• Non ci sono risultati.

Flesh Coloured Potatoes After Cooking: Promising Sources Of Strong Antioxidant Compounds.

N/A
N/A
Protected

Academic year: 2021

Condividi "Flesh Coloured Potatoes After Cooking: Promising Sources Of Strong Antioxidant Compounds."

Copied!
7
0
0

Testo completo

(1)

Coloured-

fleshed

potatoes

after

boiling:

Promising

sources

of

known

antioxidant

compounds

Maria

Bellumori

a,b

,

Marzia

Innocenti

a,b

,

Marco

Michelozzi

d

,

Lorenzo

Cerretani

c

,

Nadia

Mulinacci

a,b,

*

aDepartmentofNEUROFARBA,DivisionofPharmaceuticalandNutraceuticalSciences,viaU.Schiff6,50019,SestoF.no,Florence,Italy

b

CeRA(MultidisciplinaryCentreofResearchonFoodSciences),Italy

c

PizzoliS.p.A.,viaZenzalinoNord1,40054,Budrio,Bologna,Italy

d

IstitutoBioscienzeeBioRisorse,CNR,viaMadonnadelPiano10,50019,SestoF.no,Florence,Italy

ARTICLE INFO

Articlehistory:

Received28November2016

Receivedinrevisedform7February2017

Accepted8February2017

Availableonline10February2017

Keywords: Solanumtuberosum Anthocyanins Phenols HPLC/DAD/MS Boiling Antioxidantactivity Foodanalysis Foodcomposition ABSTRACT

Thisstudyaimsatevaluatingtheeffectofboilingontheanthocyaninandphenolicacidcontentof varietiesofyellow,pinkandvioletfleshcoloredpotatoesgrownincentralItaly.Thetotalphenolicacid contentrangedfrom33.4to1130mg/kgoffreshweight(FW)inuncooked tubersand from111to 1375mg/kgFWincookedpotatoes,withincrementsobtainedforsixvarieties(Mz012,Mz064,Vitelotte Noir,Mz032,Mz080,Mz046)afterboiling.Theanthocyanincontentdecreasedinavariety-dependent mode,butanincrementwasevidencedaftercookinginonesampleMz012.Astrongcorrelationwas observedbetweenantioxidantcapacityandtotalanthocyaninsforpinkandviolet-fleshedpotatoes, suggestingthatthesecompoundsaremostlyresponsibleoftheantioxidantcapacityofthesetubersafter boiling.Overall,theyellow-fleshedcultivarshaveshownlowerantioxidantcapacity(about3.25times lower)thantheviolet-fleshedtubers.VioletMz064varietyregisteredthehighestanthocyaninlevelanda dailyintakeof100gofthistubercontainsupto200mgoftotalphenols.Flesh-coloredpotatoescan representanadditionalsourceofbioactivecompounds,particularlyofacylatedanthocyaninsinthe humandiet.

©2017ElsevierInc.Allrightsreserved.

1.Introduction

The potato (SolanumtuberosumL.) isa staple food inmany regionsoftheworldanditischaracterizedbyhighcarbohydrate, proteinandvitaminCcontents.Freshlyharvestedpotatoescontain about20%drymatterfromwhichthestarchisabout60–80%.In addition,thepotatoislowinfatanditisagoodsourceofvitamins B1,B3,B6,folate,pantothenicacid,riboflavinandminerals,suchas

potassium, phosphorus and magnesium (Prokop and Albert,

2008).

Themainphytochemicalsofthistuberaresolaninealkaloids, phenolicacids,anthocyaninsandcarotenoids;mostofthemare commonlyinhigher amountin peel(Ezekielet al.,2013).They haveattractedincreasingattentionin recent yearsdue totheir

health benefits; numerous studies have revealed a negative correlation between the intake of phytochemicals and chronic inflammation, cardiovascular diseases, cancer and diabetes

(Acosta-Estrada et al., 2014; González-Castejón and

Rodriguez-Casado, 2011).It is wellknown thatphenolic compounds have

antioxidant properties, protecting cellular constituents against oxidative damageand limiting theharmful effects of oxidative stress. Moreover, a recent study reported that purple potatoes actedashypotensiveagents,and wereabletolowertherisk of heartdiseaseandstrokeinhypertensivesubjectswithoutweight

gain(Vinsonetal.,2012).Choietal.(2013)observedthata20%

purple-fleshedpotatopowderintakeimprovedbothdiabetesand lipid control in diabetic rats,by significantly improving serum insulinlevelsandloweringbloodglucoseandserumcholesterol levels.Furthermore,it washypothesizedthat polyphenolsfrom pigmentedpotatoeswoulddecreaseoxidativestressandin flam-mation inhumans (Kasparet al.,2011).Nowadays,theinterest toward colored-fleshed potatoes is growing alsobecause these tubersarericherinphenoliccompounds.

* Correspondingauthorat:DepartmentofNEUROFARBA,Divisionof

Pharma-ceuticalandNutraceuticalSciences,UniversityofFlorence,viaU.Schiff6,50019,

SestoF.no,Italy.

E-mailaddress:nadia.mulinacci@unifi.it(N.Mulinacci).

http://dx.doi.org/10.1016/j.jfca.2017.02.004

0889-1575/©2017ElsevierInc.Allrightsreserved.

ContentslistsavailableatScienceDirect

Journal

of

Food

Composition

and

Analysis

(2)

Potatoes are generallycooked before consumption, and the differentcookingmethodsareimportantfactorsaffectingnotonly thechemicalcompositionandphysicalstructureofthepotato,but also the intake of bioactive compounds under normal dietary conditions (Tian et al., 2016). Changes in potato chemical compositionmainlyoccurduringstorageandcooking andvary dependingonthe cultivar and growing conditions (Blessington

etal.,2010;Brownetal.,2008;Burmeisteretal.,2011;Ierietal.,

2011;Lachmanetal.,2012).

Thisstudyaimstoevaluatetheanthocyaninandphenolicacid contentinseveralvarietiesofpotatowithyellow,pinkandviolet colouredfleshselectedbyanItalianproducerfarm.Theeffectof boilingonthewholepotatowasevaluatedbystudyingchangesin the concentration of chlorogenic acid, its isomers and total anthocyaninsbeforeandaftercooking.Theantioxidantcapacity wasalsoestimatedintheprocessedtubersusingtheABTSassay. Thefinalaimistovalorisethepigmented-fleshedpotatoeswhich arenotyetwidelyconsumedintheItalianmarket.

2.Materialandmethods 2.1.Materials

Thefreshtuberswereobtainedfrombreedinglinescultivated inthesamewayinaconventionalsysteminthesamefieldinthe agricultural district of Bologna (Italy). Three yellow- (Mz032, Mz080,Mz046),threeviolet-(Mz128,Mz064,VitelotteNoir)and two pink-fleshed (Mz011, Mz012) varieties of potatoes were studied. The tubers were kindly provided by Pizzoli S.p.A. (Bologna-Italy),bothfresh and afterboiling.A summary ofthe morphological characteristics and the common uses of all the varietiesisreportedinTable1.

Ascorbicacid(99%puritygrade)waspurchased from Sigma-Aldrich.

2.2.Cookingprocess

Arepresentativeamountofthewholetuber(about4kgforeach variety)wasboiledinacoveredstainlesssteelpotonamoderate flame.ThewholepotatoeswereboiledinwaterwithNaCl(1%)and ascorbicacidfor15min.Theratiopotatoes/waterwas1:4w/v.At theendofcooking,thetuberswerepeeledandfrozenandthese wereusedfortheextractionofphenoliccompounds.

2.3.Samplepreparation

The potatoes of each variety (1g) were extracted at room temperature,bystirringtwicewith30mLof70%EtOHadjustedto pH2.0 by HCOOH,as already described in our previous study

(Mulinacci et al., 2008). The hydroalcoholic solutions were

analyzedbyHPLC/DAD/MS,accordingtoourpreviouswork(Ieri etal.,2011)andusedfortheabilitytoscavengetheABTSradical cation.

2.4.HPLC/DAD/MSanalysis

Analysis was firstly carried out using a HP-1100 liquid chromatograph equipped with a DAD detector and a HP1100 MSDAPI-electrospray(Agilent-Technologies,PaloAlto,CA) oper-atinginpositiveandnegativeionizationmodeunderthefollowing conditions:gastemperature350C, nitrogenflowrate 10L/min, nebulizerpressure35psi,quadrupoletemperature30C,capillary voltage4000V,andappliedfragmentorsintherange50–250V.

Further identification and characterization of the phenolic compounds was performed bya TOF-MS withan ESI interface (Agilent Technologies) under the following conditions: gas temperature 300C, nitrogen flow rate 12L/min, nebulizer pressure20psi,capillaryvoltage3800V,andappliedfragmentors intherange80–300V.

ThecolumnwasaSynergiMaxRP80A(4

m

m;150mm3mm i.d.)fromPhenomenex (Castel-Maggiore,BO, Italy).The mobile phaseswere:(A)acidifiedwater(pH2.0)and(B)acetonitrile.The followingmultisteplineargradientwasapplied:from95%to78%A in8min,4mintoreach74%A,then13mintoarriveat65%A,and finally3mintoreach100%Bwithafinalplateauof4min.Thetotal timeofanalysiswas32min,flowratewas0.4mL/min,andoven temperaturewas 260.5C, asdescribedin ourpreviousstudy (Ierietal.,2011).

2.5.Quantitativedeterminationofphenolicacidsandanthocyanins

ThephenolicacidswereevaluatedbyHPLC/DADusinga six-pointcalibrationcurveofchlorogenicacid(3-caffeoylquinic acid-purity99%) (Extrasynthèse, Genay, France) at 330nm (r2=0.999), while theanthocyanin content was determined by HPLC/DADusingafive-pointcalibrationcurveofmalvinchloride (MW691fromExtrasynthèse;purity95%)at520nm(r2=0.999).

2.6.Antioxidantcapacitybythe2,20 -azino-bis(3-ethylbenzothiazoline-6-sulphonate)(ABTS)method

The ABTS method (Miller et al., 1996) was used for the determinationofantioxidantcapacity.Thehydroalcoholicextracts werediluted withdistilled water (100times)and immediately subjectedtoreactionwiththeradicals;absorbancewasmeasured aftertheadditionofa200

m

Lsampleto2mLofradicalsolution after2min.Fortheblankexperiment,200

m

Lofwaterwasadded. Theantioxidantactivitywascalculatedasfollowsbytheequation: %inibitionABTS=[(A0At)/A0]100

In agreement with this study, 54.8mg ABTS (Sigma-Aldrich, Milan, Italy) was dissolved in 20mLphosphate buffer (pH 7.0; 5mM) and activated toABTS+ radical by adding 1g of MnO2

(activation time 20min). Then the solution was centrifuged, filtered anddilutedwiththebuffersolutiontoobtainA734(t0)=

0.8000.02nm.Absorbanceofthesolutionwas measuredata wavelengthof734nm.Valuesarethemeansofthreerepetitions.

Table1

Morphologicalcharacteristicsoftheanalyzedvarieties.

varietyorcode countryoforigin maturity skincolour fleshcolour tuberform %drymatter cookinguse

Mz011 Italy late pink pink longoval 16–19 boiled,mashed

Mz012 Netherland mediumlate darkpink/red darkpink/red longoval 17 boiled,mashed

Mz128 Netherland late brown/violet lightviolet roundoval 16–18 boiled,mashed

Mz064 Netherland mediumlate brown/violet blue/violet smalllong 20–23 boiled,mashedandchips

VitelotteNoir France verylate darkviolet darkviolet longirregular 23 boiled,mashedandchips

Mz032 UnitedKingdom mediumearly darkyellowandpurple darkyellow smalllong >23 boiled,mashed

Mz046 UnitedKingdom mediumearly darkyellow darkyellow smalllong >23 boiled,mashed

(3)

2.7.Statisticalanalysis

Datawerenotnormallydistributed(Kolmogorov-Smirnovone sampletest)andwereanalyzedbythenon-parametric Kruskal-WallisANOVA,followedbytheMann-WhitneyUtestformultiple comparisons using SYSTAT 12.0 software (Systat Software Inc., Richmond,CA).Differenceswereacceptedassignificantatthe5% level.

3.Resultsanddiscussion

3.1.Phenolicacidandanthocyanincontent

The chromatographic profiles obtained according to our previous works (Ieri et al., 2011; Mulinacci et al., 2008), demonstrated the same compounds in both raw and cooked potatoes,(Tables2and 3).Thesamephenolic acidpatternwas highlighted, and the main phenolic acids detected were 3-caffeoylquinic,5-caffeoylquinic,4-caffeoylquinicandferulicacids. Theidentifiedanthocyaninswereacylatedglycosidesof pelargo-nidin,malvidin,petunidin,peonidinanddelphinidin;the rutino-sidesinC3werethedominantforms,acylatedwithacinnamoyl residueinC4oftherhamnoseunit.

For allof thevarieties, thetotal levels of anthocyaninsand phenolicacidsvariedsignificantlybetweenrawandcookedtubers, as shown in Tables 2 and 3. Violet potatoes were rich in anthocyanins, and the Mz064 cultivar in particular registered the highest levels (691mg/kg FW; Fig. 1a). The boiling was responsibleofasignificantdecreaseintheamountofanthocyanins whencompared torawpotatoes(Fig.1a)withthehighestloss showedforMz128andMz064(66.1%and36.7%respectively).In onlyonecase,forMz012cultivar,astatisticallysignificantincrease intheamountoftotalanthocyaninswasobservedaftercooking, withanincrementofmorethanadouble(from88.9infreshto 182mg/kgincookedpotato).

Contradictoryresultswerefoundintheliteraturerelatingtothe effectofcookingonthepolyphenolcontentofpotatoes.Ourdata arepartlyinaccordancewiththestudyperformedbyBrownetal. thatreportedasignificantdecreaseinthetotalanthocyaninsinfive pigmentedvarietiesafterboiling,microwavingandbaking(Brown et al., 2008). According to Lachman et al., the increase in anthocyanincontentaftercookingisstronglyvariety-dependent

(Lachmanetal.,2013).Variousfactorsinfluencethecompositionof

anthocyanins in fresh tubers, such as thecultivar and climatic conditions including altitude and storage conditions (Lachman

etal.,2012).

AsreportedinTable2,asignificantdecreaseinthelevelofall theanthocyaninswasdetectedbetweenrawandcookedpotatoes, particularlyforthevarietiesMz011,Mz064andVitelotteNoir.In thevarietyMz128,theamountofmalvidin 3-O-p-coum-rut-5-O-gludidnot varysignificantlyaftercooking,while thestatistical Mann-WhitneyUtestshowedsignificantvariationsforallofthe otheranthocyaninspresent.Significantincreaseswereshownin theMz012varietyforpelargonidin3-O-rut-5-O-glu,pelargonidin 3-O-rut,pelargonidinderivative1,pelargonidin 3-O-caf-rut-5-O-glu, pelargonidin 3-O-cis-p-coum-rut-5-O-glu, pelargonidinderi-vative2andpelargonidin3-O-p-coum-rut-5-O-Glu.Pelargonidin 3-O-p-coum-rut-5-O-gluwasthemajoranthocyanininthepink varieties (Mz011, Mz012) and in Vitelotte Noir; the same anthocyaninpatternwasfoundinthesethreevarieties.Theviolet varieties Mz128 and Mz064 showed high concentrations of petunidin3-O-p-coum-rut-5-O-Glu.

The phenolic acid content was determined for the eight varieties, and ranged from 33.4 (Mz080) to 1130mg/kg FW (Vitelotte Noir) in fresh potatoes, and from 111 (Mz080) to 1375mg/kg FW (Mz012) in cooked potatoes (Table 3). In the Table

2 Amount of anthocy anins in fr esh and cooked tubers e xpre ssed as m g/g FW ; mean data ar e fro m thr ee replicate s. Mz0 11 Mz0 1 2 Mz1 2 8 M z06 4 Vit elo tt e N oir fre sh cooked fre sh cooked fre sh cooked fre sh cooked fr esh cooked Compounds m g/g SD m g/g SD x 2 m g/g SD m g/g SD x 2 m g/g SD m g/g SD x 2 m g/g SD m g/g SD x 2 m g/g SD m g/g SD x 2 pet 3-O -rut-5-O -glu ND – ND – ND – ND – 6.93 0.0 3.7 2 0 .1 * 3.9 8.26 0.4 11 .3 0.2 * 3.9 ND – ND – pet 3-O -caf-rut-5-O -glu ND – ND – ND – ND – 1 3.6 3.2 9.48 0.3 * 3.9 3 7 .0 0.9 68.8 1 .7 * 3.9 ND – ND – delp 3-O -p -coum-rut-5-O -glu ND – ND – ND – ND – ND – ND – 7 .92 0. 1 N D – * 4.4 ND – ND – mal 3 -O -caf-rut-5-O -glu ND – ND – ND – ND – ND – ND – 4. 1 0 0.2 1 .2 4 0. 1 * 3.9 ND – ND – pet 3-O -p -coum-rut-5-O -glu ND – ND – ND – ND – 1 4 8 0.8 40.5 1 .1 * 3.9 53 7 11 .2 2 9 7 6. 1 * 3.9 ND – ND – pet 3-O -ferul rut-5-O -glu ND – ND – ND – ND – 1 5.3 0.0 5.84 0.0 * 3.9 1 8.7 0.4 9. 1 9 0.0 * 3.9 ND – ND – mal 3 -O -p -coum-rut-5-O -glu ND – ND – ND – ND – 3.33 0.2 3.33 0. 1 N S 7 4.2 0.9 4 7 .5 0.9 * 3.9 ND – ND – mal 3 -O -ferul-rut-5-O -glu ND – ND – ND – ND – 1 .7 1 0. 1 1 .34 0.0 * 3.9 4.52 0.2 2. 11 0. 1 * 3.9 ND – ND – pel 3-O -rut-5-O -glu 1 7 .5 0.9 1 3.6 0.4 * 3.9 4.67 0. 1 7 .7 0 0 .1 * 3.9 ND – ND – ND – ND – ND – 1 3 .1 0.5 * 4.4 pel 3-O -rut 11 .9 0.8 1 4.5 0.5 * 3.9 ND – 2. 1 8 0.0 * 4.4 ND – ND – ND – ND – ND – ND – pel deri v ati v e 1 4.28 0.4 2.03 0. 1 * 3.9 ND – 1 .29 0.0 * 4.4 ND – ND – ND – ND – 9.99 0.8 1 0.9 0. 1 * 3.9 pel 3-O -caf-rut-5-O -glu 1 9.4 2.7 8.77 0.3 * 3.9 ND – 2. 1 8 0. 1 * 4.4 ND – ND – ND – ND – 1 8.8 0.4 7 .38 0.4 * 3.9 pel 3-O -cis -p-coum-rut-5-O -glu 4.28 0.2 6.6 1 0.2 * 3.9 9.20 0.5 1 6.8 0.5 * 3.9 ND – ND – ND – ND – 56.2 0.3 63.2 1 .9 * 3.9 pel deri v ati v e 2 4.60 0.5 3.34 0. 1 * 3.9 1 .1 8 0. 1 2.95 0. 1 * 3.9 ND – ND – ND – ND – 2.83 0. 1 3.0 7 0 .1 * 3.9 pel 3-O-p -coum-rut-5-O -glu 9 7 .4 1 0.4 63.3 2. 1 * 3.9 59.7 2.9 1 3 4 3.5 * 3.9 ND – ND – ND – ND – 226 4.7 1 8 2 6.0 * 3.9 pel 3-O -ferul rut-5-O -glu 35 .4 4. 1 22.3 0.7 * 3.9 11 .8 0.8 1 2.2 0.7 NS ND – ND – ND – ND – 22.8 0.2 1 4.4 0.5 * 3.9 pel 3-O -p -coum-rut 2.88 0.2 3.2 7 0 .1 * 3.9 2.36 0.2 2.3 1 0.0 NS ND – ND – ND – ND – ND – ND – ND no t dete cte d (LOD 0.7 m g/g FW); SD standar d deviation; * signi fi cant differ ences (p < 0.05); NS no t signi fi cant. Degr ees of fr eedom (d.f.) = 1 . Abbre viations used: pel. pelarg onidin; pet. petunidin; mal. malv idin; delp. delphinidin; rut. rutinoside; glu. glucoside; ferul. ferulo y l; p -coum. p -coumar o y l; caff. caffeo y l.

(4)

yellow-fleshedvarietiestheaveragetotalphenolicacidcontent values ranged from 33.4 to 94.9mg/kg FW, with changes in their content lessevidentafter cooking (from111 to125

m

g/g FW). However, according to our previous works (Ieri et al.,

2011;Mulinaccietal.,2008),thetotalamountofthesephenols

intheyellow-fleshvarietiesismuchlowerincomparisontothe contentobservedintheredandvioletvarieties(Fig.1).Arecent studyreportedthatthephenolicacidswerefromthreetofour timeshigherinpurple-andred-fleshedpotatoesthanin white-fleshed tubers (Ezekiel et al., 2013). An analogous result was obatained for our samples, although with a greater difference (about tentimes).

Thecookingtechniquewasresponsibleforasignificantincrease in the amount of phenolic acids for all of the yellow-fleshed varieties,andthecontentofthesecompoundsincreasedinrelation tothevariety.AsshowninFig.1b,thehighestdifferencebetween rawandcookedtuberswasobservedforthevarietyMz080.After cooking,asignificantincreaseinthetotalamountofphenolicacids was also shown in violet and pink fleshed potatoes (Mz064, VitelotteNoirandMz012); thehighest increase(2.6times)was observedforthevarietyMz012.Theseresultswereinagreement withliteraturedatashowinggreaterlevelsof phenolic acidsin cookedthaninrawpotatoes(Blessingtonetal.,2010;Burgosetal.,

2013). Faller and Fialho (2009) compared the total phenolic

contentafterboiling,steamingandmicrowavingandfoundthat the phenolic content increased by 81.4%, 22.8% and 80.81%, respectively.Ithasbeendemonstratedthatcookinginterfereswith thelevel of phenolic compoundsby inducingtheirrelease and makingthemmoreavailableforextraction(Burgosetal.,2013). Cookingmayalsofacilitatetheextractability ofpolyphenols by alteringthematrix,resultinginhigherrecoveriesandinactivating enzymesthatotherwiseoxidizethesecompounds(Navarreetal.,

2010).

Lachman et al. reported that the total level of phenolics, chlorogenicacids, flavonols and vitamin C didnot significantly decreaseaftercookingbymicrowaving,baking,boiling,steaming orstir-fryingmethods(Lachmanetal.,2012);thisbehaviourcould beattributedtothedisruptionofplantcellwallsprovidingabetter extractability and tothebreakage of chemical bondsof higher molecular weight polyphenols, forming soluble low molecular weightmolecules.

In contrast, the amount of phenolic acids found in cooked tubers fromthe Mz011andMz128 varieties were significantly lowerthaninrawsamples,inagreementwithpreviousstudies

(Ezekiel et al., 2013; Lemos et al., 2015). It was reported that

cooking hada strong detrimentaleffect on thetotal levels of phenolics; the total phenolics in uncooked potatoes were 20936mg GAE/100g FW, while baking decreased the value to 38.18mg GAE/100g, boiling decreased it to 1384mg GAE/100g, microwaving decreasedit to74.01mg GAE/100g, andsteamingdecreaseditto1304mgGAE/100g(Lemosetal.,

2015).

Nevertheless,thesestrongreductionsweremainlyobservedin potatoesnotcookedaswholetubers.Consequently,concomitant factors induced the decrements: the browning phenomenon during slicing, thereduced pulp surface exposed tohot water, thepercentageofwaterabsorbedbythestarchduringcookingand mostimportantlythepresence of peel(Mulinacciet al., 2008), becauseitiswellknownthatpotatopeelcontainshighquantities ofphenoliccompounds.In1989MondyandGosselinfoundthat potatoescookedwithpeelhadagreateramountoftotalphenolsin thecortexandinternaltissues,andthishasbeenattributedtothe migration ofphenolics fromthepeel towardstheinside of the tuber(Ezekieletal.,2013).

AsreportedinTable3,themajorphenoliccompoundinallthe varieties (5-caffeoylquinicacid), was significantly reduced after

T able 3 Amount of phenolic acids in fr esh and cooked tubers e xpre ssed as m g/g FW ; mean data ar e fr o m thr ee replica te s. Mz0 11 M z0 1 2 Mz1 2 8 M z06 4 Vit elot te N oir F re sh Cooked F re sh Cooked F resh Cooked F re sh Cooked F re sh Cooked compounds m g/g SD m g/g SD x 2 m g/g SD m g/g SD x 2 m g/g SD m g/g SD x 2 m g/g SD m g/g SD x 2 m g/g SD m g/g SD x 2 g entisic acid glucoside ND – ND – ND – ND – ND – ND – ND – ND – ND – ND – 3-caffeo y lq uinic acid 53.2 1 .9 7 1 .4 0.8 * 3.9 3 7 .1 2.7 1 8 9 1 .4 * 3.9 58.8 0.7 89. 1 0 .1 * 3.9 89.4 5.3 23 1 3.8 * 3.9 11 .9 0.2 1 9 1 4.3 * 3.9 5-caffeo y lq uinic acid 5 7 6 3 3 .6 4 42 11 .7 * 3.9 432 26.8 934 8.6 * 3.9 875 4.6 329 0.5 * 3.9 781 3 5.5 698 5.5 * 3.9 1 052 25.9 80 7 1 5.8 * 3.9 4-caffeo y lq uinic acid 66.2 2.9 9 1 .5 3.5 * 3.9 46.4 0.4 1 7 3 1 .1 * 3.9 69. 1 1 .0 11 4 0.7 * 3.9 7 6.2 0. 1 1 86 8. 1 * 3.9 40.3 0.3 263 6.2 * 3.9 caffeic acid deri v ati v e(1) 1 2.5 1 .7 1 9. 1 0 .1 * 3.9 1 2.0 1 .4 1 3.8 0.4 NS 8.93 0.0 2 1 .1 0.4 * 3.9 1 4 .1 0.9 45. 1 0.4 * 3.9 25.2 1 .1 49.3 1 .1 * 3.9 caffeic acid deri v ati v e(2) ND – ND – ND – ND – ND – 11 .7 0.4 * 4.4 ND – 89.6 4. 1 * 4.4 ND – ND – ferulic acid 53.4 7 .9 20.3 0.4 * 3.9 ND – 65.0 1 .9 * 4.4 48.6 0.7 5.63 0. 1 * 3.9 1 4.9 0.7 11 .5 0.4 * 3.9 ND – ND – Mz032 Mz080 Mz046 F re sh Cooked F re sh Cooked F resh Cooked compounds m g/g SD m g/g SD x 2 m g/g SD m g/g SD x 2 m g/g SD m g/g SD x 2 g entisic acid glucoside 9.94 2.9 3.34 0. 1 * 3.9 ND – ND – ND – ND – 3-caffeo y lq uinic acid 3.66 0.0 1 9.3 0. 1 * 3.9 ND – 1 7 .6 0. 1 * 4.4 5.50 0.0 1 8 .1 0.0 * 3.9 5-caffeo y lq uinic acid 56.5 1 .0 5 7 .7 1 .9 NS 1 .2 20.5 0.9 59.0 2.0 * 3.9 63.4 2.3 55.4 1 .0 * 3.9 4-caffeo y lq uinic acid 1 2.2 0.2 23.5 1 .0 * 3.9 8.68 0. 1 22.4 0.7 * 3.9 1 2.0 0.3 2 1 .5 0. 1 * 3.9 caffeic acid deri v ati v e(1) 6.48 0.3 11 .5 0.5 * 3.9 ND 0.0 8.38 0.4 * 4.4 6.69 0. 1 1 0.3 0. 1 * 3.9 caffeic acid deri v ati v e(2) 4.38 0.3 6.40 0. 1 * 3.9 1 .02 0.0 1 .1 1 0.0 * 3.9 5.99 0. 1 3.07 0. 1 * 3.9 ferulic acid 2.3 7 0.0 3.6 1 0.0 * 4.0 3.2 1 0 .1 2.93 0.0 * 3.9 1 .32 0. 1 7 .99 0.0 * 3.9 ND N o t det ect ed (LOD 0.7 m g/g FW); SD S tandar d deviation; * Signi fi cant differ ences (p < 0.05); NS N o t signi fi cant. Degre es of freedom (d.f.) 1 .

(5)

cooking,exceptintheMz011,Mz128,Mz064,VitelotteNoirand Mz046 varieties.We canhypothesize a partial inter-conversion among the isomers in these varieties, particularly from 5-caffeoylquinic acid to 3-caffeoylquinic acid. According to the peculiaritiesofthedifferentvarieties,gentisicacidmonoglucoside wasidentifiedandquantifiedonlyintheMz032sample.

3.2.Antioxidantcapacity

Potatoesareasourceofphenolicacidsbutalsoofanthocyanins andcarotenoids,whichcancontributetoincreasetheantioxidant intakeinthehumandiet(Ezekieletal.,2013;Hamouzetal.,2011;

LachmanandHamouz,2005;Reyesetal.,2005).Consideringthat

Fig.1.Totalanthocyanins(a)andtotalphenolicacids(b)infreshandcookedpink-,violet-andyellow-fleshedcultivarsofSolanumtuberosumL.;dataareexpressedasmg/kg

FW(freshweight).Thedifferencesbetweenfreshandcookedtubersaresignificantforallthevarieties(x23.9;degreesoffreedom(d.f.)1).

(6)

thehumanconsumption of thetuber occurs aftercooking,the antioxidant capacity of our samples was assayed by the ABTS method only after boiling. As reported in Fig. 2, the lowest antioxidantcapacitywasobservedintheyellowfleshedvarieties, averaging0.37

m

g/mLof ascorbicacid.In agreementwithother studies(Külenetal.,2013;López-Coboetal.,2014)thatreported blueandpurplepotatoespossessingahigherantioxidantcapacity compared to the white-yellow tubers, the blue-violet fleshed potato(Mz064)showed thehighestantioxidantcapacity inthe ABTSassay.

Theobtainedcorrelationcoefficientsareverysimilar consider-ingphenolic acids(Fig.3a),anthocyanins(Fig.3b)andthetotal phenols (Fig. 3c), with r2 values from 0.83 to 0.89. A better

correlation(r2=0.98)wasfoundbetweentheantioxidantcapacity

and total phenolic acidamount in the yellow-fleshed cultivars selected.The pink and violet-fleshed potatoes did not show a correlationbetweenantioxidantcapacityandtotalphenolicacids (r2=0.5), even if they contain considerably higher levels of caffeoylquinicacidisomersthantheyellowvarieties(Ierietal., 2011).Asexpectedandaccordingtopreviousresults(Brown,2005;

Brownetal.,2005;Lachmanetal.,2012,2009),thesepigmented

tubers showed a higher and positive correlation between antioxidant capacity and total anthocyanins (Fig. 3b), with anthocyanins being mainly responsible for the antioxidant properties.TheORACandFRAPassaysrevealedthatantioxidant levelsinredorpurple-fleshedpotatoesweretwoorthreetimes higherthaninwhiteoryellow-fleshedpotatoes(Teowetal.,2007). Overall,thesevarietiesareanaturalsourceofacylated anthocya-nins and cinnamoyl acids and can positively contribute to increasedantioxidantintakeinthediet.

4.Conclusions

Inthisstudy,weinvestigatedtheeffectofboilingonthetotal levelsofphenoliccompoundsindifferentvarietiescultivatedin the same experimental conditions. Significant positive and negativevariationswerefoundintheconcentrationofphenolic acids and anthocyanins in the cooked tubers, highlighting a variety-dependentcorrelation.Theantioxidantcapacityestimated bytheABTSassayonthecookedtubersdemonstratedasimilar positive correlation with the content of phenolic acids, total anthocyaninsandtotalphenols.

Theboiledpinkandviolet-fleshedpotatoesshowedthehighest efficacyas radicalscavengersin theABTStest.Chlorogenicacid provided the greatest contribution to antioxidant capacity in yellow fleshed potatoes, while anthocyanins were the major contributorsasantioxidantsinpinkandviolet-fleshedtubers.Our results indicate that pink and violet-fleshed potatoes show significantly higher antioxidant potency than yellow-fleshed varieties.Thus,theuseofviolet-fleshedpotatoesincuisineshould berecommendedbecauseitcanhelptoincreasethedailyintakeof theseinterestingacylatedanthocyanins.

Acknowledgments

ThisworkwassupportedbytheUniversityofFlorenceandby PizzoliS.p.A.,Budrio(Bologna).WearegratefultoEnteCassa di Risparmio di Firenzefor supplying part of theinstrumentation usedforthisresearch.

References

Acosta-Estrada,B.A.,Gutiérrez-Uribe,J.A.,Serna-Saldívar,S.O.,2014.Bound phenolicsinfoods,areview.FoodChem.152,46–55.doi:http://dx.doi.org/ 10.1016/j.foodchem.2013.11.093.

Blessington,T.,Nzaramba,M.N.,Scheuring,D.C.,Hale,A.L.,Reddivari,L.,Miller,J.C., 2010.Cookingmethodsandstoragetreatmentsofpotato:effectson carotenoids,antioxidantactivity,andphenolics.Am.J.PotatoRes.87,479–491. doi:http://dx.doi.org/10.1007/s12230-010-9150-7.

Brown,C.R.,Culley,D.,Yang,C.-P.,Durst,R.,Wrolstad,R.,2005.Variationof anthocyaninandcarotenoidcontentsandassociatedantioxidantvaluesin potatobreedinglines.J.Am.Soc.Hortic.Sci.130,174–180.

Brown,C.R.,Durst,R.W.,Wrolstad,R.,DeJong,W.,2008.Variabilityofphytonutrient contentofpotatoinrelationtogrowinglocationandcookingmethod.Potato Res.51,259–270.doi:http://dx.doi.org/10.1007/s11540-008-9115-0.

Brown,C.R.,2005.Antioxidantsinpotato.Am.J.PotatoRes.82,163–172.doi:http:// dx.doi.org/10.1007/BF02853654.

Burgos,G.,Amoros,W.,Muñoa,L.,Sosa,P.,Cayhualla,E.,Sanchez,C.,Díaz,C., Bonierbale,M.,2013.Totalphenolic,totalanthocyaninandphenolicacid concentrationsandantioxidantactivityofpurple-fleshedpotatoesasaffected byboiling.J.FoodCompos.Anal.30,6–12.doi:http://dx.doi.org/10.1016/j. jfca.2012.12.001.

Burmeister,A.,Bondiek,S.,Apel,L.,Kühne,C.,Hillebrand,S.,Fleischmann,P.,2011. ComparisonofcarotenoidandanthocyaninprofilesofrawandboiledSolanum tuberosumandSolanumphurejatubers.J.FoodCompos.Anal.24,865–872.doi: http://dx.doi.org/10.1016/j.jfca.2011.03.006.

Choi,M.K.,Park,S.J.,Eom,S.H.,Kang,M.H.,2013.Anti-diabeticandhypolipidemic effectsofpurple-fleshedpotatoinstreptozotocin-induceddiabeticrats.Food Sci.Biotechnol.22,1–6.doi:http://dx.doi.org/10.1007/s10068-013-0231-5.

Ezekiel,R.,Singh,N.,Sharma,S.,Kaur,A.,2013.Beneficialphytochemicalsin potato—areview.FoodRes.Int.50,487–496.doi:http://dx.doi.org/10.1016/j. foodres.2011.04.025.

Fig.3. Correlationbetweentotalphenolicacid(a),anthocyanin(b)andtotalphenol

(c)contentsexpressedasmg/kgFWandantioxidantcapacityexpressedasmg/mL

(7)

Faller,A.L.K.,Fialho,E.,2009.Theantioxidantcapacityandpolyphenolcontentof organicandconventionalretailvegetablesafterdomesticcooking.FoodRes.Int. 42,210–215.doi:http://dx.doi.org/10.1016/j.foodres.2008.10.009.

González-Castejón,M.,Rodriguez-Casado,A.,2011.Dietaryphytochemicalsand theirpotentialeffectsonobesity:areview.Pharmacol.Res.64,438–455.doi: http://dx.doi.org/10.1016/j.phrs.2011.07.004.

Hamouz,K.,Lachman,J.,Pazderu

,K.,Tomášek,J.,Hejtmánková,K.,Pivec,V.,2011. Differencesinanthocyanincontentandantioxidantactivityofpotatotubers withdifferentfleshcolour.PlantSoilEnviron.57,478–485.

Ieri,F.,Innocenti,M.,Andrenelli,L.,Vecchio,V.,Mulinacci,N.,2011.RapidHPLC/ DAD/MSmethodtodeterminephenolicacids,glycoalkaloidsandanthocyanins inpigmentedpotatoes(SolanumtuberosumL.)andcorrelationswithvariety andgeographicalorigin.FoodChem.125,750–759.doi:http://dx.doi.org/ 10.1016/j.foodchem.2010.09.009.

Külen,O.,Stushnoff,C.,Holm,D.G.,2013.Effectofcoldstorageontotalphenolics content,antioxidantactivityandvitaminClevelofselectedpotatoclones.J.Sci. FoodAgric.93,2437–2444.doi:http://dx.doi.org/10.1002/jsfa.6053.

Kaspar,K.L.,Park,J.S.,Brown,C.R.,Mathison,B.D.,Navarre,D.A.,Chew,B.P.,2011. Pigmentedpotatoconsumptionaltersoxidativestressandinflammatory damageinmen.J.Nutr.141,108–111.doi:http://dx.doi.org/10.3945/ jn.110.128074.

López-Cobo,A.,Gómez-Caravaca,A.M.,Cerretani,L.,Segura-Carretero,A., Fernández-Gutiérrez,A.,2014.Distributionofphenoliccompoundsandother polarcompoundsinthetuberofSolanumtuberosumL.byHPLC-DAD-q-TOF andstudyoftheirantioxidantactivity.J.FoodCompos.Anal.36, 1–11.doi:http:// dx.doi.org/10.1016/j.jfca.2014.04.009.

Lachman,J.,Hamouz,K.,2005.Redandpurplecolouredpotatoesasasignificant antioxidantsourceinhumannutrition—areview.PlantSoilEnviron.51,477– 482.

Lachman,J.,Hamouz,K.,Šulc,M.,Orsák,M.,Pivec,V.,Hejtmánková,A.,Dvorák,P., Cepl,J.,2009.Cultivardifferencesoftotalanthocyaninsandanthocyanidinsin redandpurple-fleshedpotatoesandtheirrelationtoantioxidantactivity.Food Chem.114,836–843.doi:http://dx.doi.org/10.1016/j.foodchem.2008.10.029.

Lachman,J.,Hamouz,K.,Orsák,M.,Pivec,V.,Hejtmánková,K.,Pazderu,K.,Dvorák,

P., Cepl,J.,2012.Impactofselectedfactors—cultivar,storage,cookingandbaking onthecontentofanthocyaninsincoloured-fleshpotatoes.FoodChem.133, 1107–1116.doi:http://dx.doi.org/10.1016/j.foodchem.2011.07.077.

Lachman,J.,Hamouz,K.,Musilová,J.,Hejtmánková,K.,Kotíková,Z.,Pazderu

,K., Domkárová,J.,Pivec,V.,Cimr,J.,2013.Effectofpeelingandthreecooking methodsonthecontentofselectedphytochemicalsinpotatotuberswith variouscolourofflesh.FoodChem.138,1189–1197.doi:http://dx.doi.org/ 10.1016/j.foodchem.2012.11.114.

Lemos,M.A.,Aliyu,M.M.,Hungerford,G.,2015.Influenceofcookingonthelevelsof bioactivecompoundsinPurpleMajestypotatoobservedviachemicaland spectroscopicmeans.FoodChem.173,462–467.doi:http://dx.doi.org/10.1016/j. foodchem.2014.10.064.

Miller,N.J.,Sampson,J.,Candeias,L.P.,Bramley,P.M.,Rice-evans,C.A.,1996. Antioxidantactivitiesofcarotenesandxanthophylls.FEBSLett.384,240–242.

Mulinacci,N.,Ieri,F.,Giaccherini,C.,Innocenti,M.,Andrenelli,L.,Canova,G., Saracchi,M.,Casiraghi,M.C.,2008.Effectofcookingontheanthocyanins, phenolicacids,glycoalkaloids,andresistantstarchcontentintwopigmented cultivarsofSolanumtuberosumL.J.Agric.FoodChem.56,11830–11837.doi: http://dx.doi.org/10.1021/jf801521e.

Navarre,D.A.,Shakya,R.,Holden,J.,Kumar,S.,2010.Theeffectofdifferentcooking methodsonphenolicsandvitaminCindevelopmentallyyoungpotatotubers. Am.J.PotatoRes.87,350–359. doi:http://dx.doi.org/10.1007/s12230-010-9141-8.

Prokop,S.,Albert,J.,2008.Potatoes,nutritionanddiet.FoodAgric.Organ.Factsheet 1–2.

Reyes,L.F.,Miller,J.C.,Cisneros-Zevallos,L.,2005.Antioxidantcapacity, anthocyaninsandtotalphenolicsinpurple-andred-fleshedpotato(Solanum tuberosumL.)genotypes.Am.J.PotatoRes.82,271–277.doi:http://dx.doi.org/ 10.1007/BF02871956.

Teow,C.C.,Truong,V.-Den,McFeeters,R.F.,Thompson,R.L.,Pecota,K.V.,Yencho,G. C.,2007.Antioxidantactivities,phenolicandcarotenecontentsofsweetpotato genotypeswithvaryingfleshcolours.FoodChem.103,829–838.doi:http://dx. doi.org/10.1016/j.foodchem.2006.09.033.

Tian,J.,Chen,J.,Ye,X.,Chen,S.,2016.Healthbenefitsofthepotatoaffectedby domesticcooking:areview.FoodChem.202,165–175.doi:http://dx.doi.org/ 10.1016/j.foodchem.2016.01.120.

Vinson,J.A.,Demkosky,C.A.,Navarre,D.A.,Smyda,M.A.,2012.High-antioxidant potatoes:acuteinvivoantioxidantsourceandhypotensiveagentinhumans aftersupplementationtohypertensivesubjects.J.Agric.FoodChem.60,6749– 6754.doi:http://dx.doi.org/10.1021/jf2045262.

Riferimenti

Documenti correlati

a University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87106; b Division of Molecular Medicine, Department of Internal Medicine,.. University of New Mexico School

A number of observations and new data, pointing to a more complex deformation history of the GHS, place a limit to contemporaneous activity of STDS and MCT and consequently to

Analizzando l'aspetto che riguarda la tempistica entro cui potrebbe in- tervenire il provvedimento di acquisizione sanante, la Corte evidenzia come alla luce del diritto vivente, non

3) La certificazione del sistema di raccolta online: gli organizzatori sono tenuti a richiedere alle autorità competenti dello Stato membro 26 in cui il fornitore

A questi vantaggi si contrappongono anche numerosi rischi: infatti, a seguito di un conflitto, la vittima è più facilmente esposta a rinnovati attacchi da altri

− Il fenomeno che favorisce maggiormente il recupero energetico della scia è la convezione verticale nel caso di pale curvate verso l’esterno e simmetriche, mentre per

The Istituto Nazionale di Ricerca Metrologica (INRIM) is involved in three experiments of optical links for space metrology: their use in radioastronomy [7], in space

Ciascuna persona è stata coinvolta nello studio per 10 mesi; ogni paziente è stato allocato mediante randomizzazione nel gruppo sperimentale (partecipa agli incontri) o di