Llorach

etal.,2008).Indeed,theadverseagronomicandenvironmental

fac-torsexperiencedbyplantsgrowninopenfield,suchashighorlow

temperature,ultravioletlight,insectattack,pathogeninfectionand

eventualnutrientdeficiencycanincreasetheamountsofphenolics

and/orchangetheirprofiles,evenwithadecreaseofcrop

produc-tivity(Tomas-Barberanetal.,1997;Llorachetal.,2004,2008;Oh

etal.,2009b).Forinstance,flavonolsareyellowpigmentsgenerally

consideredtoactasUVprotectantsandfreeradicalscavengers,

sotheirbiosynthesisisstimulatedintheouterandaerialtissues

(stemandleafepidermis)underexcesslight(Sofoetal.,2012).In

addition,thelevelsofphenolicacidsinlettucearesensitiveto

envi-ronmentalconditions(Liuetal.,2007;MaiandGlomb,2013).Forall

thesereasons,itisimportanttofindacompromisebetween

conve-nientagronomicpracticesandfoodnutritionalproperties.Onthe

otherhand,toobtaintopyieldsofhighqualityandpreserve

envi-ronmentalsustainability,itisindispensabletoadoptsustainable

agriculturaltechniques.Amongopenfieldagronomictechniques,

organicfarmingoffersmorebenefitsthanaconventionalapproach

intermsofsustainability,enhancedphysico-chemicaland

micro-biological soil fertility, and absence of synthetic fertilizers and

chemicalpesticides(Heimleretal.,2012;Durazzoetal.,2014)

Otherthanphenolics,lettucechemistryattheelementallevel,

thatincludesthecontentofallmineralnutrientsand trace

ele-ments,isofkeyimportance(KellyandBateman,2010).Indeed,it

isknownthat someinorganiccations,naturallypresentat

non-toxicconcentrationsinlettuce,suchasFe,CuandZn,participatein

theradical-scavengingreactionsfortheirroleofcofactorsinsome

antioxidantenzymes,Fe/Sproteinsandcytochromes.Inthecaseof

K,Na,Ca,Mg,SandP,theyareessentialtothehumanorganism

togetherwithsomemicronutrients(e.g.,Mn,SeandCo)thatactas

cofactorsinhumanvitaminsandenzymes.

Inthelastyears,greatimportancehasbeendevotedtothe

con-sumptionof lettuce since it is a source of natural antioxidants

(Llorach et al., 2008; Kelly and Bateman, 2010; Heimler et al., 2012;Abu-Reidahetal.,2013;LeeandScagel,2013).Basedonthis

acceptedknowledge,thepresentpaperaimsatinvestigating

phe-nolicprofiles,totalphenolcontent,totalantioxidantcapacityand

mineralcompositionoflettucegrownundertwodifferentfarming

systems(conventionalandorganic)andunderdifferent

fertiliza-tiontreatmentsinordertoestablishifthesemanagementpractices

canmodifyitsnutritionalquality.

2. Materialsandmethods

2.1. Experimentalsiteandplantmaterial

Theexperimentwasconductedin2011,2012and2013intwo

open-fieldfarmsatJärna,incentralSweden,notdistanteachother

andhavesimilarclimaticconditions.Thefirstfarm(‘Gerstaberg’;

CON)wasmanagedconventionallyforover50 years,cultivated

witharotationpotato/ryeinthelast12years(fertilizationusing

35kg N-NO3ha−1yr−1 and 20kg N-NH4ha−1yr−1, cropresidue

shredding,andploughingtwiceayearatasoildepthof30cm).The

secondonewasanorganicfarm(‘Nibblegarden’;ORG)amended

withdifferenttypesofanimalmanureandwithoutanysynthetic

fertilizersorchemicalpesticidessinceitsinceptionin1966,and

cultivatedwitharotationofwithpotato/clover/barleyinthelast12

years(minimumtillage,cropresiduesshreddedandincorporated

intothesoilafteralightharrowingat10-cmsoildepth).

Thelettuce(L.sativaL.)varietyusedinthisstudywas‘Maravilla

deVerano’.Startingfrom2011,bothfarms(CONandORG)were

dividedinfourblocks:oneunfertilizedcontrol(treatmentA)and

threefertilizationtreatments(treatmentsB,CandD)withdifferent

typesofsoilamendments(Table1).Anadditionalmineralfertilized

treatment(K)wasincludedinCONfieldwhereasitwasnotpossible

toincludeitintheORGsystemduetothestrictrestrictionsinthe

useofsyntheticfertilizers.

Cattlemanurecompostedforsixmonthswasusedfortreatment

B.Rockdust(treatmentC)wasobtainedbyfinelygrinding

(approx-imately0.5mmofdiameter)localrocksusingajawcrusher(Model

NordbergC100;MetsoMineralsLtd.,Tampere,Finland).Compost

mean composition wasthe following:water 248gkgFW−1, pH

7.98,totalN18gkgDW−1,organicC338gkgDW−1,organic

mat-ter583gkgDW−1,humus104gkgDW−1,P2O56.8gkgDW−1,K2O

14gkgDW−1, Zn 0.112gkgDW−1, Fe 5.53gkgDW−1, 0.065Cu

gkgDW−1,Mn0.114gkgDW−1.Rockdustmeancomposition(%

w/w)wasthefollowing:SiO2 65.21,K2O11.41,CaO9.06,Al2O3

5.42,MgO1.96,Na2O1.65,P2O51.28,FeO1.21,Fe2O31.02,MnO

0.07, other minerals 1.71. Compost stone meal (treatment D)

wasprepared by mixing thestone powder withcattle manure

(<0.2mm)fromdiabase,afterwhichthemixturewascomposted

for6months.FertilizersamountsofthetreatmentK(Table1)were

calculatedonthebasisofthevaluesofsoiltextureandNcontent

(Table2).Attheestablishmentofthetreatments,tencomposite

soilsampleweretakenbyrandomlycollectingthreesoilcoresper

eachfarmingsystemandfertilizationtreatment.Onthesesamples,

soiltexturewasdetermined,soilNwasmeasuredbytheanalytic

(3)

Table2

Soiltextureandnitrogencontentat0–30cmdepthintheconventional(CON)and organic(ORG)experimentalsitesatthebeginningoftheexperiment(n=10).

CON ORG

Soilorganicmatter(%w/w) 2.6 6.7

Clay(%w/w) 45.2 40.0

Silt(%w/w) 40.8 40.0

Sand(%w/w) 11.4 13.3

NO3-N(kgha−1) 47.4 81.0

NH4-N(kgha−1) 31.7 12.1

method,andsoilorganicmatterwasdeterminedbydrycombustion methodusingaLECO-SC230apparatus(LECOInstruments,UK).Soil wiltingpoint,fieldcapacityandsaturationwereestimatedfrom thevaluesofsoiltextureandsoilorganicmatterusingthesoftware SPAWHydrology(version6.02.74;USDAAgriculturalResearch Ser-vice,Washington,Pullman,WA,USA).

Lettuce was planted in late June of the three experimental yearsinboththesystems.Thedistancebetweentheplantswas 0.25×0.25m.Plantswerecoveredwithanylonclothtoreduce evaporation and protect them against pests. The harvest was carriedoutinlateJulyinboththesystems.Anumberof16 let-tuceheadspereachfertilizationtreatmentofbothCONandORG systemswererandomlyharvestedinthecentralpartofeach fertil-izationblockforavoidingboundaryeffectsamongthefertilization treatmentsandplacedinwhiteplasticbagstominimizewaterloss. Thebagswereimmediatelytransportedinthelaboratory,where theywereweighed.Theheads weredividedlengthwiseinhalf. Onehalfofeachheadwasputinaclothbag,weighedanddried at53◦Cfor48h.Thedrymatterwasweighed,groundandstoredin plastictinsforelementdetermination.Theremaininghalveswere usedfordeterminingphenolextractionandantioxidantcapacity. Thenumberofplantsrandomlychosenforyieldmeasurements expressedasgDW head−1 in each fertilization blockwas200. Meteorologicalvariablesweremonitoredbyweatherstationsof thenationalweathermeasuringsystemofSwedishMeteorological andHydrologicalInstitute,placedata50mfromtheexperimental fields.

2.2. Phenolicextractionanddetermination

Foreachplant,centralleavesweredetached,slightlywashed withdistilledwatertoremoveeventualresidues,andusedforthe followingmeasurements.Fivegramsoffreshleaftakenfromthe centralpartwerecollectedwithascalpelandplacedinan extract-ingsolutionof49mlmethanol+1mlHCl37%,accordingtoSofo etal.(2012).Thesolutionwascoveredwithparafilmtoavoid

evap-oration,shakenat 100rpmat 20◦C in thedarkfor 45min.The

extractswerefilteredthrough0.20␮mMinisartSFCAsterile

fil-ters(SartoriusStedimBiotechGmbG,Goettingen,Germany),and

immediatelystoredat−20◦C.Leafextractswereanalyzedby

high-performanceliquidchromatographyforthedeterminationofthe

phenolic compounds.The polyphenols contents of leafextracts

were determined by ultra-high-performance liquid

chromatog-raphy(UHPLC). Allleafextractswere filteredthrough0.45-␮m

Whatmanfilters.

UltrapurewaterwasobtainedbyaMilli-Qsystem(Millipore,

Milan,Italy).Allthechemicalsused werepurchased by

Sigma-Aldrich(Milan,Italy). The UHPLC analysiswas performedon a

ShimadzuNexeraUHPLCsystem,consisting ofa CBM-20A

con-troller,twoLC-30ADdual-plungerparallel-flowpumps,aDGU-20

A5degasser,anSPD-M20Aphotodiodearraydetector(equipped

withasemi-microflowcellof2.5␮l),aCTO-20Acolumnoven,a

SIL-30ACautosampler.TheUHPLCsystemwascoupledonlineto

anLCMS-IT-TOFmassspectrometerthroughanESI source

(Shi-madzu,Kyoto,Japan).LC–MSdataelaborationwasperformedby

theLCMSsolution®software(Version3.50.346,Shimadzu).Mobile

phaseswere:A=0.1%(v/v)HCOOHinwater;B=0.1%(v/v)HCOOH

inacetonitrile.Analyseswereperformedingradientelutionas

fol-lows:0–2.90min,15–20%B;2.90–3.10min,20%B;3.10–3.80min,

20–27% B; 3.80–5.30, 27–35% B, 5.30–6.60 35–55% B, 6.60–10

55–100%B.Columnoventemperaturewassetto48◦C.Injection

volumewas2␮lofmethanolicextract.ThefollowingPDA

parame-terswereapplied:samplingrate,40Hz;detectortimeconstant,

0.160s;celltemperature,40◦C. Dataacquisition wassetinthe

range190–400nmandchromatogramsweremonitoredat330and

350nmatthemaximumabsorbanceofthecompoundsofinterest.

UHPLCsystemwascoupledon-linetoahybridIT-TOFinstrument,

flowratefromLCwassplittedprioroftheESI sourcebymeans

ofastainlesssteelTeeunion(1/16in.,0.15mmbore;Valco

Instru-mentsCompanyInc.,Houston,TX,USA).Resolution,sensitivity,and

massnumbercalibrationoftheiontrapandtheTOFanalyzerwere

tunedusingastandardsamplesolutionofsodiumtrifluoroacetate.

MSdetectionwasoperatedinnegativeionizationmodewiththe

followingparameters:detectorvoltage,1.53kV;Interfacevoltage,

−3.5kV,CDL(curvedesolvationline)temperature,200◦C;block

heatertemperature,200◦C;nebulizinggasflow(N2),1.5lmin−1,

dryinggaspressure,100kPa.FullscanMSdatawereacquiredinthe

rangeof200–900m/zionaccumulationtime,40ms;IT,(repeat=2).

MS/MSexperimentswereconductedindatadependent

acquisi-tion,precursorionswereacquiredintherange150–800m/z;peak

width,3Da;ionaccumulationtime,60ms;CIDenergy,60%,

colli-siongas50%,repeat=1;executiontrigger(BPC)intensity,at95%

stoplevel.

Quantification of individual phenolic compounds was

per-formed by photodiode array detection (DAD) at the

maxi-mumabsorbance of the compounds of interest. Stock solution

(1mgmL−1)were preparedin methanol, the calibrationcurves

wereobtainedin a concentrationrangeof 1–100␮gmL−1 with

sixconcentrationlevels(1,5,10,25,50,100␮gmL−1)and

trip-licateinjectionofeachlevelwererun.Phenolicacidsderivatives

werequantifiedbycomparisonwithanexternalstandardofcaffeic

acidwhereflavonolswerequantifiedasquercetin3-O-glucoside.

Thequantificationofthecompoundsforwhichtherewerenota

standard availablewasmadeusing thecalibrationcurveofthe

compound that was included in their structure. Peak areas of

eachstandardwereplottedagainstcorrespondingconcentrations.

Theamountofthecompoundsin thesample wasexpressedas

milligrampergramofextract,linearregressionwasusedto

gen-erate calibrationcurve,R2 values were≥0.999,retention times

andareasrepeatabilitywasalsoevaluatedshowingRSD%values

below 0.80and 8.68respectively, furtherconfirmingthe

preci-sionofthemethod.Identificationofpolyphenolswascarriedout

usingbothDADspectraandMS/MSdata,comparingthe

fragmen-tationpattern withdata,whenpresent, inliterature. Molecular

formulawascalculatedbytheFormulaPredictorsoftware

(Shi-madzu),setting a low toleranceso that most of the identified

compoundswereinposition1in thelistofthepossible

candi-dates.Twodifferentcolumnsetupwereemployedinthiswork:a

KinetexC18150×2.1mm,2.6␮m(Phenomenex,CastleMaggiore,

Italy)forUHPLC–MS/MSqualitativeanalyses,anda KinetexC18

150×4.6mm,2.6␮mforUHPLC-PDAquantitativeanalysis.

TotalphenoliccontentwasdeterminedbytheFolin-Ciocalteu

colorimetricmethodusinggallicacidasastandard.Eachreaction

mixturecontained100␮lsamplesolution,6mldistilled-deionized

water,500␮lFolin-Ciocalteureagentand0.15mlofNa2CO3.For

theblank,acetone-water(1:1,v/v)replacedgallicacid.After2hof

reactionat20◦C,theabsorbancewasmeasuredat765nmusinga

JascoV-530UV–visspectrophotometer(JascoCorp.,Tokyo,Japan).

Totalphenoliccontentwasexpressedasmggallicacidequivalents

(4)

2.3. Totalantioxidantcapacity

The ability of leaf extracts to scavenge the DPPH•

(2,2-diphenyl-1-picrylhydrazyl) radical was measured according to

Brand-Williams et al. (1995). Aliquots (20␮l) of leaf extract

wereaddedto3mlofDPPH• solution(6×10−5molL−1)andthe

absorbance was spectrophotometrically determined at 515nm

every5minuntilthesteadystate.

Theantioxidantpotentialofleafextractswasalsodetermined

usingaFRAPassay(FerricReducingAbilityofPlasma).Asolutionof

10mmolL−12,4,6-tripyridyl-s-triazine(TPTZ)in40mmolL−1HCl

and12mmolL−1FeCl2wasdilutedin300mmolL−1sodiumacetate

buffer(pH3.6)ataratioof1:1:10.Aliquots(20␮l)ofleafextract

wereaddedto3mloftheFRAPsolutionandtheabsorbancewas

spectrophotometricallydeterminedat 593nm every5minuntil

thesteadystatewasreached.Foreachantioxidantassay,aTrolox

aliquotwasusedtodevelopastandardcurveandalldatawere

expressedasTroloxequivalents(␮molTEg−1FW).

2.4. Elementdetermination

Analiquot (50g) of the sameleaves usedfor phenol

deter-minationwasdigestedinaHNO3:H2O2 solution(5:1,v/v)using

ahighperformancemicrowavedigestionunit(MLS-1200Mega,

Milestone Inc., CT, USA). Two millilitersof HNO3 (0.1M) were

addedandthenthesolutionwasmadeuptoa10mlwith

ultra-puredistilledwater.Thelevelsofelementsweredeterminedby

meansofquadrupoleinductivelycoupledplasmamass

spectrome-try,ICP-QMS(ElanDRCII,PerkinElmerSCIEX,CT,USA).Operational

parameterswerethefollowing:sampleuptakerate,1mlmin−1;

sample introduction system, Meinhard nebulizer withcyclonic

spraychamber;gasflowratesLmin−1:plasma,15;auxiliary,1.0;

nebulizer,0.85;dwelltime,50ms;interface,Ptcones;extraction

lens voltage,optimized for maximum detector response (56Fe).

HighpurityHe(99.9999%)andH2(99.9995%)wereused,inorder

tominimizethepotentialproblemscausedbyunidentified

reac-tivecontaminantspeciesinthecell.Theinstrumentwasequipped

withanoctopoleion guideenclosed ina collision/reactioncell.

Moreover,theinstrumentwasoperatedinanair-conditioned

lab-oratory(20–22◦C)equippedwithafiltertoremovedustparticles.

Non-metallicdeviceswerealwaysusedtocollectandtransportthe

samples.Consideringthattheinstrumentusedisasimultaneous

ICP-QMS,havinganarrayofphotomultipliertubespositionedto

lookatafixedsetofelements(wavelengths),thereference

wave-lengthsforeachmetalandmetalloidwereautomaticallychosen

bytheinstrumentsoftwareinordertoavoidinterferences with

theotherelementsanalyzed.Beforeuse,allglasswareand

plas-ticcontainerswerecleanedbywashingwith10%ultra-puregrade

HNO3foratleast24h,andthenrinsedcopiouslywithultra-pure

waterbeforeuse. Thecalibrationsolutionswerepreparedfrom

multi-elementalstandardstocksolutionsof1000mgL−1,andthe

calibrationcurveswereobtainedbyusing atleast6 calibration

solutions.Reagentblankscontainingultra-purewaterwere

addi-tionallyanalysedinordertocontrolthepurityofthereagentsand

thelaboratoryequipment.

2.5. Statisticalanalysis

Foreachmanagementsystemandfertilizationtreatment,data

ofpolyphenols,totalantioxidantcapacityandminerallevelswere

representedasthemeansofmeasurementson16differentplants

per treatmentperyear (n=48),while yield values were

repre-sentedasthemeansofmeasurementson100plantspertreatment

peryear(n=300).DatawereanalyzedusingSASversion9.2(SAS

InstituteInc.,Cary,NC,USA).Analysisofvariance (ANOVA)was

performedusingthePROCGLMprocedureofthesoftware,that

Fig.1.(A)Rainfall,(B)averageairtemperature,and(C)meandailyPARin2011 (greybars),2012(blackbars)and2013(whitebars).

usesthemethodofleastsquarestofitgenerallinearmodels.PROC

GLMenablestospecifyanydegreeofinteraction(crossedeffects)

andnestedeffects,andalsoprovidesforpolynomial,

continuous-by-class,andcontinuous-nesting-classeffects.Allthevaluesofthe

threeexperimentalyearswereconsideredasreplications,asno

significantdifferencewereobservedbetweentheyears.

Correla-tionanalysiswasperformedtodeterminetherelationshipbetween

the parameters independentof the agronomic and fertilization

treatmentsusingtheCORRprocedure,computingPearson

corre-lationcoefficientsasparametricmeasureofthelinearrelationship

betweenthevariables.Significantdifferencesamongmeanswere

determinedatP≤0.05,accordingtoFisher’sLSDtest.

3. Results

3.1. Climaticvariable,soilpropertiesandyieldparameters

In the period April-August (mean 2011–2013), there was

204mmofrainfall,withonly13mminJuly(Fig.1a).Theaverage

temperaturesreachedapeakof19◦C(mean2011–2013)inAugust

(Fig.1b).ThemeandailyPAR(photosyntheticallyactiveradiation)

increasedfromApriltoJuneandsuccessivelydecreasedduringthe

lastpartofthesummerinallthethreeexperimentalyears(Fig.1c).

Onthebasisoftheparametersofsoiltextureandsoilorganic

matter(Table2),CONsoilwasasiltyclayhaving26.8%(v/v)

wilt-ing point, 40.9% (v/v) field capacity and 52.3% (v/v) saturation,

whereasORGsoilwasasiltyclaywith24.9%wiltingpoint,39.9%

fieldcapacityand58.0%saturation.Soilorganicmatterandtotal

(5)

Table3

Yieldinconventional(CON)andorganic(ORG)managementsystems.The fertil-izationtreatmentsareindicatedinTable1.Meanvaluesintheperiod2011–2013 (n=300)±SDfollowedbydifferentlettersaresignificantlydifferentatP≤0.05, accordingtoFisher’sLSDtest.

Yield(gDWhead−1)

CON ORG

Value SD Stat Value SD Stat

A 4.55 2.36 d 12.41 0.69 b

B 10.74 1.25 c 13.46 1.84 ab

C 9.35 1.18 c 13.42 1.99 ab

D 7.57 3.16 cd 15.12 2.70 a

K 8.39 0.99 cd – – –

Forallthefertilizationtreatments,thevaluesofyieldwere sig-nificantlyhigherinORGthaninCON(Table3).Theunfertilized

treatment(A)ofORGhadsignificantlyhigheryield(12.41gDW

head−1)than themineralfertilizedtreatment(K), whileA-CON

showedverylowyieldvalues(Table3).Consideringallthe

treat-mentstogether,excludingK,inallofthethreeyearsofexperiment,

yieldwassignificantlyhigherintheORGsystem(Table7).

3.2. Levelsofphenolicacidsandflavonols

Thephenolicacidsandflavonolsrevealedinthelettucesamples,

sortedintheorderofthepeaksfoundintheUHPLCchromatograms,

areshowedinTable4.Inallthefertilizationtreatments,thelevels

oftotalphenolicacidsofCONfertilizationtreatmentswere

signifi-cantlyhighercomparedtoORG.IntheCONsystem,totalphenolic

acidsintheunfertilizatedtreatmentAweresignificantlyhigher

thaninthefertilizationtreatmentsincludingmanureand/orrock

dust(B,C,andD),wheresthistrendwasnotobservedintheORG

system.Comparedtotheothertreatments,thetotal

concentra-tionofphenolicacidsundermineralfertilization(treatmentK)was

0.845mgg−1FW,avaluesignificantlylowerrespecttoalltheCON

fertilizationtreatments.Feruloylquinicacid,caffeoylferuloyquinic

acid,andmethylcaffeoylferuloyltartaricacidisomerwerefoundto

bethemajorphenolicacidspresent,accountingonaveragefor32,

35and19%,respectively,ofthetotalcontentinphenolicacids.

As for total phenolic acids, statistical differences in total

flavonolswererevealedamongCONandORGfertilization

treat-ments. In the CON system, the levels of total flavonols were

significantlyhigherintheunfertilizedtreatment(A)compareto

thethreefertilizedtreatments(B,C,andD),showingsignificant

differencesrespecttothelowestvalue(0.381mgg−1 FW)found

inplantssubjectedtomineralfetilization(treatmentK).

Consider-ingonaverageallthetreatments,quercetin3-O-glucosidewasthe

mostabundantflavonol,accountingfor38%oftotalflavonols.

ExcludingthetreatmentD(manure+rockdust),thetotal

phe-noliccontentcalculatedbythesumofphenolicacidsandflavonols

resultedtobesignificantlyalwayshigherinCONfertilization

treat-mentsthaninORGones.

3.3. Totalphenolcontentandtotalantioxidantcapacity

As for phenol levels determined by UHPLC, the values of

totalphenolcontentmeasuredbytheFolin-Ciocalteucolorimetric

methodwashigherinalltheCONfertilizationtreatments

com-paredtoORG,showingthehighestlevelsintheA-CONtreatment

(2.25mg GAEg−1 FW)(Table5).Considering all thetreatments

together,excludingK,inallofthethreeyearsofexperimenttotal

phenolcontentwassignificantlyhigherintheleavesofplantsfrom

theCONsystem(Table7).Atrendparallel tothat oftotal

phe-nolswasobservedfortotal antioxidantcapacity determinedby

DPPH•andFRAPassays,withpeaksfoundinA/C-CONtreatments

(Table5).ThedifferencesinantioxidantcapacitybetweenCONand

ORGmanagementsystemswereallsignificant(Table5).

3.4. Elementcontent

MineraldistributionofmacroelementsrevealedthatORG

fer-tilizationtreatmentsdeterminedsignificantincreasesinN,Mg,S,

Na,andAlinallthetreatmentscomparedtotherespectiveCON

fertilizationtreatments,whereasnodifferencesinC,K,Ca,Pand

Fewereobserved(Table6).Regardingmicroelements,ORG

fertil-izationtreatmentshadsignificantlyhigherlevelsofCuandSe,and

lowerconcentrationsofMn,CdandMo,whereasnochangeswere

foundfor Zn,Ni,Crand Co(Table6).Thesetrendswere

gener-allyconfirmed,exceptingforsomeexceptionsintheunfertilized

tretments(A).TheORGfertilizationtreatmentsthatincluded

com-postand/orrockdustapplication(B/C/D)presentedavalueofN

contentcomparable tothatfoundinthetreatmentKwith

min-eralfertilization(Table6).Consideringallthetreatmentstogether,

excludingK,inallofthethreeyearsofexperimenttotalNcontent

wassignificantlyhigherinplantsfromtheORGsystem(Table7).

4. Discussion

4.1. Phenolicprofiles

TheextractionmethodandthedeterminationbyUHPLC

cou-pled withLCMS-IT-TOF here usedallowed todetect clearly 12

phenoliccompounds(eightphenolicacidsandfourflavonols),a

number comparable to that obtainedby other authors (

Ribas-Agustíetal.,2011;Abu-Reidahetal.,2013).Considering allthe

treatmentsandthecontrols(K),ferulicacidderivativeswerethe

largestgroupofphenolycacids,accountingonaveragefor56%of

totalphenolicacidcontent(Table4).AsfoundbyRibas-Agustíetal.

(2011)andAbu-Reidah etal.(2013),thelevelsof chicoricacid,

importantforhumanhealthduetoitsstrongantinflammatoryand

antimicrobicactions,andtoitsanti-cancerandanti-diabetic

prop-erties(Manachetal.,2004;Llorachetal.,2008;Mulabagaletal.,

2010;LeeandScagel,2013),representsagoodfractionofphenolic

acids(onaverage8%forboththecompounds).Amongflavonols,

thelevelsofquercetin,astronganti-tumoralagent(DuPontetal.,

2000;Llorachetal.,2008),wascomparabletothosefoundbyother

authorsindifferentvarietiesofconventionally-cultivatedlettuce

(approximately 100␮gg−1 FW)(Ribas-Agustíet al., 2011;

Abu-Reidahetal.,2013)(Table4).

4.2. Effectsofcropmanagementsystem

Generally,environmentalstresses,suchasheatshock,chilling

orhighlightintensity,causeahighersynthesisand/or

accumula-tionofphenolsinlettuce(Romanietal.,2002;Ohetal.,2009a,b).

Inothercases,asdepictedbyOrdidgeetal.(2010)forlettuce

cul-tivatedunderdifferentlevelsofUVradiationdeterminedbythe

useofplasticfilms,thereductionofthestressorsdonotproduce

decreases in phenolic content, allowing agronomic advantages

withoutphytochemicalpenalty.Theeffectsofagronomicpractices

onphenolcontentof lettucearenot alwaysstatistically

signifi-cantandoftenmilderthanthosedeterminedbyabioticstressors

(Heimler etal.,2012; Durazzoetal.,2014).Forinstance,inthe workofDurazzoetal.(2014),nodifferencesinsomephenolicacids

(chlorogenicacidand caffeicacid)werefoundbetweenorganic

andconventionallettucecultivatedundergreenhouseconditions.

Inouropinion,themissinglinkofmanyresearchesonphenols

incultivatedplantsisthestudyoftheeffectsofagronomic

prac-ticesonplant’snutritionalbalance,thatinturncanaffectphenol

(6)

A. Sofo et al. / Scientia Horticulturae 204 (2016) 106–115 111

Phenolicacidsandflavonolinleavesofgreenlettucegrownunderconventional(CON)andorganic(ORG)managementsystems.ThefertilizationtreatmentsareindicatedinTable1.Meanvaluesintheperiod2011–2013 (n=48)±SDfollowedbydifferentlettersaresignificantlydifferentbetweenrowsatP≤0.05,accordingtoFisher’sLSDtest.Legend:1=chlorogenicacid;2=feruloyltartaricacid;3=feruloylquinicacid;4=caffeicacid; 5=chicoricacid;6=caffeoylferuloyquinicacid;7=methylcaffeoylferuloyltartaricacid;8=methylcaffeoylferuloyltartaricacidisomer;10=chicoricacidmethylester;9=quercetin3-O-glucoside;10=isorhamnetin3-O-glucuronide; 11=kaempferide3-O-glucuronide;12=quercetin.

Phenolicacids Flavonols(␮gg−1FW)

1 2 3 4 5 6 7 8 Totalphenolicacids 9 10 11 12 Totalflavonols(mg) Totalphenols(mg)

(␮gg−1FW) (mgg−1FW) (␮gg−1FW) (mgg−1FW) A CONValue 28.01 38.41 564.90 26.71 31.74 314.89 42.34 176.08 1.223 257.88 136.48 181.65 113.79 0.690 1.913 SD 1.32 2.13 3.16 3.94 1.63 23.67 10.22 6.96 16.53 15.35 13.32 5.55 Stat a a a c a a a a a a a a a a a ORGValue 19.96 33.41 339.82 40.42 27.83 237.85 34.78 141.27 0.875 177.94 71.28 62.59 39.05 0.351 1.226 SD 2.73 2.21 15.32 2.47 4.95 24.88 5.63 21.00 12.72 5.26 4.86 8.29 Stat b b b a b b a b c b b b c d c B CONValue 20.39 24.50 432.16 52.73 31.95 230.04 31.37 130.22 0.953 111.26 66.35 183.01 119.79 0.480 1.434 SD 3.84 3.94 23.48 8.75 2.19 11.01 5.02 8.66 20.05 3.32 14.97 5.93 Stat b c ab a a b a b b c b a a c b ORGValue 22.51 36.49 331.40 25.57 30.02 252.46 27.14 143.59 0.869 192.05 73.13 78.99 44.05 0.388 1.257 SD 1.33 4.45 10.73 5.52 2.62 40.39 5.91 27.23 7.74 5.85 2.25 10.25 Stat b a b c a b a b c b b a c d c C CONValue 22.38 31.46 507.76 35.44 31.29 262.97 33.42 156.30 1.081 148.64 90.28 180.53 89.15 0.509 1.590 SD 1.63 1.36 20.65 5.01 3.56 13.44 2.53 19.65 8.25 9.43 11.73 5.46 Stat b b a b a b a ab b bc ab a b bc b ORGValue 20.35 33.65 332.37 53.85 26.29 241.25 34.74 171.81 0.914 196.87 66.10 63.27 39.78 0.366 1.280 SD 3.83 4.35 15.93 4.30 7.21 35.97 6.93 9.70 12.60 9.30 3.54 18.10 Stat b b b a b b a a c ab ab b c d c D CONValue 28.43 32.02 519.36 26.80 32.83 255.50 43.15 140.33 1.078 183.21 107.85 156.91 114.59 0.563 1.641 SD 7.08 1.13 39.09 9.22 8.20 19.98 9.12 9.03 16.3 3.75 12.19 6.06 Stat a b a c a b a a b b ab a a b ab ORGValue 20.38 34.22 350.59 25.10 27.48 244.62 36.81 169.83 0.909 233.42 82.38 73.32 26.23 0.474 1.553 SD 3.99 1.38 13.46 4.35 4.09 30.85 8.43 10.96 6.30 12.43 4.80 10.64 Stat b ab b c b b a a c a b b d c b K CONValue 19.40 40.62 257.31 34.80 22.45 281.63 37.68 151.11 0.845 97.87 46.79 162.28 74.39 0.381 1.226 SD 3.34 1.45 35.71 4.31 2.14 22.51 4.13 11.73 7.28 9.08 14.62 8.36 Stat b a c b a b a ab c d c a b d c

(7)

Table5

Totalphenolcontent(Folin-Ciocalteuassay)andtotalantioxidantcapacity(DPPH•andFRAPassays)inleavesofgreenlettucegrownunderconventional(CON)andorganic

(ORG)managementsystems.ThefertilizationtreatmentsareindicatedinTable1.Meanvaluesintheperiod2011–2013(n=48)±SDfollowedbydifferentlettersare significantlyatP≤0.05,accordingtoFisher’sLSDtest.GAE:gallicacidequivalents.TE:Troloxequivalents.

Totalphenols(mgGAEg−1FW)

CON ORG

Value SD Stat Value SD Stat

A 2.25 0.03 a 1.25 0.07 bc B 2.18 0.02 b 0.61 0.10 d C 1.76 0.16 b 0.85 0.10 d D 1.30 0.14 bc 0.79 0.07 d K 1.14 0.07 c – – DPPH•(␮molTEg−1FW) CON ORG

Value SD Stat Value SD Stat

A 40.26 0.29 a 28.35 0.27 c B 33.20 0.28 b 19.99 0.24 d C 40.25 0.30 a 24.43 0.41 d D 28.35 0.28 c 20.00 0.23 d K 20.01 0.23 d – – – FRAP(␮molTEg−1FW) CON ORG

Value SD Stat Value SD Stat

A 28.35 0.28 a 18.27 0.25 c

B 25.31 0.41 b 14.00 0.17 cd

C 26.31 0.38 a 14.01 0.16 cd

D 18.50 0.33 c 10.42 0.30 d

K 8.28 0.22 d – – –

betterdefinetherelationhipsbetweensoilphysico-chemical prop-erties(Table2),fertilizationplans(Table1)andplantmineralstatus (Table6).

FocusingonthelevelsofthephenolsdetectedbyUHPLC,

dif-ferenttrendswereobserved:thelevelsofphenolicacidsandtotal

phenolsweresignificantlyaffectedbythechoiceofthefarming

system,beinghigherinCONthaninORGforallthefertilization

treatments,whereasflavonolsdidnotsignificantlychangebetween

thetwosystems(Table4).Interestingly,thetotalphenolictrends

observed(Table4)aresimilartothosefoundbyRomanietal.(2002)

inacomparisonbetweengreenhouseandoper-air-grownlettuce,

withthislattershowingahighertotalphenoliccontent,

presum-ablybecausemoresubjectedtodifferentkindsofabioticstresses.

ThetrendsoftotalphenolsdeterminedbytheFolin-Ciocalteu

colorimetricmethod(Table5)appearedtobesimilartothatoftotal

phenolicsobtainedbythesumofthesinglephenoliccompounds

(phenolicacids+flavonols)(Table4).Consideringthe

normaliza-tionduetodryweightconversion,concentrationrangesandleaf

amountsanalyzed,thesevaluesarecomparabletothosefoundby

otherauthorsthatappliedsimilarculturalconditions(onaverage

1–2mgGAEg−1FW)(Heimleretal.,2007;Liuetal.,2007;Ohetal., 2009b).TheresultsofDPPH•methodfortheassayoftotal

antioxi-dantcapacitywereparalleltothatobtainedbyFRAPmethod,with

thehighestvaluesinCONtreatments(Table5).Thissuggeststhat

thetotal radicalscavengingactivityoflettuce sampleswas

cor-relatedtothephenolcontent,asdemonstratedbyotherauthors

(Llorach et al.,2004; Heimler et al.,2007; Llorachet al., 2008; Heimleretal.,2012),andhereconfirmedbythepositive

relation-shipbetweenthetwoparameters(R2=0.85)(Fig.2a).Thisdoes

notexcludethatotherimportantnon-phenolicantioxidantsof

let-tucecouldtakepartintheantioxidantcapacity. Forexample,it

isknownthatsomeminerals,suchasFe,CuandZncanstrongly

contributetoradicalscavenginginplantcells(Abu-Reidahetal.,

2013).Thisnotwithstanding,nosignificantcorrelationwasfound

between[Fe+Zn+Cu]contentandantioxidantcapacity(R2=0.33)

(Fig.2b).

Organicmanagementamelioratedthemineralstatusofplants

(Tables6and7).Particularly,mineralnitrogencontentinplants

waslikelythemainresponsibleforthehigheryields,asshownin

Fig.2c(R2=0.86).Conversely,totalphenols (valuesobtainedby

UHPLCdata)werenegatively correlatedwith[Fe+Zn+Cu]

con-tent,Ncontentand yield(R2=0.90,0.82 and0.79,respectively)

(Fig.2d–f,respectively),suggestingthatintheplantswithabetter

nutritionalstatus,thesynthesisand/oraccumulationofphenols

wasreduced.Thecorrelationbetweenplantmineralcontentand

phenolbiosynthesisandaccumulationisnotsurprising.The

activ-ityofphenylalanineammonialyase(PAL)polyphenoloxidaseand

someperoxidase isoforms,the key regulatory enzymesfor the

biosynthesisofplantphenoliccompounds,andthetranscription

ofmany PAL-encoding genes,is generallyincreasedby adverse

environmentalconditions,suchaslownutrientlevels,particularly

Nand metalmicroelements(Ruizetal., 2003;Velickovi ´cetal.,

2014;Wadaetal.,2014).AccordingtoGershenzon(1984),nitrogen

stressaccompaniedbyreducedgrowthandyield(Table2)could

lead,throughthedeaminationofphenylalanineduetoPAL

cataly-sis,toanenhancedproductionofsecondaryphenoliccompounds

andtotheuseofthereleasedNH3forotherpurposes.Thesame

authorspointedoutthattherateofproteinsynthesisslowsunder

conditionofNdeficiency,andtheunusedcarbohydratecouldbe

divertedtophenolicsynthesis.Inthisstudy,CONplantsshowed

byreducedyield(Tables3and7), phenolics(Tables4,5and7)

andN(Tables5and7)comparedtoORGplants,confirmingthis hypothesis.

4.3. Effectsofmineralfertilizationtreatment

Thesignificantlylowphenolsandantioxidantcapacityofthe

(8)

A. Sofo et al. / Scientia Horticulturae 204 (2016) 106–115 113

Mineralcontentinleavesofgreenlettucegrownunderconventional(CON)andorganic(ORG)managementsystems.ThefertilizationtreatmentsareindicatedinTable1.Meanvaluesintheperiod2011–2013(n=48)±SD followedbydifferentlettersaresignificantlydifferentbetweenrowsatP≤0.05,accordingtoFisher’sLSDtest.

C N K Ca P Fe Mg S Na Al Zn Mn Cu Ni Cr Cd Mo Co Se Total (mgg−1DW) (␮gg−1DW) (mgg−1DW) A CON Value 395.04 18.41 12.70 15.40 4.58 3.82 3.55 2.55 1.13 0.84 50.40 40.65 7.40 1.81 1.98 1.39 0.65 0.44 0.71 458.13 SD 9.07 4.35 3.21 2.80 0.22 0.52 0.61 0.30 0.86 0.50 7.23 18.73 1.46 0.60 1.28 0.43 0.30 0.29 0.45 Stat a d b a a a b b b a b a b a a a b a a b ORG Value 392.86 37.33 9.43 13.14 4.78 3.89 4.41 3.35 3.43 0.91 55.11 20.31 11.24 1.54 1.60 0.80 0.92 0.38 0.79 473.62 SD 7.85 2.03 2.74 1.51 0.33 0.41 0.74 0.09 1.85 0.16 2.05 0.39 1.57 0.26 0.17 0.11 0.15 0.08 0.42 Stat a b b a a a a a a a b b a a a b b a a a B CON Value 381.00 25.67 37.00 13.94 4.96 3.58 3.20 2.56 1.43 0.59 44.34 35.76 7.21 1.64 1.56 1.49 1.67 0.34 0.18 474.02 SD 10.49 4.94 5.45 2.06 0.43 0.69 0.22 0.46 0.11 0.20 5.27 3.94 1.44 0.39 0.64 0.08 0.38 0.07 0.08 Stat a c a a a a v b b b b a b a a a a a b b ORG Value 382.85 44.35 29.47 12.64 4.72 3.82 3.99 3.13 2.33 0.84 50.18 20.48 10.23 1.47 1.54 0.90 0.89 0.37 0.56 468.22 SD 3.46 1.81 5.10 0.78 0.54 0.69 0.59 0.14 0.75 0.67 5.19 8.79 1.18 0.64 1.18 0.08 0.08 0.30 0.31 Stat a a a a a a a a a a b b a a a b b a a a C CON Value 384.72 24.89 32.12 12.81 4.81 3.39 2.84 2.36 1.26 0.43 38.66 32.65 6.81 1.21 0.83 1.34 1.34 0.23 0.20 469.72 SD 8.20 4.15 3.88 1.06 0.48 0.80 0.22 0.46 0.13 0.25 7.67 2.47 0.81 0.17 0.38 0.14 0.53 0.08 0.06 Stat a c a a a a b b b c b a b a a a a a b b ORG Value 378.82 43.52 30.97 14.03 4.67 3.53 4.60 3.21 2.86 0.59 51.43 19.13 10.64 1.39 1.24 0.95 0.97 0.32 0.50 486.87 SD 3.26 3.12 2.11 1.19 0.23 0.86 0.35 0.09 0.76 0.18 3.14 3.09 1.43 0.16 0.14 0.05 0.12 0.04 0.19 Stat a a a a a a a a a b b b a a a b b a a a D CON Value 390.73 21.41 25.97 16.50 4.61 3.52 3.13 2.10 1.12 0.56 53.42 37.42 7.35 1.84 1.73 1.74 1.40 0.46 0.34 469.76 SD 5.74 3.23 6.36 0.95 0.32 0.48 0.12 0.32 0.06 0.20 17.58 2.26 2.11 0.68 0.98 0.43 0.45 0.27 0.15 b Stat a c a a a a v b b b b a b a a a a a b ORG Value 391.99 40.85 17.64 13.36 4.50 3.96 4.42 3.07 3.08 0.99 48.31 23.92 9.47 1.82 2.72 0.81 1.16 0.45 0.67 483.95 SD 4.15 2.47 4.12 1.63 0.28 0.43 0.68 0.20 0.63 0.47 3.01 6.68 0.57 0.42 1.17 0.07 0.18 0.14 0.31 Stat a a ab a a a a a a a b b a a a b b a a a K CON Value 407.07 39.01 8.01 13.24 4.85 3.64 4.37 3.68 2.02 0.63 65.65 46.35 11.17 2.61 2.08 1.74 0.99 0.45 0.41 486.66 SD 2.97 2.74 2.57 1.30 0.27 0.31 0.42 0.44 0.56 0.27 3.86 3.92 0.62 0.46 0.83 0.22 0.68 0.16 0.20 Stat a a b a a a a a ab b a a a a a a ab a ab a

(9)

Table7

Yield,totalphenolcontent(Folin-Ciocalteuassay),andmineralnitrogencontentinleavesofgreenlettucegrownunderconventional(CON)andorganic(ORG)management systems(period2011–2013).ForbothCONandORG,thevaluesaremeans(n=400foryieldandn=64fortotalphenolsandN)±SDofthefertilizationtreatmentsA,B,Cand D(indicatedinTable1).ValuesfollowedbydifferentlettersaresignificantlyatP≤0.05,accordingtoFisher’sLSDtest.GAE:gallicacidequivalents.

Yield(gDWhead−1)

CON ORG

Value SD Stat Value SD Stat

2011 7.85 2.67 b 12.15 3.12 a

2012 8.10 3.12 b 13.11 4.89 a

2013 8.21 3.98 b 15.53 3.20 a

Totalphenols(mgGAEg−1FW)

CON ORG

Value SD Stat Value SD Stat

2011 1.99 0.43 a 0.96 0.27 c

2012 1.76 0.14 ab 0.92 0.19 c

2013 1.87 0.62 a 0.76 0.12 cd

N(mgg−1DW)

CON ORG

Value SD Stat Value SD Stat

2011 19.29 3.35 c 39.28 3.16 ab

2012 24.30 3.87 c 40.01 2.09 ab

2013 24.20 2.52 c 45.23 3.22 a

Fig.2. Regressionanalysis(n=48;onlythemeansareshown)between(A)totalantioxidantcapacityandtotalphenolcontent.(B)totalantioxidantcapacityand[Fe+Zn+Cu] content.(C)yieldandnitrogencontent.(D)totalphenolcontentand[Fe+Zn+Cu]content.(E)totalphenolcontentandnitrogencontent.and(F)totalphenolcontentand yield.ThevaluesofR2areindicatedineverysubfigure.TotalphenolcontentswereobtainedbyUHPLCdata.TE:Troloxequivalents.

C,andD)oftheCONsystem(Tables4and5)seemstoconfirm

thatastrongmineralfertilization(Table1)wasabletoincrease

Nandtotalminerallevels(Table6)butnotthatofplantphenols

(Tables 4 and5).In supportof this hypothesis,theunfertilized

treatment(A)oftheCONsystemmaintainedasignificantlyhigh

totalphenolcontentandantioxidantpotentialcompared tothe

othertreatments, includingK (Tables 4–6).On the otherhand,

themostfertilizedtreatmentD-CON(manure+rockdust)hadan

oppositebehavior(Tables4–6).ThesituationinthefourORG

treat-mentsregarding phenols and antioxidant capacity seemstobe

morehomogeneous, withlessmarked differences,comparedto

CON(Tables4and6),likelyduetothehighlevelssoilorganicmatter

andNcontentsatthebeginningoftheexperiment(Table2).

Almostalltheinorganicmineralsarenaturallypresentinsoil

particles and/or soil solution but their levels can be strongly

(10)

andBateman,2010;Sofoetal.,2012).Thiswasconfirmedbythe

highplantNcontentinthetreatmentswithmanureandrockdust

aloneorincombination(B,C,D),comparedtotheunfertilizedone

(A)inboththesystems(Table6).

5. Conclusions

Fromtheoverallanalysisoftheresults,thehighercontentof

phenolicsobservedintheconventionaltreatmentscouldbe

asso-ciatedtothepresenceofmorestressfulconditions,intermsofplant

and/orsoilmineraldeficits.Ontheotherhand,theadoptionofan

organicmanagementdeterminedhigheryieldsandabetterplant

mineralbalance.Thesesoilparameters,togetherwiththe

fluctua-tionsofnutrientsinplants,cropyield,andindirectenvironmental

costsshouldbetakenintoconsiderationbeforeschedulinglettuce

farmingsystems.

Acknowledgments

ThisworkwaspartlysupportedbyaSTSMGrantfromZinc-Net

COSTActionTD1304.

References

Abu-Reidah,I.M.,Contreras,M.M.,Arráez-Román,D.,Segura-Carretero,A., Fernández-Gutiérrez,A.,2013.Reversed-phaseultra-high-performanceliquid chromatographycoupledtoelectrosprayionization-quadrupole-time-of-flight massspectrometryasapowerfultoolformetabolicprofilingofvegetables: Lactucasativaasanexampleofitsapplication.J.Chromatogr.A1313,212–227. Adesso,S.,Pepe,G.,Sommella,E.,Manfra,M.,Scopa,A.,Sofo,A.,Tenore,G.C.,Russo,

M.,DiGaudio,F.,Autore,G.,Campiglia,P.,Marzocco,S.,2016.

Anti-inflammatoryandanti-oxidantactivityofpolyphenolicextractsfrom Lactucasativa(var.MaravilladeVerano)underdifferentfarmingmethods.J. Sci.FoodAgric.,http://dx.doi.org/10.1002/jsfa.7622(Acceptedarticle). Baslam,M.,Morales,F.,Garmendia,I.,Goicoechea,N.,2013.Nutritionalqualityof

outerandinnerleavesofgreenandredpigmentedlettuces(LactucasativaL.) consumedassalads.Sci.Hortic.151,103–111.

Brand-Williams,W.,Cuvelier,M.E.,Berset,C.,1995.Useoffreeradicalmethodto evaluateantioxidantactivity.Lebensm.Wiss.Technol.28,25–30.

DuPont,M.S.,Mondin,Z.,Williamson,G.,Price,R.,2000.Effectofvariety, processing,andstorageontheflavonoidglycosidecontentandcompositionof lettuceandendive.J.Agric.FoodChem.48,3957–3964.

Durazzo,A.,Azzini,E.,Lazzé,M.C.,Raguzzini,A.,Pizzala,R.,Maiani,G.,Palomba,L., Maiani,G.,2014.AntioxidantsinItalianheadlettuce(Lactucasativavar: capitataL.)growninorganicandconventionalsystemsundergreenhouse conditions.J.Food.Biochem38,56–61.

Gershenzon,J.,1984.Changesinthelevelsofplantsecondarymetabolitesunder waterandnutrientstress.In:Timmermann,B.N.,Steelink,C.,Loewus,F.A. (Eds.),PhytochemicalAdaptationstoStress.Springer,NewYork,pp.273–320. Heimler,D.,Isolani,L.,Vignolini,P.,Tombelli,S.,Romani,A.,2007.Polyphenol

contentandantioxidativeactivityinsomespeciesoffreshlyconsumedsalads. J.Agric.FoodChem.55,1724–1729.

Heimler,D.,Vignolini,P.,Arfaioli,P.,Isolani,L.,Romani,A.,2012.Conventional, organicandbiodynamicfarming:differencesinpolyphenolcontentand antioxidantactivityofBatavialettuce.J.Sci.FoodAgric.92,551–556. Hooper,L.,Cassidy,A.,2006.Areviewofthehealthcarepotentialofbioactive

compounds.J.Sci.FoodAgric.85,1805–1813.

Kelly,S.D.,Bateman,A.S.,2010.Comparisonofmineralconcentrationsin commerciallygrownorganicandconventionalcrops—tomatoes(Lycopersicon esculentum)andlettuces(Lactucasativa).FoodChem.119,738–745. López,A.,Javier,G.-A.,Fenoll,J.,Hellín,P.,Flores,P.,2014.Chemicalcomposition

andantioxidantcapacityoflettuce:comparativestudyofregular-sized (Romaine)andbaby-sized(LittleGemandMiniRomaine)types.J.Food Compos.Anal.33,39–48.

Lee,J.,Scagel,C.F.,2013.Chicoricacid:chemistry,distribution,andproduction. Front.Chem.1,1–17.

Liu,X.,Ardo,S.,Bunning,M.,Parry,J.,Zhou,K.,Stushnoff,C.,Stoniker,F.,Yu,L., Kendall,P.,2007.TotalphenoliccontentandDPPHradicalscavengingactivity oflettuce(LactucasativaL.:)growninColorado.LWT-FoodSci.Technol.40, 552–557.

Llorach,R.,Tomás-Barberán,F.A.,Ferreres,F.,2004.Lettuceandchicorybyproducts asasourceofantioxidantphenolicextracts.J.Agric.FoodChem.52,

5109–5116.

Llorach,R.,Martínez-Sánchez,A.,Tomás-Barberán,F.A.,Gil,M.I.,Ferreres,F.,2008. Characterisationofpolyphenolsandantioxidantpropertiesoffivelettuce varietiesandescarole.FoodChem.108,1028–1038.

Mai,F.,Glomb,M.A.,2013.Isolationofphenoliccompoundsfromiceberglettuce andimpactonenzymaticbrowning.J.Agric.FoodChem.61,2868–2874. Manach,C.,Scalbert,A.,Morand,C.,Rémésy,C.,Jiménez,L.,2004.Polyphenols:

foodsourcesandbioavailability.Am.J.Clin.Nutr.79,727–747. Mulabagal,V.,Ngouajio,M.,Nair,A.,Zhang,Y.,Gottumukkala,A.L.,Nair,M.G.,

2010.Invitroevaluationofredandgreenlettuce(Lactucasativa)forfunctional foodproperties.FoodChem.118,300–306.

Oh,M.-M.,TrickHarold,N.,Rajashekar,C.B.,2009a.Secondarymetabolismand antioxidantsareinvolvedinenvironmentaladaptationandstresstolerancein lettuce.J.PlantPhysiol.166,180–191.

Oh,M.-M.,Carey,E.E.,Rajashekar,C.B.,2009b.Environmentalstressesinduce health-promotingphytochemicalsinlettuce.PlantPhysiol.Biochem.47, 578–583.

Ordidge,M.,García-Macías,P.,Battey,N.H.,Gordon,M.H.,Hadley,P.,John,P., Lovegrove,J.A.,Vysini,E.,Wagstaffe,A.,2010.Phenoliccontentsoflettuce, strawberry,raspberry,andblueberrycropscultivatedunderplasticfilms varyinginultraviolettransparency.FoodChem.119,1224–1227. Pepe,G.,Sommella,E.,Manfra,M.,DeNisco,M.,Tenore,G.C.,Scopa,A.,Sofo,A.,

Marzocco,S.,Adesso,S.,Novellino,T.,Campiglia,P.,2015.Evaluationof anti-inflammatoryactivityandfastUHPLC-DAD-IT-TOFprofilingof polyphenoliccompoundsextractedfromgreenlettuce(LactucasativaL.;var. MaravilladeVerano).FoodChem.167,153–161.

Ribas-Agustí,A.,Gratacós-Cubarsí,M.,Sárraga,C.,García-Regueiro,J.A.,Castellari, M.,2011.Analysisofelevenphenoliccompoundsincludingnovelp-coumaroyl derivativesinlettuce(LactucasativaL.)byultra-high-performanceliquid chromatographywithphotodiodearrayandmassspectrometrydetection. Phytochem.Anal.22,555–563.

Romani,A.,Pinelli,P.,Galardi,C.,Sani,G.,Cimato,A.,Heimler,D.,2002.Polyphenols ingreenhouseandopen-air-grownlettuce.FoodChem.79,337–342. Ruiz,J.M.,Rivero,R.M.,Lopez-Cantarero,I.,Romero,L.,2003.RoleofCa2+in

metabolismofphenoliccompoundsintabaccoleaves(NicotianatabacumL.). PlantGrowthRegul.41,173–177.

Sofo,A.,Nuzzo,V.,Tataranni,G.,Manfra,M.,DeNisco,M.,Scopa,A.,2012.Berry morphologyandcompositioninirrigatedandnon-irrigatedgrapevine(Vitis viniferaL.).J.PlantPhysiol.169,1023–1031.

Tomas-Barberan,F.A.,Velarde,J.L.,Bonfanti,A.,Saltveit,M.E.,1997.Early wound-andethylene-inducedchangesinphenylpropanoidmetabolisminharvested lettuce.J.Am.Soc.Hortic.Sci.122,399–404.

Velickovi ´c,J.M.,Dimitrijevi ´c,D.S.,Miti ´c,S.S.,Miti ´c,M.N.,Kosti ´c,D.A.,2014.The determinationofthephenoliccomposition,antioxidativeactivityandheavy metalsintheextractsofCalendulaofficinalisL.Adv.Technol.3,46–51. Wada,K.C.,Mizuuchi,K.,Koshio,A.,Kaneko,K.,Mitsui,T.,Kaneko,T.,2014.Stress

enhancesthegeneexpressionandenzymeactivityofphenylalanine ammonia-lyaseandtheendogenouscontentofsalicylicacidtoinduce floweringinpharbitis.J.PlantPhysiol.171,895–902.

Riferimenti

Documenti correlati

Nella prima parte dell’opera il narratore sembra negare che la giovane andalusa avesse contratto il morbo, dandoci una versione dei fatti «uffi- ciale», la stessa che sosterrà

Ma se dovessi dipingere questa danza, che materiali useresti?” avevano da subito creato un’interazione tra arte e danza che le fondatrici di Art Therapy Italiana hanno

“Introduzione alla valutazione del capitale economico, criteri e logiche di stima”, Franco Angeli editore, 2000.. BIANCHI MARTINI S., CORVINO A., DONI F., GUIDI M., RIGOLINI A.,

Esso tiene in considerazione le 15 condizioni cliniche più frequenti nei pazienti anziani Nel conteggio a ognuna di queste 15 condizioni patologiche prevalenti è assegnato

(2014), an output of 50-500 heads of lettuce should represent the production of a small-scale aquaponic system worthy of this name. Aiming that plant yield, a climatic and

Distributed model predictive control for energy management in a network of microgrids using the dual decomposition method.. Optim Control

Il libro si conclude con un interessantissimo appello agli storici affinché facciano maggiormente ricorso ad analisi di tipo quantitativo (fornendo un esempio: come lo

Historical ecology and environmental archaeology got techniques and perspectives that allow us to understand landscape past through the study of documentary sources and