• Non ci sono risultati.

Study of ecophysiological responses of poplars exposed to heat stress.

N/A
N/A
Protected

Academic year: 2021

Condividi "Study of ecophysiological responses of poplars exposed to heat stress."

Copied!
1
0
0

Testo completo

(1)

JOINT CONGRESS SIBV-SIGA

"

SUSTAINABILITYOFAGRICULTURALENVIRONMENT: CONTRIBUTIONSOFPLANTGENETICSANDPHYSIOLOGY"

PISA, 19TH-22ND SEPTEMBER, 2017

ABSTRACT

TITLE

(TNR, 12 cpi, bold, uppercase, no justify)

STUDY OF ECOPHYSIOLOGICAL RESPONSES OF POPLARS EXPOSED

TO HEAT STRESS

AUTHOR/S

(TNR,10 cpi, uppercase)

ASHOFTEH BEIRAGI M.*, PAGLIARANI C.*, **, GIORDANO L *,***, GULLINO M.L. *,***, LOVISOLO C.*, SECCHI F.*

INSTITUTION/S

(TNR, 10 cpi, normal, ) *) Department of Agriculture, Forest and Food Science - University of Torino, Largo P. Braccini 2, 10095 Grugliasco (Italy) **) Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, Torino, Italy ***) AGROINNOVA, Centre for Innovation in the Agro-Environmental Sector, University of Torino, Largo P. Braccini 2, 10095 Grugliasco (Italy). KEYWORDS

(TNR, 10 cpi, italic, max 5) High temperature, drought, soluble sugars, gas exchange

TEXT

(TNR, 10 cpi, justify) TNR: Times New Roman

SESSION NUMBER

(only one, as listed in the Congress programme, otherwise put X) 6 THE ABSTRACT BELONGS TO: (check one) SIBV X SIGA PRESENTATION (check one) Oral Poster X SIBV-SIGA JOINT CONGRESS AWARDS

(check the box to participate)

Ongoing global climate warming is leading to increased frequency and intensity of heat and drought waves in several areas of the globe and thus having a huge impact on woody plant survival.

In order to characterize the heat wave effects on plant physiological and chemical responses, an experiment was carried out under heat stress conditions on potted poplar trees (Populus tremula ×

alba) placed in controlled growth chambers (phytotrons). After one month of plant growth adaptation

(control conditions; light/dark photoperiod of 16/8 hours with a constant air temperature of 26/18°C), we imposed for 23 days a light/dark photoperiod of 16/8 hours with a constant air temperature of 40/24°C (heat stress). Pots of control plants were watered every 2 days in order to maintain container capacity; identical water amounts and timing were set for heat-stressed plants. Leaf gas exchanges, leaf water potential (Ψleaf) before and during imposed heat stress treatment, changes of pH values in xylem sap, content of total soluble sugars in different tissues and in sap were assessed.

High temperature conditions reduced significantly ecophysiological traits already after 4 days. Lower values of leaf and root water potential were measured in poplars exposed to heat stress in parallel with an impairment of stomatal conductance, photosynthesis and transpiration rates. Concentrations of soluble sugars in leaves and roots slightly decreased upon heat stress conditions, while sugar content significantly dropped in the stem of stressed samples. Furthermore, upon heat stress, poplars increased the sugar and ion contents in the xylem sap and contemporaneously decreased sap pH. The results here obtained suggest that the heat stress occurred in combination with drought, as the expected reduction of stomatal conductance, caused by the heat stress-induced photorespiration, was not sufficient to allow high leaf water potential in stressed plants growing in pots where evaporation rates were elevated. Drought probably enhanced the effects of heat stress on the extent and type of plant responses, as confirmed by the measured sap acidification, one of the symptom/signal of stress in poplars experiencing severe drought.

The resulted combination of abiotic stresses had synergistic effects on plants; leaf gas exchange under high temperature were limited by heat and drought, as high evaporative demand superimposed on negative stomatal regulation caused by heat driven photorespiration.

The reduced capacity of poplar to photosynthesize during the combined stress, and thus the general reduction in carbon assimilation affected the total carbohydrate pool that could limit the plant growth and yields.

In conclusion, in the future climate scenario, characterized by rising temperatures, we can expect an increase of plant photorespiration that would reduce non-structural carbohydrate pool thus leading to reduced growth, higher rates of mortality and reduction of the tree yield.

CORRESPONDING AUTHOR: SURNAME Secchi NAME Francesca

Institution Dep. Agriculture, Forest and Food Science – University of Turin

Phone +39 0116708655 Cell phone +39 3393463244 E-mail Francesca.secchi@unito.it

Riferimenti

Documenti correlati

The results of this study clearly showed that sprinklers modified the DMI and feeding behaviour of cows by improving the milk yield and, therefore, we can specu- late that this

Comunità e dell’Unione europea, diretto da F. Superata la teoria che limitava la conclusione degli accordi internazionali della Comunità ai soli casi previsti dal Trattato

Equation (2) was derived from the data shown in Figure 3 and represents the dependence of the sewage temperature in the SBR (t SBR ) to the outdoor air temperature (t out (τ)).

Signi ficant correlation between the standard and Fpg modi fied comet assay indicated that oxidative stress could be major contributor to observed DNA damage in collected specimens..

The use of environmentally benign enabling technologies such as microwave and ultrasound irradiation either alone or combined (CMUI) and mechanochemistry in

The excitation laser power is very low (around 0.25 mW ) and the excitation wavelength is in the near infrared (λ = 785 nm) to minimize the interaction with the biological samples

Il fine dell'incontro è stato quello di sviluppare ed ampliare il dialogo tra le comunità religiose europee e quelle del MENA (Middle East and North Africa) ed affrontare

Lo studio delle sottoclassi degli anticorpi anti-MPO è iniziato negli anni ’90, quando Esnault et al [97] osservarono come la maggior parte dei sieri dei