• Non ci sono risultati.

Modelli autoregressivi e carte di controllo ewma: effetto della correzione della stima dei parametri

N/A
N/A
Protected

Academic year: 2021

Condividi "Modelli autoregressivi e carte di controllo ewma: effetto della correzione della stima dei parametri"

Copied!
88
0
0

Testo completo

(1)

(2) 

(3)  

(4) 

(5) 

(6)  . ƒ ‘Ž–†‹ ‹‡œ‡–ƒ–‹•–‹ Ї . ‘”•‘†‹ƒ—”‡ƒ’‡ ‹ƒŽ‹•–‹ ƒ‹ –ƒ–‹•–‹ ƒ‡‹ˆ‘”ƒ–‹ ƒ .   ‡•‹†‹ƒ—”‡ƒ . ‘†‡ŽŽ‹—–‘”‡‰”‡••‹˜‹‡ ƒ”–‡†‹ ‘–”‘ŽŽ‘ ǣ‡ˆˆ‡––‘†‡ŽŽƒ ‘””‡œ‹‘‡†‡ŽŽƒ•–‹ƒ †‡‹’ƒ”ƒ‡–”‹  .  ‡Žƒ–‘”‡ǣ”‘ˆǤ —‹†‘ƒ•ƒ”‘––‘ ƒ—”‡ƒ†‘ǣƒ‘Ž‘ƒ”  .  ‘ ƒ†‡‹ ‘ʹͲͲͺȀʹͲͲͻ.

(7) .              . .

(8)

(9) 

(10)    

(11) 

(12) ǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤ͵ . 

(13) ͳǣ

(14) ǯ

(15) 

(16) 

(17) 

(18) ǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤͷ ͷǤͷ

(19) †‡–‹ˆ‹ ƒœ‹‘‡†‹—’”‘ ‡••‘•–‘ ƒ•–‹ ‘ǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤͻ ͷǤ͸ ‡‡•‹†‡‹’”‘ ‡••‹ǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤͷ͸ ͷǤ͹‘†‡ŽŽ‹ƒ‡†‹ƒ‘„‹Ž‡ȋȌǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤͷͺ ͷǤͺ‘†‡ŽŽ‹—–‘”‡‰”‡••‹˜‹ȋȌǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤ͸Ͷ ͷǤͻ‘†‡ŽŽ‹ƒ‡†‹ƒ‘„‹Ž‡ƒ—–‘”‡‰”‡••‹˜‹ȋȌǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤ͸ͺ ͷǤͼ–‹ƒ‡’”‡˜‹•‹‘‹†‡‹‘†‡ŽŽ‹ǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤ͸ͽ . 

(20) ʹǣ

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) ǯǣ 

(28) 

(29) 

(30) 

(31) ǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤ͵͵ ͸Ǥͷ‘–”‘ŽŽ‘–ƒ–‹•–‹ ‘†‡Ž”‘ ‡••‘ȋȌǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤ͹͹ ͸Ǥ͸‡ ƒ”–‡†‹ ‘–”‘ŽŽ‘ǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤ͹ͻ ͸Ǥ͹ƒ ƒ”–ƒ†‹ ‘–”‘ŽŽ‘ǣ†‡ˆ‹‹œ‹‘‡‡’”‘‰‡––ƒœ‹‘‡ǤǤǤǤǤǤǤǤǤǤǤǤǤͺͶ ͸Ǥͺ’’”‘ ‹‘–”ƒ‹–‡‹”‡•‹†—‹‹’”‡•‡œƒ†‹†ƒ–‹ƒ—–‘ ‘””‡Žƒ–‹ǤǤǤǤǤǤͺͼ . 

(32) ͵ǣ

(33)  .  

(34) 

(35) 

(36)   

(37) 

(38) ǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤͶͺ ͹Ǥͷ”‘’”‹‡–†‡‰Ž‹•–‹ƒ–‘”‹†‹—’”‘ ‡••‘ǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤͺ; ͹Ǥ͸‡ ‹ Ї’‡”Žƒ ‘””‡œ‹‘‡ǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤͻͷ   .  ϭ.

(39) 

(40) Ͷǣ

(41) 

(42) 

(43) 

(44) ǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤͷ͹ ͺǤͷ ‡Ž–ƒ†‡‹’ƒ”ƒ‡–”‹ǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤͻͽ ͺǤ͸

(45) –‡”’”‡–ƒœ‹‘‡‡†‹• —••‹‘‡†‡‹”‹•—Ž–ƒ–‹ǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤͼͶ . 

(46) ǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤ͹͵ . 

(47) ǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤ͹Ͷ . 

(48) 

(49)  

(50) ǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤǤͺ͵    .                  Ϯ.

(51)

(52) –”‘†—œ‹‘‡.   

(53)  — ‘–‡•–‘ †‘˜‡ •‹ ”‹ ‡” ƒ — ‹‰Ž‹‘”ƒ‡–‘ ‘–‹—‘ †‡ŽŽƒ “—ƒŽ‹– ‡‹ ’”‘ ‡••‹ ‹†—•–”‹ƒŽ‹ǡ –”‘˜‡” —ƒ •—ƒ ‰‹—•–‹ˆ‹ ƒœ‹‘‡ Ž̵ƒ’’Ž‹ ƒœ‹‘‡ †‹ ‡–‘†‘Ž‘‰‹‡†‹”‡––‡ƒŽ‘–”‘ŽŽ‘–ƒ–‹•–‹ ‘†‡Ž”‘ ‡••‘ǡ‹“—ƒ–‘”ƒ’’”‡•‡–ƒ‘ — ’”‹‘ ˜ƒŽ‹†‘ •–”—‡–‘ ƒ •‘•–‡‰‘ †‡ŽŽ̵ƒ––‹˜‹– †‡ ‹•‹‘ƒŽ‹ ƒ† ‘‰‹ Ž‹˜‡ŽŽ‘ ‘”‰ƒ‹œœƒ–‹˜‘ ’‡” ‹Ž ”ƒ‰‰‹—‰‹‡–‘ †‡ŽŽƒ “—ƒŽ‹–Ǥ ŽŽƒ „ƒ•‡ †‡ŽŽ‡ –‡ ‹ Ї –”ƒ†‹œ‹‘ƒŽ‹ Žǯ‹’‘–‡•‹ ˆ‘†ƒ‡–ƒŽ‡ ° Žǯ‹†‹’‡†‡œƒ †‡ŽŽ‡ ‘••‡”˜ƒœ‹‘‹ǡ ‘ ‹ ‘””‡Žƒœ‹‘‡ǡƒ‹‘Ž–‡•‹–—ƒœ‹‘‹”‡ƒŽ‹ǡ“—‡•–ƒ ‘†‹œ‹‘‡‘°•‘††‹•ˆƒ––ƒǤ

(54) ‡–‘†‹ Žƒ••‹ ‹’‡”‹Ž‘‹–‘”ƒ‰‰‹‘†‡ŽŽƒ“—ƒŽ‹–†‹—’”‘ ‡••‘ǡ ‘‡އ ƒ”–‡†‹ ‘–”‘ŽŽ‘ ‹ ’”‡•‡œƒ †‹ †ƒ–‹ ‘””‡Žƒ–‹ǡ ˆ‘”‹• ‘‘ ”‹•—Ž–ƒ–‹ ‘ ’”‘’”‹ƒ‡–‡ ƒ ‡––ƒ„‹Ž‹Ǥ‹ ‘•‡‰—‡œƒ‡‰Ž‹—Ž–‹‹ƒ‹ǡ•‘‘•–ƒ–‹ ‘†‘––‹†‹˜‡”•‹•–—†‹ƒŽ ˆ‹‡ †‹ ‡Žƒ„‘”ƒ”‡ ’”‘ ‡†—”‡ ‹ ‰”ƒ†‘ †‹ ƒ†ƒ––ƒ”•‹ ƒ ’”‘ ‡••‹ ƒ—–‘ ‘””‡Žƒ–‹Ǥ ”ƒ “—‡•–‹ƒ’’”‘ ‹ǡ—‘ Ї•‹°”‹˜‡Žƒ–‘‡••‡”‡—–‹Ž‡ǡ°•–ƒ–‘†‡• ”‹˜‡”‡†‹”‡––ƒ‡–‡ Žƒ •–”—––—”ƒ †‹ ‘””‡Žƒœ‹‘‡ ‘ ƒ†‡‰—ƒ–‹ ‘†‡ŽŽ‹ †‹ •‡”‹‡ –‡’‘”ƒŽ‹ǡ ‘ ‹ “—ƒŽ‹ ”‹—‘˜‡”‡Žƒ’”‡•‡œƒ†‹ƒ—–‘ ‘””‡Žƒœ‹‘‡‡•— ‡••‹˜ƒ‡–‡ƒ’’Ž‹ ƒ”‡Žƒ ƒ”–ƒ †‹ ‘–”‘ŽŽ‘ƒ‹”‡•‹†—‹Ǥǯƒ••—–‘•— —‹•‹„ƒ•ƒ“—‡•–ƒ–‡ ‹ ƒǡ° Їއ•–‹‡†‡‹ ’ƒ”ƒ‡–”‹ǡ Ї †‡• ”‹˜‘‘ ‹ †ƒ–‹ǡ •‹ƒ‘ ‹Ž ’‹î ˜‹ ‹‡ ’‘••‹„‹Ž‹ ƒŽ ˜‡”‘ ˜ƒŽ‘”‡ †‡Ž ’ƒ”ƒ‡–”‘Ǥ˜˜‹ƒ‡–‡“—‡•–ƒ•‹–—ƒœ‹‘‡’‘”–‡”ƒ†ƒ˜‡”‡†‡‰Ž‹‡””‘”‹†‹•–‹ƒǡ ‡†‹ ‘•‡‰—‡œƒ“—‡•–‹”‹ ƒ†”ƒ‘‡ŽŽ‡ƒ’’Ž‹ ƒœ‹‘‹†‹“—ƒŽ‹–ǡ ‘‡އ ƒ”–‡†‹ ‘–”‘ŽŽ‘Ǥ —‹†‹ Žǯ‘„‹‡––‹˜‘ †‹ “—‡•–‘ Žƒ˜‘”‘ ° “—‡ŽŽ‘ †‹ ’”‘’‘””‡ •–‹ƒ–‘”‹ ƒŽ–‡”ƒ–‹˜‹ Ї ”‹•—Ž–‹‘‡‘ †‹•–‘”–‹†‡‰Ž‹—•—ƒŽ‹ ‡†‹ ‡•ƒ‹ƒ”‡Žǯ‡ˆˆ‡––‘ †‡ŽŽƒ.  ϯ.

(55) ‘””‡œ‹‘‡ ’‡” Žƒ ‘•–”—œ‹‘‡ †‹ ƒ”–‡ †‹ ‘–”‘ŽŽ‘Ǥ ǯ‹†‡ƒ †‹ ˆ‘†‘ “—‡ŽŽƒ †‹ ”‹ ‘””‡”‡ƒŽŽ‡ ƒ”–‡†‹ ‘–”‘ŽŽ‘ȋ𒑐‡–‹ƒŽŽ›‡‹‰Š–‡†‘˜‹‰˜‡”ƒ‰‡Ȍ „ƒ•ƒ–‡•—‹”‡•‹†—‹’‡”†ƒ–‹ƒ—–‘ ‘””‡Žƒ–‹ǡ‹’”‡•‡œƒ†‹‹ ‡”–‡œœƒ•—Ž‘†‡ŽŽ‘Ǥ

(56)  ƒŽ–”‹ ƒ„‹–‹ ƒ’’Ž‹ ƒ–‹˜‹ ‡̵ •–ƒ–‘ †‹‘•–”ƒ–‘ Ї Žƒ˜‘”ƒ”‡ ‘ •–‹ƒ–‘”‹ ‡‘ †‹•–‘”–‹ †‡‰Ž‹ —•—ƒŽ‹ǡ ‹’‹‡‰ƒ–‹ ’‡” Žƒ •–‹ƒ †‡‹ ’ƒ”ƒ‡–”‹ †‹ ‘†‡ŽŽ‹ ƒ—–‘”‡‰”‡••‹˜‹ȋȌ‡†‹‘†‡ŽŽ‹ƒ—–‘”‡‰”‡••‹˜‹ƒ‡†‹ƒ‘„‹Ž‡ȋȌǡ’‘”–ƒƒ ”‹•—Ž–ƒ–‹•—’‡”‹‘”‹Ǥ‡”–ƒ–‘Ž‘• ‘’‘†‹“—‡•–‘Žƒ˜‘”‘ ‘•‹•–‡‡ŽŽ̵ƒƒŽ‹œœƒ”‡•‡ — ‡˜‡–—ƒŽ‡ ‘””‡œ‹‘‡ †‡‰Ž‹ •–‹ƒ–‘”‹ǡ ’‘••ƒ ’‘”–ƒ”‡ ƒ ‘ Ž—•‹‘‹ ‹‰Ž‹‘”‹ ƒ Ї‡Ž ƒ•‘†‡ŽŽ‡ ƒ’’Ž‹ ƒœ‹‘‹ƒŽ ‘–”‘ŽŽ‘ †‹“—ƒŽ‹–Ǥ‡Žƒ’‹–‘Ž‘ͳ•ƒ”ƒ‘ –”ƒ––ƒ–‹‘†‡ŽŽ‹’‡”ŽǯƒƒŽ‹•‹†‡ŽŽ‡•‡”‹‡–‡’‘”ƒŽ‹ǡ ‘‹”‡Žƒ–‹˜‹‡–‘†‹†‹•–‹ƒ‡ ’”‡˜‹•‹‘‡Ǥ ‡Žƒ’‹–‘Ž‘ ʹ•ƒ”ƒ‘‹–”‘†‘––‹ ‘ ‡––‹ˆ‘†ƒ‡–ƒŽ‹•—ŽŽƒ–‡‘”‹ƒ †‡Ž‘–”‘ŽŽ‘–ƒ–‹•–‹ ‘†‹—ƒŽ‹–ȋȌ‡–”ƒ“—‡•–‹ǡ‹ƒ‹‡”ƒƒ’’”‘ˆ‘†‹–ƒǡއ ƒ”–‡ †‹ ‘–”‘ŽŽ‘  ‡ އ Ž‘”‘ ’”‘’”‹‡–Ǥ

(57)  •‡‰—‹–‘ ‡Ž ƒ’‹–‘Ž‘ ͵ •ƒ” ’”‡•‡–‡—ǯƒ”‰‘‡–ƒœ‹‘‡•—ŽŽ‡’”‘’”‹‡–†‡‰Ž‹•–‹ƒ–‘”‹ƒ—–‘”‡‰”‡••‹˜‹—•—ƒŽ‹ ‡ •ƒ”ƒ‘ ’”‘’‘•–‹ •–‹ƒ–‘”‹ ƒŽ–‡”ƒ–‹˜‹ ’‡” Žƒ ‘””‡œ‹‘‡ †‡ŽŽƒ †‹•–‘”•‹‘‡Ǥ

(58) ˆ‹‡ ‡Ž ƒ’‹–‘Ž‘ Ͷ ˜‡””ƒ‘ ƒƒŽ‹œœƒ–‹ ‡ †‹• —••‹ ‹ ”‹•—Ž–ƒ–‹ †‡ŽŽ‡ •‹—Žƒœ‹‘‹ •˜‘Ž–‡ǡ ‡ŽŽ‡ “—ƒŽ‹ ‰Ž‹ •–‹ƒ–‘”‹ –”ƒ†‹œ‹‘ƒŽ‹ †‡‹ ’ƒ”ƒ‡–”‹ ƒ—–‘”‡‰”‡••‹˜‹ •‘‘ •–ƒ–‹‡••‹ƒ ‘ˆ”‘–‘ ‘“—‡ŽŽ‹’”‘’‘•–‹ƒŽ ƒ’‹–‘Ž‘’”‡ ‡†‡–‡Ǥ          ϰ.

(59) ƒ’‹–‘Ž‘ͳ ‘†‡ŽŽ‹’‡”ŽǯƒƒŽ‹•‹†‡ŽŽ‡•‡”‹‡–‡’‘”ƒŽ‹    ͳǤͳ

(60) †‡–‹ˆ‹ ƒœ‹‘‡†‹—’”‘ ‡••‘•–‘ ƒ•–‹ ‘

(61) †ƒ–‹ƒ —‹˜‡‰‘‘ƒ’’Ž‹ ƒ–‡އ–‡ ‹ Ї‹ˆ‡”‡œ‹ƒŽ‹ Ї ‘’‘‰‘‘‹Ž„ƒ‰ƒ‰Ž‹‘ †‹ —‘ •–ƒ–‹•–‹ ‘ ’‘••‘‘ ‡••‡”‡ †‹ †—‡ –‹’‹ǣ ”‘••Ǧ•‡ –‹‘ǡ ‡Ž ƒ•‘ ‹ —‹ އ ‘••‡”˜ƒœ‹‘‹†‹ —‹†‹•’‘‹ƒ‘•‹ƒ‘”‡Žƒ–‹˜‡ƒ†‹†‹˜‹†—‹†‹˜‡”•‹ǡ‘’’—”‡•‡”‹‡ •–‘”‹ Їǡ “—ƒ†‘ ‹Ö Ї ƒ„„‹ƒ‘ •‘‘ ‘••‡”˜ƒœ‹‘‹ǡ •— —ƒ ‘ ’‹î ‰”ƒ†‡œœ‡ǡ ’”‘–”ƒ––‡‡Ž–‡’‘ͳǤ‡Ž’”‹‘ ƒ•‘ǡ’‡”‡•‡’‹‘ǡ’‡•ƒ”‡ƒ†—‹•‹‡‡†‹ †ƒ–‹ ‘••‡”˜ƒ–‹ ‘‡ —ƒ †‡ŽŽ‡ ’‘••‹„‹Ž‹ ”‡ƒŽ‹œœƒœ‹‘‹ †‹  ˜ƒ”‹ƒ„‹Ž‹ ƒ•—ƒŽ‹ ‹†‹’‡†‡–‹‡†‹†‡–‹ Ї‘°—ǯ‹’‘–‡•‹–”‘’’‘‹•‘•–‡‹„‹Ž‡Ǥ‡”‹Ž‡˜‘’‡•‘‡ •–ƒ–—”ƒ†‹‹†‹˜‹†—‹ǡ‘ ǯ°”ƒ‰‹‘‡†‹’‡•ƒ”‡ Їǣ ͳǤ އ ƒ”ƒ––‡”‹•–‹ Їˆ‹•‹ Ї†‡ŽŽǯ‹Ǧ‡•‹‘‹†‹˜‹†—‘•‹ƒ‘‹“—ƒŽ Ї‘†‘ ‘‡••‡ƒ“—‡ŽŽ‡†‡‰Ž‹ƒŽ–”‹‹†‹˜‹†—‹ȋ‹†‹’‡†‡œƒȌǢ ʹǤ Žƒ ”‡Žƒœ‹‘‡ ˆ”ƒ ’‡•‘ ‡ ƒŽ–‡œœƒ Ї ˜ƒŽ‡ ’‡” Žǯ‹Ǧ‡•‹‘ ‹†‹˜‹†—‘ •‹ƒ †‹˜‡”•ƒ†ƒ“—‡ŽŽƒ Ї˜ƒŽ‡’‡”–—––‹‰Ž‹ƒŽ–”‹ȋ‹†‡–‹ ‹–ȌǤ

(62) “—‡•–‹ ƒ•‹ǡ ‹•‡”˜‹ƒ‘†‡Ž ‘ ‡––‘†‹”‡ƒŽ‹œœƒœ‹‘‡†‹—ƒ˜ƒ”‹ƒ„‹Ž‡ ƒ•—ƒŽ‡ ‘‡‡–ƒˆ‘”ƒ†‡ŽŽǯ‹Ǧ‡•‹ƒ‘••‡”˜ƒœ‹‘‡ǡ‡Žǯƒ’’ƒ”ƒ–‘‹ˆ‡”‡œ‹ƒŽ‡ƒ’’”‘’”‹ƒ–‘° —‰—ƒŽ‡ƒ“—‡ŽŽ‘•–ƒ†ƒ”†ǡ‹ —‹Žǯ‹†‹’‡†‡œƒ‡Žǯ‹†‡–‹ ‹– ‹ ‘•‡–‘‘†‹†‹”‡ Ї . ˆ ȋ šͳ ǡ…ǡ š  Ȍ = ∏ ˆ ȋ š ‹ Ȍ  ‹ =ͳ.  ͳ. †‹”Žƒ˜‡”‹–ǡ— ƒ•‘‹–‡”‡†‹‘°†ƒ–‘†ƒ‹ ‘•‹††‡––‹†ƒ–‹’ƒ‡Žǡƒ‘ ‡‡‘ —’‹ƒ‘“—‹Ǥ.  ϱ.

(63)  ‹‘° Ї Žƒ ˆ—œ‹‘‡ †‹ †‡•‹– †‡Ž ‘•–”‘ ƒ’‹‘‡ ° •‡’Ž‹ ‡‡–‡ Žƒ ’”‘†—––‘”‹ƒ†‡ŽŽ‡ˆ—œ‹‘‹†‹†‡•‹–†‡ŽŽ‡•‹‰‘އ‘••‡”˜ƒœ‹‘‹ȋއ“—ƒŽ‹ˆ—œ‹‘‹ •‘‘ –—––‡ —‰—ƒŽ‹ȌǤ ‘–ƒ–‡ Ї “—‡•–‘ –‹’‘ †‹ ”ƒ‰‹‘ƒ‡–‘ ° ’‡”ˆ‡––ƒ‡–‡ ƒ’’”‘’”‹ƒ–‘‡ŽŽƒƒ‰‰‹‘”’ƒ”–‡†‡‹ ƒ•‹‹ —‹‹†ƒ–‹†ƒ‘‹‘••‡”˜ƒ–‹’”‘˜‡‰ƒ‘ †ƒ—‡•’‡”‹‡–‘ ‘–”‘ŽŽƒ–‘ǡ†‡Ž–‹’‘†‹“—‡ŽŽ‹ Ї—•ƒ‘‹‡†‹ ‹‘‹„‹‘Ž‘‰‹Ǥ

(64) Ž ƒ•‘†‡ŽŽ‡•‡”‹‡–‡’‘”ƒŽ‹ǡ–—––ƒ˜‹ƒǡ’”‡•‡–ƒ—ƒ†‹ˆˆ‡”‡œƒ ‘ ‡––—ƒŽ‡†‹„ƒ•‡ Ї ”‹ Š‹‡†‡ —ƒ ‡•–‡•‹‘‡ †‡‹ ‘ ‡––‹ ’”‘„ƒ„‹Ž‹•–‹ ‹ †ƒ —–‹Ž‹œœƒ”‡Ǥ —‡•–ƒ †‹ˆˆ‡”‡œƒ ‘•‹•–‡ ‡Ž ˆƒ––‘ Ї ‹Ž –‡’‘ Šƒ —ƒ †‹”‡œ‹‘‡ǡ ‡ “—‹†‹ ‡•‹•–‡ Žƒ •–‘”‹ƒǤ

(65)  — ‘–‡•–‘ †‹ •‡”‹‡ •–‘”‹ Їǡ ‹ˆƒ––‹ǡ Žƒ ƒ–—”ƒŽ‡ –‡†‡œƒ †‹ ‘Ž–‹ ˆ‡‘‡‹ƒ†‡˜‘Ž˜‡”•‹‹‘†‘’‹î‘‡‘”‡‰‘Žƒ”‡’‘”–ƒƒ’‡•ƒ”‡ Ї‹Ž†ƒ–‘ ”‹Ž‡˜ƒ–‘‹—†ƒ–‘‹•–ƒ–‡–•‹ƒ’‹î•‹‹Ž‡ƒ“—‡ŽŽ‘”‹Ž‡˜ƒ–‘ƒŽŽǯ‹•–ƒ–‡–Ǧͳ’‹—––‘•–‘ Ї‹‡’‘ Ї†‹•–ƒ–‹Ǣ•‹’—Ö†‹”‡ǡ‹— ‡”–‘•‡•‘ǡ ЇŽƒ•‡”‹‡–‡’‘”ƒŽ‡ Ї ƒƒŽ‹œœ‹ƒ‘ Šƒ Dz‡‘”‹ƒ †‹ •±dzǤ —‡•–ƒ ƒ”ƒ––‡”‹•–‹ ƒ ° ‰‡‡”ƒŽ‡–‡ ‹†‹ ƒ–ƒ ‘ސ‘‡†‹’‡”•‹•–‡œƒʹǡ‡†‹ˆˆ‡”‡œ‹ƒ‹ ƒ’‹‘‹†‹•‡”‹‡•–‘”‹ Ї†ƒ“—‡ŽŽ‹ ”‘••Ǧ •‡ –‹‘ ‹ ƒ‹‡”ƒ ‡––ƒǡ ’‡” б ‡‹ ’”‹‹ Žǯ‘”†‹‡ †‡‹ †ƒ–‹ Šƒ —ǯ‹’‘”–ƒœƒ ˆ‘†ƒ‡–ƒŽ‡ǡ‡–”‡‡‹•‡ ‘†‹‡••‘°†‡Ž–—––‘‹””‹Ž‡˜ƒ–‡Ǥ‘•–”—‡–‘ Ї —–‹Ž‹œœ‹ƒ‘’‡”ˆƒ”ˆ”‘–‡ƒŽŽǯ‡•‹‰‡œƒ†‹–”‘˜ƒ”‡—ƒ‡–ƒˆ‘”ƒ’”‘„ƒ„‹Ž‹•–‹ ƒ’‡” އ•‡”‹‡–‡’‘”ƒŽ‹‘••‡”˜ƒ–‡°‹Ž’”‘ ‡••‘•–‘ ƒ•–‹ ‘Ǥƒ†‡ˆ‹‹œ‹‘‡†‹’”‘ ‡••‘ •–‘ ƒ•–‹ ‘ ‘ ”‹‰‘”‘•ƒǡ ƒ ‹–—‹–‹˜ƒǡ ’—Ö ‡••‡”‡ Žƒ •‡‰—‡–‡ǣ — ’”‘ ‡••‘ •–‘ ƒ•–‹ ‘ ° — ˜‡––‘”‡ ƒŽ‡ƒ–‘”‹‘ †‹ †‹‡•‹‘‡ ‹ˆ‹‹–ƒǤ  ƒ’‹‘‡ †‹  ‘••‡”˜ƒœ‹‘‹ ‘•‡ —–‹˜‡ ‡Ž –‡’‘ ‘ ˜‹‡‡ “—‹†‹ ’‡•ƒ–‘ –ƒ–‘ ‘‡ —ƒ ”‡ƒŽ‹œœƒœ‹‘‡ †‹  ˜ƒ”‹ƒ„‹Ž‹ ƒ•—ƒŽ‹ †‹•–‹–‡ǡ “—ƒ–‘ ’‹—––‘•–‘ ‘‡ ’ƒ”–‡ †‹ —ǯ—‹ ƒ”‡ƒŽ‹œœƒœ‹‘‡†‹—’”‘ ‡••‘•–‘ ƒ•–‹ ‘ǡŽƒ —‹‡‘”‹ƒ°†ƒ–ƒ†ƒŽ‰”ƒ†‘ †‹ ‘‡••‹‘‡ˆ”ƒއ˜ƒ”‹ƒ„‹Ž‹ ƒ•—ƒŽ‹ ЇŽ‘ ‘’‘‰‘‘Ǥƒ†‡ˆ‹‹œ‹‘‡ƒ’’‡ƒ †ƒ–ƒ ”‡†‡ ‘˜˜‹‡ —ƒ •‡”‹‡ †‹ ’”‘’”‹‡– †‡‹ ’”‘ ‡••‹ •–‘ ƒ•–‹ ‹ ’‹—––‘•–‘.  ʹ. 

(66)  ‡”–‹ ‘–‡•–‹ǡ˜‹‡‡†‡––ƒƒ Ї‹•–°”‡•‹ȋ‘‹•–‡”°•‹Ȍ’‡”‹†‹ ƒ”‡ ‹” ƒŽƒ•–‡••ƒ ‘•ƒǤ.  ϲ.

(67) ‹’‘”–ƒ–‹ ’‡” ‹Ž •‡‰—‹–‘ǣ †ƒ–‘ — ’”‘ ‡••‘ •–‘ ƒ•–‹ ‘ ‹Ž —‹ –Ǧ‡•‹‘ ‡Ž‡‡–‘ ‹†‹ Š‹ƒ‘ ‘ xt ǡ ͳǤ ° ’‘••‹„‹Ž‡ †‡ˆ‹‹”‡ ‘ ‡––—ƒŽ‡–‡ —ƒ ˆ—œ‹‘‡ †‹ †‡•‹– ’‡” ‹Ž ’”‘ ‡••‘ f (..., xt -1 , xt , xt +1 ,...) Ǣ ʹǤ °’‘••‹„‹Ž‡ƒ”‰‹ƒŽ‹œœƒ”‡–ƒŽ‡ˆ—œ‹‘‡†‹†‡•‹–’‡”‘‰‹•‘––‘‹•‹‡‡ †‡ŽŽ‡•—‡ ‘’‘‡–‹Ǣ†ƒ“—‡•–‘ ‘•‡‰—‡ Ї•‘‘†‡ˆ‹‹–‡އˆ—œ‹‘‹†‹ †‡•‹– ƒ”‰‹ƒŽ‹ ’‡” ‘‰—ƒ †‡ŽŽ‡ xt ǡ ƒ ƒ Ї ’‡” ‘‰‹ ‘’’‹ƒ †‹ ‡Ž‡‡–‹ ( xt , xt +1 )  ‡ ‘•¿ ˜‹ƒǢ ‹Ž ˆƒ––‘ ’‘‹ Ї އ ‘••‡”˜ƒœ‹‘‹ ‘ •‹ƒ‘ ‹†‹’‡†‡–‹ ˆ”ƒ Ž‘”‘ ˆƒ •¿ Ї Žƒ †‡•‹– †‡Ž ƒ’‹‘‡ ‘ •‹ ’—Ö ’‹î ”ƒ’’”‡•‡–ƒ”‡ ‘‡—ƒ•‡’Ž‹ ‡’”‘†—––‘”‹ƒ†‡ŽŽ‡ƒ”‰‹ƒŽ‹Ǣ ͵Ǥ •‡ އ ˆ—œ‹‘‹ †‹ †‡•‹– ƒ”‰‹ƒŽ‹ Šƒ‘ ‘‡–‹ǡ ° ’‘••‹„‹Ž‡ †‹”‡ǡ ƒ† ‡•‡’‹‘ǡ Ї E ( xt ) = µ t , Var ( xt ) = σ t , Cov ( xt , xt -1 ) = γ t ,t −1 ‡ ‘•¿˜‹ƒǢ 2. ͶǤ ƒŽŽ‘ •–‡••‘ ‘†‘ǡ ° ’‘••‹„‹Ž‡ †‡ˆ‹‹”‡ ˆ—œ‹‘‹ †‹ †‡•‹– ȋ ‘‹ ”‡Žƒ–‹˜‹ ‘‡–‹Ȍ ‘†‹œ‹‘ƒŽ‹Ǥ ‡ ’”‘’”‹‡– ƒ’’‡ƒ †‡• ”‹––‡ ˆƒ‘ ”‹ˆ‡”‹‡–‘ ƒ‹ ’”‘ ‡••‹ •–‘ ƒ•–‹ ‹ ‘‡ •–”—––—”‡ ’”‘„ƒ„‹Ž‹•–‹ ЇǤ —ƒ†‘ ’‡”Ö ˜‘‰Ž‹ƒ‘ —–‹Ž‹œœƒ”‡ “—‡•–‡ •–”—––—”‡ ‘‡„ƒ•‡’‡”’”‘ ‡†—”‡‹ˆ‡”‡œ‹ƒŽ‹ǡ•‹ƒ’”‘‘†—‡’”‘„އ‹ǣ ͳǤ ‡ “—‡ŽŽƒ Ї ‘••‡”˜‘ ȋ’‡”ƒŽ–”‘ ‘ ‡ŽŽƒ •—ƒ ‹–‡”‡œœƒȌ ° —ƒ •‘Žƒ ”‡ƒŽ‹œœƒœ‹‘‡ †‡ŽŽ‡ ‘Ž–‡ ’‘••‹„‹Ž‹ǡ Žƒ ’‘••‹„‹Ž‹– Ž‘‰‹ ƒ †‹ ˆƒ”‡ ‹ˆ‡”‡œƒ •—Ž ’”‘ ‡••‘ ‘ ’—Ö ‡••‡”‡ †ƒ–ƒ ’‡” • ‘–ƒ–ƒǢ ‹ˆƒ––‹ǡ ‘ ǯ° ‘†‘ †‹ †‹”‡ “—ƒŽ‹ ƒ”ƒ––‡”‹•–‹ Ї †‡ŽŽƒ •‡”‹‡ ‘••‡”˜ƒ–ƒ •‘‘ •’‡ ‹ˆ‹ Ї †‹ “—‡ŽŽƒ ”‡ƒŽ‹œœƒœ‹‘‡ǡ ‡ “—ƒŽ‹ ‹˜‡ ‡ •‹ ”‹’”‡•‡–‡”‡„„‡”‘ ƒ Ї ‘••‡”˜ƒ†‘‡ ƒŽ–”‡Ǥ ʹǤ ‡ ƒ Ї ˆ‘••‡ ’‘••‹„‹Ž‡ —•ƒ”‡ —ƒ •‘Žƒ ”‡ƒŽ‹œœƒœ‹‘‡ ’‡” ˆƒ”‡ ‹ˆ‡”‡œƒ •—ŽŽ‡ ƒ”ƒ––‡”‹•–‹ Ї †‡Ž ’”‘ ‡••‘ǡ ° ‡ ‡••ƒ”‹‘ Ї ‡••‘ •‹ƒ •–ƒ„‹Ž‡ ‡Ž.  ϳ.

(68) –‡’‘ǡ ‹‘° Ї‹•—‘‹ ‘‘–ƒ–‹’”‘„ƒ„‹Ž‹•–‹ ‹’‡”ƒ‰ƒ‘‹˜ƒ”‹ƒ–‹ǡ’‡” Ž‘‡‘ƒŽŽǯ‹–‡”‘†‡Ž‹‘‹–‡”˜ƒŽŽ‘†‹‘••‡”˜ƒœ‹‘‡Ǥ —‡•–‡†—‡“—‡•–‹‘‹ ‘†— ‘‘ƒŽŽƒ†‡ˆ‹‹œ‹‘‡†‹†—‡’”‘’”‹‡– Ї‹’”‘ ‡••‹ •–‘ ƒ•–‹ ‹ ’‘••‘‘ ƒ˜‡”‡ ‘ ‘ ƒ˜‡”‡ǣ •–ƒœ‹‘ƒ”‹‡– ‡† ‡”‰‘†‹ ‹–Ǥ ‹ ’ƒ”Žƒ †‹ ’”‘ ‡••‘ •–‘ ƒ•–‹ ‘ •–ƒœ‹‘ƒ”‹‘ ‹ †—‡ •‡•‹ǣ •–ƒœ‹‘ƒ”‹‡– ˆ‘”–‡ ȋƒ Ї †‡––ƒ •–”‡––ƒȌ ‡ •–ƒœ‹‘ƒ”‹‡– †‡„‘އǤ ‡” †‡ˆ‹‹”‡ Žƒ •–ƒœ‹‘ƒ”‹‡– ˆ‘”–‡ǡ ’”‡†‹ƒ‘ ‹ ‡•ƒ‡ — •‘––‘‹•‹‡‡ “—ƒŽ—“—‡ †‡ŽŽ‡ ˜ƒ”‹ƒ„‹Ž‹ ƒ•—ƒŽ‹ Ї ‘’‘‰‘‘ ‹Ž ’”‘ ‡••‘Ǣ “—‡•–‡ ‘ †‡˜‘‘ ‡ ‡••ƒ”‹ƒ‡–‡ ‡••‡”‡ ‘•‡ —–‹˜‡ǡ ƒ ’‡” ƒ‹—–ƒ”‡ Žǯ‹–—‹œ‹‘‡ǡ ˆƒ ‹ƒ‘ ˆ‹–ƒ Ї Ž‘ •‹ƒ‘Ǥ ‘•‹†‡”‹ƒ‘ ’‡” ‹Ö —ƒ Dzˆ‹‡•–”ƒdz ƒ’‡”–ƒ •—Ž ’”‘ ‡••‘ †‹ ƒ’‹‡œœƒ ǡ ‘••‹ƒ — •‘––‘‹•‹‡‡ †‡Ž –‹’‘ k. Wt = ( xt ,..., xt + k -1 ) Ǥ —‡•–ƒ ° ƒ–—”ƒŽ‡–‡ —ƒ ˜ƒ”‹ƒ„‹Ž‡ ƒ•—ƒŽ‡ ƒ  †‹‡•‹‘‹ǡ. ‘—ƒ•—ƒˆ—œ‹‘‡†‹†‡•‹– Їǡ‹‰‡‡”ƒŽ‡ǡ’—Ö†‹’‡†‡”‡†ƒ–Ǥ‡’‡”Ö ‹Ö k. k. k. ‘ƒ ƒ†‡ǡƒŽŽ‘”ƒŽƒ†‹•–”‹„—œ‹‘‡†‹ Wt °—‰—ƒŽ‡ƒ“—‡ŽŽƒ†‹ Wt +1 ǡ Wt + 2 ‡ ‘•¿˜‹ƒǤ ‹ƒ‘ ‹ ’”‡•‡œƒ †‹ •–ƒœ‹‘ƒ”‹‡– ˆ‘”–‡ “—ƒ†‘ “—‡•–ƒ ‹˜ƒ”‹ƒœƒ ˜ƒŽ‡ ’‡” “—ƒŽ•‹ƒ•‹ Ǥ

(69)  ƒŽ–”‹ –‡”‹‹ǡ “—ƒ†‘ — ’”‘ ‡••‘ ° •–ƒœ‹‘ƒ”‹‘ ‹ •‡•‘ ˆ‘”–‡ އ ƒ”ƒ––‡”‹•–‹ Ї†‹•–”‹„—œ‹‘ƒŽ‹†‹–—––‡އƒ”‰‹ƒŽ‹”‹ƒ‰‘‘ ‘•–ƒ–‹ƒŽ’ƒ••ƒ”‡ †‡Ž–‡’‘Ǥƒ•–ƒœ‹‘ƒ”‹‡–†‡„‘އǡ‹˜‡ ‡ǡ”‹‰—ƒ”†ƒ•‘Ž‘ˆ‹‡•–”‡†‹ƒ’‹‡œœƒʹǣ 2. •‹ Šƒ •–ƒœ‹‘ƒ”‹‡– †‡„‘އ •‡ –—––‡ އ ˜ƒ”‹ƒ„‹Ž‹ ƒ•—ƒŽ‹ †‘’’‹‡ Wt = ( xt , xt + k ) ǡ Šƒ‘ ‘‡–‹ ’”‹‹ ‡ •‡ ‘†‹ ‘•–ƒ–‹ ‡Ž –‡’‘͵Ǣ †ƒ “—‡•–‘ †‹• ‡†‡ Ї ‡•‹•–‘‘ ƒ Ї–—––‹‹ ‘‡–‹•‡ ‘†‹‹ ”‘ ‹ƒ–‹ E ( xt ⋅ xt + k ) ‘  “—ƒŽ—“—‡ǡ ‡ ƒ Šǯ‡••‹‘†‹’‡†‘‘†ƒ–ȋƒ Ї•‡’‘••‘‘†‹’‡†‡”‡†ƒȌǤ†‹•’‡––‘†‡‹ ‘‹ǡ —ƒ †‡ˆ‹‹œ‹‘‡ ‘ ‹’Ž‹ ƒ ŽǯƒŽ–”ƒǢ ƒ† ‡•‡’‹‘ǡ — ’”‘ ‡••‘ ’—Ö ‡••‡”‡ •–ƒœ‹‘ƒ”‹‘‹•‡•‘ˆ‘”–‡ƒ‘’‘••‡†‡”‡‘‡–‹Ǣ˜‹ ‡˜‡”•ƒǡŽƒ ‘•–ƒœƒ‡Ž –‡’‘ †‡‹ ‘‡–‹ ‘ ‹’Ž‹ ƒ Ї އ ˜ƒ”‹‡ ƒ”‰‹ƒŽ‹ ƒ„„‹ƒ‘ Žƒ •–‡••ƒ †‹•–”‹„—œ‹‘‡Ǥ

(70)  — ƒ•‘ǡ –—––ƒ˜‹ƒǡ އ †—‡ †‡ˆ‹‹œ‹‘‹ ‘‹ ‹†‘‘ǣ “—‡•–‘ ƒ•‘ǡ ’ƒ”–‹ ‘Žƒ”‡–‡ ‹’‘”–ƒ–‡ ’‡” އ ƒ’’Ž‹ ƒœ‹‘‹ ’”ƒ–‹ Їǡ ° “—‡ŽŽ‘ ‹ —‹ ‹Ž  ͵. 1’‡”“—‡•–‘‘–‹˜‘ ЇŽƒ•–ƒœ‹‘ƒ”‹‡–†‡„‘އ˜‹‡‡ƒ Ї†‡ˆ‹‹–ƒ•–ƒœ‹‘ƒ”‹‡–‹ ‘˜ƒ”‹ƒœƒǤ.  ϴ.

(71) ’”‘ ‡••‘°‰ƒ—••‹ƒ‘ǡ‘••‹ƒ“—ƒ†‘Žƒ†‹•–”‹„—œ‹‘‡ ‘‰‹—–ƒ†‹— “—ƒŽ—“—‡ •‘––‘‹•‹‡‡ †‹ ‡Ž‡‡–‹ †‡Ž ’”‘ ‡••‘ ° —ƒ ‘”ƒŽ‡ —Ž–‹˜ƒ”‹ƒ–ƒǤ ‡ — ’”‘ ‡••‘ ° ‰ƒ—••‹ƒ‘ǡ •–ƒ„‹Ž‹”‡ Ї ° •–ƒœ‹‘ƒ”‹‘ ‹ •‡•‘ †‡„‘އ ‡“—‹˜ƒŽ‡ ƒ •–ƒ„‹Ž‹”‡Žƒ•–ƒœ‹‘ƒ”‹‡–‹•‡•‘ˆ‘”–‡Ǥƒ–ƒŽƒ’‡”˜ƒ•‹˜‹–†‡‹’”‘ ‡••‹‰ƒ—••‹ƒ‹ ‡ŽŽ‡ƒ’’Ž‹ ƒœ‹‘‹ƒ‹†ƒ–‹ǡ†ƒ—’—–‘†‹˜‹•–ƒ‘’‡”ƒ–‹˜‘•‹ƒ†‘––ƒ‰‡‡”ƒŽ‡–‡ Žƒ †‡ˆ‹‹œ‹‘‡ †‹ •–ƒœ‹‘ƒ”‹‡– †‡„‘އǡ ‡ “—ƒ†‘ •‹ ’ƒ”Žƒ †‹ •–ƒœ‹‘ƒ”‹‡– •‡œƒ ƒ‰‰‡––‹˜‹ǡ°ƒ’’—–‘ƒ“—‡•–ƒ Ї ‹•‹”‹ˆ‡”‹• ‡Ǥ ‡” “—ƒ–‘ ”‹‰—ƒ”†ƒ Žǯ‡”‰‘†‹ ‹–ǡ ° —ƒ ‘†‹œ‹‘‡ Ї Ž‹‹–ƒ Žƒ ‡‘”‹ƒ †‡Ž ’”‘ ‡••‘ǣ — ’”‘ ‡••‘ ‘ ‡”‰‘†‹ ‘ ° — ’”‘ ‡••‘ Ї Šƒ ƒ”ƒ––‡”‹•–‹ Ї †‹ ’‡”•‹•–‡œƒ ‘•¿ƒ ‡–—ƒ–‡†ƒˆƒ”•¿ Ї—•‡‰‡–‘†‡Ž’”‘ ‡••‘ǡ’‡”“—ƒ–‘ Ž—‰‘ǡ•‹ƒ‹•—ˆˆ‹ ‹‡–‡ƒ†‹”‡ƒŽ — б•—ŽŽ‡•—‡ ƒ”ƒ––‡”‹•–‹ Ї†‹•–”‹„—–‹˜‡Ǥ

(72) — ’”‘ ‡••‘ ‡”‰‘†‹ ‘ǡ ƒŽ ‘–”ƒ”‹‘ǡ Žƒ ‡‘”‹ƒ †‡Ž ’”‘ ‡••‘ ° †‡„‘އ •— Ž—‰Š‹ ‘”‹œœ‘–‹ ‡ ƒŽŽǯƒ—‡–ƒ”‡ †‡ŽŽǯƒ’‹‡œœƒ †‡Ž ƒ’‹‘‡ ƒ—‡–ƒ ‹ ‘†‘ •‹‰‹ˆ‹ ƒ–‹˜‘ƒ ЇŽǯ‹ˆ‘”ƒœ‹‘‡‹‘•–”‘’‘••‡••‘Ǥ ‡ ‘†‹œ‹‘‹ •‘––‘ އ “—ƒŽ‹ — ’”‘ ‡••‘ •–‘ ƒ•–‹ ‘ •–ƒœ‹‘ƒ”‹‘ ° ‡”‰‘†‹ ‘ •‘‘ –”‘’’‘ ‘’އ••‡’‡”‡••‡”‡†‡• ”‹––‡„”‡˜‡‡–‡Ǥ‘•–ƒœ‹ƒŽ‡–‡ǡ•‹’—Ö†‹”‡ Ї—’”‘ ‡••‘°‡”‰‘†‹ ‘•‡‡˜‡–‹Ž‘–ƒ‹ˆ”ƒŽ‘”‘’‘••‘‘‡••‡”‡ ‘•‹†‡”ƒ–‹ ‹†‹’‡†‡–‹Ǣ‘••‡”˜ƒ†‘‹Ž’”‘ ‡••‘’‡”—Žƒ••‘†‹–‡’‘ƒ„„ƒ•–ƒœƒŽ—‰‘ǡ° ’‘••‹„‹Ž‡ ‘••‡”˜ƒ”‡ “—ƒ•‹ –—––‡ އ •‘––‘•‡“—‡œ‡ Ї ‹Ž ’”‘ ‡••‘ ° ‹ ‰”ƒ†‘ †‹ ‰‡‡”ƒ”‡Ǥ

(73) Ž ˆƒ––‘ Ї ‡˜‡–‹ Ž‘–ƒ‹ ˆ”ƒ Ž‘”‘ ‡Ž –‡’‘ ’‘••ƒ‘ ‡••‡”‡ ‘•‹†‡”ƒ–‹ ‹†‹’‡†‡–‹ †ƒ — ’—–‘ †‹ ˜‹•–ƒ ’”ƒ–‹ ‘ ° ’‘‹ •’‡••‘ •‹–‡–‹œœƒ–‘ ‡ŽŽƒ •‡‰—‡–‡ ’”‘’”‹‡– †‡‹ ’”‘ ‡••‹ ‡”‰‘†‹ ‹ ȋ Ї ƒ ˜‘Ž–‡ ˜‹‡‡ —•ƒ–ƒ ‘‡ †‡ˆ‹‹œ‹‘‡†‹’”‘ ‡••‘‡”‰‘†‹ ‘Ȍǣ  1 n ∑ Cov ( xt , xt -k ) = 0  n →+∞ n k =1 lim. 

(74) Ž‹‡ƒ†‹’”‹ ‹’‹‘‡ ‘•‡‰—‡ Їǡ•‡—’”‘ ‡••‘°‡”‰‘†‹ ‘ǡ°’‘••‹„‹Ž‡—•ƒ”‡ އ ‹ˆ‘”ƒœ‹‘‹ ‘–‡—–‡ ‡Ž •—‘ •˜‘މ‹‡–‘ ‡Ž –‡’‘ ’‡” ‹ˆ‡”‹”‡ އ ƒ”ƒ––‡”‹•–‹ ЇǤ•‹•–‡—–‡‘”‡ƒȋ–‡‘”‡ƒ‡”‰‘†‹ ‘†‹Ž—–•›Ȍ Ї†‹ ‡ Їǡ•‡  ϵ.

(75) —’”‘ ‡••‘°‡”‰‘†‹ ‘ǡŽǯ‘••‡”˜ƒœ‹‘‡†‹—ƒ•—ƒ”‡ƒŽ‹œœƒœ‹‘‡ƒ„„ƒ•–ƒœƒŽ—‰ƒ ° ‡“—‹˜ƒŽ‡–‡ǡ ƒ‹ ˆ‹‹ ‹ˆ‡”‡œ‹ƒŽ‹ǡ ƒŽŽǯ‘••‡”˜ƒœ‹‘‡ †‹ — ‰”ƒ —‡”‘ †‹ ”‡ƒŽ‹œœƒœ‹‘‹Ǥ‡ǡƒ†‡•‡’‹‘ǡ—’”‘ ‡••‘‡”‰‘†‹ ‘ xt Šƒ˜ƒŽ‘”‡ƒ––‡•‘ρǡƒŽŽ‘”ƒ Žƒ•—ƒ‡†‹ƒƒ”‹–‡–‹ ƒ‡Ž–‡’‘°—‘•–‹ƒ–‘”‡ ‘•‹•–‡–‡†‹ρ‡“—‹†‹’—Ö ‡••‡”‡•–‹ƒ–‘‹‘†‘ ‘•‹•–‡–‡ ‘‡•‡†‹•’‘‡••‹‘†‹‘Ž–‡”‡ƒŽ‹œœƒœ‹‘‹ †‡Ž’”‘ ‡••‘ƒœ‹ ᆋ—ƒ•‘ŽƒǤ

(76) Ž‹‡ƒ‰‡‡”ƒŽ‡ǡ•‹’—Ö†‹”‡ ЇŽǯ‹ˆ‡”‡œƒ° ’‘••‹„‹Ž‡ •‘Ž‘ •‡ ‹Ž ’”‘ ‡••‘ •–‘ ƒ•–‹ ‘ Ї •‹ •–ƒ •–—†‹ƒ†‘ ° •–ƒœ‹‘ƒ”‹‘ ‡† ‡”‰‘†‹ ‘Ǥ ƒ †‡––‘ ’‡” ƒŽ–”‘ Їǡ •‡ ‡•‹•–‘‘ †‡‹ ‡–‘†‹ ’‡” •‘––‘’‘””‡ ƒ –‡•– Žǯ‹’‘–‡•‹ †‹ ‘ •–ƒœ‹‘ƒ”‹‡–ǡ Žǯ‹’‘–‡•‹ †‹ ‡”‰‘†‹ ‹– ‘ ° ˜‡”‹ˆ‹ ƒ„‹Ž‡ •‡ •‹ †‹•’‘‡†‹—ƒ•‘Žƒ”‡ƒŽ‹œœƒœ‹‘‡†‡Ž’”‘ ‡••‘ǡˆ‘••‡ƒ Ї†‹ƒ’‹‡œœƒ‹ˆ‹‹–ƒǤ ‡Ž ƒ•‘†‹’”‘ ‡••‹•–‘ ƒ•–‹ ‹•–ƒœ‹‘ƒ”‹ǡƒ˜”‡‘†—“—‡ Ї‘‰‹‡Ž‡‡–‘†‡Ž ’”‘ ‡••‘ xt  ƒ˜” — ˜ƒŽ‘”‡ ƒ––‡•‘ ˆ‹‹–‘ ‡ ‘•–ƒ–‡ ρ ‡ —ƒ ˜ƒ”‹ƒœƒ ˆ‹‹–ƒ ‡ ‘•–ƒ–‡ɐʹǤ

(77) ‘Ž–”‡ǡ”‹•—Ž–ƒ‘†‡ˆ‹‹–‡–—––‡އ ‘˜ƒ”‹ƒœ‡ˆ”ƒ‡Ž‡‡–‹†‹˜‡”•‹†‡Ž ’”‘ ‡••‘ǡ Ї•ƒ”ƒ‘’ƒ”‹ƒ γ k = E[( xt - µ )( xt -k - µ )] .  ‡ Ї •‘‘ ‘–‡ ‘‡ ƒ—–‘ ‘˜ƒ”‹ƒœ‡Ǥ ‹ ”‹ ‘”†‹ Ї Žƒ •–ƒœ‹‘ƒ”‹‡– ‰ƒ”ƒ–‹• ‡ Ї “—‡•–‡ “—ƒ–‹– ‘ •‘‘ ˆ—œ‹‘‹ †‹ –Ǣ ‡••‡ •‘‘ –—––ƒ˜‹ƒ ˆ—œ‹‘‹ †‹ ǡ ‡† ƒœ‹•‹’ƒ”Žƒ†‹ˆ—œ‹‘‡†‹ƒ—–‘ ‘˜ƒ”‹ƒœƒǡ‹–‡†‡†‘—ƒˆ—œ‹‘‡†‹–ƒŽ‡’‡” —‹ γ ( k ) = γ k Ǥƒ †ƒ •± Ї Žǯƒ—–‘ ‘˜ƒ”‹ƒœƒ †‹ ‘”†‹‡ Ͳ ‘ ° Ї Žƒ ˜ƒ”‹ƒœƒ ‡ ЇŽƒ†‡ˆ‹‹œ‹‘‡°–ƒŽ‡’‡” —‹ γ k = γ - k ǡ°˜‡”‹–‹‡”ƒǤŽŽ‘•–‡••‘‘†‘°’‘••‹„‹Ž‡ †‡ˆ‹‹”‡އƒ—–‘ ‘””‡Žƒœ‹‘‹ǡ Ї•‘‘†ƒ–‡†ƒ  ρ0 =. γk γ = k2  γ0 σ.  —‡•–‡“—ƒ–‹–ǡ•‡†‹˜‡”•‡†ƒͲǡ ‘•–‹–—‹• ‘‘Žƒ‡‘”‹ƒ†‡Ž’”‘ ‡••‘ǡ‡•‘‘ ƒ’’—–‘Žǯ‡Ž‡‡–‘ Ї”‡†‡‹’”‘ ‡••‹•–‘ ƒ•–‹ ‹Ž‘•–”—‡–‘–‡‘”‹ ‘ƒ†ƒ––‘ƒ.  ϭϬ.

(78) ”ƒ’’”‡•‡–ƒ”‡ •‡”‹‡ –‡’‘”ƒŽ‹ ƒ”ƒ––‡”‹œœƒ–‡ †ƒ ’‡”•‹•–‡œƒǤ

(79) ˆƒ––‹ǡ •‡ γ 1 ≠ 0 ǡ ƒŽŽ‘”ƒ•‹Šƒ Ї f ( x t xt -1 ) ≠ f ( x t ) .  ‡†‹ ‘•‡‰—‡œƒ E ( x t xt -1 ) ≠ E ( x t ) Ǥ.  ‘–”‡‘ ‡•–‡†‡”‡ Žǯ‹•‹‡‡ †‹ ˜ƒ”‹ƒ„‹Ž‹ ƒ•—ƒŽ‹ •— —‹ ‡ˆˆ‡––—‹ƒ‘ ‹Ž ‘†‹œ‹‘ƒ‡–‘ƒ Їƒ x t -2 ǡ x t -3 ‡ ‡–‡”ƒǤ—‡•–‘‹•‹‡‡†‹˜ƒ”‹ƒ„‹Ž‹ ƒ•—ƒŽ‹ ’”‡†‡ƒ˜‘Ž–‡‹Ž‘‡†‹•‡–‹ˆ‘”ƒ–‹˜‘ƒŽ–‡’‘–Ǧͳǡ‡˜‹‡‡‹†‹ ƒ–‘ ‘ I t -1 Ǥ                  .  ϭϭ.

(80) ͳǤʹ ‡‡•‹†‡‹’”‘ ‡••‹.

(81) ’”‘ ‡••‹ ‘•–‹–—‹• ‘‘Žƒˆƒ‹‰Ž‹ƒ†‹’”‘ ‡••‹•–‘ ƒ•–‹ ‹†‹‰”ƒŽ—‰ƒ’‹î —–‹Ž‹œœƒ–‹ ‹ •–ƒ–‹•–‹ ƒ ‡ ‘ •‘Ž‘Ǥ —‡•–ƒ • ‡Ž–ƒ Šƒ ”ƒ‰‹‘‹ –‡‘”‹ Ї ‡ ”ƒ‰‹‘‹ ’”ƒ–‹ Їǡ Ї•ƒ”ƒ‘‹ŽŽ—•–”ƒ–‡‡Ž•‡‰—‹–‘Ǥ”‹ƒ†‹ƒƒŽ‹œœƒ”‡އ ƒ”ƒ––‡”‹•–‹ Ї ’”‹ ‹’ƒŽ‹†‹–ƒŽ‹’”‘ ‡••‹ǡ–—––ƒ˜‹ƒǡ•‘‘‡ ‡••ƒ”‹‡ƒŽ —‡†‡ˆ‹‹œ‹‘‹†‹„ƒ•‡ǡ Ї ˆ‘”ƒ‘Žǯ‘‰‰‡––‘†‡ŽŽ‡’”‘••‹‡•‡œ‹‘‹Ǥƒ–‘‹’”‘ ‡••‹•–‘ ƒ•–‹ ‹ Їއ•‡”‹‡ –‡’‘”ƒŽ‹•‘‘ǡ‹„—‘ƒ•‘•–ƒœƒǡ•‡“—‡œ‡†‹—‡”‹Ǥƒ’‹–‡”‘Ž–‘•’‡••‘†‹ †‘˜‡” ƒ‹’‘Žƒ”‡ –ƒŽ‹ •‡“—‡œ‡ǡ ‡ Ž‘ •‹ ˆƒ” ’‡” ‡œœ‘ †‹ ƒ’’‘•‹–‹ ‘’‡”ƒ–‘”‹Ǥ ǯ‘’‡”ƒ–‘”‡ ”‹–ƒ”†‘ ȋ†‡––‘ ƒ Ї ‘’‡”ƒ–‘”‡ ƒ ™ƒ”†Ȍ ˜‹‡‡ ‰‡‡”ƒŽ‡–‡ ‹†‹ ƒ–‘ ‘Žƒއ––‡”ƒ‡ŽŽƒއ––‡”ƒ–—”ƒ•–ƒ–‹•–‹ ƒǢ°—‘’‡”ƒ–‘”‡ Ї•‹ƒ’’Ž‹ ƒ ƒ•‡“—‡œ‡†‹—‡”‹ǡ‡–”ƒ•ˆ‘”ƒ—ƒ•‡“—‡œƒ x t ‹—ƒŽ–”ƒ•‡“—‡œƒ ЇŠƒ Žƒ ƒ”ƒ––‡”‹•–‹ ƒ†‹ƒ˜‡”‡‰Ž‹•–‡••‹˜ƒŽ‘”‹†‹ x t ǡƒ•ˆƒŽ•ƒ–‹†‹—’‡”‹‘†‘Ǥ

(82) ˆƒ––‹‹ ˆ‘”—އǡ Bx t = x t -1 Ǥ.  ǯƒ’’Ž‹ ƒœ‹‘‡”‹’‡–—–ƒ˜‘Ž–‡†‹˜‹‡‡‹†‹ ƒ–ƒ ‘Žƒ• ”‹––—”ƒǡ‡“—‹†‹•‹ n. Šƒ B x t = xt -n Ǥ‡” ‘˜‡œ‹‘‡•‹’‘‡Ͳ αͳǤǯ‘’‡”ƒ–‘”‡°—‘’‡”ƒ–‘”‡†‹ –‹’‘Ž‹‡ƒ”‡‡Ž•‡•‘ Їǡ•‡ƒ‡„•‘‘ ‘•–ƒ–‹ǡ•‹Šƒ  B (ax t + b ) = aBx t + b = ax t -1 + b Ǥ.  ƒ ƒ”ƒ––‡”‹•–‹ ƒ ’‹î ‹–‡”‡••ƒ–‡ †‹ “—‡•–‘ ‘’‡”ƒ–‘”‡ ° Ї އ •—‡ ’”‘’”‹‡– ƒ’’‡ƒ ‡— ‹ƒ–‡ ’‡”‡––‘‘ǡ ‹ ‘Ž–‡ ‹” ‘•–ƒœ‡ǡ †‹ ƒ‹’‘Žƒ”Ž‘ ƒŽ‰‡„”‹ ƒ‡–‡ ‘‡•‡ˆ‘••‡——‡”‘Ǥ—‡•–‘ƒ˜˜‹‡‡•‘’”ƒ––—––‘“—ƒ†‘•‹ ‘•‹†‡”ƒ‘’‘Ž‹‘‹‡ŽŽǯ‘’‡”ƒ–‘”‡Ǥ ǯƒŽ–”ƒ †‡ˆ‹‹œ‹‘‡ †ƒ ‘ –”ƒŽƒ• ‹ƒ”‡ǡ ° “—ƒ†‘ — ’”‘ ‡••‘ •–‘ ƒ•–‹ ‘ ° †‡ˆ‹‹–‘™Š‹–‡‘‹•‡ȋDz”—‘”‡„‹ƒ ‘dzȌǤ—‡•–‘–‹’‘†‹’”‘ ‡••‘°‹Ž’‹î•‡’Ž‹ ‡ Ї•‹’—Ö‹ƒ‰‹ƒ”‡ǣ‹ˆƒ––‹ǡ°—’”‘ ‡••‘ Ї’‘••‹‡†‡‘‡–‹ƒŽ‡‘ˆ‹‘.  ϭϮ.

(83) ƒŽ •‡ ‘†‘ ‘”†‹‡Ǣ ‡••‹ •‘‘ ‘•–ƒ–‹ ‡Ž –‡’‘ ȋ“—‹†‹ ‹Ž ’”‘ ‡••‘ ° •–ƒœ‹‘ƒ”‹‘Ȍǡƒ‘†ƒ‘ƒŽ’”‘ ‡••‘ƒŽ —ƒ‡‘”‹ƒ†‹•±Ǥƒ•–‡••ƒ ‘•ƒ•‹ ’—Ö †‹”‡ ‹ ‘†‘ ’‹î ˆ‘”ƒŽ‹œœƒ–‘ ‘‡ •‡‰—‡ǣ — ’”‘ ‡••‘ ™Š‹–‡ ‘‹•‡ǡ ‹Ž —‹ ‡Ž‡‡–‘–Ǧ‡•‹‘‹†‹ Ї”‡‘ ‘ εt ǡ’”‡•‡–ƒ“—‡•–‡ ƒ”ƒ––‡”‹•–‹ Їǣ  E (ε t ) = µ E (ε t2 )=Var (ε t )=σ 2. γk = 0. . per k > 0.   ™Š‹–‡ ‘‹•‡ ° “—‹†‹ǡ ‹ •‘•–ƒœƒǡ — ’”‘ ‡••‘ ‘’‘•–‘ †‹ — —‡”‘ ‹ˆ‹‹–‘ †‹ ˜ƒ”‹ƒ„‹Ž‹ ƒ•—ƒŽ‹ ƒ ‡†‹ƒ œ‡”‘ ‡ ˜ƒ”‹ƒœƒ ‘•–ƒ–‡Ǣ “—‡•–‡ ˜ƒ”‹ƒ„‹Ž‹ ƒ•—ƒŽ‹ǡ ‹‘Ž–”‡ǡ •‘‘ –—––‡ ‹ ‘””‡Žƒ–‡ Žǯ—ƒ ƒŽŽǯƒŽ–”ƒǤ  ”‹‰‘”‡ǡ “—‡•–‘ ‘ •‹‰‹ˆ‹ ƒ Ї ‡••‡ •‹ƒ‘ ‹†‹’‡†‡–‹Ǥ ‡ ’‡”Ö •‹ ’ƒ”Žƒ †‹ ™Š‹–‡ ‘‹•‡ ‰ƒ—••‹ƒ‘ǡ ‘••‹ƒ †‹ — ™Š‹–‡ ‘‹•‡ ‹ —‹ Žƒ †‹•–”‹„—œ‹‘‡ ‘‰‹—–ƒ †‹ –—––‡ އ ‘’’‹‡ ȋ ε t ǡ ε t +k Ȍ•‹ƒ—ƒ‘”ƒŽ‡„‹˜ƒ”‹ƒ–ƒǡƒŽŽ‘”ƒ•¿Ǥ’”‘ ‡••‘™Š‹–‡‘‹•‡ǡ“—‹†‹ǡ° —’”‘ ‡••‘•–‘ ƒ•–‹ ‘ Ї‘‡•‹„‹• ‡’‡”•‹•–‡œƒǤ

(84) “—ƒ–‘–ƒŽ‡ǡ•‹’‘–”‡„„‡ ’‡•ƒ”‡ Ї •‹ƒ ‹ƒ†‡‰—ƒ–‘ ƒ ”ƒ‰‰‹—‰‡”‡ Ž‘ • ‘’‘ †‹ –”‘˜ƒ”‡ —ƒ •–”—––—”ƒ ’”‘„ƒ„‹Ž‹•–‹ ƒ Ї’‘••ƒ•‡”˜‹”‡†ƒ‡–ƒˆ‘”ƒ’‡” ƒ’‹‘‹†‹•‡”‹‡–‡’‘”ƒŽ‹ Їǡ ‹˜‡ ‡ǡŽƒ’‡”•‹•–‡œƒ ‡ŽǯŠƒ‘Ǥ

(85) Ž’ƒ••‘‹ ƒ˜ƒ–‹†‡ ‹•‹˜‘•–ƒ ‡Ž ‘•‹†‡”ƒ”‡ ‘•ƒ•— ‡†‡ƒ’’Ž‹ ƒ†‘—’‘Ž‹‘‹‘‡ŽŽǯ‘’‡”ƒ–‘”‡”‹–ƒ”†‘ƒ†—™Š‹–‡‘‹•‡Ǥ         .  ϭϯ.

(86) ͳǤ͵‘†‡ŽŽ‹ƒ‡†‹ƒ‘„‹Ž‡ȋȌ.  ’”‘ ‡••‘ ǡ ‘ ’”‘ ‡••‘ ƒ ‡†‹ƒ ‘„‹Ž‡ ȋ •–ƒ ƒ’’—–‘ ’‡” ‘˜‹‰ ˜‡”ƒ‰‡Ȍǡ°—ƒ•‡“—‡œƒ†‹˜ƒ”‹ƒ„‹Ž‹ ƒ•—ƒŽ‹†‡ˆ‹‹–ƒ–”ƒ‹–‡Žƒˆ‘”ƒ  q yt = ∑ θi ⋅ε t -i = C (B )ε t  i =0.  †‘˜‡ ȋȌ ° — ’‘Ž‹‘‹‘ †‹ ‘”†‹‡ “ ‡ŽŽǯ‘’‡”ƒ–‘”‡ ”‹–ƒ”†‘ ‡ εt  ° — ™Š‹–‡ ‘‹•‡Ǥ ‡‡”ƒŽ‡–‡ǡ‡•‡œƒ’‡”†‹–ƒ†‹‰‡‡”ƒŽ‹–ǡ•‹’‘‡ C (0)=θ0 =1 Ǥ‡ȋȌ° —’‘Ž‹‘‹‘†‹‰”ƒ†‘“ǡ•‹†‹ ‡ƒ Ї Ї yt °—’”‘ ‡••‘ȋ“ȌǤ•ƒ‹ƒ†‘‹ •—‘‹‘‡–‹ǡ•‹˜‡†‡ Ї“—‡ŽŽ‘†‹‘”†‹‡’”‹‘•‹• ”‹˜‡ǣ  q  q  E (yt ) = E  ∑ θi ⋅ε t -i  = ∑ θi ⋅ E ε t -i  = 0  i =0  i = 0.   “—‹†‹ — ’”‘ ‡••‘  Šƒ ‡†‹ƒ ͲǤ  ’”‹ƒ ˜‹•–ƒǡ •‹ ’‘–”‡„„‡ ’‡•ƒ”‡ Ї “—‡•–ƒ ƒ”ƒ––‡”‹•–‹ ƒŽ‹‹–‹ˆ‘”–‡‡–‡Žǯƒ’’Ž‹ ƒ„‹Ž‹–†‹’”‘ ‡••‹ƒ•‹–—ƒœ‹‘‹ ”‡ƒŽ‹ǡ˜‹•–‘ Їǡ‹‰‡‡”‡ǡ‘°†‡––‘ Їއ•‡”‹‡–‡’‘”ƒŽ‹‘••‡”˜ƒ–‡‘• ‹ŽŽ‹‘ ‹–‘”‘ ƒŽ˜ƒŽ‘”‡ͲǤ—––ƒ˜‹ƒǡŽƒŽ‹‹–ƒœ‹‘‡°’‹îƒ’’ƒ”‡–‡ Ї”‡ƒŽ‡ǡ˜‹•–‘ Ї ’‡”‘‰‹’”‘ ‡••‘ xt ’‡” —‹ E ( xt )= µt •‹’—Ö•‡’”‡†‡ˆ‹‹”‡——‘˜‘’”‘ ‡••‘ yt = xt - µt ƒ ‡†‹ƒ —ŽŽƒǤ ‡ yt  ° •–ƒœ‹‘ƒ”‹‘ ‹ ‘˜ƒ”‹ƒœƒǡ ƒŽŽ‘”ƒ „ƒ•–ƒ •–—†‹ƒ”‡ yt ‡’‘‹ƒ‰‰‹—‰‡”‡—‘˜ƒ‡–‡Žƒ‡†‹ƒ’‡”ƒ˜‡”‡ xt Ǥ‡”“—ƒ–‘”‹‰—ƒ”†ƒŽƒ. ˜ƒ”‹ƒœƒǡ‹Žˆƒ––‘ Ї‹Ž‘‡–‘’”‹‘•‹ƒ—ŽŽ‘ ‹ ‘•‡–‡†‹• ”‹˜‡”Žƒ ‘‡‹Ž ‘‡–‘•‡ ‘†‘ǡ‘••‹ƒ  2  q    Var (yt )= E (yt )=E  ∑ θi ⋅εt -i         i =0 2.   ϭϰ.

(87)  ˜‹Ž—’’ƒ†‘‹Ž“—ƒ†”ƒ–‘ǡ’‘••‹ƒ‘• ‘’‘””‡Žƒ•‘ƒ‹†—‡’ƒ”–‹ǣ  2. q q  q   ∑ θi ⋅ε t -i  = ∑ θi2ε t2−i + ∑ ∑ θi θ j ε t -i ε t - j    i = 0 j ≠i  i =0  i =0.  ƒŽŽƒ’”‘’”‹‡–†‡Ž™Š‹–‡‘‹•‡ǡ Ї‹Ž˜ƒŽ‘”‡ƒ––‡•‘†‡ŽŽƒ•‡ ‘†ƒ•‘ƒ–‘”‹ƒ° —ŽŽ‘ǡ ‘•‹ б q q  q  q E (yt 2 )=E  ∑ θi2ε t2−i  = ∑ θi2E (ε t2−i )= ∑ θi2σ 2 =σ 2 ⋅ ∑ θi2  i =0 i =0 i =0  i = 0.  q. 2 ЇŠƒ˜ƒŽ‘”‡ˆ‹‹–‘•‡ ∑ θi < +∞ ǡ ‘•ƒ•‡’”‡˜‡”ƒ•‡“°ˆ‹‹–‘Ǥ

(88) ˆ‹‡ǡ ‘— i =0. ”ƒ‰‹‘ƒ‡–‘ †‡Ž –—––‘ ƒƒŽ‘‰‘ ’‡”˜‡‹ƒ‘ ƒŽ ƒŽ ‘Ž‘ †‡ŽŽ‡ ƒ—–‘ ‘˜ƒ”‹ƒœ‡ǣ Žǯƒ—–‘ ‘˜ƒ”‹ƒœƒ†‹‘”†‹‡°†ƒ–ƒ†ƒ   q  q E (yt yt +k )=E  ∑ θi εt -i  ∑ θ j εt - j +k   i =0  j =0 .  q  = ∑ θ i    i =0.  q   ∑ θ j E (εt -i εt - j +k )     j =0 .  ˆ”—––ƒ†‘ ƒ ‘”ƒ —ƒ ˜‘Ž–ƒ އ ’”‘’”‹‡– †‡Ž ™Š‹–‡ ‘‹•‡ǡ •‹ Šƒ Ї E (εt -i εt - j +k )=σ 2  •‡ Œ ε ‹ή ‡ Ͳ ‹ –—––‹ ‰Ž‹ ƒŽ–”‹ ƒ•‹ǡ ‘•‹ б Žǯ‡•’”‡••‹‘‡. ’”‡ ‡†‡–‡•‹”‹†— ‡ƒǣ 2. q. γ k = E(yt yt+k ) = σ ∑ θi θi+k  i=0.  †‘˜‡•‹‹–‡†‡ Ї θi =0 ’‡”‹ι“Ǥ‹‘–‹ Їǣ •. ǯ‡•’”‡••‹‘‡ ’‡” Žƒ ˜ƒ”‹ƒœƒ ° — ƒ•‘ ’ƒ”–‹ ‘Žƒ”‡ †‡ŽŽƒ ˆ‘”—Žƒ ’”‡ ‡†‡–‡ǡ’‘‡†‘αͲǢ.  ϭϱ.

(89) •. ’‡”ε“ǡއƒ—–‘ ‘˜ƒ”‹ƒœ‡•‘‘—ŽŽ‡Ǥ.  ’”‘ ‡••‘ ȋ“Ȍǡ “—‹†‹ǡ ° — ’”‘ ‡••‘ ‘––‡—–‘ ‘‡ ‘„‹ƒœ‹‘‡ †‹ †‹˜‡”•‹ ‡Ž‡‡–‹ †‹ —‘ •–‡••‘ ™Š‹–‡ ‘‹•‡ Ї ’”‡•‡–ƒ †‡ŽŽ‡ ƒ”ƒ––‡”‹•–‹ Ї †‹ ’‡”•‹•–‡œƒ –ƒ–‘ ’‹î ’”‘— ‹ƒ–‡ “—ƒ–‘ ’‹î ƒŽ–‘ ° ‹Ž •—‘ ‘”†‹‡Ǥ —‡•–ǯ—Ž–‹‘ ’—Ö ƒ Ї ‡••‡”‡ ‹ˆ‹‹–‘Ǣ ‹ “—‡•–‘ ƒ•‘ǡ –—––ƒ˜‹ƒǡ Žǯ‡•‹•–‡œƒ †‡‹ ‘‡–‹ •‡ ‘†‹ ȋ‡ “—‹†‹ Žƒ •–ƒœ‹‘ƒ”‹‡–Ȍ ° ‰ƒ”ƒ–‹–ƒ •‘Ž‘ ‡Ž ƒ•‘ ‹ —‹ •‹ q. 2 ˜‡”‹ˆ‹ ƒ ∑ θi < +∞ Ǥ i =0. ƒ–‘’‡”ƒ˜‡”‡—ǯ‹†‡ƒ’‹î ‘ ”‡–ƒǡ’”‡†‹ƒ‘—’”‘ ‡••‘ȋͳȌ†‹‡•‡’‹‘ ‡ ˆƒ ‹ƒ‘‡ — ‰”ƒˆ‹ ‘ǣ Žǯƒ†ƒ‡–‘ †‹ yt  ’‡” †‹˜‡”•‹ ˜ƒŽ‘”‹ †‹ “ ° ”ƒ’’”‡•‡–ƒ–‘‡ŽŽƒˆ‹‰—”ƒͳǤͳǤƒ–—”ƒŽ‡–‡ǡ“—ƒ†‘ θ =0 ‹Ž’”‘ ‡••‘°—™Š‹–‡ ‘‹•‡Ǥ‘‡•‹˜‡†‡ǡƒŽ ”‡• ‡”‡†‹ θ އ ƒ”ƒ––‡”‹•–‹ Ї†‹’‡”•‹•–‡œƒ†‹˜‡‰‘‘ ’‹î ˜‹•‹„‹Ž‹ ȋŽƒ •‡”‹‡ –‡’‘”ƒŽ‡ •‹ Dz•—••ƒdzȌ ‡ Žƒ •—ƒ ˜ƒ”‹ƒœƒ ȋ‹•—”ƒ–ƒ ƒ’’”‘••‹ƒ–‹˜ƒ‡–‡†ƒŽŽǯ‘”†‹‡†‹‰”ƒ†‡œœƒ†‡ŽŽ‡‘”†‹ƒ–‡Ȍƒ—‡–ƒǤ  ‹‰—”ƒͳǤͳǣ’”‘ ‡••‘ȋͳȌǦ θ =0 ȋ™Š‹–‡‘‹•‡Ȍ.  .  ϭϲ.

(90) ‡ƒ˜‡••‹‘•‹—Žƒ–‘—’”‘ ‡••‘†‹‘”†‹‡•—’‡”‹‘”‡ǡŽƒ ‘•ƒ•ƒ”‡„„‡•–ƒ–ƒ ƒ ‘” ’‹î ‡˜‹†‡–‡Ǥ ‘•‹†‡”ƒ†‘ ’‹î ƒ ˆ‘†‘ — ’”‘ ‡••‘ ȋͳȌǡ •‹ ’‘••‘‘ ˆƒ”‡ ‘•‹†‡”ƒœ‹‘‹‹–‡”‡••ƒ–‹Ǥ†‡•‡’‹‘ǡŽǯƒ—–‘ ‘””‡Žƒœ‹‘‡†‹‘”†‹‡ͳ†‹— ’”‘ ‡••‘ȋͳȌ°†ƒ–ƒ†ƒŽŽƒˆ‘”—Žƒ  θ Ǥ 1+θ 2. ρ1 =. —‡•–ƒ”‡Žƒœ‹‘‡°”ƒ’’”‡•‡–ƒ–ƒ‰”ƒˆ‹ ƒ‡–‡‡ŽŽƒˆ‹‰—”ƒͳǤʹǢ•‹’—֐‘–ƒ”‡ Ї ‹Ž˜ƒŽ‘”‡ƒ••‹‘ Ї”ƒ‰‰‹—‰‡ ρ1 °ͲǤͷǡ‹ ‘””‹•’‘†‡œƒ†‹ θ =1 Ǥ†‹• ‘”•‘ ƒƒŽ‘‰‘ǡ ‘‹•‡‰‹ ƒ„‹ƒ–‹ǡ˜ƒŽ‡’‡”‹Ž’—–‘†‹‹‹‘Ǥ

(91) ‘Ž–”‡ǡ•ƒ’’‹ƒ‘†ƒŽŽ‡ ‘•‹†‡”ƒœ‹‘‹ ˆƒ––‡ ‹ ’”‡ ‡†‡œƒ Ї –—––‡ އ ƒ—–‘ ‘””‡Žƒœ‹‘‹ †‹ ‘”†‹‡ ƒ‰‰‹‘”‡†‹ͳ•‘‘—ŽŽ‡Ǥ‘‹ƒ‘ ‹‘”ƒ—’”‘„އƒ‹ˆ‡”‡œ‹ƒŽ‡ǣ•‡˜‘އ••‹‘ ”ƒ’’”‡•‡–ƒ”‡ —ƒ ‡”–ƒ •‡”‹‡ –‡’‘”ƒŽ‡ ‘‡ ”‡ƒŽ‹œœƒœ‹‘‡ †‹ — ’”‘ ‡••‘ ȋͳȌǡ ‘‡ ’‘–”‡‘ —–‹Ž‹œœƒ”‡ އ •–ƒ–‹•–‹ Ї ƒŽ ‘Žƒ„‹Ž‹ •—ŽŽƒ •‡”‹‡ ’‡” ”‹ ƒ˜ƒ”‡ †‡ŽŽ‡ •–‹‡ †‡‹ ’ƒ”ƒ‡–”‹ †‡Ž ’”‘ ‡••‘ ȋ‘˜˜‡”‘ǡ ‹Ž ’ƒ”ƒ‡–”‘ θ Ȍǫ ƒ–—”ƒŽ‡–‡ǡ “—‡•–‘ ’”‘ ‡†‹‡–‘ •ƒ”‡„„‡ •‘•–‡‹„‹Ž‡ •‘Ž‘ ‡Ž ƒ•‘ ‹ —‹ Žƒ ‘•–”ƒ •‡”‹‡ –‡’‘”ƒŽ‡ ƒ˜‡••‡ — ‘””‡Ž‘‰”ƒƒ ȋ‹Ž ‰”ƒˆ‹ ‘ †‡ŽŽƒ •–‹ƒ †‡ŽŽƒ ˆ—œ‹‘‡ †‹ ƒ—–‘ ‘””‡Žƒœ‹‘‡Ȍ ‘ ˜ƒŽ‘”‹ ‘†‡”ƒ–‹ ’‡” Žǯƒ—–‘ ‘””‡Žƒœ‹‘‡ †‹ ’”‹‘‘”†‹‡‡–”ƒ• —”ƒ„‹Ž‹’‡”އƒŽ–”‡Ǥ‡ ‘•¿ˆ‘••‡ǡ•‹’‘–”‡„„‡ƒ Ї’‡•ƒ”‡ǣ •‡ ‹Ž ’”‘ ‡••‘ Ї Šƒ ‰‡‡”ƒ–‘ ‹ †ƒ–‹ ° ‡ˆˆ‡––‹˜ƒ‡–‡ — ȋͳȌǡ ƒŽŽ‘”ƒ ° •–ƒœ‹‘ƒ”‹‘ ‡† ‡”‰‘†‹ ‘ǡ ’‡” —‹ Žǯƒ—–‘ ‘””‡Žƒœ‹‘‡ ƒ’‹‘ƒ”‹ƒ ‘˜‡”‰‡ ‹ ’”‘„ƒ„‹Ž‹–ƒ“—‡ŽŽƒ–‡‘”‹ ƒǤ

(92) ˆ‘”—އǣ ρˆ1. p  →. θ 1+θ 2. .  ’‘‹ б “—‡•–ƒ ° —ƒ ˆ—œ‹‘‡ ‘–‹—ƒ †‹ θ ǡ ’‘••‘ ‹˜‡”–‹”Žƒ ‡ –”‘˜ƒ”‡ —‘ •–‹ƒ–‘”‡ ‘•‹•–‡–‡ †‹ θ  ‘Ž ‡–‘†‘ †‡‹ ‘‡–‹ǡ ‘••‹ƒ –”‘˜ƒ”‡ “—‡Ž ˜ƒŽ‘”‡ Ї•‘††‹•ˆƒŽǯ‡“—ƒœ‹‘‡ .  ϭϳ.

(93) ‹‰—”ƒͳǤʹǣȋͳȌǦ—–‘ ‘””‡Žƒœ‹‘‡†‹’”‹‘‘”†‹‡‹ˆ—œ‹‘‡†‹ θ .   θˆ  1+θˆ2. ρˆ1 =. ‡•‹˜‡†‡ˆƒ ‹Ž‡–‡ ЇŽƒ•‘Ž—œ‹‘‡°ǣ  θˆ =. (. ). 1 1- 1-4 ρˆ12 Ǥ 2 ρˆ1. 

(94) ‡ˆˆ‡––‹†‹˜ƒŽ‘”‹ ‡‡•ƒ”‡„„‡”‘†—‡ǡƒ•‹°• ‡Ž–‘’‡”Žƒ•‘Ž—œ‹‘‡ ‘’”‡•ƒ ‡ŽŽǯ‹–‡”˜ƒŽŽ‘ ȏǦͳǡͳȐ ’‡” б ’”‘’”‹‘ ‹ “—‡•–‘ •’ƒœ‹‘ ”‹–”‘˜‹ƒ‘ –—––‹ ‹ ˜ƒŽ‘”‹ ’‘••‹„‹Ž‹ǡ ‘‡„‡˜‹•‹„‹Ž‡‡Ž‰”ƒˆ‹ ‘’”‡ ‡†‡–‡Ǥ ”ƒǡ‘‹•ƒ’’‹ƒ‘ Ї އ ‘•‡ ‘•–ƒ‘ •‡’”‡ ‘•¿Ǥ1˜‡”‘ Ї —’”‘ ‡••‘  †‹ ‘”†‹‡ •—’‡”‹‘”‡ Šƒ ƒ—–‘ ‘˜ƒ”‹ƒœ‡ ’‹î ƒ”–‹ ‘Žƒ–‡ǡ ‡ “—‹†‹ •‹ ’—Ö ‹ƒ‰‹ƒ”‡ Ї Žƒ •–‡••ƒ •–”ƒ–‡‰‹ƒ ’‘–”‡„„‡ ‡••‡”‡ ’‡” ‘””‹„‹Ž‡ǡ ƒŽ‡‘ ‹ –‡‘”‹ƒǡƒ ‘†‹œ‹‘‡†‹•’‡ ‹ˆ‹ ƒ”‡—‘”†‹‡†‡Ž’‘Ž‹‘‹‘ȋȌƒ„„ƒ•–ƒœƒƒŽ–‘Ǥ ƒ ‡†‘ — ’ƒ••‘ ’‹î ‹ Žǡ ‹ •‹ ’‘–”‡„„‡ Š‹‡†‡”‡ •‡ Žƒ •—’’‘•‹œ‹‘‡ ˜ƒŽ‡ ’‡”.  ϭϴ.

(95) “—ƒŽ—“—‡ •–”—––—”ƒ †‹ ƒ—–‘ ‘˜ƒ”‹ƒœ‡Ǥ ƒ ”‹•’‘•–ƒ ° ‡Ž –‡‘”‡ƒ †‹ ‘ކǡ Ї ‡••‡œ‹ƒŽ‡–‡ †‹ ‡ǣ “—ƒŽ—“—‡ ’”‘ ‡••‘ •–‘ ƒ•–‹ ‘ǡ ’—” б •–ƒœ‹‘ƒ”‹‘ǡ ’‘••‹‡†‡ —ƒ •–”—––—”ƒ †‹ ƒ—–‘ ‘˜ƒ”‹ƒœ‡ Ї ° ”‡’Ž‹ ƒ„‹Ž‡ ‘ —ƒ ’”‘ ‡••‘ ƒ ‡†‹ƒ‘„‹Ž‡†‹‘”†‹‡‹ˆ‹‹–‘Ǥ—‡•–‘”‹•—Ž–ƒ–‘°†‹‹’‘”–ƒœƒ‡‘”‡ǣ‡••‘ ‹ †‹ ‡ǡ ‹ •‘•–ƒœƒǡ Ї “—ƒŽ—“—‡ •‹ƒ Žƒ ˆ‘”ƒ Dz˜‡”ƒdz †‹ — ’”‘ ‡••‘ •–‘ ƒ•–‹ ‘ •–ƒœ‹‘ƒ”‹‘ǡ’‘••‹ƒ‘•‡’”‡”ƒ’’”‡•‡–ƒ”Ž‘ ‘‡—’”‘ ‡••‘ȋƒŽŽ‹‹–‡†‹ ‘”†‹‡ ‹ˆ‹‹–‘ȌǤ 1 ’‡” “—‡•–‘ Їǡ –”ƒ––ƒ†‘ ‹ ’”‘ ‡••‹ ǡ •‹ •–ƒ †‹ ˆƒ––‘ •–—†‹ƒ†‘–—––‹‹’”‘ ‡••‹•–ƒœ‹‘ƒ”‹’‘••‹„‹Ž‹ǡ’‡”Ž‘‡‘’‡”“—ƒ–‘”‹‰—ƒ”†ƒއ Ž‘”‘ ƒ”ƒ––‡”‹•–‹ Ї†‹‡†‹ƒ‡†‹ ‘˜ƒ”‹ƒœƒǤ                .  ϭϵ.

(96) ͳǤͶ‘†‡ŽŽ‹—–‘”‡‰”‡••‹˜‹ȋȌ. ǯƒŽ–”ƒ‹’‘”–ƒ–‡ Žƒ••‡†‹’”‘ ‡••‹°†ƒ–ƒ†ƒ‹’”‘ ‡••‹—–‘”‡‰”‡••‹˜‹Ǥ—‡•–‹ ’”‘ ‡••‹ˆ‘”‹• ‘‘ǡ‹— ‡”–‘•‡•‘ǡ—ƒ”ƒ’’”‡•‡–ƒœ‹‘‡’‹î‹–—‹–‹˜ƒ†‹—ƒ •‡”‹‡’‡”•‹•–‡–‡†‹“—‡ŽŽƒ†‡‹’”‘ ‡••‹ǡ’‘‹ бŽǯ‹†‡ƒ° Ї‹ŽŽ‹˜‡ŽŽ‘†‡ŽŽƒ•‡”‹‡ –‡’‘”ƒŽ‡ ƒŽ –‡’‘ – •‹ƒ —ƒ ˆ—œ‹‘‡ Ž‹‡ƒ”‡ †‡‹ ’”‘’”‹ ˜ƒŽ‘”‹ ’ƒ••ƒ–‹ǡ ’‹î — ™Š‹–‡‘‹•‡Ǥ

(97) ސ‘‡†‡”‹˜ƒƒ’’—–‘†ƒŽˆƒ––‘ Ї—‘†‡ŽŽ‘•‘‹‰Ž‹ƒ‘Ž–‘ ƒ†— ‘†‡ŽŽ‘†‹ ”‡‰”‡••‹‘‡‹ —‹އ˜ƒ”‹ƒ„‹Ž‹ ‡•’Ž‹ ƒ–‹˜‡ •‘‘‹ ˜ƒŽ‘”‹ ’ƒ••ƒ–‹ †‡ŽŽƒ˜ƒ”‹ƒ„‹Ž‡†‹’‡†‡–‡Ǥ  y = ϕ1y1 + ... + ϕ p y p + ε t  t.  ‘ ° ‘œ‹‘•‘ ‘–ƒ”‡ Їǡ ‹ “—‡•–‘ ‘–‡•–‘ǡ ‹Ž ™Š‹–‡ ‘‹•‡ ’—Ö ‡••‡”‡ ‹–‡”’”‡–ƒ–‘‹‘†‘ƒƒŽ‘‰‘ƒŽ†‹•–—”„‘†‹—‘†‡ŽŽ‘†‹”‡‰”‡••‹‘‡ǡ ‹‘° ‘‡ Žƒ†‹ˆˆ‡”‡œƒˆ”ƒ›–‡Žƒ•—ƒ‡†‹ƒ ‘†‹œ‹‘ƒŽ‡Ǣ‹“—‡•–‘ ƒ•‘ǡއ˜ƒ”‹ƒ„‹Ž‹ ƒ•—ƒŽ‹ Ї ‘•–‹–—‹• ‘‘Žǯ‹•‹‡‡†‹ ‘†‹œ‹‘ƒ‡–‘•‘‘•‡’Ž‹ ‡‡–‡‹Ž’ƒ••ƒ–‘†‹ ›–Ǥ

(98)  ’”‘ ‡••‹  •‘‘ ‹ — ‡”–‘ •‡•‘ •’‡ —Žƒ”‹ ƒ‹ ’”‘ ‡••‹  ’‡” бǡ •‡ — ’”‘ ‡••‘  ° — ’”‘ ‡••‘ †‡ˆ‹‹–‘ †ƒŽŽǯƒ’’Ž‹ ƒœ‹‘‡ †‹ — ’‘Ž‹‘‹‘ ‡ŽŽǯ‘’‡”ƒ–‘”‡ƒ†—™Š‹–‡‘‹•‡ǡ—’”‘ ‡••‘°†‡ˆ‹‹–‘ ‘‡—’”‘ ‡••‘ Žǯƒ’’Ž‹ ƒœ‹‘‡ƒŽ“—ƒŽ‡†‹—’‘Ž‹‘‹‘‡ŽŽǯ‘’‡”ƒ–‘”‡’”‘†— ‡—™Š‹–‡‘‹•‡Ǥ

(99) •‹„‘Ž‹ A(B )yt = ε t .  †‘˜‡ȋȌ°‹Ž•‘Ž‹–‘’‘Ž‹‘‹‘‹„†‹‰”ƒ†‘’ ‘ȋͲȌαͳǤ ‡” ˆƒ‹Ž‹ƒ”‹œœƒ”‡ ‘ “—‡•–‘ –‹’‘ †‹ ’”‘ ‡••‹ǡ ‹‹œ‹ƒ‘ ‘Ž ‘•‹†‡”ƒ”‡ ‹Ž ƒ•‘ ’‹î•‡’Ž‹ ‡ǣ“—‡ŽŽ‘‹ —‹’αͳ‡‹Ž’”‘ ‡••‘’—Ö‡••‡”‡• ”‹––‘  yt = ϕyt-1 + εt.  →. (1 − Bϕ ) yt = εt . .  ϮϬ.

(100)

(101)  ‘‡–‹ †‹ — ’”‘ ‡••‘ ȋͳȌ ’‘••‘‘ ‡••‡”‡ ”‹ ƒ˜ƒ–‹ ‹ †‹˜‡”•‹ ‘†‹ǣ —‘ ’‹—––‘•–‘ ‹–—‹–‹˜‘ ° “—‡ŽŽ‘ †‹ •—’’‘””‡ Žƒ •–ƒœ‹‘ƒ”‹‡– †‡Ž ’”‘ ‡••‘ǡ ‡ ’‘‹ †‡”‹˜ƒ”‡ އ ‘•‡‰—‡œ‡ †ƒ “—‡•–ƒ ‹’‘–‡•‹Ǥ —’’‘‹ƒ‘ “—‹†‹ Ї ‹Ž ’”‘ ‡••‘ ƒ„„‹ƒ‡†‹ƒ ‘•–ƒ–‡ɊǤ—‡•–ƒ‹’‘–‡•‹‹’Ž‹ ƒ Їǣ  µ = E(yt ) = ϕ E (yt-1 ) + E( ε t ) = ϕµ .  ǯ‡•’”‡••‹‘‡ ’”‡ ‡†‡–‡ ’—Ö ‡••‡”‡ ˜‡”ƒ ‹ †—‡ ƒ•‹ǣ ‘ Ɋ α Ͳǡ ‡Ž “—ƒŽ ƒ•‘ ° ˜‡”ƒ’‡”“—ƒŽ•‹ƒ•‹˜ƒŽ‘”‡†‹ɔǡ‘’’—”‡‡Ž ƒ•‘ɔαͳǡ‡ƒŽŽ‘”ƒŽǯ‡•’”‡••‹‘‡°˜‡”ƒ ’‡” “—ƒŽ•‹ƒ•‹ ˜ƒŽ‘”‡ †‹ Ɋǡ ‡ Žƒ ‡†‹ƒ †‡Ž ’”‘ ‡••‘ ° ‹†‡–‡”‹ƒ–ƒǤ

(102)  “—‡•–‘ •‡ ‘†‘ ƒ•‘•‹†‹ ‡ Ї‹Ž’”‘ ‡••‘’”‡•‡–ƒ—ƒ”ƒ†‹ ‡—‹–ƒ”‹ƒǡ’‡” б‹Ž˜ƒŽ‘”‡ †‹ œ ’‡” —‹ ȋœȌαͲ ° ƒ’’—–‘ ͳǤ  ƒŽ–”‘ ‘†‘ †‹ †‡”‹˜ƒ”‡ ȋ›–Ȍ ° “—‡ŽŽ‘ †‹ ”ƒ’’”‡•‡–ƒ”‡ ›– ‘‡ — ’”‘ ‡••‘ ƒ ‡†‹ƒ ‘„‹Ž‡Ǥ ‡” ˆƒ”Ž‘ǡ —–‹Ž‹œœ‹ƒ‘ ‹ ”‹•—Ž–ƒ–‹ ”‹’‘”–ƒ–‹ ’”‡ ‡†‡–‡‡–‡ •—ŽŽƒ ƒ‹’‘Žƒœ‹‘‡ †‡‹ ’‘Ž‹‘‹Ǥ ‡ ‹ Ž‹‹–‹ƒ‘ ƒ‹ ƒ•‹ ‹ —‹ ȁɔȁ δ ͳ ȋ ‘†‹œ‹‘‡ Ї Š‹ƒ”ƒ‡–‡ ‡• Ž—†‡ Žƒ ”ƒ†‹ ‡ —‹–ƒ”‹ƒȌǡ•‹ƒ˜” Ї  A(B) -1 = (1- Bϕ ) = 1+ Bϕ + B 2 ϕ 2 + ...= C(B) -1. .  ‡“—‹†‹Žƒ”ƒ’’”‡•‡–ƒœ‹‘‡†‹›–•ƒ”  yt = (1+ Bϕ + B 2 ϕ 2 + ...) ⋅ ε t = C(B) ⋅ ε t .  ‹‘° — ’”‘ ‡••‘  ‘ Ʌ‹αɔ‹ǡ Ї Šƒ ‡†‹ƒ œ‡”‘Ǥ ‡” “—ƒ–‘ ”‹‰—ƒ”†ƒ ‹ ‘‡–‹•‡ ‘†‹ǡ’”‘ ‡†‹ƒ‘ ‘‡’”‹ƒǢ•—’’‘‹ƒ‘ Ї‹Ž™Š‹–‡‘‹•‡ƒ„„‹ƒ ˜ƒ”‹ƒœƒ’ƒ”‹ƒɐʹǤ‡‹†‹ Š‹ƒ‘ ‘Žƒ˜ƒ”‹ƒœƒ†‹›–ǡ‡•—’’‘‹ƒ‘ Ї‡••ƒ ‡•‹•–ƒ‡•‹ƒ ‘•–ƒ–‡‡Ž–‡’‘ǡƒ˜”‡‘ Ї .  Ϯϭ.

(103) 2 V = E(yt2 ) = E (ϕ yt-1 + εt )  = ϕ 2V + σ 2 + 2ϕ E(yt-1εt )   .  ǯ—Ž–‹‘ ‡Ž‡‡–‘†‡ŽŽƒ•‘ƒ ° Ͳǡ “—‹†‹”‹•—Ž–ƒ—ƒ ‘„‹ƒœ‹‘‡Ž‹‡ƒ”‡ †‹ ƒ—–‘ ‘˜ƒ”‹ƒœ‡†‹—™Š‹–‡‘‹•‡ȋ–—––‡—ŽŽ‡’‡”†‡ˆ‹‹œ‹‘‡ȌǤ ‡‡†‡†— ‡ Ї V=. σ2 1− ϕ2. . 

(104)  ’”‹‘ Ž—‘‰‘ǡ Žǯ‡•’”‡••‹‘‡ ‹ †‹ ‡ Ї •‘Ž‘ •‡ ȁɔȁ δ ͳ Šƒ •‡•‘ ’ƒ”Žƒ”‡ †‹ ˜ƒ”‹ƒœƒ •–ƒ„‹Ž‡ ‡Ž –‡’‘ǡ ƒŽ–”‹‡–‹ ‘ •ƒ”‡„„‡ ’‹î ˜ƒŽ‹†ƒ Žǯ—Ž–‹ƒ —‰—ƒ‰Ž‹ƒœƒǤ —‡•–ƒ ‘†‹œ‹‘‡ ‡• Ž—†‡ †ƒŽŽƒ ƒ–‡‰‘”‹ƒ †‡‹ ’”‘ ‡••‹ ȋͳȌ •–ƒœ‹‘ƒ”‹‘ •‘Ž‘“—‡ŽŽ‹ƒ ”ƒ†‹ ‡—‹–ƒ”‹ƒǡƒƒ Ї“—‡ŽŽ‹ƒ”ƒ†‹ ‡ ‘•‹††‡––ƒ ‡•’Ž‘•‹˜ƒ ‹‘° ‘ȁɔȁεͳǤƒ•‡ ‘†ƒ ‘•‹†‡”ƒœ‹‘‡ƒ• ‡†ƒŽ ‘ˆ”‘–‘†‹ǡ Ї°Žƒ˜ƒ”‹ƒœƒ ‘ ‘†‹œ‹‘ƒŽ‡†‹›–ǡ ‘ɐʹǡ Ї°Žƒ˜ƒ”‹ƒœƒ†‹. › ℑ– Ǧͳ Ǥ° –. •‡’”‡ƒ‰‰‹‘”‡†‹ɐʹǡ‡Žƒ†‹ˆˆ‡”‡œƒ°–ƒ–‘ƒ‰‰‹‘”‡“—ƒ–‘’‹îɔ°˜‹ ‹‘ƒ ͳǣ –ƒ–‘ ’‹î ’‡”•‹•–‡–‡ ° ‹Ž ’”‘ ‡••‘ǡ –ƒ–‘ ’‹î Žƒ •—ƒ ˜ƒ”‹ƒœƒ ‘†‹œ‹‘ƒŽ‡ ƒŽ ’”‘’”‹‘’ƒ••ƒ–‘•ƒ”‹‘”‡†‡ŽŽƒ•—ƒ˜ƒ”‹ƒœƒ‘ ‘†‹œ‹‘ƒŽ‡ǤƒŽ‡ƒ†‹”‡ Ї Žƒ ‘‘• ‡œƒ †‡Ž ˜ƒŽ‘”‡ †‹ ›–Ǧͷ ”‹†— ‡ Žǯ‹ ‡”–‡œœƒ •—Ž ˜ƒŽ‘”‡ †‹ ›– “—ƒ–‘ ’‹î ’‡”•‹•–‡–‡ ° Žƒ •‡”‹‡Ǥ ‹ƒ‰‘‘ †ƒ ˜‡”‹ˆ‹ ƒ”‡ އ ƒ—–‘ ‘˜ƒ”‹ƒœ‡ǣ Žǯƒ—–‘ ‘˜ƒ”‹ƒœƒ†‹‘”†‹‡Ͳ°ǡ Ї ‘‘• ‹ƒ‘‰‹ǢŽǯƒ—–‘ ‘˜ƒ”‹ƒœƒ†‹‘”†‹‡ ͳ°†ƒ–ƒ†ƒ  γ k = E(yt yt-k ) = E[( ϕ yt-1 + εt )yt-k ] = ϕγ k-1 .  ‡•‹†‡†— ‡ Ї γ k = ϕk. σ2 1−ϕ 2. . .  ϮϮ.

(105) ‡ƒ—–‘ ‘””‡Žƒœ‹‘‹ƒ••—‘‘‹“—‡•–‘ ƒ•‘—ƒˆ‘”ƒ‘Ž–‘•‡’Ž‹ ‡ǣ  ρk = ϕ k .   Ї‹“—‡•–‘ ƒ•‘ °’‘••‹„‹Ž‡†ƒ”‡—ǯ‹–‡”’”‡–ƒœ‹‘‡‹–—‹–‹˜ƒ†‡Ž”‹•—Ž–ƒ–‘ǣ އ ƒ—–‘ ‘””‡Žƒœ‹‘‹ǡ Ї •‘‘ — ‹†‹ ‡ †‡ŽŽƒ ‡‘”‹ƒ †‡Ž ’”‘ ‡••‘ǡ •‘‘ –ƒ–‘ ’‹î‰”ƒ†‹ȋ‹˜ƒŽ‘”‡ƒ••‘Ž—–‘Ȍǡ–ƒ–‘’‹î‰”ƒ†‡ȋ•‡’”‡‹˜ƒŽ‘”‡ƒ••‘Ž—–‘Ȍ°ɔǡ ‘ˆ‡”ƒ†‘ Žǯ‹–‡”’”‡–ƒœ‹‘‡ †‹ ɔ ‘‡ ’ƒ”ƒ‡–”‘ †‹ ’‡”•‹•–‡œƒǤ

(106)  ’‹îǡ •‡„„‡‡ ‹Ž Ž‹‹–‡ ’‡”  Ї ˜ƒ ƒŽŽǯ‹ˆ‹‹–‘ ’‘•‹–‹˜‘ ”‹•—Ž–ƒ —‰—ƒŽ‡ ƒ œ‡”‘ǡ ɀ ° •‡’”‡†‹˜‡”•‘†ƒͲǤŽ–”‹ˆƒ––‹•‘‘ Ї—’”‘ ‡••‘ȋ’Ȍǣ ͳǤ Šƒ‡‘”‹ƒ‹ˆ‹‹–ƒǡƒއƒ—–‘ ‘””‡Žƒœ‹‘‹†‡ ”‡• ‘‘ƒŽ ”‡• ‡”‡†‹‹ ’”‘‰”‡••‹‘‡‰‡‘‡–”‹ ƒǢ ʹǤ ‡Ž ƒ•‘†‹Dz‹–‡” ‡––ƒdz†‹˜‡”•ƒ†ƒͲǡŠƒ˜ƒŽ‘”‡ƒ––‡•‘ɊȀȋͳȌǡ†‘˜‡ȋͳȌ° ƒ’’—–‘‹Ž’‘Ž‹‘‹‘ȋœȌ˜ƒŽ—–ƒ–‘‹œαͳƒœ‹ б‹œα ‘‡ƒŽ•‘Ž‹–‘Ǥ ǯ—‹ ‘ ƒ•’‡––‘ Ї ˜ƒŽ‡ Žƒ ’‡ƒ †‹ •‘––‘Ž‹‡ƒ”‡ †‡Ž ƒ•‘ ‹ —‹ Žǯ‘”†‹‡ †‡Ž ’”‘ ‡••‘ƒ—–‘”‡‰”‡••‹˜‘’•‹ƒƒ‰‰‹‘”‡†‹ͳ° Ї’”‘ ‡••‹ȋ’Ȍ’‘••‘‘ƒ˜‡”‡ ƒ†ƒ‡–‹ ‹ Ž‹ ‹Ǥ

(107) “—‡•–‘ ƒ•‘ǡ‹Ž’”‘ ‡••‘ƒ••—‡—ƒ†ƒ‡–‘ ‹ Ž‹ ‘‹ —‹ Žǯƒ’‹‡œœƒ†‡ŽŽ‡‘• ‹ŽŽƒœ‹‘‹˜ƒ”‹ƒƒ––‘”‘ƒ†—˜ƒŽ‘”‡‡†‹‘Ǥ‘˜”‡„„‡‡••‡”‡ ‡˜‹†‡–‡ Ї ‹ ’”‘ ‡••‹ †‹ “—‡•–‘ –‹’‘ •‘‘ ‹ ƒ†‹†ƒ–‹ ƒ–—”ƒŽ‹ ƒ ‘†‡ŽŽƒ”‡ ˆ‡‘‡‹‡ ‘‘‹ ‹ ƒ”ƒ––‡”‹œœƒ–‹†ƒˆƒ•‹ ‹ Ž‹ ЇǤ        .  Ϯϯ.

(108) ͳǤͷ‘†‡ŽŽ‹—–‘”‡‰”‡••‹˜‹‡†‹ƒ‘„‹Ž‡ȋȌ. ƒ Žƒ••‡†‡‹’”‘ ‡••‹ ‘’”‡†‡•‹ƒ‹’”‘ ‡••‹ Ї‹’”‘ ‡••‹ ‘‡ ƒ•‘’ƒ”–‹ ‘Žƒ”‡Ǥ’”‘ ‡••‘ȋ’ǡ“Ȍ°‹ˆƒ––‹†‡ˆ‹‹–‘†ƒ  A(B)yt = C(B)εt. .  †‘˜‡’°Žǯ‘”†‹‡†‡Ž’‘Ž‹‘‹‘ȋȌ‡“°Žǯ‘”†‹‡†‡Ž’‘Ž‹‘‹‘ȋȌǤ–”ƒ„‹ •‘‘ —‡”‹ ˆ‹‹–‹Ǥ

(109)  ’”‘ ‡••‹  ‘  •‘‘ “—‹†‹ ƒ•‹ ’ƒ”–‹ ‘Žƒ”‹ ȋ“αͲ ‡ ’αͲ ”‹•’‡––‹˜ƒ‡–‡ȌǤ ‡ ‹Ž ’‘Ž‹‘‹‘ ȋȌ Šƒ –—––‡ އ •—‡ ”ƒ†‹ ‹ ƒ‰‰‹‘”‹ †‹ ͳ ‹ ‘†—Ž‘ǡƒŽŽ‘”ƒ›–’—Öƒ Ї‡••‡”‡”ƒ’’”‡•‡–ƒ–‘‹ˆ‘”ƒǡ‘˜˜‡”‘ǣ  yt = A(B)-1C(B)εt = D(B) ⋅ εt .  †‘˜‡ȋȌ°—’‘Ž‹‘‹‘†‹‘”†‹‡‹ˆ‹‹–‘•‡’εͲǤƒŽ‡ ‘†‹œ‹‘‡•—ȋȌ° ‡ ‡••ƒ”‹ƒ‡•—ˆˆ‹ ‹‡–‡ƒˆˆ‹ б‹Ž’”‘ ‡••‘•‹ƒ•–ƒœ‹‘ƒ”‹‘ǤŽŽ‘•–‡••‘‘†‘ǡ•‡ ‹Ž ’‘Ž‹‘‹‘ ȋȌ ° ‹˜‡”–‹„‹Ž‡ǡ ƒŽŽ‘”ƒ ›– ƒ‡––‡ —ƒ ”ƒ’’”‡•‡–ƒœ‹‘‡ ƒ—–‘”‡‰”‡••‹˜ƒȋ†‹‘”†‹‡‹ˆ‹‹–‘•‡“εͲȌ  A(B)yt C(B)-1 = A(B) ⋅ yt = εt. . 

(110) “—‡•–‘ ƒ•‘ǡ•‹†‹ ‡ ƒ Ї Ї‹Ž’”‘ ‡••‘°‹˜‡”–‹„‹Ž‡Ǥ ‡ ƒ”ƒ––‡”‹•–‹ Ї†‡‹ ‘‡–‹ †‹ — ’”‘ ‡••‘ ȋ’ǡ“Ȍ ’‘••‘‘ ‡••‡”‡ ”‹ ƒ˜ƒ–‡ ‹ ‘†‘ ‘ ‡––—ƒŽ‡–‡ •‡’Ž‹ ‡ †ƒŽŽƒ •—ƒ ”ƒ’’”‡•‡–ƒœ‹‘‡ ‹ ‡†‹ƒ ‘„‹Ž‡Ǥ ǯ—‹ ƒ ƒ”ƒ––‡”‹•–‹ ƒ Ї‹’ƒ”‡†‡‰ƒ†‹‡œ‹‘‡° Ї•‡ƒ‰‰‹—‰‹ƒ‘—ǯ‹–‡” ‡––ƒǡ •‹†‹‘•–”ƒ ЇŽƒ‡†‹ƒ†‡Ž’”‘ ‡••‘°ƒ ‘”ƒɊȀȋͳȌǤ Ї •‡•‘ Šƒ •–—†‹ƒ”‡ ’”‘ ‡••‹ ǫ

(111)  Ž‹‡ƒ –‡‘”‹ ƒǡ ‡••—ƒǡ ˜‹•–‘ Ї ‹Ž –‡‘”‡ƒ†‹”ƒ’’”‡•‡–ƒœ‹‘‡†‹‘ކ ‹†‹ ‡ Ї“—ƒŽ—“—‡’”‘ ‡••‘•–ƒœ‹‘ƒ”‹‘ ’—Ö‡••‡”‡”ƒ’’”‡•‡–ƒ–‘ ‘‡—’”‘ ‡••‘Ǥƒ—’—–‘†‹˜‹•–ƒ’”ƒ–‹ ‘ ǯ°.  Ϯϰ.

(112) ‹Ž’”‘„އƒ ЇŽƒ”ƒ’’”‡•‡–ƒœ‹‘‡†‹‘ކ°ǡ‹‰‡‡”ƒŽ‡ǡ‹ˆ‹‹–ƒǤ—‡•–‘‘° —’”‘„އƒƒŽ‹˜‡ŽŽ‘–‡‘”‹ ‘ǡƒŽ‘†‹˜‡–ƒ‡ŽŽƒ’”ƒ–‹ ƒǣŽƒ•‡”‹‡–‡’‘”ƒŽ‡ Ї ‘••‡”˜‹ƒ‘˜‹‡‡‹ˆƒ––‹’‡•ƒ–ƒ ‘‡”‡ƒŽ‹œœƒœ‹‘‡†‹—’”‘ ‡••‘•–‘ ƒ•–‹ ‘ǡ‹ —‹ ’ƒ”ƒ‡–”‹ •‘‘ ‹ ‘‡ˆˆ‹ ‹‡–‹ †‡‹ ’‘Ž‹‘‹ ‡ŽŽǯ‘’‡”ƒ–‘”‡  Ї ‡ †‡–‡”‹ƒ‘ އ ƒ”ƒ––‡”‹•–‹ Ї †‹ ’‡”•‹•–‡œƒ ȋ’‹î Žƒ ˜ƒ”‹ƒœƒ †‡Ž ™Š‹–‡ ‘‹•‡ȌǤ ‡ •‹ ‘•‹†‡”ƒ —ƒ •‡”‹‡ ‘••‡”˜ƒ–ƒ ‘‡ —ƒ ”‡ƒŽ‹œœƒœ‹‘‡ †‹ — “—ƒŽ Ї ’”‘ ‡••‘ •–ƒœ‹‘ƒ”‹‘ǡ —–‹Ž‹œœƒ”‡ — ’”‘ ‡••‘  ’‡” ”‹ƒ••—‡”‡ އ ƒ”ƒ––‡”‹•–‹ Ї †‹ ‡†‹ƒ ‡ ‘˜ƒ”‹ƒœƒ ‘’‘”–ƒ “—‹†‹ ‹Ž ’”‘„އƒ ‹ˆ‡”‡œ‹ƒŽ‡ †‹•–‹ƒ”‡——‡”‘’‘–‡œ‹ƒŽ‡–‡‹ˆ‹‹–‘†‹’ƒ”ƒ‡–”‹Ǥ

(113) ˆƒ––‹ǡ•‡’‡•‹ƒ‘ Ї›–•‹ƒ”ƒ’’”‡•‡–ƒ„‹Ž‡‹ˆ‘”ƒ ‘‡  yt = F(B)εt .  ‹‡–‡ ‹ ƒ••‹ —”ƒ Ї ‹Ž ’‘Ž‹‘‹‘ ȋȌ ‘ •‹ƒ †‹ ‘”†‹‡ ‹ˆ‹‹–‘Ǥ ‹ ’—Ö ’‡”Ö ’‡•ƒ”‡ †‹ —•ƒ”‡ —ǯƒ’’”‘••‹ƒœ‹‘‡ †‹ ȋȌǢ ‹ ’ƒ”–‹ ‘Žƒ”‡ǡ ’—Ö †ƒ”•‹ Ї •‹ ”‹‡• ƒ‘ƒ–”‘˜ƒ”‡†—‡’‘Ž‹‘‹†‹‘”†‹‡ˆ‹‹–‘ȋ‡’‘••‹„‹Ž‡–‡„ƒ••‘ȌȋȌ‡ ȋȌ–ƒŽ‹’‡” —‹ F(z) ≃. C(z) A(z) .  ‡ Žǯ—‰—ƒ‰Ž‹ƒœƒ ˆ‘••‡ ‡•ƒ––ƒǡ •‹ ’‘–”‡„„‡ ƒŽŽ‘”ƒ • ”‹˜‡”‡ A(B)yt = D(B) ε t ‡ •‡ “—‡•–ǯ—Ž–‹ƒ˜ƒŽ‡•‘Ž‘‹‘†‘ƒ’’”‘••‹ƒ–‘ǡƒŽŽ‘”ƒ•‹ƒ˜”ǣ  A(B)yt = D(B) ε t  *. †‘˜‡ *. εt =. A (B ) ⋅ F (B )ε t  D (B ). .  Ϯϱ.

(114)

(115) Ž’”‘ ‡••‘ ε t ‘ °ǡƒ”‹‰‘”‡ǡ—™Š‹–‡‘‹•‡ǡƒ•‡އ•—‡ƒ—–‘ ‘˜ƒ”‹ƒœ‡‘ *. •‘‘–”‘’’‘‰”ƒ†‹ǡ’—Ö‡••‡”‡ ‘•‹†‡”ƒ–‘–ƒŽ‡ƒ–—––‹‹ˆ‹‹’”ƒ–‹ ‹Ǥ‹’‘–”‡„„‡ †‹”‡ Ї ‘•‹†‡”ƒ”‡ ε t —™Š‹–‡‘‹•‡ ‘•–‹–—‹• ‡—ƒ‡–ƒˆ‘”ƒ†‡‹†ƒ–‹ Ї‘ *. °‘Ž–‘’‹îˆ—‘”˜‹ƒ–‡†‹“—‡ŽŽƒ„ƒ•ƒ–ƒ•—ŽŽƒ”ƒ’’”‡•‡–ƒœ‹‘‡†‹‘ކ‡ ЇŠƒ‹Ž ˜ƒ–ƒ‰‰‹‘ †‹ „ƒ•ƒ”•‹ •— — —‡”‘ ˆ‹‹–‘ †‹ ’ƒ”ƒ‡–”‹Ǥ

(116)  ’”ƒ–‹ ƒǡ — ‘†‡ŽŽ‘ ˜‹‡‡ ‘•–”—‹–‘ˆƒ ‡†‘—ǯ‹’‘–‡•‹ƒ’”‹‘”‹•—‹‰”ƒ†‹†‡‹†—‡’‘Ž‹‘‹ȋȌ ‡ ȋȌ ‡ ’‘‹ǡ —ƒ ˜‘Ž–ƒ •–‹ƒ–‹ ‹ ‘‡ˆˆ‹ ‹‡–‹ †‡‹ ’‘Ž‹‘‹ǡ ‡•ƒ‹ƒ†‘ އ ƒ—–‘ ‘””‡Žƒœ‹‘‹ ƒ’‹‘ƒ”‹‡†‡ŽŽƒ•‡”‹‡Ǥ‡“—‡•–‡‘•‘‘–”‘’’‘‰”ƒ†‹ǡ‘ ‹ •‘‘ ’”‘„އ‹ †‹ •‘”–ƒ ƒ ‘•‹†‡”ƒ”‡ ε t  ‘‡ — ™Š‹–‡ ‘‹•‡Ǥ ǯ‡•‹‰‡œƒ †‹ *. –‡‡” „ƒ••‘ ‹Ž —‡”‘ †‡‹ ’ƒ”ƒ‡–”‹ †‡‹ ’‘Ž‹‘‹ ‘†— ‡ǡ ‹ ‡”–‹ ƒ•‹ǡ ƒ Žƒ˜‘”ƒ”‡ ‘†‡‹‘†‡ŽŽ‹‘–‹ ‘‡‘Ž–‹’Ž‹ ƒ–‹˜‹ǡ Ї•‹—•ƒ‘•‘’”ƒ––—––‘ ’‡” •‡”‹‡ ƒ”ƒ––‡”‹œœƒ–‡ †ƒ ’‡”•‹•–‡œƒ •–ƒ‰‹‘ƒŽ‡ǡ ‡ Ї “—‹†‹ •‘‘ ƒ Ї ‘‘• ‹—–‹ ‘‡•–ƒ‰‹‘ƒŽ‹ǡ‘Ǥ                  Ϯϲ.

(117) ͳǤ͸–‹ƒ‡’”‡˜‹•‹‘‹†‡‹‘†‡ŽŽ‹. ‹‘ƒ†‘”ƒƒ„„‹ƒ‘ˆƒ––‘ˆ‹–ƒ Ї‹Ž’”‘ ‡••‘•–‘ ƒ•–‹ ‘ Ї•‘˜”ƒ’’‘‹ƒ‘ƒ‹ †ƒ–‹’‡”‹–‡”’”‡–ƒ”Ž‹ˆ‘••‡‰‘˜‡”ƒ–‘†ƒ’ƒ”ƒ‡–”‹‘–‹Ǥ‡“—‡•–‹—Ž–‹‹‘–‹‘ •‘‘ ȋ‡ ‹ ’”ƒ–‹ ƒ ‘ Ž‘ •‘‘ ƒ‹Ȍǡ •‹ ’‘••‘‘ —–‹Ž‹œœƒ”‡ †‡ŽŽ‡ Ž‘”‘ •–‹‡Ǥ ƒ –‡ ‹ ƒ †‹ „ƒ•‡ ’‡” Žƒ •–‹ƒ †‡‹ ’ƒ”ƒ‡–”‹ †‹ — ’”‘ ‡••‘  ° Žƒ ƒ••‹ƒ ˜‡”‘•‹‹‰Ž‹ƒœƒǤ ‹ •‘Ž‹–‘ •‹ ƒ••—‡ Ї ‹Ž ’”‘ ‡••‘ •‹ƒ ‘”ƒŽ‡ǡ ‘•‹ б Žƒ ˆ‘”ƒ†‡ŽŽƒˆ—œ‹‘‡†‹†‡•‹–†‡ŽŽ‡‘••‡”˜ƒœ‹‘‹°‘–ƒ‡–”ƒ––ƒ„‹Ž‡Ǥ—Ö‡••‡”‡ —–‹Ž‡”‹ Š‹ƒƒ”‡„”‡˜‡‡–‡ ‘•ƒ•‹‹–‡†‡’‡”ˆ—œ‹‘‡†‹˜‡”‘•‹‹‰Ž‹ƒœƒǤƒ ˜‡”‘•‹‹‰Ž‹ƒœƒ ° Žƒ ˆ—œ‹‘‡ †‹ †‡•‹– †‡Ž ƒ’‹‘‡ǡ ƒŽ ‘Žƒ–ƒ ‡Ž ’—–‘ ‘””‹•’‘†‡–‡ ƒŽ ƒ’‹‘‡ ‘••‡”˜ƒ–‘Ǥ ••ƒ †‹’‡†‡” †ƒ — ˜‡––‘”‡ › †‹ ’ƒ”ƒ‡–”‹ ‹ ‘‰‹–‹ǡ Ї ‡ †‡–‡”‹ƒ‘ Žƒ ˆ‘”ƒǤ ƒ••‹‹œœƒ†‘ “—‡•–ƒ ˆ—œ‹‘‡•‹‘––‹‡‡Žƒ•–‹ƒ†‹ƒ••‹ƒ˜‡”‘•‹‹‰Ž‹ƒœƒǤ—ƒ†‘‘••‡”˜‹ƒ‘—ƒ ”‡ƒŽ‹œœƒœ‹‘‡ †‹ — ’”‘ ‡••‘ •–‘ ƒ•–‹ ‘ǡ Žƒ ˆ—œ‹‘‡ †‹ ˜‡”‘•‹‹‰Ž‹ƒœƒ ‘ ° ƒŽ–”‘ ЇŽƒˆ—œ‹‘‡†‹†‡•‹– ‘‰‹—–ƒ†‡ŽŽƒ’ƒ”–‡†‹’”‘ ‡••‘‘••‡”˜ƒ–ƒǡ‘••‹ƒ Žƒˆ—œ‹‘‡†‹†‡•‹–ƒ”‰‹ƒŽ‡†‡Ž˜‡––‘”‡ƒŽ‡ƒ–‘”‹‘ȋšͳǡǤǤǤǡšȌǡ ƒŽ ‘Žƒ–ƒ ‡‹ ˜ƒŽ‘”‹ ‘••‡”˜ƒ–‹Ǥ ‡ •—’’‘‹ƒ‘ Ї ‹Ž ’”‘ ‡••‘ •‹ƒ ‰ƒ—••‹ƒ‘ǡ Žƒ ˆ—œ‹‘‡ †‹ ˜‡”‘•‹‹‰Ž‹ƒœƒ‘° ЇŽƒˆ—œ‹‘‡†‹†‡•‹–†‹—ƒ‘”ƒŽ‡—Ž–‹˜ƒ”‹ƒ–ƒǣ   1  L(ψ) = f(x; ψ) =  T  ∑  2π . -. 1 2. {. }. 1 exp - (x-k)' ∑-1 (x-k)  2.  †‘˜‡ š°‹Ž˜‡––‘”‡ȋšͳǡǤǤǤǡšȌ†‡ŽŽ‡ ‘••‡”˜ƒœ‹‘‹Ǣ ‡ ∑•‘‘ ‹•—‘‹‘‡–‹ ’”‹‹‡•‡ ‘†‹ǡ Ї†‹’‡†‘‘†ƒ ψ Ǥ†‡•‡’‹‘ǡŽǯ‡Ž‡‡–‘‹Œ†‡ŽŽƒƒ–”‹ ‡ ∑ ‘ ° Ї Žǯƒ—–‘ ‘˜ƒ”‹ƒœƒ †‹ ‘”†‹‡ ȁ‹ Ǧ Œȁ Žƒ “—ƒŽ‡ǡ ‘‡ •ƒ’’‹ƒ‘ǡ ° —ƒ ˆ—œ‹‘‡ †‡‹ ’ƒ”ƒ‡–”‹ †‡Ž ’”‘ ‡••‘ Ǥ 1 ’‘••‹„‹Ž‡ †‹‘•–”ƒ”‡ Ї ‰Ž‹ •–‹ƒ–‘”‹ †‹ ƒ••‹ƒ ˜‡”‘•‹‹‰Ž‹ƒœƒ †‹ ’”‘ ‡••‹  ‰ƒ—••‹ƒ‹ •‘‘ ‘•‹•–‡–‹ǡƒ•‹–‘–‹ ƒ‡–‡‘”ƒŽ‹‡† ƒ•‹–‘–‹ ƒ‡–‡‡ˆˆ‹ ‹‡–‹Ǥ

(118) ‘Ž–”‡ǡ•‘––‘ ‘†‹œ‹‘‹ ’‹—––‘•–‘ „Žƒ†‡ǡ އ ’”‘’”‹‡– †‹ ‘•‹•–‡œƒ ‡ ‘”ƒŽ‹– ƒ•‹–‘–‹ ƒ ˜‡‰‘‘ ‘•‡”˜ƒ–‡ ƒ Ї “—ƒ†‘ Žƒ ˜‡”ƒ †‹•–”‹„—œ‹‘‡ †‡Ž ’”‘ ‡••‘ ‘ •‹ƒ.  Ϯϳ.

(119) ‘”ƒŽ‡ ȋ•‹ ’ƒ”Žƒ ‹ “—‡•–‘ ƒ•‘ †‹ •–‹‡ †‹ “—ƒ•‹ Ǧ ƒ••‹ƒ ˜‡”‘•‹‹‰Ž‹ƒœƒȌǤ

(120) ‘Ž–”‡ ˜ƒ †‡––‘ Їǡ †‹ •‘Ž‹–‘ǡ ‘ •‹ Žƒ˜‘”ƒ •—ŽŽƒ ˆ—œ‹‘‡ ȋɗȌǡ ƒ •—Ž •—‘ Ž‘‰ƒ”‹–‘ƒ“—‡•–‘°‹””‹Ž‡˜ƒ–‡Ǥ

Riferimenti

Documenti correlati

Grazie ai compagni di viaggio in treno, che negli anni da pendolare con le loro battute e la loro considerazione mi hanno reso la vita da pendolare più leggera. In

The project brings together countries of North, South and East of the Mediterranean area with the Agenzia conservatoria delle coste della Sardegna (beneficiary of the project -

Environment Interactions in respiratory Diseases; HRQL: Health Related Quality of Life; ISAYA: Italian Study on Asthma in Young Adults; MCS: Sf-36 Mental Component Score; NAR:

Per quantificare la distribuzione di attività tramite immagini medico-nucleari, sono state previste correzioni dei conteggi letti sulle immagini che tengano conto degli effetti che la

In particolare sono stati analizzati il sistema dello spazio costruito, insediamenti, attrezzature e servizi interni alla città, elementi e funzioni , utile ad esaminare la

Since leptin is able to activate histaminergic neurons, and centrally acting histamine also induces the resuscitating effect with the activation of the sympathetic nervous system,

Foglio dalla Raccolta d’antiche iscrizioni siracusane di Cesare Gaetani conte della Torre (1760-70)... Iscrizione di Syros dalla catacomba di

Some examples are: the fusion calculus, where names can be unified under some conditions; the open bisimulation of π-calculus, which is defined by closure under all (also