• Non ci sono risultati.

A simple diffuse interface approach on adaptive Cartesian grids for the linear elastic wave equations with complex topography

N/A
N/A
Protected

Academic year: 2021

Condividi "A simple diffuse interface approach on adaptive Cartesian grids for the linear elastic wave equations with complex topography"

Copied!
32
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Journal

of

Computational

Physics

www.elsevier.com/locate/jcp

A

simple

diffuse

interface

approach

on

adaptive

Cartesian

grids

for

the

linear

elastic

wave

equations

with

complex

topography

Maurizio Tavelli

a

,

Michael Dumbser

a

,

,

Dominic

Etienne Charrier

b

,

Leonhard Rannabauer

c

,

Tobias Weinzierl

b

,

Michael Bader

c

aDepartmentofCivil,EnvironmentalandMechanicalEngineering,UniversityofTrento,ViaMesiano77,I-38123Trento,Italy bDepartmentofComputerScience,UniversityofDurham,LowerMountjoy,SouthRoad,DurhamDH13LE,UnitedKingdom cDepartmentofInformatics,TechnicalUniversityMunich(TUM),Boltzmannstr.3,D-85748Garching,Germany

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received25April2018

Receivedinrevisedform6February2019 Accepted7February2019

Availableonline18February2019 Keywords:

Diffuseinterfacemethod(DIM) Complexgeometries Highorderschemes

DiscontinuousGalerkinschemes Adaptivemeshrefinement(AMR) Linearelasticityequationsforseismicwave propagation

Inmost classicalapproaches of computational geophysicsfor seismic wavepropagation problems,complexsurfacetopographyiseitheraccountedforbyboundary-fitted unstruc-turedmeshes,or, where possible,by mappingthecomplex computational domainfrom physicalspacetoatopologicallysimple domaininareference coordinatesystem. How-ever, all these conventional approaches face problems if the geometry of the problem becomessufficientlycomplex.Theyeitherneedameshgeneratortocreateunstructured boundary-fittedgrids, whichcan become quite difficultand may require alot of man-ual user interactionsin orderto obtain ahigh quality mesh, orthey need the explicit computationofanappropriatemapping functionfromphysical toreference coordinates. ForsufficientlycomplexgeometriessuchmappingsmayeithernotexistortheirJacobian couldbecomeclosetosingular.Furthermore,inbothconventionalapproacheslowquality gridswillalwaysleadtoverysmalltimestepsduetothe Courant-Friedrichs-Lewy(CFL) conditionforexplicitschemes.Inthispaper, weproposeacompletelydifferentstrategy thatfollowstheideasofthesuccessfulfamilyofhighresolutionshock-capturingschemes, wherediscontinuities canactually beresolvedanywhereonthe grid, withouthaving to fitthemexactly.Weaddresstheproblemofgeometricallycomplexfreesurfaceboundary conditionsforseismicwavepropagationproblemswithanoveldiffuseinterfacemethod (DIM)on adaptive Cartesianmeshes (AMR)that consists inthe introduction ofa char-acteristicfunction0

α

≤1 which identifiesthe locationofthe solidmediumand the surroundingair(or vacuum) andthus implicitlydefinesthe locationofthe freesurface boundary.Physically,

α

representsthevolumefraction ofthesolidmediumpresent ina controlvolume.Ournewapproachcompletelyavoids theproblemofmeshgeneration,since allthatisneededforthedefinition ofthecomplexsurfacetopographyistoset ascalar colorfunctiontounityinsidethe regionscoveredbythe solidandto zerooutside. The governingequations are derived from ideastypically used inthemathematical descrip-tionofcompressiblemultiphaseflows.AnanalysisoftheeigenvaluesofthePDEsystem showsthatthecomplexityofthegeometryhasnoinfluenceontheadmissibletimestep sizeduetotheCFLcondition.Themodelreducestotheclassicallinearelasticityequations insidethesolidmediumwherethegradientsof

α

arezero,whileinthediffuseinterface zoneatthefreesurfaceboundarythegoverningPDEsystembecomesnonlinear.We can provethatthesolutionoftheRiemannproblemwitharbitrarydataandajumpin

α

from

*

Correspondingauthor.

E-mailaddresses:[email protected](M. Tavelli),[email protected](M. Dumbser),[email protected](D.E. Charrier), [email protected](L. Rannabauer),[email protected](T. Weinzierl),[email protected](M. Bader).

https://doi.org/10.1016/j.jcp.2019.02.004

0021-9991/©2019TheAuthor(s).PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

unitytozeroyieldsaGodunov-stateattheinterfacethatsatisfiesthefree-surface bound-aryconditionexactly,i.e. thenormalstresscomponentsvanish.Inthegeneralcaseofan interfacethatis notalignedwiththe gridandwhichisnot infinitelythin,asystematic studyonthedistributionofthevolumefractionfunctioninsidetheinterfaceandthe sen-sitivitywith respecttothethicknessofthe diffuseinterfacelayer hasbeencarried out. Inordertoreducenumericaldissipation,weusehighorderdiscontinuousGalerkin(DG) finiteelementschemesonadaptiveAMRgridstogetherwithasecondorderaccuratehigh resolutionshockcapturingsubcellfinitevolume(FV)limiterinthediffuseinterfaceregion. WefurthermoreemployalittledissipativeHLLEMRiemannsolver,whichisabletoresolve thesteadycontactdiscontinuityassociatedwiththevolumefractionfunctionandthe spa-tiallyvariablematerialparametersexactly.Whilethemethodislocallyhighorderaccurate intheregionswithoutlimiter,theglobalorderofaccuracyoftheschemeisatmosttwoif thelimiterisactivated.Itislocallyoforderoneinsidethediffuseinterfaceregion,which istypicalforshock-capturingschemes atshocks andcontact discontinuities.We showa large setofcomputationalresultsintwo andthreespacedimensionsinvolvingcomplex geometrieswherethe physicalinterfaceisnot alignedwiththegridorwhereitiseven moving.Foralltestcasesweprovideaquantitativecomparisonwithclassicalapproaches basedonboundary-fittedunstructuredmeshes.

©2019TheAuthor(s).PublishedbyElsevierInc.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The numerical solution of linear elastic wave propagation is still a challenging task, especially when complex three-dimensionalgeometriesareinvolved.Inthepast,alargenumberofnumericalschemeshasbeenproposedforthesimulation ofseismicwavepropagation.Madariaga[1] andVirieux[2,3] introducedfinitedifferenceschemesforthesimulationof pres-sure(P)andshear(SVandSH)wavepropagation.Theseschemeswerethenextendedtohigherorder,see[4],threespace dimensions[5,6] andtoanisotropicmaterial[7,8].Forfinitedifference-likemethodsonunstructuredmesheswerefertothe workofMagnieretal. [9] andKäser&Igel[10,11].Therearealsoseveralapplicationsinthecontextoffinitevolume(FV) schemes[12–17],which,however,werealllimitedtosecond orderofaccuracyinspaceandtime. Thefirstarbitraryhigh orderADERfinite volumescheme forseismicwave propagationwas introduced in[18]. Forrealapplicationsit iscrucial thatanumericalschemeisabletoproperlycapturecomplexsignalsoverlongdistancesandtimes.Incontrasttoclassical loworderschemes,highordermethodsinspaceandtime areabletobetterreproducethetimeevolutionofthesolution. Aquantitativeaccuracyanalysisofhighordernumericalschemesforlinearelasticity,basedonthemisfitcriteriadeveloped in[19,20], canbe found in[21,22]. Spectral finiteelement methods [23] were successfullyappliedto linearelastic wave propagationina well-knownseriesofpaperofKomatitschandcollaborators[24–28].ForChebyshevspectralmethodsfor wavepropagationwerefertotheworkofTessmeretal. [29,8] andIgel[30].Foralternativedevelopmentsintheframework ofstabilizedcontinuous finiteelements appliedto elasticandacousticwave propagationwerefer to[31–33].Apartfrom wave propagationinthemedium, alsotheproperrepresentationofcomplexsurfacetopographyisachallenging task.For thispurpose,severalhighordernumericalschemesonunstructuredmesheswereintroducedinthepast.Aseriesofexplicit high order discontinuous Galerkin (DG) schemes for elastic wave propagation on unstructured mesheswas proposed in [34–39],whiletheconceptofspace-timediscontinuousGalerkinschemes,originallyintroducedandanalyzedin[40–46] for computationalfluiddynamics(CFD),waslateralsoextendedtolinearelasticityin[47–49].Thespace-timeDGmethodused in[49] isbasedon the novelconcept of

staggered discontinuous

Galerkin finiteelement schemes,which was introduced forCFD problemsin [50–56]. Inany case, all previous methods requirea boundary-fitted mesh that properly represents thegeometryofthephysicalproblemtobesolved.Thegenerationofthismeshisingeneralahighly non-trivialtaskand usuallyrequirestheuseofexternalmeshgenerationtools.Moreover,themeshgenerationprocessinhighlycomplex geom-etrycanleadtoverysmallelements withbadaspectratio,so-called

sliver elements [

57–59].Thiswellknownproblemcan oftenbeavoided,butnotalways,seee.g.[60,61].Forexplicittimediscretization,sliverelementscanonlybetreatedatthe aidof

local time stepping (LTS),

see,forexample,[36,62–64],butcurrentlyonlyveryfewschemesusedinproductioncodes employedincomputational seismologysupporttime-accuratelocaltimestepping. Alternatively,implicitschemes like[49] requiretheintroductionofaproperpreconditionerinordertolimitthenumberofiterationsneededtosolvetheassociated linearalgebraicsystem.

The key idea of this paper is therefore to completely avoid the mesh generation problem associated with classical

approachesusedincomputational seismology.Thisisachievedby extendingthelinearelasticwave equationsviaa char-acteristic (color)function

α

,whichis nothingelse than thevolume fractionofthe solid medium,andwhich determines ifapoint x islocatedinside thesolid material(

α

(

x

)

=

1)oroutside(

α

(

x

)

=

0). Inthiswaythe scalarparameter

α

sim-plydeterminesthephysicalboundarythroughadiffuseinterfacezone,insteadofrequiringaboundary-fittedstructuredor unstructuredmesh.Withthisnewapproach,evenverycomplexgeometriescanbe easilyrepresentedonregular adaptive Cartesianmeshes,i.e.viatheuseofadaptivemeshrefinement(AMR).Furthermore,theintroductionofthenewparameter

(3)

theCFLcondition.Tobemoreprecise:theadmissibletime stepsizeofthenewapproachpresentedinthispaperdepends ofcourseon thechosen

mesh spacing of

theregular AMRgridandonthe

signal speeds in

thePDEsystem,butitdoes

not

explicitlydependonthe

mesh quality and

the

geometric complexity of

thecomputationaldomain,asitisthecaseformany otherapproachesincomputationalseismology.

Inthecontextoffinitedifferenceschemesforseismicwavepropagation,immersedboundarymethodsforthetreatment ofcomplexfree surface topologiescanbefound, forexample,in[65–68] andreferencestherein.However, theunderlying mathematical models usedthereare

different from

the one proposed inthispaper,which isbasedon adiffuseinterface approachthatisusedforthedescriptionofcompressiblemulti-phaseflowsincomputationalfluiddynamics.

Our newmethod isinspired by the work concerning the modeling andsimulation ofcompressible multiphaseflows, see [69] and[70–73]. Itcan alsobe interpretedasa specialcaseofthemoregeneralsymmetrichyperbolic and thermo-dynamically compatiblemodel of nonlinear hyperelasticity of Godunov & Romenski andcollaborators [74–80]. A diffuse interface approach,similar totheoneused inthispaper,hasalreadybeensuccessfullyappliedto nonlinearcompressible fluid-structureinteractionproblemsinaseriesofpapers[81–83],buttheemployednumericalmethodswereonlyloworder accurateinspaceandtimeandthereforenotsuitableforseismicwavepropagationproblems.Otherapplicationsofdiffuse interface methods forcompressiblemulti-phaseflows canbe foundin[84–86], but,to thebestofour knowledge,thisis thefirsttimethatadiffuseinterfaceapproachisderivedandvalidatedforlinearseismicwavepropagationincomplex ge-ometries.Withinthepresentpaper,weusehighorderaccurateADER-DGschemesonCartesianmesheswithadaptivemesh refinement (AMR). Thenumericalmethod hasalreadysuccessfullybeenapplied toother hyperbolic PDEsystems [87,78]. The use ofadaptivemesh refinementallows to increase theresolution locallywhereneeded, especially closeto thefree surfaceoratinternalmaterialboundaries.Toavoidspuriousoscillationsandtoenforcenonlinearstability,weuseasimple but very robust

a posteriori subcell

finite volume(FV) limiter [88]. Here,a

second order total

variation diminishing(TVD) finite volumeschemeisadoptedinthe limitedDGcells.Inorderto maintain accuracy,thesubgridofthelimiter isbya factor of2N

+

1 times finercompared tothegrid ofan unlimitedDG schemewithpolynomial approximationdegree N. Theideaofusingan

a posteriori approach

tolimithighorderschemeswasfirstproposedbyClain,DiotandLoubèrewithin the so-calledMulti-dimensionalOptimal OrderDetection (MOOD)paradigm in thecontext offinitevolume schemes, see [89,90] formoredetails.Finally,inournumericalschemewemakeuseoftheHLLEMRiemannsolverintroducedin[91,92], whichisabletoresolvethesteadycontactdiscontinuities associatedwiththespatiallyvariablematerialparameters

λ

and

μ

(theLaméconstants),themassdensity

ρ

andthevolumefraction

α

.Thenumericalresultspresentedlaterinthispaper show that theproposed methodologyseems tobe avalidalternativeto existingapproachesincomputational seismology that arebasedonboundary-fittedstructuredorunstructuredmeshes.Atthispointwewouldliketostressthattheuseof a secondordershockcapturingTVDfinitevolumeschemeinsidethediffuseinterfaceregionatthefreesurface boundary limits the

global order

of accuracy ofthe schemeto atmosttwo. Numerical experimentsfurther show that the method is locallyfirstorder accurateinside thediffuseinterface region,whichis well-knownfromshockcapturingfinite volume schemes inCFD,whichalsoreducetofirstorderofaccuracyatshocksandcontactdiscontinuitiesthatare notexactly re-solvedonthegrid,see[93].Nevertheless,the

unlimited ADER-DG

schemethatisusedinsidethesolidmediumandfarfrom thefreesurfaceboundaryis

locally high

orderaccurateandthusbeneficialconcerningphaseandamplitudeerrorsforwave propagationoverlongdistancesandtimes

inside the

solidmedium.Notethatthemanifolddescribingthefreesurfaceisof onedimensionlessthanthecomputationaldomain,hencemostcellscanactuallyusethehighorderaccurate

unlimited DG

schemeandonlyveryfewcellsrequiretheuseofthesecondorderaccuratesubcellfinitevolumelimiter.Inordertoreduce thenumericalerrorsinthediffuseinterfaceregionasfaraspossible,weproposetouseadaptivemeshrefinement(AMR) withtime-accuratelocaltimestepping(LTS)combinedwithasubcellFVlimiter,wherethesubgridisbyafactorof2N

+

1 timesfinerthanthegridoftheunlimitedADER-DGschemewithpolynomialapproximationdegree

N.

However,wewould liketoemphasizethatthemathematicalmodelproposedinthispaperis

not strictly

linked tothenumericalschemesthat areusedinthispaperforitssolution(ADER-DGwithAMRcoupledwithsubcellfinitevolumelimiter).Anystandardfinite difference schemeinsidethe solidtogether withanonlinearENO/WENOscheme atthe freesurface where

α

=

0 could havebeenappliedequallywell.

Therestofthepaperisorganized asfollows:inSection2weintroducethegoverningPDEofthenewdiffuseinterface approachforlinearelasticity.Wealsoshowthecompatibilityofourmodelwiththefreesurfaceboundaryconditioninthe casewhere

α

jumpsfrom1 to0.InSection 3we brieflysummarizethehighorderADER-DGschemesusedinthispaper. InSection4weshownumericalresultsforalargesetoftestproblemsintwoandthreespacedimensions,alsoincludinga realistic3DscenariowithcomplexgeometrygivenbyrealDTMdata.Finally,inSection5wegivesomeconcludingremarks andan outlookonfuturework, whichwillconcernnonlinear large-strainelasto-plasticityanddynamic ruptureprocesses inmovingmediabasedonthetheoryofnonlinearhyperelasticityofGodunovandRomenski[74,94,77].

2. Mathematicalmodel

Theequationsoflinearelasticity[95] canbewrittenas

t

σ

xx

− (λ +

2

μ

)

xu

− λ

yv

− λ

zw

=

Sxx

,

(4)

t

σ

y y

− λ

xu

− (λ +

2

μ

)

yv

− λ

zw

=

Sy y

,

t

σ

zz

− λ

xu

− λ

yv

− (λ +

2

μ

)

zw

=

Szz

,

t

σ

xy

μ



xv

+

yu



=

Sxy

,

t

σ

yz

μ



zv

+

yw



=

Syz

,

t

σ

xz

μ



zu

+

xw



=

Sxz

,

t

(

ρ

u

)

x

σ

xx

y

σ

xy

z

σ

xz

=

ρ

Su

,

t

(

ρ

v

)

x

σ

xy

y

σ

y y

z

σ

yz

=

ρ

Sv

,

t

(

ρ

w

)

x

σ

xz

y

σ

yz

z

σ

zz

=

ρ

Sw

,

(1)

where

λ

and

μ

arethesocalledLaméconstantsand

ρ

isthemassdensity.Inmorecompactformtheabovesystemreads

σ

t

E

(λ,

μ

)

· ∇

v

=

Sσ

,

(2)

ρ

v

t

− ∇ ·

σ

=

ρ

Sv

,

(3)

where v

= (

u

,

v

,

w

)

isthevelocityfield,

ρ

isthematerialdensity, S ρ and S σ arevolumeorpointsources,

σ

isthe sym-metricstresstensor,andE

(λ,

μ

)

isthestiffnesstensorthatconnectsthestraintensor



kl tothestresstensor

σ

according

totheHookelaw

σ

=

E



.Thestresstensor

σ

isgivenby

σ

=

σ

σ

xxyx

σ

σ

xyy y

σ

σ

xzyz

σ

zx

σ

zy

σ

zz

(4)

with the symmetry

σ

i j

=

σ

ji. The normal stress components are

σ

xx

,

σ

y y and

σ

zz, while the shear stress is

repre-sented by

σ

xy

,

σ

yz and

σ

xz. The stress tensor

σ

can thus be written in terms of its six independent components

(

σ

xx

,

σ

y y

,

σ

zz

,

σ

xy

,

σ

yz

,

σ

xz

)

. In the following we propose a new model that follows the ideas used in the simulation of

compressiblemultiphaseflows[69–71,73].InordertoderivethemodelwestartfromaBaer-Nunziato-typesystemforthe descriptionofcompressiblemulti-phaseflows,whereforthesolidphase(index

s)

thepressuretermhasbeenappropriately replacedbythestresstensor

σ

s,andwheretheusualpressureandvelocityrelaxationsourcetermshavebeendropped:

t

(

α

s

ρ

s

)

+ ∇ · (

α

s

ρ

svs

)

=

0

,

t

(

α

s

ρ

svs

)

+ ∇ · (

α

s

ρ

svs

vs

+

α

s

σ

s

)

σ

I

α

s

=

α

s

ρ

sSv,s

,

t

(

α

s

ρ

sEs

)

+ ∇ · (

α

s

ρ

sEsvs

+

α

s

σ

svs

)

σ

I

α

s

·

vI

=

α

s

ρ

sSv,s

·

vs

,

t



α

g

ρ

g

+ ∇ ·



α

g

ρ

gvg

=

0

,

t



α

g

ρ

gvg

+ ∇ ·



α

g

ρ

gvg

vg

+

α

g

σ

g

σ

g

α

g

=

α

g

ρ

gSv,g

,

t



α

g

ρ

gEg

+ ∇ ·



α

g

ρ

gEgvg

+

α

g

σ

gvg

σ

I

α

g

·

vI

=

α

g

ρ

gSv,g

·

vg

,

t

α

s

+

vI

α

s

=

0

.

(5)

Hereindex

s refers

tothesolidphaseandindex

g refers

tothegasphasesurroundingthesolid;

ρ

kisthemassdensityand

Ekisthespecifictotalenergyofphase

k,

vk isthephasevelocity,vI istheso-calledinterfacevelocityand

σ

I isthestress

tensorattheinterface,whichisageneralizationoftheinterfacepressureusedinstandardBNmodels.Wenowmakethe followingsimplifyingassumptions:

(5)

(i) Theinterfacebetweenthesolidandthegasismovingonlyatanegligiblespeed,hencewecanassumevI

=

0.

(ii) Compared to the original Baer-Nunziato model [69,96,86], all pressure and velocity relaxation source terms are ne-glected.

(iii) Themassdensityofthegasphaseismuchsmallerthantheoneofthesolidphase(

ρ

g



ρ

s),hencethetimeevolution

ofthegas phaseis notrelevantforour purposes.Therefore,all evolutionequationsrelatedto thegasphase canbe neglectedinthefollowing,similartotheapproachusedin[97–99] inthecontextofnon-hydrostaticfreesurfaceflow simulationsbasedonadiffuseinterface approach.Toeasenotation,theremaining index

s for

thesolidphasecan be dropped.

(iv) Weassumethedensity

ρ

softhesolidphasetobeconstantintime,sotherelatedmassconservationequationcanbe

neglected.

(v) Thestress tensorofthesolid canbedirectlycalculatedviaHooke’s law(2),soitisnotnecessarytoevolve thetotal energyconservationlawforthesolid.

(vi) Thenonlinear convectiveterm

α

s

ρ

svs

vs,whichisquadraticinthesolid velocity, canbeneglected, sincethesolid

velocityisassumedtobesmallinthelinearelasticitylimit.

(vii) Last but not least, the free surface boundarycondition atthe interface betweensolid andsurrounding gasleads to

σ

I

· ∇

α

s

=

0.

As aresultofthesesimplifyingassumptions,the

reduced governing

PDEsystemofthenewdiffuseinterface approachfor linearelasticityincomplexgeometryreads:

σ

t

E

(λ,

μ

)

· ∇

v

=

Sσ

,

(6)

αρ

v

t

− ∇ · (

ασ

)

=

αρ

Sv

,

(7)

α

t

=

0

.

(8)

Since

t

ρ

=

0,thepreviousequationsarethenrewrittenas

σ

t

E

(λ,

μ

)

·

1

α

∇(

α

v

)

+

1

α

E

(λ,

μ

)

·

v

⊗ ∇

α

=

Sσ

,

(9)

α

v

t

α

ρ

∇ ·

σ

1

ρ

σ

· ∇

α

=

Sv

,

(10)

α

t

=

0

.

(11)

Furthermorethefollowingequationsforthematerialparametersareaddedtothesystem:

∂λ

t

=

0

,

μ

t

=

0

,

ρ

t

=

0

.

(12)

The material parameters

λ,

μ

and

ρ

are assumed to be constant in time butnot in space, i.e.

λ

= λ(

x

),

μ

=

μ

(

x

)

and

ρ

=

ρ

(

x

)

,forwhichwewilluseahighorderpolynomial representationasfortheother variablesofthePDEsystem.The samediffuseinterfacemodel(6)-(8) canalsobeobtainedbycombiningthenonlinearhyperelasticityequationsofGodunov andRomenski[74,94,100] withthecompressiblemulti-phasemodelofRomenskietal.[75,101],assuming linearmaterial behaviorandneglectingnonlinearconvectiveterms.System (9)-(12) isthenrewritteninthefollowingform:

Q

t

+

B1

(

Q

)

Q

x

+

B2

(

Q

)

Q

y

+

B3

(

Q

)

Q

z

=

S

(

x

,

t

),

(13)

wherethethreematricesB1,B2andB3 arespecifiedinEqs. (15)-(17).ThevectorQ isgivenby

Q

=



σ

xx

,

σ

y y

,

σ

zz

,

σ

xy

,

σ

yz

,

σ

xz

,

α

u

,

α

v

,

α

w

, λ,

μ

,

ρ

,

α



,

(14)

(6)

B1

=

0 0 0 0 0 0

α1

+

2

μ

)

0 0 0 0 0 α1

+

2

μ

)

u 0 0 0 0 0 0

α1

λ

0 0 0 0 0 α1

λ

u 0 0 0 0 0 0

α1

λ

0 0 0 0 0 α1

λ

u 0 0 0 0 0 0 0

α1

μ

0 0 0 0 α1

μ

v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

α1

μ

0 0 0 α1

μ

w

α ρ 0 0 0 0 0 0 0 0 0 0 0

ρ1

σ

xx 0 0 0

αρ 0 0 0 0 0 0 0 0

ρ1

σ

xy 0 0 0 0 0

αρ 0 0 0 0 0 0

ρ1

σ

xz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

,

(15) B2

=

0 0 0 0 0 0 0

α1

λ

0 0 0 0 α1

λ

v 0 0 0 0 0 0 0

α1

+

2

μ

)

0 0 0 0 α1

+

2

μ

)

v 0 0 0 0 0 0 0

α1

λ

0 0 0 0 α1

λ

v 0 0 0 0 0 0

α1

μ

0 0 0 0 0 α1

μ

u 0 0 0 0 0 0 0 0

α1

μ

0 0 0 α1

μ

w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

αρ 0 0 0 0 0 0 0 0

ρ1

σ

xy 0

αρ 0 0 0 0 0 0 0 0 0 0

1ρ

σ

y y 0 0 0 0

αρ 0 0 0 0 0 0 0

ρ1

σ

yz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

,

(16) B3

=

0 0 0 0 0 0 0 0

α1

λ

0 0 0 α1

λ

w 0 0 0 0 0 0 0 0

α1

λ

0 0 0 α1

λ

w 0 0 0 0 0 0 0 0

α1

+

2

μ

)

0 0 0 α1

+

2

μ

)

w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

α1

μ

0 0 0 0 α1

μ

v 0 0 0 0 0 0

α1

μ

0 0 0 0 0 α1

μ

u 0 0 0 0 0

αρ 0 0 0 0 0 0

ρ1

σ

xz 0 0 0 0

αρ 0 0 0 0 0 0 0

ρ1

σ

yz 0 0

αρ 0 0 0 0 0 0 0 0 0

ρ1

σ

zz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.

(17)

TheeigenvaluesassociatedwiththematrixB1 are

λ

1

= −

cp

,

λ

2,3

= −

cs

,

λ

4,5,6,7,8,9,10

=

0

,

λ

11,12

= +

cs

,

λ

13

= +

cp

,

(18) where cp

=

λ

+

2

μ

ρ

and cs

=

μ

ρ

(19)

are the p

ands

wave velocities,respectively. The matrixof righteigenvectors ofthe matrix B1 asdefined in (15) is

(7)

R

=

ρ

c2p 0 0 0 0 0 0 0 0

σ

xx 0 0

ρ

c2p

ρ

(

c2p

2c2s

)

0 0 1 0 0 0 0 0 0 0 0

ρ

(

c2p

2c2s

)

ρ

(

c2p

2c2s

)

0 0 0 1 0 0 0 0 0 0 0

ρ

(

c2p

2c2s

)

0

ρ

c2s 0 0 0 0 0 0 0

σ

xy 0

ρ

c2s 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

ρ

c2s 0 0 0 0 0 0

σ

xz

ρ

c2s 0 0 cp 0 0 0 0 0 0 0 0

α

u 0 0

cp 0 cs 0 0 0 0 0 0 0

α

v 0

cs 0 0 0 cs 0 0 0 0 0 0

α

w

cs 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

α

0 0 0

.

(20)

The expressions for the eigenvalues andeigenvectors of B2 and B3 are very similar andcan be obtainedfrom those of B1,sincethePDE systemisrotationallyinvariant.Forthisreason,we donot givetheir explicitexpressionshere. Wenow

wanttoshow thattheproposed modelsatisfiesthefree surfaceboundarycondition

σ

·

n

=

0 exactlywhenconsidering a Riemannproblemthatincludesajumpof

α

from

α

L

=

1 to

α

R

=

0.

Forthis,considertheleftandrightstateofaRiemannprobleminthe

x-direction

givenby

QL

= (

σ

xxL

,

σ

y yL

,

σ

zzL

,

σ

xyL

,

σ

yzL

,

σ

xzL

,

uL

,

vL

,

wL

, λ,

μ

,

ρ

,

1

),

(21)

QR

= (

σ

xxR

,

σ

y yR

,

σ

zzR

,

σ

xyR

,

σ

yzR

,

σ

xzR

,

0

,

0

,

0

, λ,

μ

,

ρ

,

0

).

(22)

Byusingasimplestraightlinesegmentpath

ψ (

s

)

=

QL

+

s

(

QR

QL

) ,

(23)

wecandefineageneralizedRoe-averagedmatrixB

˜

1in

x direction

accordingto[102–104] asfollows:

˜

B1

=

1



0 B1

(ψ (

s

))

ds

.

(24)

TheexactsolutionofthelinearizedRiemannproblembasedontheRoe-averagedmatrixB

˜

1

= ˜

R

˜˜

R−1 aboveandthe

simi-laritycoordinate

ξ

=

x

/

t reads

QRP

(ξ )

=

1 2R

˜



I

sign

I

− ˜)



R

˜

−1

·

QL

+

1 2R

˜



I

+

sign

I

− ˜)



R

˜

−1

·

QR

,

(25)

with I beingthe identity matrix.From QRP

(ξ )

we can obtainthe following Godunov state QGod

=

QRP

(

0

)

at theinterface

(

ξ

=

0) QGod

=



0

,

σ

L xxc2p

+

2

σ

xxLc2s

+

σ

y yc2p c2p

,

σ

L xxc2p

+

2

σ

xxLc2s

+

σ

zzc2p c2p

,

0

,

σ

yzL

,

0

,

cp

ρ

uL

σ

xxL cp

ρ

,

cs

ρ

v L

σ

L xy cs

ρ

,

cs

ρ

w L

σ

L xz cs

ρ

, λ,

μ

,

ρ

,

1



,

fromwhichitisclearthatallthecomponentsofthenormalstressin

x-direction

(

σ

xx

,

σ

xy and

σ

xz)arezero,whichmeans

that thefreesurface boundarycondition

σ

·

n

=

0 isindeedrespected bymerelyimposing ajumpinthevolumefraction functionfrom

α

=

1 to

α

=

0.

Asonecannote,themodel(9)-(11) involvesdivisionsby

α

thatcanbeasourceofinstabilitiesattheinterface,sincethe colorfunction

α

isideallysettozero,oratleastclosetozero,outsidethesolidmedium.Inordertoaddressthisproblem, we introduceasimpletransformationthat avoidsthedivisionsbyzeros.Inparticular,wesubstituteall multiplicationsby

α

−1

=

1

/

α

,with

α

−1

=

α

α

2

+



(

α

)

,

(26)

where



=



(

α

)

hastosatisfy



(

1

)

=

0 and



(

0

)

=



0

>

0 inordertobe consistentwiththelinearelasticityequations.In

ourcasewe takeasimplelinearfunction



=



0

(

1

α

)

with



0

=

10−3.Theintroductionofthisnewparameterwiththis

methodismandatorytoobtainastablesolution.Theneweigenvaluesare

˜λ =

f

λ

,where f

=

 α

α2+0(1α) thatfor

α

∈ [

0

,

1

]

satisfies f

∈ [

0

,

1

]

and f

=

1 for

α

=

1.

(8)

Assoonasweuseanon-trivialgeometrywechooseadiffuseinterfaceof

finite width I

D forthetransitionbetweenthe

solid medium

α

=

1 and the surroundinggas / vacuum(

α

=

0). For arelatively large width ID ofthe diffuseinterface,

therearesomequestionsthatarisenaturallyconcerningthedistributionofthecharacteristicfunction

α

insidethediffuse interface andtheresultingeffectivepositionofthefree surfaceboundary. Ingeneral,it isimportanttosetupthe diffuse interfaceshapesuchthat

α

isorientedasthenormalvectortothephysicalsurface,i.e.

α

n.Asimplewaytodothis istorepresentthetransitionregionbyapiecewisepolynomial.Let

r

=

r

(

x

)

bethesigneddistancebetweentherealphysical interfacelocationandagenericpointx under consideration.Wethendefine theshape ofthediffuseinterface asfunction ofafiniteinterfacethickness

I

D

0,ashiftingparameter

η

andtheauxiliaryfunction:

ξ(

r

)

=

1 if r

>

(

1

+

η

)

ID

,

0 if r

<

−(

1

η

)

ID

,

r+(1−η)ID 2ID if r

∈ [−(

1

η

)

ID

, (

1

+

η

)

ID

].

(27) Wefinallydefinethesolidvolumefractionas

α

(

r

)

= (

1

− ξ(

r

))

p

,

(28)

where p

>

0 isan exponentthat determines theshape ofthe diffuseinterface. The widthofthe interface ID should be

relatedtothelocalsize

h of

thecomputationalmesh,i.e.onewouldtypicallychoose

I

D

h. Inordertoreduce

I

D asmuch

aspossible,wewillmakeuseofadaptivemeshrefinement (AMR)incombinationwitha subcellfinitevolumelimiter, as discussedinthenextsection.

3. Numericalscheme

ThenumericalmethodthatweuseinordertosolvethePDEsystemintroduced inthepreviousSection2isan explicit ADER-DGschemeofarbitraryhighorderofaccuracyinspaceandtimeonadaptiveCartesiangrids (AMR).Thenumerical methodwas presentedfordifferentPDE systemsin[88,87,78],henceinthe followingweonlygive abriefsummary.The PDEsystem(9)-(11) canbewrittenincompactmatrix-vectornotationas

Q

t

+

B

(

Q

)

· ∇

Q

=

S

(

x

,

t

),

(29)

where Q is the state vector, B

(

Q

)

· ∇

Q is a non conservative product (see [105,102,103])and S

(

x

,

t

)

is a known source term.Inregions where

α

=

1 andthus

α

=

0,thePDEsystem(29) reducestotheclassicallinearelasticwaveequations (1), while for

α

=

0 the system becomes locally nonlinear and therefore requires a very robust numerical scheme as well ashighresolution tobeproperly solved.Withinthispaperweusethesimple andvery robustsubcellfinite-volume limiterapproachincombinationwithadaptivemeshrefinement(AMR).Adetaileddescriptionofthelimitercan befound in [88,87]. As suggested in [88], we employ Ns

= (

2N

+

1

)

d subgrid cells for the finite volume limiter, where d is the

numberofspacedimensionsoftheproblemand

N is

thepolynomialapproximationdegreeusedinthehighorderADER-DG scheme.Notethattheuseofsuchafinesubgridwithinthesubcellfinitevolumelimiterdoes

not reduce

thetimestepof the overall scheme, since finitevolume schemes are stableup to CFL

=

1, while DGschemes require CFL

<

1

/(

2N

+

1

)

. The

d-dimensional

computationaldomain

isdiscretized withanadaptive Cartesiangrid composedofCartesian control volumes

T

iinspaceas

=

Ne



i=1 Ti

,

(30)

where Ne isthe total number ofelements. Since we are interested ina high orderscheme, we first define a piecewise

polynomialnodalbasis

k

}

k=1...(N+1)d asthesetofLagrange polynomialspassing throughtheGauss-Legendrequadrature

pointsona referenceunitelement

T

re f foragivenpolynomial degree N

0 anddimension

d.

Aweakformulationofthe

PDEsystem isobtainedaftermultiplying Eq.(29) by atest function

φ

k for

k

=

1

. . . (

N

+

1

)

d andthen integratingovera

space-timecontrolvolume Ti

× [

tn

,

tn+1

]

: tn+1



tn



Ti

φ

k



Q

t

+

B

(

Q

)

· ∇

Q



dx dt

=

tn+1



tn



Ti

φ

kS

(

x

,

t

)

dx dt

.

(31)

Werestrictthediscretesolutiontothespaceofpiecewisepolynomialsofdegree

N,

i.e. thenumericalsolutionuhiswritten

insideeachelement

T

i intermsofthepolynomialbasisas

uh

(

x

,

tn

)



Ti

=

(N+1)d



k=1

(9)

forx

Tiand

i

=

1

. . .

Ne.Thevectorofdegreesoffreedomofuh

(

x

,

tn

)

isdenotedbyu

ˆ

ni.Throughoutthepaperweusethe

Einstein summationconventionoverrepeatedindices.Usingthedefinition(32) in theweakformulationgivenby Eq.(31) weobtain(seealso[106,107])



Ti

φ

k

φ

ldx



u

ˆ

nl,+i1

− ˆ

unl,i



+

tn+1



tn



∂Ti

φ

k

D

(

qh

,

q+h

)

·

n dS dt

+

tn+1



tn



Ti

φ

kB

(

qh

)

· ∇

qhdx dt

=

tn+1



tn



Ti

φ

kS

(

x

,

t

)

dx dt

,

(33) wherewehaveintroducedthejumpcontribution

D

(

qh

,

qh+

)

·

n ontheelementboundariesandthespace-timepredictor solution qh

(

x

,

t

)

.Moredetails concerningthecomputation ofqh

(

x

,

t

)

willbe reportedlater.Fortheapproximation ofthe

jumpterm

D

− weuseapath-conservativeschemeasintroducedbyParésin[103] andCastroetal. in[102].Weintroduce aLipschitzcontinuouspathfunction

ψ(

qh

,

q+h

,

s

)

definedfor

s

∈ [

0

,

1

]

suchthat

ψ(

qh

,

q+h

,

0

)

=

qh and

ψ(

qh

,

q+h

,

1

)

=

q+h, where qh− denotes the boundary-extrapolated state fromwithin the element Ti and q+h theboundary-extrapolated state

from the neighbor element. The simplestpossible choice for

ψ

, whichwe usein thispaper, is thelinear segment path betweenthetwostatesqh andq+h:

ψ (

qh

,

q+h

,

s

)

=

qh

+

s



qh+

qh

.

(34) Following[105,103,102] wenowdefine thejumpcontribution

D

(

qh

,

q+h

)

·

n sothatitsatisfiesthegeneralized Rankine-Hugoniotconditions

D

(

qh

,

q+h

)

·

n

+

D

+

(

qh

,

q+h

)

·

n

=

1



0 B

(ψ (

qh

,

q+h

,

s

))

·

n

∂ψ

sds

.

(35)

Thepreviouspathintegralcansimplybeevaluated

numerically using

asufficientnumberofGaussianquadraturepoints.As RiemannsolverweusethenewHLLEM-typeRiemannsolverfornon-conservativesystemsrecentlydescribedin[92],since wewanttoexactlypreservethecontactdiscontinuitiesofthematerialparametersandofthevolumefractionfunctionthat appearinthePDEsystem.Atthispointwewouldliketoemphasizethatinthispaperwedeliberatelyusefinitevolumeand discontinuous Galerkinfiniteelement schemesthat employapiecewise polynomial approximationspace, whichexplicitly permits jumps in the discrete solution atelement interfaces.In thiscontext the path-conservative schemes can properly deal withjumps in

α

if they are

exactly resolved

atan element interface, thusnaturally allowing todiscretize problems alsowith ID

=

0,seealso[102,103] foradiscussion inthecontextofshallowwaterequationswithdiscontinuous bottom

topography.Inthecaseof

I

D

=

0,ourmethodbecomesagainasharpinterfacemethodifthejumpsareexactlyresolvedon

thegrid,butthisisactually

not the

mainobjectiveofthepresentpaper.

Regarding the space-time predictor, we need to introduce a new polynomial basis of degree N in space and time

k

}

k=1...(N+1)d+1 wherenow

θ

k

(

x

,

t

)

contains alsothe time. We represent qh

(

x

,

t

)

in termsof thisnew space-timebasis

as qh

(

x

,

t

)

=

(N+1)d+1



k=1

θ

k

(

x

,

t

)

q

ˆ

nk

.

(36)

Let

T

i

=

Ti

− ∂

Ti denotetheinteriorof

T

i andTist

=

Ti

× [

tn

,

tn+1

]

denotethenewspace-timecontrolvolume.The

space-timepredictoristhencomputedasanelement-localsolutionofthefollowingweakformulationofthePDEsystem(29):



Tst i

θ

k

qh

t dx dt

+



Tst i

θ

kB

(

qh

)

· ∇

qhdx dt

=



Tst i

θ

kS

(

x

,

t

)

dx dt

,

(37)

for

k

=

1

. . . (

N

+

1

)

d+1.UsingintegrationbypartsinthefirsttermofEq.(37) weobtaintwospatialcontributionson

T

iat

tn+1 and

t

n andan internalone since

θ

k

= θ

k

(

x

,

t

)

contains explicitlythetime.Forthespatial contributionattime

t

n we

use thenumericalsolution fromtheprevious time step.Notice that thiscorresponds toupwindingin thetime direction duetothecausalityprinciple.OnethusobtainsthefollowingweakformulationofthePDE

in the small [

108]:



Ti

θ

k

(

x

,

tn+1

)

qh

(

x

,

tn+1

)

dx



Ti

θ

k

(

x

,

tn

)

uh

(

x

,

tn

)

dx



Tist

∂θ

k

t qh

(

x

,

t

)

dx dt

+



Tist

θ

kB

(

qh

)

· ∇

qhdx dt

=



Tist

θ

kS

(

x

,

t

)

dx dt

.

(38)

(10)

SinceEq.(38) iselement-localitcanbesolvedusingasimpleandefficientPicardmethodwithoutanycommunicationwith theneighborelements,seee.g.Dumbseretal. [109].

Thenumericalschemeisconstrainedbya

local CFL-type

stabilitycondition,see[109,110,87],thatisgivenby



t

<

CFL d h 2N

+

1 1

max

|

,

(39)

where

h is

thelocal meshsize,

λ

max isthe maximumeigenvalueofthe PDEsystem, andCFL

<

1 is theCourantnumber,

which should be chosen according to [109] in order to have linear stability. Concerning the adaptive mesh refinement (AMR) werely onthe ExaHyPEenginehttp://exahype.eu,which isbuiltupon thespace-tree implementationPeano [111,

112] realizing cell-by-cellrefinement [113]. Forfurther details aboutAMR incombination withhighorder finitevolume andDGschemeswithtime-accuratelocaltimestepping(LTS)usedinthiswork,see[110,114–116].Throughoutthispaper, weuseadaptivemesheswitharefinementfactorof

r

=

3 betweentwoadjacentlevelsofrefinement.Inordertoillustrate theusefulcombinationofAMR withthe subcellfinitevolumelimiter, weprovidethe followingexample:withtwo levels ofmeshrefinementandfora DGschemewithpolynomial approximationdegree N

=

3,thefinitevolume subgridonthe finestAMR levelwillbeby afactorof

r

2

· (

2N

+

1

)

=

32

· (

2

·

3

+

1

)

=

63 finerthanthegrid usedfortheDGschemeon the coarsestgrid level.Thiscorresponds to amesh refinementof almosttwo orders ofmagnitude. However, thishasno negative impactatall onthetime stepsizeusedonthecoarsestgridlevel,thankstotheuseoftime-accuratelocaltime stepping(LTS),whichisstraightforwardforADERdiscontinuousGalerkinandADERfinitevolumeschemes,see[36,110,87]. ThecombinationofAMRwiththefinesubgridusedforthefinitevolumelimiterisnecessarytoalleviatethelossofformal orderofaccuracyinsidethelimitedcellsandinordertoallowasmallinterfacewidthID

h.

Inordertodecidewheretorefine,weintroduceasimplerefinementindicatorfunctionnamed

ϕ

=

ϕ

(

x

,

t

)

thatdefines theobservedvariablefortherefinement/recoarsening processanda socalledreal-valued

estimator function

χ

=

χ

[

ϕ

]

,see again[110] formoredetails.Afterdefiningtheindicatorfunction,wedefinethecell-averagesof

ϕ

as

ˆ

ϕ

i

=

1

|

Ti

|



Ti

ϕ

(

x

,

t

)

dx

i

=

1

. . .

Ne

,

(40)

andthenwecomputetheestimatorfunctionas

χ

i

[

ϕ

] =

max c∈Vi

 ˆ

ϕ

c

− ˆ

ϕ

i



/



xc

xi



,

(41)

where

V

i containsalltheVoronoineighborelementsof

T

i.Ourestimatorfunction

χ

issimplybasedonanapproximation

ofthe gradientofthe solutionin severalspatial directions[110]. Withtheseingredients athand,we introducea simple rulefortherefinement/recoarseningprocessbasedontwothresholds

χ

+and

χ

− asfollows:

(i) if

χ

i

[

ϕ

]

>

χ

+ then

T

i islabeledformeshrefinement;

(ii) if

χ

[

ϕ

]

<

χ

−then

T

iislabeledformeshrecoarsening.

Withinthispaper,wealwaysuse

ϕ

(

x

,

t

)

=

ϕ

(

Q

)

=

α

,

χ

+

=

0

.

01 and

χ

=

0

.

001.Wewillalsousethevolumefraction

α

to specifythezoneswheretoactivatethesubcellfinitevolumelimiter[88].Inparticular,weactivatetheFVlimiterwhenever

α

∈ [

/



,

1



]

,with



=

10−3.Aslongasthetopologyofthegeometrydescribedby

α

issupposedtobestationaryintime, wecanconsidertherefinementandthelimitedzonesalsoassteadyandthereforetheyneedtobeidentifiedonlyoncein themeshinitializationstep.

We stress againthat theuseof atime-accurate localtime stepping strategy (LTS)is mandatory inorderto avoidthe reductionofthetimestepsize



t in regionsthatarefarawayfromthediffuseinterface.

4. Numericalresults

4.1. Reflected plane wave

The purposeofthisfirsttest problemisto systematically studytheinfluenceof thewidth ID of thediffuseinterface

layerontothenumericalresults.Wealsoshowthatthemodelindeedconvergestothecorrectsolutioninthelimit ID

0.

We take a simple plane wave impulse in a domain

= [−

1

,

1

]

× [−

0

.

1

,

0

.

1

]

initially placed at x0

= −

0

.

25 andhitting

a free surface boundary placed in xD

=

0. The Laméconstants are chosen as

λ

=

2,

μ

=

1 and

ρ

=

1. We define Q0

=

(

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

λ,

μ

,

ρ

,

α

(

x

))

and

δ

= (

0

.

4

,

0

.

2

,

0

.

2

,

0

,

0

,

0

,

0

.

2

,

0

,

0

,

0

,

0

,

0

,

0

)

andset

Q

(

x

,

y

,

t

=

0

)

=

Q0

+ δ ·

e(xx0)2

2

,

withthehalfwidth



=

0

.

05.Thevolumefractionfunction

α

(

x

)

isprescribedaccordingto(28) and(27).WeuseanADER-DG P4 schemeanda uniform Cartesian gridwith 100

×

2 elements. The mesh resolutionis chosen fine enoughso that the

(11)

Fig. 1. Numericalresultsobtainedwiththenewdiffuseinterfaceapproachforaplanewavereflectionproblemonafreesurfacelocatedinx=0 usinga variableinterfacethicknessofID=0,ID=0.001,ID=0.01 andID=0.03.Inallfourcaseswereportthevelocitycomponentu comparedwiththeexact solutionoftheproblem(bottom)togetherwiththespatialdistributionof

α

(top).

numerical results are grid-independent and only depend on the choice of the interface thickness ID. Since for this test

cp

=

2,theexactsolutionattime

t

=

tend

=

0

.

25 isthereflected p-wavewhichislocatedagainintheinitialposition.We

considerfourcaseswithdifferentchoicesoftheinterfacewidth ID,rangingfrom

I

D

=

0

.

03 tothelimit ID

=

0,wherethe

interfaceisexactlylocatedonacellboundary.FromtheresultsdepictedinFig.1wecanconcludethatthediffuseinterface methodisabletoreproducetheexactsolutionoftheproblemforsufficientlysmallvaluesoftheinterfacethickness

I

D.We

alsostressthattheuseofapath-conservativemethodallowsustoreduce theinterfacethicknessexactlyto

I

D

=

0,which

leads toajumpin

α

atan elementinterface,butwhichisstillproperlyaccountedforthankstothejumpterms

D

− used inthenumericalscheme.

Forratherlargevaluesofthefiniteinterfacethickness

I

D,wheretheactualshapeofthespatialdistributionof

α

startsto

playarole,wehavefoundempiricallythatagoodchoicefortheparameters

η

andp in (27) is

η

= −

0

.

6 and p

=

0

.

5.This choice allows toobtainstill acorrectreflectionofap-waveeven forvery thick interfaces.However, forsufficientlysmall valuesof

I

D,thechoiceof

η

and p has onlyverylittleinfluence.Weconsidernowasimilarsetupofap-wavetravelingin

aheterogeneousmaterialwithperiodicboundarieseverywhere.TheLaméconstantsarespecifiedas

(λ,

μ

,

ρ

)

=



(

4

,

0

,

1

)

0

x

0

.

2

(

2

,

1

,

1

)

otherwise (42)

Note that inthearea 0

x

0

.

2 thePoissonratiois

ν

=

1

/

2.The abilityofADER-DG schemesto dealwithfluids(

μ

=

0) properlyhas alreadybeendiscussed in [34,117]. We furthermoreplace a reflectivefree surface atxf s

=

0

.

75 only by

using a change inthe parameter

α

sothat the exact solution attend

=

1

.

0 isagain thereflected p-wave, located in the

initial position.We usean ADER-DGP3 schemeona sequenceofuniformCartesian grids inorderto checkthe accuracy

of the scheme.In Table 1 we report the L2-error norm inthe case whereno free surface boundary appears (i.e.

α

=

1

everywhere). In thiscasethewave passesthroughthe heterogeneousmaterial andreturnstothe initialstate dueto the periodicboundary.WeobservehighorderofconvergenceifweuseapureDGschemewithoutlimiter(leftcolumn),while we observetheexpecteddecayoftheorderifweartificiallyactivatethelimitercloseto x

=

xf s.Taking

α

=

0 for

x

xf s,

we observeafirstorder ofconvergence,since thejumpin

α

alsorepresentsajumpinthe discretesolution,seeTable2. Thisisobservedalsoforpositivevaluesof

I

D anddifferentvaluesof



0,asreportedintherightcolumnofTable2.

InprincipleonecankeeptheLaméparametersinsidethediffuseinterfaceandoutsidethesolidastheonesinsidethe solid.HoweverwehaveempiricallyfoundoutthatrescalingtheLaméconstantsaccordingtothelocalvalueof

α

improves thenumericalconvergenceandallowstoreachsecondorderofaccuracy,seeTable3.

(12)

Table 1

ComputedL2-errornormforthecase

α

=1 withoutthelimiter(left)and

limitingtheelementsthatareclosetoxf s(right). Elements L2(u) 20×2 4.8988e-3 − 40×2 7.2321e-4 2.8 80×2 4.1602e-5 4.1 160×2 2.4629e-6 4.1 Elements L2(u) 20×2 6.6547e-3 − 40×2 1.3748e-3 2.3 80×2 2.1391e-4 2.7 160×2 3.7588e-5 2.5 Table 2

ComputedL2-errornormforthecaseof

α

alignedwiththemesh(left)andforpositivediffuseinterfacesizeID(right). Elements L2(u) 320×2 2.5851e-4 − 640×2 1.2104e-4 1.1 1280×2 4.6230e-5 1.4 2560×2 2.0770e-5 1.2 Elements ID L2(u),0=10−3 L2(u),0=10−4 40×2 0.02 3.4813e-3 − 3.2060e-3 − 80×2 0.01 2.0510e-3 0.8 2.0144e-3 0.7 160×2 0.005 1.1723e-3 0.8 1.1374e-3 0.8 320×2 0.0025 5.9087e-4 1.0 5.9268e-4 0.9 Table 3

Computed L2-error norm for α

aligned with the mesh and rescaledLaméconstantsλandμ.

Elements L2(u) 40×2 1.4512e-2 − 80×2 2.0014e-4 2.9 160×2 3.2374e-5 2.6 320×2 8.9161e-6 1.9

Fig. 2. Setupofthescatteringtestproblem.AMRgridanddistributionofthecharacteristicfunction

α

(left).Detailofthefreesurfacelocation∂C shown viaadashedlineand

α

colorcontours(center).Limitedcellshighlightedinredandunlimitedcellsshowninblue(right).(Forinterpretationofthecolors inthefigure(s),thereaderisreferredtothewebversionofthisarticle.)

4.2. Scattering of a plane wave on a circular cavity

In thistest casewe consideran initially planar p-wave travelingin x-direction inside a solid medium andhitting an emptycircularcavity.Theinitialstateisgivenby

Q

(

x

,

0

)

= (

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

, λ,

μ

,

ρ

,

α

)

+

0

.

1

· (

4

,

2

,

2

,

0

,

0

,

0

,

2

,

0

,

0

,

0

,

0

,

0

,

0

)

sin

(

2

π

x

),

(43) with

λ

=

2,

μ

=

1 and

ρ

=

1.The value of

α

is parameterized throughthecircularsurface C

= {(

x

,

y

)

|

x

2

+

y2

0

.

252

}

sothat

α

(

x

)

=

0 if x

C and α

=

1 if x

/

C . Thewidthparameterofthe diffuseinterface issetto ID

=

0

.

01 on

C . The

computational domainis

= [−

3

,

3

]

2 andtheinitial Cartesian gridatlevel



=

0 consistsof80

×

80 cells.We then use onefurtherrefinementlevel



max

=

1 basedonthegradientof

α

inordertorefinethemeshclosetothediffuseinterface.

Furthermore,we usea fifth orderADER-DG methodbased onpiecewise polynomials ofdegree N

=

4 in both spaceand time,supplementedwithasecondorderTVDsubcellfinitevolume limiter.TheresultingAMRgridandthecolorcontours of

α

areshowninFig.2,togetherwiththeregionwherethesubcellfinitevolumelimiterisactivated.Fromtheplotinthe centralpanel ofFig.2onecan seethatthewidthoftheinterface layerisoftheorderofthesizeofonecell ofthe high orderDGscheme.

Riferimenti

Documenti correlati

The epistolary contacts of Gijsbert Cuper with scholars on the Italian peninsula examined above, first of all with the Florentine librarian Antonio Magliabechi,

Keywords: Imager, Spectrograph, Multi channel, High time-resolution, Integral field Unit, Spectropolarimeter, Gemini

Dallo studio retrospettivo è emerso che la percentuale di applicazione di questi indicatori è stata variabile, passando dal 20% al 100%: più in dettaglio,

As discussed in Planck Collaboration I ( 2014 ) and Planck Collaboration VI ( 2014 ), the Planck polarisation data is not yet used in our cosmological analysis, as further tests must

This means that using ML models for analysis results of psychological experiments one could use hard-to- interpret ensemble models to have an estimate of the maximum accuracy

Inoltre l'intento è stato quello di concentrare, il più possibile, l'attenzione sulla rappresentazione del progetto architettonico e non sulla scienza teorica del

Lastly we have considered research that has highlighted a gradual development of noticing skills, from description without interpretation or evaluation; to explanation of