• Non ci sono risultati.

Neutrophil-derived chemokines on the road to immunity

N/A
N/A
Protected

Academic year: 2021

Condividi "Neutrophil-derived chemokines on the road to immunity"

Copied!
10
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Seminars

in

Immunology

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / y s m i m

Neutrophil-derived

chemokines

on

the

road

to

immunity

Cristina

Tecchio

a,∗

,

Marco

A.

Cassatella

b,∗,1

aDepartmentofMedicine,SectionofHematologyandBoneMarrowTransplantUnit,UniversityofVerona,Verona,Italy bDepartmentofMedicine,SectionofGeneralPathology,UniversityofVerona,Verona,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received23March2016

Receivedinrevisedform4April2016 Accepted5April2016

Availableonline14April2016 Keywords: Neutrophils Chemokines Innateimmunity Adaptiveimmunity Infections Tumors Immune-mediateddiseases

a

b

s

t

r

a

c

t

Duringrecentyears,ithasbecomeclearthatpolymorphonuclearneutrophilsareremarkablyversatile cells,whosefunctionsgofarbeyondphagocytosisandkilling.Infact,besidesbeinginvolvedin pri-marydefenseagainstinfections–mainlythroughphagocytosis,generationoftoxicmolecules,release oftoxicenzymesandformationofextracellulartraps–neutrophilshavebeenshowntoplayarolein finelyregulatingthedevelopmentandtheevolutionofinflammatoryandimmuneresponses.These lat-terneutrophil-mediatedfunctionsoccurbyavarietyofmechanisms,includingtheproductionofnewly manufacturedcytokines.

Herein,weprovideageneraloverviewofthechemotacticcytokines/chemokinesthatneutrophilscan potentiallyproduce,eitherunderinflammatory/immunereactionsorduringtheiractivationinmore

prolongedprocesses, suchasintumors.Wehighlightrecentobservationsgeneratedfromstudying

humanorrodentneutrophilsinvitroandinvivomodels.Wealsodiscussthebiologicalsignificanceof neutrophil-derivedchemokinesinthecontextofinfectious,neoplasticandimmune-mediateddiseases. Thepicturethatisemergingisthat,giventheircapacitytoproduceandreleasechemokines,neutrophils exertessentialfunctionsinrecruiting,activatingandmodulatingtheactivitiesofdifferentleukocyte populations.

©2016PublishedbyElsevierLtd.

Contents

1. Introduction...119

2. Neutrophil-derivedchemokinesinimmuneresponsesandinfections...120

2.1. Humanneutrophils...120

2.2. Mouse/ratneutrophils...122

3. Neutrophil-derivedchemokinesintumors...123

3.1. Humanneutrophils...123

3.2. Mouseneutrophils...124

4. Neutrophil-derivedchemokinesinimmune-mediateddiseases...124

4.1. Humanneutrophils...124

4.2. Mouseneutrophils...125

5. Conclusions...125

Conflictofintereststatement...125

Acknowledgments...125

References...125

∗ Correspondingauthorsat:DepartmentofMedicine,HematologyandBone Mar-rowTransplantUnit,PiazzaleL.A.Scuroand,SectionofGeneralPathology,Strada LeGrazie8,37134Verona,Italy.

E-mailaddresses:cristina.tecchio@univr.it(C.Tecchio),

marco.cassatella@univr.it(M.A.Cassatella).

1 DepartmentofMedicine,SectionofGeneralPathology,StradaLeGrazie8,37134

Verona,Italy.

1. Introduction

Chemokines are 8- to12-kDa polypeptides, sharing 20–70%

homology in amino acid sequence, that are classifiedinto four

families(XC,CC,CXCandCX3Cfamilies)basedonthe

position-ingoftheirinitialcysteineresidues[1].CXCandCCchemokines

http://dx.doi.org/10.1016/j.smim.2016.04.003

(2)

represent the two major and most studied groups, being the

CXC chemokinesfurtherdivided into two subfamilies,

depend-ing on the presence of the glutamate-leucine-arginine (ELR)

motif preceding the first two cysteins [2]. CXC ELR-expressing

chemokinesaremostlychemotacticforneutrophilsandinclude,

among othermembers, CXCL8/IL-8, CXCL1/growth-related gene

product-␣(GRO-␣),CXCL2/macrophageinflammatoryprotein

2-alpha(MIP-2␣)/GRO␤,CXCL3/MIP-2␤/GRO␥andCXCL5/epithelial

cell-derived and neutrophil-activating 78-amino acid peptide

(ENA-78)[1,3,4].Bycontrast,CXCLmemberslackingtheELRmotif,

such as CXCL10/interferon (IFN)␥-inducible protein of 10kDa

(IP-10),CXCL9/monokineinducedbyIFN␥(MIG)andCXCL11/IFN

␥-inducibleT-cell␣chemoattractant(I-TAC),actinsteadonnatural

killer(NK)andactivatedTcells[1,5,6].CXCchemokines

contain-ingtheELRmotifalsodisplayapotentangiogenicactivity,while

CXCchemokineslackingtheELRmotifareangiostatic[2].TheCC

familyincludeschemokinessuchasCCL2/monocytechemotactic

protein/MCP-1, CCL3/macrophage inflammatory protein

(MIP)-1␣,CCL4/MIP-1␤,CCL5/Regulated onActivation,NormalTcells

ExpressedandActivated (RANTES),CCL7/MCP-3,CCL17/Thymus

and activation regulated chemokine (TARC), CCL18/Pulmonary

and activationregulatedchemokine (PARC), CCL19/MIP-3 and

CCL20/MIP-3␣, that are mostly chemotactic and stimulatory

for monocytes, macrophages, dendritic cells (DCs), T cells, NK

cells,eosinophilsandbasophils[1,3,4,7].Chemokinesaremostly

secretedintotheextracellularspaceassolublefactorsorbound

totheextracellularmatrix,thusformingtransientorstable

con-centrationgradients,respectively[1].Theypromoteincreasedcell

motilityand directionalmigration upon binding totheir

corre-spondingcell-surface,seventransmembrane-spanningreceptors

(e.g.,CXCRsandCCRs),thatsignalthroughGprotein-mediated

cas-cades[8,9].Basedonthepatternofreceptorsexpressed,discrete

cellpopulationsarespecificallyrecruitedbydifferentchemokines

[1,10].Usuallyagivenleukocytepopulationhasreceptorsfor,and

respondsto,differentchemokines[11].Besidesregulating

leuko-cyte trafficking,and therefore coordinating immune responses,

chemokines play an important role also in regulating T and B

cell-development[12],modulatingangiogenesis[13,14]and

influ-encingtumorgrowth[15].Althoughvirtuallyallcelltypesmay

releasechemokines,innateandadaptiveimmunitycells,

includ-ingpolymorphonuclear neutrophils,representthemajorsource

ofthem[1,16],especiallyininflammatory(infectiousand/or

non-infectious)[17,18]ortumorsettings[17,19].

Neutrophilsarenotanymoreviewedassimple“suicide”killer

cellsatthebottomofthehierarchyofimmuneresponse[20,21].

The last two decades have, in fact, witnessed a new wave of

excitingstudies about thecapacity of neutrophils toexpress a

numberof geneswhose productslieat thecoreofcrucial

bio-logicalprocesses,includinginnateimmuneresponses[21,22].In

suchregard,neutrophilshavebeenshowntoexpressandproduce

a varietyof chemokines (Table 1)upon activation by

microen-vironmentalstimulisuchasmicrobial agents or theirproducts,

includingligandsforToll-likereceptors(TLRs)orother

pathogen-associated molecular patterns (PAMPs), even in a timely- and

specific stimulus-dependent manner [16,22,23]. In addition to

amplifytheirproductionofchemokinesbyautocrineloops[23–25],

neutrophilshavebeenalsoshowntopositively/negatively

modu-latetheeffectsofthechemokinespresentinthemicroenvironment

byreleasingenzymeswithproteolyticactivities,either in

asso-ciationwithextracellulartraps[26]ornot[27].Therefore,inthe

contextofaninflammatoryreactionthathastheultimategoalto

killandremovetheinvadingpathogens,neutrophilsmayrecruit,

viachemokinerelease,discreteinnateandadaptiveimmunitycells

tooptimallyorchestratethemostefficaciousimmune response.

Neutrophils themselves have been shown to migrate into the

inflammatory site in tightly regulatedwaves, which are

medi-atedbychemoattractant/chemokinecascadesreleasedbyactivated

resident tissue cells and/or previously activated neutrophils or

macrophages[23,28,29].

Inthefollowingsections,wewillhighlightrecentliterature

con-cerningtheroleofchemokinesderivedbyhumanneutrophilsin

shapingtheinnateandadaptiveimmuneresponse,eithertowards

infections,orinthecontextofotherpathologicalconditionssuchas

cancerorimmune-mediateddiseases.Wewillalsodescribe

find-ingsgeneratedininvivomousemodels,whicheitherextend,or

uncover,differences betweenspecies[10,22].For a morebroad

comprehensionoftheknowledgeexistinginthefield,the

read-ersmayrefer topreviouslypublished, veryexhaustive,reviews

[16,28,30].

2. Neutrophil-derivedchemokinesinimmuneresponses andinfections

Moststudiesindicatethatneutrophilsupregulate

chemokine-encoding genes and/orrelease chemokineswhen appropriately

stimulated[30]. Hence,the pattern of chemokinesreleased by

neutrophilsisstrictlydependentonthetypeofstimulusand/or

associated to a specific inflammatory/immunological context,

in vitro and in vivo. A large but non-exhaustive list of the

stimuli able to induce the production of chemokines by

neu-trophilshasbeenpreviouslyreported[30],yetagoniststriggering

neutrophil-derived chemokines are continuously identified, for

instance:granulocytecolony-stimulatingfactor(G-CSF),shownto

induceCXCL5[31]andCXCL2/MIP-2␣[32];Wnt5a,aligandthat

activatesthenon-canonicalWntsignalingpathways(

␤-catenin-independentpathways),showntotriggerthereleaseofCXCL8and

CCL2[33];organicdust,showntotriggerthereleaseofCXCL8and

CCL3[25];andanincreasingnumberofmicrobial-derived

prod-ucts,asdescribedinthefollowingparagraphs.

2.1. Humanneutrophils

In vitro studies have demonstrated that, upon stimulation

with microbial agents or their derivatives, neutrophils release

chemokines potentially able to recruit neutrophils themselves,

monocytes,macrophages,DCsandNKcells,aswellasTcell

sub-sets(Fig.1), suggestingthat,bythis function,theymayamplify

boththeinnateandtheadaptiveimmuneresponse[16].For

exam-ple,neutrophilsculturedwitheitherMycobacteriumtuberculosisor

lipoarabinomann(itsmajorcellwallcomponent)havebeenshown

torelease CXCL1and CXCL8 [34], two chemokines involved in

neutrophilrecruitment.Similarly,neutrophilsreleaseCXCL8when

exposedinvitrotoCandidaalbicans[35],Helicobacterpyloriwater

soluble surface protein [36] and H. pylori neutrophil-activating

protein(HP-NAP)[37].Bycontrast,phagocytosedStaphylococcus

aureus hasbeen shown toreduce the production of CXCL8 by

neutrophils,concomitantlywithsuppressingphosphorylationof

nuclearfactor-␬Bandacceleratingcelldeath,inthismanner

favor-ingitsownsurvivalandpromotingdisease[38].

Furtherevidenceoftheroleofneutrophil-derivedchemokines

in amplifying localinnate responseshas beenprovided bythe

capacity of neutrophils to upregulate the expression of CXCL1,

CXCL2 and, mostly, CXCL3 when in vitro exposed to

Fusobac-terium nucleatum [39]. In other studies, neutrophils incubated

withLPS-ortumornecrosisfactor-␣(TNF␣)[40],aswellasin

the presence of Gram-positive or Gram-negative bacteria [41],

wereshowntosequentiallyexpressandreleasebiologicallyactive

CCL20 and CCL19 [40], as revealed by experiments in which

neutrophil-derivedsupernatantsinducedchemotaxisofimmature

andmatureDCs,respectively.Thesedatahavebeenfurther

(3)

Table1

Chemokinesthathumanandmurineneutrophilscanpotentiallyexpressand/orproduce.

CHEMOKINE HUMAN REFERENCES MOUSE/RAT REFERENCES

CXCL1 + [34,39,105] + [79]a,[95,98,108] CXCL2/MIP−2␣b + [39,46] + [79]a,[32,47,69,95,110] CXCL3 + [39] ND CXCL4c + [22] + [22] CXCL5 + [31] ND CXCL6 + [22] ND CXCL8d + [25,33–38,44,45,54,58,59,61,66,67,82–86,92,93,101,106] ND CXCL9 + [48,52,62,67,105] + [95,109] CXCL10 + [48,49,52–54,57,63] + [79]a,[76,77,95,109] CXCL11 + [48] + [79]a CXCL12 +c [22] + [78] CXCL13c + [22] + [95] CXCL16 +c unpublishedobservation +c [95] CCL2 + [33,43,44,54,57,64,82,89,90,92,93] + [79]a,[74,75,90,95] CCL3 + [25,37,44–46,59,92,103] + [47,69,70,72–74,95,108] CCL4 + [37,45,46,60,66–68,85,87,88] + [79]a,[47,72,73,108] CCL5 ND + [72] CCL7 ND +c [79]a,[95] CCL9 ND +c [79]a CCL12 ND +c [79]a CCL17 + [90,91] + [90,91,95] CCL18 + [103] ND CCL19 + [40,41] +(?) [22] CCL20 + [40–42,54,57,67,104] + [72] CCL22 ND +c [79]a

Expressionand/orproductionofthelistedchemokineshavebeendetectedinhumanandmouseneutrophilsbygeneexpressiontechniques,IHC,enzyme-linked immunoad-sorbentassays(ELISAs)orbiologicalassays.

(?):Itindicatescontroversialdata. ND:Notreportedintheliterature.

aDetectedinrat. bMouseonly.

c ItreferstostudiesperformedatthemRNAlevelonly. d Humanonly.

Fig.1. Chemokinesproduced/expressedbyneutrophilsexperimentallyshowntochemoattracttheinnate(greenbackground)andadaptive(violet-purplebackground) immunitycellsdisplayedinthefigure.

(4)

bacterial-derived chemoattractant known as

formyl-methionyl-leucyl-phenylalanine(fMLF)significantlyincreasetheproduction

ofneutrophil-derivedCCL20inresponsetoLPS,throughentirely

unrelatedmolecularmechanisms[42].Inthecaseofneutrophils

incubatedwithIFN␥plusLPS,whichalsomaintainveryelevated

theproductionofCCL2[43],apotentantiapoptoticeffectexerted

byIFN␥likelysustainschemokineexpression[43].

Asmentioned,neutrophil-derivedchemokinesmayalso

orches-trate more sophisticated responses involvingadaptive immune

cells.Forexample,neutrophilsisolatedfrompulmonary

tuberculo-sispatientswereshowntodisplayaugmentedlevelsofCXCL8,CCL2

andCCL3,whichfurtherincreaseduponinfectionwith

mycobac-terialstrainsinvitro[44].Consistently,ithasbeendemonstrated

thatneutrophilsexposedtoMycobacteriumbovisBacillus

Calmette-Guerin(BCG)[45], orincubatedwithHP-NAP[37], producenot

onlyCXCL8,butalsoCCL3andCCL4,twochemokinesrecruiting

monocytes,DCsand Tcells tothesiteof infections. Insupport

of this notion, supernatants from BCG-conditioned neutrophils

were found to induce, in vitro, the chemotaxis of monocytes

and,indirectly(viamonocytes),ofTcells[45].Neutrophil-derived

chemokineshavebeenalsoinvolvedinregulatingthemigration

ofmonocytes/macrophages,Tcellsandneutrophils,whichentrap

Schistosomajaponicumeggsandultimatelyformthetypical

inflam-matorygranulomas[46].Accordingly,humanneutrophilsexposed

invitrotoS.japonicumeggswerefoundtoupregulatethetranscripts

encodingCCL3,CCL4andCXCL2[46],consistentwithaprevious

studyfromthesamegroupevidencingthepresenceofCCL3-,

CCL4-andCXCL2/MIP-2␣-positiveneutrophilswithintheneutrophil-rich

coreofS.japonicum-granulomasininfectedmice[47].

Humanneutrophilshavebeenfoundtosynergisticallyexpress

andreleasealsoCXCL9,CXCL10andexpressCXCL11after

incu-bationwithIFN␥in combinationwitheither LPSorTNF␣[48].

The molecular mechanisms underlying such synergistic effects

weresubsequentlyuncovered[49].Moreover,neutrophil-derived

CXCL9andCXCL10werefoundbiologicallyactiveinvitro,as

super-natantsharvestedfromIFN␥plusLPS-orTNF␣-treatedneutrophils

promotedthemigration, as wellas a rapid integrin-dependent

adhesion,ofCXCR3-expressingTh1cells, inCXCL9- or

CXCL10-dependentfashions[48].Theseobservationsforthefirsttimehave

highlightedapotentialdirectcrosstalkbetweenneutrophilsand

Th1cells[48],subsequentlyconfirmedandexpanded[50],andare

importantbecauseTh1cellsarecrucialforcell-mediatedimmunity

andphagocyte-dependentprotectiveresponses[51].Thatthe

pro-ductionofCXCL9andCXCL10byneutrophilsmightberelevantfor

fightinginfectiousdiseaseswasfurtherevidencedbyother

stud-ies.Inoneofthem,Anaplasmaphagocytophilum-infectedhuman

neutrophilshavebeenfoundtoreleaseloweramountsofCXCL9

andCXCL10ascomparedtouninfectedneutrophils[52].Similarly,

Porphyromonasgengivaliswasshowntobeineffectivein

stimulat-ingthereleaseofCXCL10byneutrophils,thereforecontributing

tosuppressandevadingaTh1-immuneresponseinthesettingof

periodontaldisease[53].

In addition to Th1 cells [48], IFN␥ plus LPS-activated

neu-trophilshavebeenshowntoproduceandreleasealsoCCL2and

CCL20,and,inturn,chemoattractTh17cellsinvitro[54].Th17cells

arespecializedinorchestratingadaptiveimmunedefensetoward

extracellularpathogens,viatherecruitmentofneutrophilstothe

siteofinfection,bytriggeringtheproductionofCXCL8,CXCL1and

G-CSFfromtissuecells[55].However,Th17cellsarealsoinvolved

inthepathogenesisofchronicinflammatoryand/orautoimmune

diseases [56]. Also neutrophils incubated with the

neutrophil-activatingproteinA(NapA)fromBorreliaburgdorferiwerefound

torecruitbothTh1andTh17cellsviaCXCL10andCCL2/CCL20

pro-duction,respectively[57].Interestingly,becauseNapAfunctions

asoneofthemainbacterialproductsinvolvedinthepathogenesis

ofLymearthritis,whichischaracterizedbyajointinfiltrationof

mainlyneutrophilsandTcells(Th1andTh17),thelatterdata[57]

wouldsuggestthattheinfiltrationofThcellsmayrely,inpart,on

thechemokineslocallyproducedbyneutrophilsexposedtoNapA.

ThatneutrophilsandTh17mayundertakeacrosstalk,ultimately

leadingtotheamplificationoflocalimmuneresponse,isvery

plau-sibleduetotheabilityofactivatedTh17cellstoproduceCXCL8and,

consequently,directlyattractneutrophils[54].

Muchlessisknownaboutneutrophilresponsivenesstoviruses

in terms of chemokine production. For instance, it has been

reportedthatneutrophilstreatedinvitrowiththehuman

immun-odeficiencyvirustransactivatorprotein(Tat)produceCXCL8[58],

whileneutrophilsincubatedwithRespiratorySyncytialVirus(RSV)

produce and release also CCL3 [59] and CCL4 [60], in addition

toCXCL8 [61], therefore disclosing their role as cells releasing

potentinflammatorymediatorsduringRSV-relatedbronchiolitis.

Similarly,neutrophilsexposed toHerpes SimplexVirus1

(HSV-1)-infectedcornealtissuewerefoundtoproduceelevatedCXCL9

levels[62],suggestingthattheycontributetotheattractionofCD4+

Tcells/Th1cells,whichareessentialforantiviralimmunity.In

pul-monarytuberculosis,neutrophilsfromthebronco-alveolarlavage

fluids(BAL)ofpatientswithhumanImmunodeficiencyVirus

(HIV)-associatedsyndromehavebeenfoundtoexpressCXCL10[63],in

spiteofaverylownumberofIFN␥-producingCD4+cellsinBAL.

SinceCXCL10isatypicalIFN␥-responsivegene,datasuggestthat

HIVmightdirectlyorindirectlycauseadysregulatedCXCL10

pro-ductionbyhumanneutrophils[63].Inanotherstudy,neutrophils

pulse-treatedinvitrowithR5HIV(amacrophage-tropicHIVstrain)

havebeenfoundtoproduceCCL2andIL-10[64].Moreover,freshly

isolatedneutrophilseitherco-cultured,ortranswell-cultured,with

R5HIV-infectedsyngeneic monocyte-derivedmacrophageswere

showntoenhance,ina CCL2-andIL-10-dependentmanner,the

replicationofR5HIVinmacrophages,thussupportinga

neutrophil-mediatedroleinfavoring,atleastinvitro,R5HIVinfection[64].In

thiscontext,glycyrrhizin,anantiviralcompoundalreadyusedin

clinic,wasfoundabletoinhibit theinvitroproduction ofCCL2

andIL-10byneutrophils exposedtoR5HIV,thereforeproviding

anexampleofa potentialchemokine/cytokine-targetedtherapy

[64].Atthelightofrecentfindingsdemonstratingthat,inhuman

neutrophils,thechromatinattheIL-10locusappearsinan

inac-tiveconformation[65],theproductionofIL-10byR5HIV-treated

neutrophils should be confirmed using highly pure neutrophil

populations.Inanothercontext, neutrophilsfromHumanTcell

lymphotropic virus type-1 (HTLV-1)-infected patients exposed

in vitro to LPS, or to Leishmania amazonensis, were found to

releaseamountsofCXCL8andCCL4similartoneutrophilsfrom

HTLV-1-seronegativecontrols[66].Finally,neutrophilstransfected

invitrowithpolyinosinic:polycytidylicacid[poly(I:C)],asynthetic

mimeticofviraldsRNAthatactsviaintracellularcytoplasmicRNA

helicases,havebeenshowntoexpresselevatedtranscriptlevels

encoding CXCL8,CXCL10, CCL4 and CCL20 [67]. Similarly,

neu-trophilsincubatedwithR848,animidazoquinolinemimickingthe

actionofsinglestrandviralRNAactingonTLR8,havebeenshown

toexpressCCL4[68],aswellasCCL3,CCL19,CXCL1,CXCL8and

CXCL16(ourunpublishedobservations),allchemokinespotentially

involvedintherecruitmentofbothinnateandadaptiveimmunity

cellsduringviralinfections.

2.2. Mouse/ratneutrophils

Evidencethatalsorodentneutrophilsproducechemokinesis

abundantlydocumented,asalreadyreviewed[30].Forinstance,

murineneutrophilsexposedinvitrotoM.tuberculosishavebeen

showntoproduceCXCL2/MIP-2␣andCCL3[69].Inanotherwork,

neutrophilshave beenfoundtoreleasebiologically activeCCL3

(e.g.,abletochemoattractimmatureDCs)uponinvitroexposure

(5)

major-resistantmicewasshowntoabolishtherecruitmentofDCs

tothesiteofparasiteinoculation,aphenomenonadoptively

res-cuedbyinoculationofwild-typeneutrophils[70].Overall,these

latterdatapointtoaroleforneutrophil-derivedCCL3inthe

induc-tionofaprotectiveCD4+Th1immuneresponseagainstL.major

infectionviatherecruitmentofimmatureDCsandtheirsubsequent

differentiation[71].Inlinewiththeaforementionedmodelarealso

resultsobtainedusingmurineneutrophilsexposedinvitroto

Tox-oplasmagondii, whichwere foundtorelease manychemokines

abletorecruitimmatureDCs(e.g.,CCL3,CCL4,CCL5andCCL20),

asexperimentallyproved[72].Interestingly,undernon-infectious

setting,neutrophil-derivedCCL3andCCL4havebeenalsoshown

toinduceanearlymacrophageinfluxtothesitesofpolyacrylamide

gel-inducedcutaneousgranulomaformation[73].

In anothermodel, namelythe methicillin-resistant S.aureus

(MRSA)infection,neutrophilsfrommiceresistanttoMRSAhave

beenshowntoinduce,viaCCL3andIL-12release,thepolarization

ofmacrophagestowardsaphenotypecharacterizedbythe

expres-sionofcytokinesandchemokinespotentiallyassociatedwithaTh1

response(e.g.,IFN␥,IL-12,IL-18,CCL3,CCL5,CXCL9andCXCL10)

[74].Bycontrast,supernatantsofneutrophilsobtainedfrom

MRSA-susceptiblemice[74]werefoundtopolarizemacrophages,viathe

releaseofCCL2andIL-10,towardsaphenotypecharacterizedby

theexpressionofcytokinesandchemokinespotentiallyassociated

withaTh2response(e.g.,IL-1receptorantagonist,IL-10,CCL17,

CCL18,CCL22)[74].Similarresultswerealsoobservedinamodelof

compensatoryanti-inflammatoryresponsesyndrome[75].Finally,

inmiceinfectedwithPlasmodiumbergheiANKA,neutrophil-and

monocyte-derivedCXCL10havebeenshowntoinducethe

migra-tionofanti-Plasmodiumeffectorcellsoutoflymphoidsecondary

organs[76],thereforecausing animpairedcontrolof theblood

stageofmalariaandtheconsequententrapmentofparasitizedred

bloodcellsintothecerebral-microcirculation[76].

Asforhumanneutrophils,increasingevidencepointforaroleof

neutrophil-derivedchemokinesinorganizingimmuneresponses

towardvirusesalsoinrodents.Forinstance,neutrophilsisolated

from the lungs of influenza virus-infected wild-type mice

dis-played,intheacutephase,significantlevelsofCXCL10mRNAand

werealsofoundtoexpressCXCL10byimmunohistochemical(IHC)

analysis[77].Bycontrast,micelackingCXCL10orCXCR3,besides

presenting reduced acuterespiratory distress syndrome(ARDS)

manifestationsandanincreasedsurvival,hadalowernumberof

infiltratinglungneutrophilsascomparedtothewild-typestrains

[77]. Data areconsistent withthenotionof neutrophil-derived

CXCL10asresponsiblefortherecruitmentofadditional

(CXCR3-positive) neutrophils and the consequent excessive pulmonary

inflammation/ARDS[77].Interestingly,similardatawereobtained

byinducingachemicalpneumoniausingthesamemodels[77].In

amousemodelofinfluenzaAvirusinfection,neutrophil-derived

CXCL12/stromal-cell derived factor 1 (SDF-1) hasbeen instead

demonstratedtobecrucialforCD8+Tcellrecruitment,and

there-forefortheinductionofaCD8+Tcell-mediatedimmuneresponse

towardsinfluenzavirusitself[78].Usingtwophotonmicroscopy

invivo, micehavingCXCL12 conditionally-depletedneutrophils

presentedfewerTcellswithintheinfectionsiteandhadaslower

clearanceofthevirus,similartothemicewithreducedneutrophil

counts [78]. Strikingly, the same study has also demonstrated

that,duringtheirmigration tothesiteof infection,neutrophils

depositlong-lasting,CXCL12-containingtrailsfromtheirelongated

uropods,inthismannerguidingTcellstowardsinfectedtissue[78].

Finally,ratneutrophilsincubatedinvitrowithconditionedmedium

fromcoronavirus(CoV)-infectedalveolarepithelialcellshavebeen

showntodisplayhighermRNAlevelsofCXCL1,CXCL2,CXCL10

andCXCL11,CCL2,CCL4,CCL7,CCL9/mMIP-1␥,CCL12/MCP-5and

CCL22ascomparedtoneutrophilsincubatedinacontrolmedium

[79].Thepotentialvalidityoftheseinvitroobservationsinvivo

havebeenconfirmedinaratmodelofnon-fatallungCoVinfection,

inwhichneutrophil-depletedratsdisplayedfewermacrophages

andlymphocytesintheirrespiratorytract,ascomparedto

non-depletedrats,andlowerchemokinelevels[79].

3. Neutrophil-derivedchemokinesintumors

Increasing experimental evidence indicatesthat, in addition

tomacrophages,DCsandlymphocytes,alsoneutrophilsinfiltrate

tumors[80],toplay aroleininfluencingtheneoplasticgrowth.

Thatoccursnotonlybecausetumor-associatedneutrophils(TANs)

maydirectlyinteractwiththeneoplasticcells,butalsobecause,

withinthetumormicroenvironment,TANsreleaseawidearrayof

molecules,includingchemokinesandcytokines[81].

Neutrophil-derived chemokines influence the tumor fate either indirectly,

becausetheyrecruitandactivateinnateandadaptiveimmunecells

[81],ordirectly,fortheircapacitytomodulateangiogenesisand

cellproliferation[13,14].Recentknowledgeontheinvolvementof

neutrophil-derivedchemokinesexertingpro-oranti-tumoractions

issummarizedinthefollowingsections.

3.1. Humanneutrophils

Anumberofinvitrostudieshavedemonstratedthat

periph-eralneutrophilsmayexpressand/orproducechemokinesinthe

presenceof tumorcell-conditionedmediumand/ortumorcells.

For instance, neutrophils incubatedwith gastriccancer-derived

mesenchymalstemcell-conditionedmediumhavebeenshownto

upregulateCXCL8andCCL2 mRNA[82].CXCL8wasalsoshown

tobeproducedbyneutrophilseitherco-culturedwithmetastatic

melanoma [83] and glioma cell lines [84], or in the presence

ofsupernatantsfromaheadandnecksquamouscellcarcinoma

(HNSCC)cellline[85].Theseobservationsanticipatea potential

roleforTANstoregulateinvivo,viaCXCL8,notonlytherecruitment

of additional neutrophils, but also cancercell growth,survival,

motionandangiogenesis[86].Neutrophilsincubatedinvitrowith

HNSCC-derivedsupernatantswerealsofoundtorelease

consid-erableamountsof CCL4[85,87],achemokine thatmayelicitan

immuneresponsetowardsthetumorbyrecruitingNK,immature

DCsandTcells[87,88].Inanotherstudy,peripheralneutrophils

fromhepatocellular carcinoma (HCC) patientshavebeen found

to produce,in vitro, significantly higher amounts of CCL2 than

neutrophilsfromhealthydonors[89].Moreover,theamountsof

neutrophil-derived CCL2 were found to beproportional to the

tumor sizes of patients [89]. Consistent with the observations

evidencingthatmouseneutrophilsexertingimmunosuppressive

functionsproduceCCL2andIL-10,whilethosewith

immunoacti-vatingpropertiesreleaseCCL3andIL-12[74],supernatantsfrom

HCCneutrophilswerefoundtoinhibit,invitro,theproductionof

IFN␥byperipheralbloodmononuclearcellsinaCCL2-dependent

fashion[89].Inamorerecentstudy,TANsisolatedfromHCC

sam-ples have beenshown torelease significantlevelsof CCL2 and

CCL17invitro[90],consistentwiththecapacityofHCCcelllinesto

inducetheproductionofthesamechemokines(CCL2andCCL17)

whenco-culturedwithneutrophilsinvitro[90].Inagreementwith

thelatterdata,IHCanalysisofhumanHCCspecimenshas

demon-stratedthepresenceofCCL2-andCCL17-positiveTANswithinthe

tumorstroma[90].Notably,TAN-conditionedmediawerefound

toincrease,invitro,themigratoryactivityofmacrophagesandT

regulatorycells(Tregs)viaCCL2andCCL17,respectively[90],in

linewithaTAN-N2protumoralphenotypepreviouslydescribed

[80]. Aninverse correlationbetween thenumber of CCL2- and

CCL17-positiveTANsintumorsectionsandpatientsurvival

con-firmedtheprotumorroleforTANsinHCC[90].CCL17hasbeen

(6)

tumors[91],thussuggestingthat,alsointhistypeofcancer,TANs

mayrecruitTregs.

Bycontrast,TANsisolatedfromlungtumorsofpatientsatthe

earlystageofdiseasehavebeenshowntoproducesignificantlevels

ofCXCL8,CCL2andCCL3,otherthanIL-6andtheanti-inflammatory

IL-1Ra[92].Althoughtheprecisecontributionofeachchemokine

wasnotspecificallyaddressed,lungtumorTANswereshownto

induce,invitro,theproliferationandthereleaseofIFN␥byboth

CD4+andCD8+ Tcells[92],pointingfortheiranti-tumorrole.In

addition,invitroexperimentsuncoveredacrosstalkbetweenTANs

andactivatedTcellsleadingtoasubstantialupregulationof

costim-ulatorymoleculesinneutrophils,which,inturn,bolsteredafurther

Tcellproliferationin apositive-feedbackloop[92].Similarlyto

lungTANs[92],humanneutrophilsinfectedwithanoncolytic

vac-cinestrain of measlesvirus (MV) have been shown to secrete

CXCL8andCCL2,otherthanTNF␣andIFN␣[93].These

observa-tionssupportandextendpreviousfindings,madeinahumantumor

xenograftmousemodel,demonstratingthatneutrophilscontribute

totheantitumorefficacyofMV,mostlyMVexpressing

granulocyte-macrophagecolony-stimulatingfactor(MVGM-CSF)[94].

3.2. Mouseneutrophils

Asa general notion, mouse TANshave been shown to

con-stitutively produce a variety of chemokines, including CXCL1,

CXCL2/MIP-2␣,CXCL9,CXCL10,CXCL13/Blymphocyte

chemoat-tractant/(BLC), CXCL16, CCL2, CCL3, CCL7 and CCL17 [95],

therefore suggesting that they can potentially recruit

mono-cytes/macrophages,DCs,NKcells,TandBcellsubsetsand/ormore

neutrophilstothetumor.Inturn,thetype ofimmuneresponse

elicited by TANs would depend on the pattern of chemokines

prevalentlyproducedineachsinglesituation.Forinstance,TANs

isolatedfromlungtumorswerefoundtoexpressandreleasehigher

CCL17levelsthanbone marrowneutrophilsfromthesame

ani-mals [91]. In this model, TAN-derived supernatants have been

showntopreferentiallyattractTregsinaCCL17-dependent

man-ner,inmigrationassaysbothinvitroandinvivo[91].Interestingly,

TANsisolated fromthesamemousemodel,but aftertreatment

withthetransforminggrowthfactor-␤(TGF-␤)-inhibitor SM16,

expressedandreleasedsignificantlyloweramountsofCCL17than

TANsfromuntreated mice[91], confirminga role forTGF-␤in

conditioningneutrophilactivities towardstumors [96].In such

regard,thepresence/absenceofTGF-␤withinthetumor

microen-vironmenthasbeenshowntopolarizeTANsintotwophenotypes

displayingoppositeimmunoregulatoryfunctions,mainlybasedon

theircytokine/chemokine-producingrepertoire[97]:inthecaseof

chemokines,CCL3fortheantitumor(N1),CCL2plusCCL17forthe

protumor(N2),phenotype[95,96].InagreementwiththeN1/N2

hypothesis,tumorvolume,aswellasthenumberofpulmonary

metastases,wereshowntosignificantlyincreaseinamousetumor

modelobtainedbycoinjectinganimalswithHCCcelllinestogether

withCCL2andCCL17-producingTANs.Moreover,thesetumors

dis-playedanincreasednumber ofstromalmacrophages andTregs

[90].

Protumor,proinflammatoryactivitiesbyinfiltratingneutrophils

have been also uncovered in another mouse model of

colitis-associated cancer, in which prostaglandin receptor (subtype

EP2)-positive colon neutrophils werefoundto express,byIHC,

CXCL1inadditiontoIL-6,TNF␣andCOX-2[98].Consistentwith

thesefindings,bonemarrow-derivedneutrophilsfromthesame

micewereshowntoupregulatetheexpressionofCXCL1,TNF␣,

IL-6 and COX-2 mRNA when incubated with prostaglandin E2

(PGE2) and TNF␣ in vitro [98]. This suggests that the PGE2

-prostaglandinreceptor-(EP2)pathwayformsanautocrineloopfor

neutrophilrecruitmenttothecolonbyinducingCXCL1and

conse-quentlybyamplifyingthepro-tumorinflammatoryresponse[98].

Notably,underthesameexperimentalsetting(e.g.,induced

colitis-associatedcancer)EP2-deficientmicedisplayedareducednumber

of tumor lesions, therefore pointing for a role for neutrophils

inpromoting tumorigenesis[98].Notably,clinicalspecimens of

ulcerativecolitis-associatedcolorectalcancerdisplayEP2-positive

infiltratingneutrophils,confirmingthefindingsinmice[98].

4. Neutrophil-derivedchemokinesinimmune-mediated diseases

Immune-mediatedinflammatory diseasesarea groupof

dis-easeslackingadefiniteetiologyandcharacterizedbyprolonged

inflammatorysymptoms,oftentriggeredbyadysregulationofthe

normalimmuneresponse[99].Inadditiontootherleukocytes,

neu-trophilshavebeenoftenshowntobeinvolvedinthepathogenesis

ofthesediseases[100].

4.1. Humanneutrophils

Evidence points for the involvement of neutrophil-derived

chemokinesinvarioustypesofarthritis.Forexample,peripheral

neutrophilshavebeenshowntoreleaseCXCL8uponphagocytosis

ofmonosodiumurate(MSU)crystalsinvitro[101].MSUcrystals

cause the typicalgout attacks when deposit in joints, tendons

andsurroundingtissues,towhichneutrophilsparticipateviathe

release ofproinflammatory mediators[102]. Therefore,because

of the capacity of CXCL8 to potently attract neutrophils, these

findingswoulduncoverapotentialmechanismthatmaysustain

neutrophil-mediatedinflammationingoutyarthritis.Neutrophils

isolatedfromthesynovialfluid(SF)ofpatientswithrheumatoid

arthritis(RA),asystemicautoimmuneinflammatorydisorder

pri-marilyinvolvingthejoints,havebeenshowntoproducehighlevels

ofCXCL8,CXCL10, CCL2and CCL20[54], inaddition toexpress

elevatedtranscriptlevelsofCCL18and CCL3[103].Data would

suggestthat, inRAarthritis, neutrophilsrecruitadditional

neu-trophils,aswellasTh1cellsandTh17cells,toundertakereciprocal

crosstalk[54].Consistent withthis hypothesis, neutrophils and

Th17cellshavebeenfoundtocloselycolocalizeinSFs fromRA

patients[54].Inaddition,invitroexperimentshavedemonstrated

thatsupernatantsfromIFN␥plusLPS-activatedneutrophilsinduce

chemotaxisofTh1andTh17cellsviaCCL2andCXCL10,andCCL2

andCCL20,respectively[54].Inthesamestudies,Th17,butnot

Th1,cellshave beenshown toreleaseCXCL8and chemoattract

neutrophilsinvitro,pointingfortheirdirect actioninrecruiting

neutrophils and therefore inamplifying thelocal inflammatory

response [54]. Interestingly, previous studies had also

demon-stratedthatneutrophilsfromSFsofRApatientsmayexpressCCL20

mRNA and that stimulation with SFs, containing or not TNF␣,

inducedCCL20mRNAinperipheralneutrophils[104].

Neutrophil-derived chemokines have been suspected to be

involvedinotherimmune-mediateddiseases,suchasulcerative

colitis (UC), aninflammatory bowel disease(IBD) characterized

byrelapsingmucosalinflammation.Accordingly,inbowel

speci-mensfromUCpatients,neutrophilshavebeenfoundtoexpress

CXCL1andCXCL9byIHC[105],consistentwitharoleof

neutrophil-derived CXCL1 and CXCL9 in recruiting neutrophils, NK and

T cells, which are known to be involved in the

immunologi-cal response causing lesions. Similarly, tissue specimens from

anotherIBD,namelyCrohn’sdisease(animmune-mediatedileitis),

displayedacolocalizationofneutrophilsand Th17cells by

con-focalmicroscopy[54].Thesefindingsare,onceagain,supporting

neutrophil-derivedCCL2andCCL20inthepathogenesisofCrohn’s

diseaseviaTh17cells recruitment.Finally, invitroexperiments

haveshownthat,uponstimulationwithanti-phospholipid

(7)

[106].Itisthereforeconceivabletohypothesizeaparticipationof

CXCL8inthepathogenesisoftheanti-phospholipidsyndrome,a

systemicautoimmunediseaselikelytriggeredbyTLRsactivation

andcharacterizedbytheoccurrenceofanti-phospholipid

antibod-ies,recurrentthrombosisandfetalloss[106].

4.2. Mouseneutrophils

Fulminanthepatitisdevelopsinabout1%ofpatientswithacute

hepatitisB,inwhomanexcessivehostdefensiveimmuneresponse

isdetected[107].In suchregard, amousemodel ofthehuman

disease has been developed, based on an adoptive transfer of

antigen-specificcytotoxicTlymphocytes(CTLs) intohepatitis B

virus(HBV)-transgenicmice,which,inturn,triggersafulminant

hepatitis[108].Insuchamodel,injectionofantigen-specific

cyto-toxicTcellsinHBVtransgenicmiceisfollowedbytherecruitment

ofmononuclearcellsandneutrophilsintotheliver[108].Inthis

organ,CTLsreleaseIFN␥and TNF␣uponantigenrecognition,in

turninducingliverneutrophilstoreleaseelastaseandto

upregu-lateCCL3,CCL4andCXCL1mRNA[108].Importantly,micetreated

with anti-CCL3, −CCL4, and −CXCL1 antibodies were foundto

displayalower recruitmentof inflammatorycells intotheliver

and a reduced hepatic injury, indicating that these

neutrophil-derivedchemokinesmediatetheinflammatoryandimmunological

responseengagedbyCTLsagainsttheHBV-infectedhepatocytes

[108].Inamodelofdelayed-typehypersensibility(DTH)obtained

bysensitizingmicewithHerpesSimplexVirustypeI(HSV-1)

anti-genonthescarifiedcornea,neutrophilshavebeendemonstratedto

recruitTcellsbyproducingCXCL9andCXCL10[109].Consistently,

neutrophildepletionwasaccompaniedbya markeddecreasein

thenumberofCD4+ TcellstothesiteofDTHandadropinthe

levelsofCXCL9andCXCL10inDTHtissuelysate[109].Moreover,

consistentwiththereleaseofCXCL9andCXCL10byneutrophils

stimulatedinvitrowithIFN␥,IFN␥-knockoutmicemanifesteda

depressedDTHuponHSV-1antigenchallenge,andonlythe

recon-stitutionofthesemicewithIFN␥re-inducedthesynthesisofboth

chemokines[109].Therefore, according tothemodel described

above,neutrophils activatedbyIFN␥releaseCXCL9andCXCL10

andrecruitCD4+Tcells.Thelattercells,inturn,wouldcontribute

toa furtherproductionof IFN␥ andtherefore tothe

amplifica-tionoftheinflammatorycascadeinsitesofDTH[109].Finally,in

amousemodelofcutaneoustypeIIIhypersensitivityobtainedby

injectingantibodiesintomouseearskin,andbysystemically

deliv-eringthecorrespondingantigens,immunecomplexes(ICs)-laden

neutrophilsisolatedfromtheearsdisplayedasignificantly

upreg-ulatedexpressionofCXCL2/MIP-2␣ascomparedtobone-marrow

neutrophils[110].Invitrostudiesconfirmedthatthedirect

stimula-tionofisolatedbonemarrow-derivedneutrophilswithICtriggers

asubstantialsecretionofCXCL2/MIP-2␣[110].Therefore,a role

ofCXCL2/MIP-2␣inrecruitingadditionalneutrophilsand

endoge-nouslyactivatingtheireffectorfunctions,includingreactiveoxygen

speciesproductionandphagocytosis,mightbeplausible[110].

5. Conclusions

Thereisnodoubtthatneutrophilsmayregulateleukocyte

traf-fickingduringimmuneresponses.Asbrieflyoutlinedinthisshort

review,thisfunctionreliesontheneutrophilcapacitytoproducea

varietyofchemokines,butitshouldbenotforgottenthatalso

pre-formedfactorscontainedinneutrophilgranuleshavebeenshown

tobechemotactic formononuclear cells and neutrophils(for a

review,pleaseseereference[111]).Nonetheless, inspiteofthe

largebodyofdatadescribingtheexpressionpatternof

neutrophil-derivedchemokinesinvitro,weneedtoexpandourknowledgeon

whatistherealsignificanceofthisphenomenoninvivo,particularly

inhumans.Ofutmostimportanceistoimprovethetechniquesto

isolateneutrophilsfromtissuesandlymphoidorgans(e.g.,spleen

andlymph-nodes)atveryhighlevelsofpurity,toavoidfalse

pos-itivedatacausedbyeventualcontaminationwithothercelltypes.

Studiesaimedatgainingmoreinsightsonthemolecularregulation

ofchemokineexpressioninneutrophilsarealsoawaited.Infact,

similarlytootherleukocytes,chemokineexpressioninneutrophils

canbecontrolledatthetranscriptionaland/orpost-transcriptional

level[30],insomecasesbysophisticatedandcell-specific

regula-torymechanisms,includingtheinvolvementofmicroRNAs[69],

specifictranscription factors[112]andchromatinmodifications

[65]. However, very little is still known on all these

phenom-ena.Furthermore,neutrophil-derivedchemokinescanbeinvolved

eitherinphysiologicalandpathological angiogenesis,afunction

thatisoftenunderestimated[13].Finally,it isknownthat

neu-trophilsmaybeengagedintocomplexbidirectionalinteractions

withotherleukocytesortissuecells[21].Asaresultofthiscrosstalk,

neutrophilsand targetcellsreciprocallymodulatetheirsurvival

andactivationstatus. Chemokinesmightcertainly contributeto

regulatesuchacrosstalk,buttheireffectiverolesremainsmostly

unsolved.Insuchregard,futurechallengesforscientistsinthefield

willbetotranslateallthisknowledgeintoefficacious

neutrophil-targetedtherapieswithoutcompromisingimmunity.

Conflictofintereststatement

Theauthorsdeclarenofinancialorcommercialconflictof

inter-est.

Acknowledgments

M.A.C.issupportedbyagrantfromAssociazioneItalianaperla

RicercasulCancro(AIRC,IG-15454).CTissupportedbyagrantfrom

AlessandroMorettiFoundation,LionsClub(SanGiovanniLupatoto,

ZevioedestraAdige,Verona).

Weapologizefornothavingdiscussedallthepaperspublished

inthefieldduetorestrictedlengthlimitations.

References

[1]C.L.Sokol,A.D.Luster,Thechemokinesystemininnateimmunity,Cold SpringHarborPerspect.Biol.7(January(5))(2015)(pii:a016303).

[2]R.M.Strieter,P.J.Polverini,S.L.Kunkel,D.A.Arenberg,M.D.Burdick,J. Kasper,J.Dzuiba,J.VanDamme,A.Walz,D.Marriott,etal.,Thefunctional roleoftheELRmotifinCXCchemokine-mediatedangiogenesis,J.Biol. Chem.270(1995)27348–27357.

[3]J.J.Oppenheim,C.O.Zachariae,N.Mukaida,K.Matsushima,Propertiesofthe novelproinflammatorysupergeneintercrinecytokinefamily,Annu.Rev. Immunol.9(1991)617–648.

[4]M.Baggiolini,B.Dewald,B.Moser,Interleukin-8andrelatedchemotactic cytokines–CXCandCCchemokines,Adv.Immunol.55(1994)97–179.

[5]J.M.Farber,MigandIP-10:CXCchemokinesthattargetlymphocytes,J. Leukoc.Biol.61(1997)246–257.

[6]K.E.Cole,C.A.Strick,T.J.Paradis,K.T.Ogborne,M.Loetscher,R.P.Gladue,W. Lin,J.G.Boyd,B.Moser,D.E.Wood,B.G.Sahagan,K.Neote,

Interferon-inducibleTcellalphachemoattractant(I-tAC):anovelnon-eLR CXCchemokinewithpotentactivityonactivatedTcellsthroughselective highaffinitybindingtoCXCR3,J.Exp.Med.187(1998)2009–2021.

[7]B.J.Rollins,Chemokines,Blood90(1997)909–928.

[8]P.M.Murphy,InternationalUnionofPharmacology:XXX.Updateon chemokinereceptornomenclature,Pharmacol.Rev.54(2002)227–229.

[9]D.Rossi,A.Zlotnik,Thebiologyofchemokinesandtheirreceptors,Annu. Rev.Immunol.18(2000)217–242.

[10]A.Zlotnik,O.Yoshie,Thechemokinesuperfamilyrevisited,Immunity36 (2012)705–716.

[11]A.Mantovani,Chemokines:introductionandoverview,Chem.Immunol.72 (1999)1–6.

[12]S.G.Ward,K.Bacon,J.Westwick,ChemokinesandTlymphocytes:more thananattraction,Immunity9(1998)1–11.

[13]C.Tecchio,M.A.Cassatella,Neutrophil-derivedcytokinesinvolvedin physiologicalandpathologicalangiogenesis,Chem.Immunol.Allergy99 (2014)123–137.

(8)

[14]S.Tazzyman,H.Niaz,C.Murdoch,Neutrophil-mediatedtumour

angiogenesis:subversionofimmuneresponsestopromotetumourgrowth, Semin.CancerBiol.23(2013)149–158.

[15]M.T.Chow,A.D.Luster,Chemokinesincancer,CancerImmunol.Res.2 (2014)1125–1131.

[16]P.Scapini,J.A.Lapinet-Vera,S.Gasperini,F.Calzetti,F.Bazzoni,M.A. Cassatella,Theneutrophilasacellularsourceofchemokines,Immunol.Rev. 177(2000)195–203.

[17]A.D.Luster,Chemokines–chemotacticcytokinesthatmediateinflammation, N.Engl.J.Med.338(1998)436–445.

[18]M.P.Hosking,T.E.Lane,Theroleofchemokinesduringviralinfectionofthe CNS,PLoSPathog.6(2010)e1000937.

[19]A.Iannello,T.W.Thompson,M.Ardolino,S.W.Lowe,D.H.Raulet, p53-Dependentchemokineproductionbysenescenttumorcellssupports NKG2D-dependenttumoreliminationbynaturalkillercells,J.Exp.Med.210 (2013)2057–2069.

[20]A.Mócsai,Diversenovelfunctionsofneutrophilsinimmunity, inflammation,andbeyond,J.Exp.Med.210(2013)1283–1299.

[21]P.Scapini,M.A.Cassatella,Socialnetworkingofhumanneutrophilswithin theimmunesystem,Blood124(2014)710–719.

[22]C.Tecchio,A.Micheletti,M.A.Cassatella,Neutrophil-derivedcytokines: factsbeyondexpression,Front.Immunol.5(2014)508.

[23]N.D.SadikC.D.Kim,A.D.Luster,Neutrophilscascadingtheirwayto inflammation,TrendsImmunol.32(2011)452–460.

[24]M.A.Cassatella,Theproductionofcytokinesbypolymorphonuclear neutrophils,Immunol.Today16(1995)21–26.

[25]K.Blidberg,L.Palmberg,B.Dahlén,A.S.Lantz,K.Larsson,Chemokinerelease byneutrophilsinchronicobstructivepulmonarydisease,InnateImmun.18 (2012)503–510.

[26]C.Schauer,C.Janko,L.E.Munoz,Y.Zhao,D.Kienhöfer,B.Frey,M.Lell,B. Manger,J.Rech,E.Naschberger,R.Holmdahl,V.Krenn,T.Harrer,I.Jeremic, R.Bilyy,G.Schett,M.Hoffmann,M.Herrmann,Aggregatedneutrophil extracellulartrapslimitinflammationbydegradingcytokinesand chemokines,Nat.Med.20(2014)511–517.

[27]V.Wittamer,B.Bondue,A.Guillabert,G.Vassart,M.Parmentier,D. Communi,Neutrophil-mediatedmaturationofchemerin:alinkbetween innateandadaptiveimmunity,J.Immunol.175(2005)487–493.

[28]Y.Kobayashi,Theroleofchemokinesinneutrophilbiology,Front.Biosci.13 (2008)2400–2407.

[29]H.L.Wright,R.J.Moots,S.W.Edwards,Themultifactorialroleofneutrophils inrheumatoidarthritis,NatRev.Rheumatol.10(2014)593–601.

[30]M.A.Cassatella,Neutrophil-derivedproteins:sellingcytokinesbythe pound,Adv.Immunol.73(1999)369–509.

[31]S.Suzuki,M.Kobayashi,K.Chiba,I.Horiuchi,J.Wang,T.Kondoh,S.Hashino, J.Tanaka,M.Hosokawa,M.Asaka,Autocrineproductionofepithelial cell-derivedneutrophilattractant-78inducedbygranulocyte colony-stimulatingfactorinneutrophils,Blood99(2002)1863–1865.

[32]H.T.Nguyen-Jackson,H.S.Li,H.Zhang,E.Ohashi,S.S.Watowich, G-CSF-activatedSTAT3enhancesproductionofthechemokineMIP-2in bonemarrowneutrophils,J.Leukoc.Biol.92(2012)1215–1225.

[33]Y.S.Jung,H.Y.Lee,S.D.Kim,J.S.Park,J.K.Kim,P.G.Suh,Y.S.Bae,Wnt5a stimulateschemotacticmigrationandchemokineproductioninhuman neutrophils,Exp.Mol.Med.45(2013)e27.

[34]D.D.Riedel,S.H.Kaufmann,Chemokinesecretionbyhuman

polymorphonucleargranulocytesafterstimulationwithMycobacterium tuberculosisandlipoarabinomannan,Infect.Immun.65(1997)4620–4623.

[35]T.H.Gasparoto,C.E.deOliveira,N.A.Vieira,V.C.Porto,F.Q.Cunha,G.P. Garlet,A.P.Campanelli,V.S.Lara,Activationpatternofneutrophilsfrom bloodofelderlyindividualswithCandida-relateddenturestomatitis,Eur.J. Clin.Microbiol.Infect.Dis.31(2012)1271–1277.

[36]T.Shimoyama,S.Fukuda,Q.Liu,S.Nakaji,Y.Fukuda,K.Sugawara, Helicobacterpyloriwatersolublesurfaceproteinsprimehumanneutrophils forenhancedproductionofreactiveoxygenspeciesandstimulate chemokineproduction,J.Clin.Pathol.56(2003)348–351.

[37]A.Polenghi,F.Bossi,F.Fischetti,P.Durigutto,A.Cabrelle,N.Tamassia,M.A. Cassatella,C.Montecucco,F.Tedesco,M.deBernard,The

neutrophil-activatingproteinofHelicobacterpyloricrossesendotheliato promoteneutrophiladhesioninvivo,J.Immunol.178(2007)1312–1320.

[38]O.W.Zurek,K.B.Pallister,J.M.Voyich,Staphylococcusaureusinhibits neutrophil-derivedIL-8topromotecelldeath,J.Infect.Dis.212(2015) 934–938.

[39]H.J.Wright,I.L.Chapple,J.B.Matthews,P.R.Cooper,Fusobacteriumnucleatum regulationofneutrophiltranscription,J.PeriodontalRes.46(2011)1–12.

[40]P.Scapini,C.Laudanna,C.Pinardi,P.Allavena,A.Mantovani,S.Sozzani,M.A. Cassatella,Neutrophilsproducebiologicallyactivemacrophage

inflammatoryprotein-3alpha(MIP-3alpha)/CCL20andMIP-3beta/CCL19, Eur.J.Immunol.31(2001)1981–1988.

[41]T.Akahoshi,T.Sasahara,R.Namai,T.Matsui,H.Watabe,H.Kitasato,M. Inoue,H.Kondo,Productionofmacrophageinflammatoryprotein3alpha (MIP-3alpha)(CCL20)andMIP-3beta(CCL19)byhumanperipheralblood neutrophilsinresponsetomicrobialpathogens,Infect.Immun.71(2003) 524–526.

[42]P.Scapini,L.Crepaldi,C.Pinardi,F.Calzetti,M.A.Cassatella, CCL20/macrophageinflammatoryprotein-3alphaproductionin LPS-stimulatedneutrophilsisenhancedbythechemoattractant

formyl-methionyl-leucyl-phenylalanineandIFN-gammathrough independentmechanisms,Eur.J.Immunol.32(2002)3515–3524.

[43]T.Yoshimura,M.Takahashi,IFN-gamma-mediatedsurvivalenableshuman neutrophilstoproduceMCP-1/CCL2inresponsetoactivationbyTLR ligands,J.Immunol.179(2007)1942–1949.

[44]J.N.Hilda,M.Narasimhan,S.D.Das,Neutrophilsfrompulmonary tuberculosispatientsshowaugmentedlevelsofchemokinesMIP-1␣,IL-8 andMCP-1whichfurtherincreaseuponinvitroinfectionwith mycobacterialstrains,Hum.Immunol.75(2014)914–922.

[45]H.Suttmann,J.Riemensberger,G.Bentien,D.Schmaltz,M.Stöckle,D. Jocham,A.Böhle,S.Brandau,Neutrophilgranulocytesarerequiredfor effectiveBacillusCalmette-Guérinimmunotherapyofbladdercancerand orchestratelocalimmuneresponses,CancerRes.66(2006)8250–8257.

[46]C.Chuah,M.K.Jones,M.L.Burke,D.P.McManus,H.C.Owen,G.N.Gobert, Definingapro-inflammatoryneutrophilphenotypeinresponseto schistosomeeggs,Cell.Microbiol.16(2014)1666–1677.

[47]C.Chuah,M.K.Jones,M.L.Burke,H.C.Owen,B.J.Anthony,D.P.McManus, G.A.Ramm,G.N.Gobert,Spatialandtemporaltranscriptomicsof Schistosomajaponicum-inducedhepaticgranulomaformationrevealsnovel rolesforneutrophils,J.Leukoc.Biol.94(2013)353–365.

[48]S.Gasperini,M.Marchi,F.Calzetti,C.Laudanna,L.Vicentini,H.Olsen,M. Murphy,F.Liao,J.Farber,M.A.Cassatella,Geneexpressionandproduction ofthemonokineinducedbyIFN-gamma(MIG),IFN-inducibleTcellalpha chemoattractant(I-TAC),andIFN-gamma-inducibleprotein-10(IP-10) chemokinesbyhumanneutrophils,J.Immunol.162(1999)4928–4937.

[49]N.Tamassia,F.Calzetti,T.Ear,A.Cloutier,S.Gasperini,F.Bazzoni,P.P. McDonald,M.A.Cassatella,Molecularmechanismsunderlyingthe synergisticinductionofCXCL10byLPSandIFN-gammainhuman neutrophils,Eur.J.Immunol.37(2007)2627–2634.

[50]S.Jaillon,M.R.Galdiero,D.DelPrete,M.A.Cassatella,C.Garlanda,A. Mantovani,Neutrophilsininnateandadaptiveimmunity,Semin. Immunopathol.35(2013)377–394.

[51]G.DelPrete,E.Maggi,S.Romagnani,HumanTh1andTh2cells:functional properties,mechanismsofregulation,androleindisease,Lab.Invest.70 (1994)299–306.

[52]U.Bussmeyer,A.Sarkar,K.Broszat,T.Lüdemann,S.Möller,G.van Zandbergen,C.Bogdan,M.Behnen,J.S.Dumler,F.D.vonLoewenich,W. Solbach,T.Laskay,Impairmentofgammainterferonsignalinginhuman neutrophilsinfectedwithAnaplasmaphagocytophilum,Infect.Immun.78 (2010)358–363.

[53]C.E.Jauregui,Q.Wang,C.J.Wright,H.Takeuchi,S.M.Uriarte,R.J.Lamont, SuppressionofT-cellchemokinesbyPorphyromonasgingivalis,Infect. Immun.81(2013)2288–2295.

[54]M.Pelletier,L.Maggi,A.Micheletti,E.Lazzeri,N.Tamassia,C.Costantini,L. Cosmi,C.Lunardi,F.Annunziato,S.Romagnani,M.A.Cassatella,Evidencefor across-talkbetweenhumanneutrophilsandTh17cells,Blood115(2010) 335–343.

[55]F.Annunziato,C.Romagnani,S.Romagnani,The3majortypesofinnateand adaptivecell-mediatedeffectorimmunity,J.AllergyClin.Immunol.135 (2015)626–635.

[56]P.R.Burkett,G.MeyerzuHorste,V.K.Kuchroo,Pouringfuelonthefire:Th17 cells,theenvironment,andautoimmunity,J.Clin.Invest.125(2015) 2211–2219.

[57]G.Codolo,F.Bossi,P.Durigutto,C.D.Bella,F.Fischetti,A.Amedei,F.Tedesco, S.D’Elios,M.Cimmino,A.Micheletti,M.A.Cassatella,M.M.D’Elios,M.de Bernard,OrchestrationofinflammationandadaptiveimmunityinBorrelia burgdorferi-inducedarthritisbyneutrophil-activatingproteinA,Arthritis Rheum.65(2013)1232–1242.

[58]R.Benelli,A.Barbero,S.Ferrini,P.Scapini,M.Cassatella,F.Bussolino,C. Tacchetti,D.M.Noonan,A.Albini,Humanimmunodeficiencyvirus transactivatorprotein(Tat)stimulateschemotaxis,calciummobilization, andactivationofhumanpolymorphonuclearleukocytes:implicationsfor Tat-mediatedpathogenesis,J.Infect.Dis.182(2000)1643–1651.

[59]B.König,T.Krusat,H.J.Streckert,W.König,IL-8releasefromhuman neutrophilsbytherespiratorysyncytialvirusisindependentofviral replication,J.Leukoc.Biol.60(1996)253–260.

[60]P.Jaovisidha,M.E.Peeples,A.A.Brees,L.R.Carpenter,J.N.Moy,Respiratory syncytialvirusstimulatesneutrophildegranulationandchemokinerelease, J.Immunol.163(1999)2816–2820.

[61]F.S.Tang,D.VanLy,K.Spann,P.C.Reading,J.K.Burgess,D.Hartl,K.J.Baines, B.G.Oliver,Differentialneutrophilactivationinviralinfections:enhanced TLR-7/8-mediatedCXCL8releaseinasthma,Respirology21(2016)172–179.

[62]S.J.Molesworth-Kenyon,A.Milam,A.Rockette,A.Troupe,J.E.Oakes,R.N. Lausch,Expression,inducersandcellularsourcesofthechemokineMIG (CXCL9),duringprimaryherpessimplexvirustype-1infectionofthe cornea,Curr.EyeRes.40(2015)800–808.

[63]G.S.Kibiki,L.C.Myers,C.F.Kalambo,S.B.Hoang,M.H.Stoler,S.E.Stroup,E.R. Houpt,Bronchoalveolarneutrophils,interferongamma-inducibleprotein10 andinterleukin-7inAIDS-associatedtuberculosis,Clin.Exp.Immunol.148 (2007)254–259.

[64]T.Yoshida,M.Kobayashi,X.D.Li,R.B.Pollard,F.Suzuki,Inhibitoryeffectof glycyrrhizinontheneutrophil-dependentincreaseofR5HIVreplicationin culturesofmacrophages,Immunol.CellBiol.87(2009)554–558.

[65]N.Tamassia,M.Zimmermann,M.Castellucci,R.Ostuni,K.Bruderek,B. Schilling,S.Brandau,F.Bazzoni,G.Natoli,M.A.Cassatella,Cuttingedge:an

(9)

inactivechromatinconfigurationattheIL-10locusinhumanneutrophils,J. Immunol.190(2013)1921–1925.

[66]C.A.Bezerra,T.M.Cardoso,A.Giudice,A.F.Porto,S.B.Santos,E.M.Carvalho, O.Bacellar,Evaluationofthemicrobicidalactivityand

cytokines/chemokinesprofilereleasedbyneutrophilsfromHTLV-1-infected individuals,Scand.J.Immunol.74(2011)310–317.

[67]N.Tamassia,V.LeMoigne,M.Rossato,M.Donini,S.McCartney,F.Calzetti, M.Colonna,F.Bazzoni,M.A.Cassatella,Activationofanimmunoregulatory andantiviralgeneexpressionprograminpoly(I:C)-transfectedhuman neutrophils,J.Immunol.181(2008)6563–6573.

[68]M.Zimmermann,F.B.Aguilera,M.Castellucci,M.Rossato,S.Costa,C. Lunardi,R.Ostuni,G.Girolomoni,G.Natoli,F.Bazzoni,N.Tamassia,M.A. Cassatella,ChromatinremodellingandautocrineTNF␣arerequiredfor optimalinterleukin-6expressioninactivatedhumanneutrophils,Nat. Commun.6(2015)6061.

[69]A.Dorhoi,M.Iannacone,M.Farinacci,K.C.Faé,J.Schreiber,P.Moura-Alves, G.Nouailles,H.J.Mollenkopf,D.Oberbeck-Müller,S.Jörg,E.Heinemann,K. Hahnke,D.Löwe,F.DelNonno,D.Goletti,R.Capparelli,S.H.Kaufmann, MicroRNA-223controlssusceptibilitytotuberculosisbyregulatinglung neutrophilrecruitment,J.Clin.Invest.123(2013)4836–4848.

[70]M.Charmoy,S.Brunner-Agten,D.Aebischer,F.Auderset,P.Launois,G. Milon,A.E.Proudfoot,F.Tacchini-Cottier,Neutrophil-derivedCCL3is essentialfortherapidrecruitmentofdendriticcellstothesiteofLeishmania majorinoculationinresistantmice,PLoSPathog.6(2010)e1000755.

[71]B.León,M.López-Bravo,C.Ardavín,Monocyte-deriveddendriticcells formedattheinfectionsitecontroltheinductionofprotectiveThelper1 responsesagainstLeishmania,Immunity26(2007)519–531.

[72]S.Bennouna,S.K.Bliss,T.J.Curiel,E.Y.Denkers,Cross-talkintheinnate immunesystem:neutrophilsinstructrecruitmentandactivationof dendriticcellsduringmicrobialinfection,J.Immunol.171(2003) 6052–6058.

[73]E.vonStebut,M.Metz,G.Milon,J.Knop,M.Maurer,Earlymacrophage influxtositesofcutaneousgranulomaformationisdependenton MIP-1alpha/betareleasedfromneutrophilsrecruitedbymastcell-derived TNFalpha,Blood101(2003)210–215.

[74]Y.Tsuda,H.Takahashi,M.Kobayashi,T.Hanafusa,D.N.Herndon,F.Suzuki, Threedifferentneutrophilsubsetsexhibitedinmicewithdifferent susceptibilitiestoinfectionbymethicillin-resistantStaphylococcusaureus, Immunity21(2004)215–226.

[75]H.Takahashi,Y.Tsuda,M.Kobayashi,D.N.Herndon,F.Suzuki,CCL2asa triggerofmanifestationsofcompensatoryanti-inflammatoryresponse syndromeinmicewithseveresystemicinflammatoryresponsesyndrome,J. Leukoc.Biol.79(2006)789–796.

[76]L.J.Ioannidis,C.Q.Nie,A.Ly,V.Ryg-Cornejo,C.Y.Chiu,D.S.Hansen, Monocyte-andneutrophil-derivedCXCL10impairsefficientcontrolof blood-stagemalariainfectionandpromotesseveredisease,J.Immunol.196 (2016)1227–1238.

[77]A.Ichikawa,K.Kuba,M.Morita,S.Chida,H.Tezuka,H.Hara,T.Sasaki,T. Ohteki,V.M.Ranieri,C.C.dosSantos,Y.Kawaoka,S.Akira,A.D.Luster,B.Lu, J.M.Penninger,S.Uhlig,A.S.Slutsky,Y.Imai,CXCL10-CXCR3enhancesthe developmentofneutrophil-mediatedfulminantlunginjuryofviraland nonviralorigin,Am.J.Respir.Crit.CareMed.187(2013)65–77.

[78]K.Lim,Y.M.Hyun,K.Lambert-Emo,T.Capece,S.Bae,R.Miller,D.J.Topham, M.Kim,Neutrophiltrailsguideinfluenza-specificCD8+Tcellsinthe

airways,Science349(6252)(2015)aaa4352.

[79]A.K.Haick,J.P.Rzepka,E.Brandon,O.B.Balemba,T.A.Miura,Neutrophilsare neededforaneffectiveimmuneresponseagainstpulmonaryrat

coronavirusinfection,butalsocontributetopathology,J.Gen.Virol.95(Pt 3)(2014)578–590.

[80]Z.G.Fridlender,S.M.Albelda,Tumor-associatedneutrophils:friendorfoe, Carcinogenesis33(2012)949–955.

[81]C.Tecchio,P.Scapini,G.Pizzolo,M.A.Cassatella,Onthecytokinesproduced byhumanneutrophilsintumors,Semin.CancerBiol.23(2013)159–170.

[82]Q.Zhu,X.Zhang,L.Zhang,W.Li,H.Wu,X.Yuan,F.Mao,M.Wang,W.Zhu,H. Qian,W.Xu,TheIL-6-STAT3axismediatesareciprocalcrosstalkbetween cancer-derivedmesenchymalstemcellsandneutrophilstosynergistically promptgastriccancerprogression,CellDeathDis.19(5)(2014)e1295.

[83]H.H.Peng,S.Liang,A.J.Henderson,C.Dong,Regulationofinterleukin-8 expressioninmelanomastimulatedneutrophilinflammatoryresponse,Exp. CellRes.313(2007)551–559.

[84]W.S.Hor,W.L.Huang,Y.S.Lin,B.C.Yang,Cross-talkbetweentumorcellsand neutrophilsthroughtheFas(APO-1,CD95)/FasLsystem:humangliomacells enhancecellviabilityandstimulatecytokineproductioninneutrophils,J. Leukoc.Biol.73(2003)363–368.

[85]C.A.Dumitru,M.K.Fechner,T.K.Hoffmann,S.Lang,S.Brandau,Anovel p38-MAPKsignalingaxismodulatesneutrophilbiologyinheadandneck cancer,J.Leukoc.Biol.91(2012)591–598.

[86]A.Yuan,J.J.Chen,P.L.Yao,P.C.Yang,Theroleofinterleukin-8incancercells andmicroenvironmentinteraction,Front.Biosci.10(2005)853–865.

[87]S.Trellakis,K.Bruderek,C.A.Dumitru,H.Gholaman,X.Gu,A.Bankfalvi,A. Scherag,J.Hütte,N.Dominas,G.F.Lehnerdt,T.K.Hoffmann,S.Lang,S. Brandau,Polymorphonucleargranulocytesinhumanheadandneckcancer: enhancedinflammatoryactivity,modulationbycancercellsandexpansion inadvanceddisease,Int.J.Cancer129(2011)2183–2193.

[88]K.Chiba,W.Zhao,J.Chen,J.Wang,H.Y.Cui,H.Kawakami,T.Miseki,H. Satoshi,J.Tanaka,M.Asaka,M.Kobayashi,NeutrophilssecreteMIP-1beta

afteradhesiontolaminincontainedinbasementmembraneofblood vessels,Br.J.Haematol.127(2004)592–597.

[89]Y.Tsuda,H.Fukui,A.Asai,S.Fukunishi,K.Miyaji,S.Fujiwara,K.Teramura,A. Fukuda,K.Higuchi,Animmunosuppressivesubtypeofneutrophils identifiedinpatientswithhepatocellularcarcinoma,J.Clin.Biochem.Nutr. 51(2012)204–212.

[90]S.L.Zhou,Z.J.Zhou,Z.Q.Hu,X.W.Huang,Z.Wang,E.B.Chen,J.Fan,Y.Cao,Z. Dai,J.Zhou,Tumor-associatedneutrophilsrecruitmacrophagesand T-regulatorycellstopromoteprogressionofhepatocellularcarcinomaand resistancetosorafenib,Gastroenterology16(February)(2016)

00231–00236,http://dx.doi.org/10.1053/j.gastro.2016.02.040,pii: S0016-5085(Epubaheadofprint).

[91]I.Mishalian,R.Bayuh,E.Eruslanov,J.Michaeli,L.Levy,L.Zolotarov,S. Singhal,S.M.Albelda,Z.Granot,Z.G.Fridlender,Neutrophilsrecruit regulatoryT-cellsintotumorsviasecretionofCCL17–anewmechanismof impairedantitumorimmunity,Int.J.Cancer135(2014)1178–1186.

[92]E.B.Eruslanov,P.S.Bhojnagarwala,J.G.Quatromoni,T.L.Stephen,A. Ranganathan,C.Deshpande,T.Akimova,A.Vachani,L.Litzky,W.W. Hancock,J.R.Conejo-Garcia,M.Feldman,S.M.Albelda,S.Singhal, Tumor-associatedneutrophilsstimulateTcellresponsesinearly-stage humanlungcancer,J.Clin.Invest.124(2014)5466–5480.

[93]Y.Zhang,B.Patel,A.Dey,E.Ghorani,L.Rai,M.Elham,A.Z.Castleton,A.K. Fielding,Attenuated,oncolytic,butnotwild-typemeaslesvirusinfection haspleiotropiceffectsonhumanneutrophilfunction,J.Immunol.188 (2012)1002–1010.

[94]D.Grote,R.Cattaneo,A.K.Fielding,Neutrophilscontributetothemeasles virus-inducedantitumoreffect:enhancementbygranulocytemacrophage colony-stimulatingfactorexpression,CancerRes.63(2003)6463–6468.

[95]Z.G.Fridlender,J.Sun,I.Mishalian,S.Singhal,G.Cheng,V.Kapoor,W.Horng, G.Fridlender,R.Bayuh,G.S.Worthen,S.M.Albelda,Transcriptomicanalysis comparingtumor-associatedneutrophilswithgranulocyticmyeloid-derived suppressorcellsandnormalneutrophils,PLoSOne7(2)(2012)e31524.

[96]Z.G.Fridlender,J.Sun,S.Kim,V.Kapoor,G.Cheng,L.Ling,G.S.Worthen,S.M. Albelda,Polarizationoftumor-associatedneutrophilphenotypeby TGF-beta:N1versusN2TAN,CancerCell16(2009)183–194.

[97]R.V.Sionov,Z.G.Fridlender,Z.Granot,Themultifacetedrolesneutrophils playinthetumormicroenvironment,CancerMicroenviron.8(2015) 125–158.

[98]X.Ma,T.Aoki,T.Tsuruyama,S.Narumiya,Definitionofprostaglandin E2-EP2signalsinthecolontumormicroenvironmentthatamplify inflammationandtumorgrowth,CancerRes.75(2015)2822–2832.

[99]Immunemediateddiseases:fromtheorytotherapy,in:M.R.Shurin,Y.S. Smolkin(Eds.),AdvancesinExperimentalMedicineandBiology,Springer, 2007.

[100]H.L.Wright,R.J.Moots,S.W.Edwards,Themultifactorialroleofneutrophils inrheumatoidarthritis,Nat.Rev.Rheumatol.10(2014)593–601.

[101]V.Gagné,L.Marois,J.M.Levesque,H.Galarneau,M.H.Lahoud,I.Caminschi, P.H.Naccache,P.Tessier,M.J.Fernandes,Modulationofmonosodiumurate crystal-inducedresponsesinneutrophilsbythemyeloidinhibitoryC-type lectin-likereceptor:potentialtherapeuticimplications,ArthritisRes.Ther. 15(2013)R73.

[102]G.Schett,C.Schauer,M.Hoffmann,M.Herrmann,Whydoesthegoutattack stop?Aroadmapfortheimmunepathogenesisofgout,RMDOpen1(Suppl 1)(2015)e000046.

[103]J.Auer,M.Bläss,H.Schulze-Koops,S.Russwurm,T.Nagel,J.R.Kalden,M. Röllinghoff,H.U.Beuscher,ExpressionandregulationofCCL18insynovial fluidneutrophilsofpatientswithrheumatoidarthritis,ArthritisRes.Ther.9 (5)(2007)R94.

[104]J.Schlenk,H.M.Lorenz,J.P.Haas,M.Herrmann,G.Hohenberger,J.R.Kalden, M.Röllinghoff,H.U.Beuscher,Extravasationintosynovialtissueinduces CCL20mRNAexpressioninpolymorphonuclearneutrophilsofpatientswith rheumatoidarthritis,J.Rheumatol.32(2005)2291–2298.

[105]A.Egesten,M.Eliasson,A.I.Olin,J.S.Erjefält,A.Bjartell,P.Sangfelt,M. Carlson,TheproinflammatoryCXC-chemokinesGRO-alpha/CXCL1and MIG/CXCL9areconcomitantlyexpressedinulcerativecolitisanddecrease duringtreatmentwithtopicalcorticosteroids,Int.J.ColorectalDis.22 (2007)1421–1427.

[106]G.Gladigau,P.Haselmayer,I.Scharrer,M.Munder,N.Prinz,K.Lackner,H. Schild,P.Stein,M.P.Radsak,Arolefortoll-likereceptormediatedsignalsin neutrophilsinthepathogenesisoftheanti-phospholipidsyndrome,PLoS One7(2012)e42176.

[107]Y.Kondo,K.Kobayashi,S.Asabe,M.Shiina,H.Niitsuma,Y.Ueno,T. Kobayashi,T.Shimosegawa,VigorousresponseofcytotoxicTlymphocytes associatedwithsystemicactivationofCD8Tlymphocytesinfulminant hepatitisB,LiverInt.24(2004)561–567.

[108]S.Takai,K.Kimura,M.Nagaki,S.Satake,K.Kakimi,H.Moriwaki,Blockadeof neutrophilelastaseattenuatessevereliverinjuryinhepatitisBtransgenic mice,J.Virol.79(2005)15142–15150.

[109]S.J.Molesworth-Kenyon,J.E.Oakes,R.N.Lausch,Anovelroleforneutrophils asasourceofTcell-recruitingchemokinesIP-10andMigduringtheDTH responsetoHSV-1antigen,J.Leukoc.Biol.77(2005)552–559.

[110]J.L.Li,C.H.Lim,F.W.Tay,C.C.Goh,S.Devi,B.Malleret,B.Lee,N.Bakocevic, S.Z.Chong,M.Evrard,H.Tanizaki,H.Y.Lim,B.Russell,L.Renia,F.Zolezzi,M. Poidinger,V.Angeli,A.L.StJohn,J.E.Harris,H.L.Tey,S.M.Tan,K.Kabashima, W.Weninger,A.Larbi,L.G.Ng,Neutrophilsself-regulateimmune

(10)

complex-mediatedcutaneousinflammationthroughCXCL2,J.Invest. Dermatol.136(2016)416–424.

[111]O.Chertov,D.Yang,O.M.Howard,J.J.Oppenheim,Leukocytegranule proteinsmobilizeinnatehostdefensesandadaptiveimmuneresponses, Immunol.Rev.177(2000)68–78.

[112] A.Cloutier,C.Guindi,P.Larivée,C.M.Dubois,A.Amrani,P.P.McDonald, InflammatorycytokineproductionbyhumanneutrophilsinvolvesC/EBP transcriptionfactors,J.Immunol.182(2009)563–571.

Riferimenti

Documenti correlati

nature and controversies of measuring social return on investment (SROI). The ambitions and challenges of SROI. Corporate social responsibility. In search of the hybrid

Phylogenetic analysis of elongation factor 1-alpha (EF1-α) gene (Fig 1) and intergenic spacer region (IGS region), IGS-Restriction Fragment Length Polymorphism (RFLP)

Using the analytical expression, we gain insights into the distribution of RMs measured along lines of sight passing through a sample of disc galaxies with random distributions of

In the course of the Sarno River, for all the analyzed micronutrients with the exception of Mn, Potamogeton pectinatus shoots highlighted increasing trends in element

Importantly, the results from the Phase III CheckMate 9ER study assessing nivolumab plus cabozantinib versus sunitinib in the first-line treatment setting of advanced clear cell

Recent findings, indeed, show that in addition to antimicrobial agents, neutrophils can also produce numerous cytokines, chemokines, and growth factors (Mantovani,

Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune re- sponse to severe acute respiratory syndrome coronavirus