• Non ci sono risultati.

Search for a W' or Techni-ρ Decaying into WZ in pp Collisions at sqrt[s]=7  TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for a W' or Techni-ρ Decaying into WZ in pp Collisions at sqrt[s]=7  TeV"

Copied!
16
0
0

Testo completo

(1)

Search for a W

0

or Techni- Decaying into WZ in pp Collisions at

p

ffiffiffi

s

¼ 7 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 3 June 2012; published 2 October 2012)

A search is performed inpp collisions atpffiffiffis¼ 7 TeV for exotic particles decaying via WZ to final states with electrons and muons. The data sample corresponds to an integrated luminosity of approxi-mately 5 fb1. No significant excess is observed in the data above the expected standard model background. Upper bounds at 95% confidence level are set on the production cross section of theW0 boson described by the sequential standard model and on theW0 WZ coupling. W0bosons with masses below 1143 GeV are excluded. Limits are also set in the context of low-scale technicolor models, under a range of assumptions concerning the model parameters.

DOI:10.1103/PhysRevLett.109.141801 PACS numbers: 13.85.Rm, 12.60.Cn, 14.80.Rt, 14.80.Tt

The standard model (SM) of particle physics has passed many rigorous tests, and its predictions have often been matched by experimental data with amazing precision. However, it is widely accepted that the SM cannot be the ultimate theory of fundamental particles and their interac-tions since it has a number of shortcomings; e.g., it fails to incorporate gravity and has no explanation for the domi-nance of matter over antimatter in the Universe. Various extensions of the SM have been proposed to address these problems and to explain the mechanism of electroweak symmetry breaking. Many of these models predict the existence of a new heavy charged gauge boson, generically known asW0, that decays into a pair of W and Z bosons [1–6]. PreviousW0searches have typically interpreted their results in terms of the sequential standard model (SSM) [7–12], a simple extension of the SM in which the cou-plings of theW0to fermions are identical to those of theW. Many of these searches have been conducted in leptonic final states and assume that theW0! WZ decay mode is suppressed. Searches for exotic particles that decay into WZ pairs are thus complementary to searches in the lep-tonic channels. Moreover, there are other models in which the W0 couplings to SM fermions are suppressed, giving rise to a fermiophobicW0with an enhanced coupling toW andZ bosons [13,14]. It is therefore important to search for W0 bosons also in theWZ final state.

Another model predicting a new heavy boson decaying into WZ is technicolor (TC): a gauge theory modeled on QCD with no elementary scalar particles [15,16]. TC provides a dynamical explanation of electroweak symmetry breaking by generating masses of theW and Z bosons through the binding energy of techni-fermions.

Furthermore, it predicts a series of techni-hadrons that are bound states of the new strong interaction. By analogy with QCD, the techni-hadrons with IGðJPCÞ ¼ 1ð0þÞ, 1þð1Þ, and 1ð1þþÞ are called 

TC, TC, and aTC, respectively. In low-scale technicolor (LSTC) [17,18], the lightest techni-hadrons are expected to have masses below 700 GeV, with the chargedTC andaTC able to decay to WZ boson pairs. Since these two states are expected to be nearly mass-degenerate [18], they would appear as a single feature in theWZ invariant mass spectrum, and we here-after refer to them collectively as TC. The relationship between the masses ofTCandTC,MðTCÞ and MðTCÞ, significantly affects the TC branching fractions [19]. If MðTCÞ<2MðTCÞ, the decay TC! TCþW dominates, such that the branching fraction BðTC! WZÞ < 10%. However, if this decay is kinematically inaccessible, BðTC! WZÞ approaches 100%.

This Letter presents a search for new particles decaying via aWZ pair with W ! ‘ and Z ! ‘‘ in the final state, where ‘ ¼ e; . The results are interpreted in the context of a SSMW0 boson and a LSTCTCparticle. A previous search in this channel performed by the D0 experiment excludes W0 bosons with masses between 188 and 520 GeV at 95% confidence level (C.L.) [9]. Their result also excludesTCbetween 208 and 409 GeV at 95% C.L., under the assumption that MðTCÞ < MðTCÞ þ MðWÞ. The analysis presented here considers the case where the relations between parameters are those of Ref. [19], MðTCÞ ¼34MðTCÞ  25 GeV, and also investigates the results of varying theTC andTC masses.

This study uses data corresponding to an integrated luminosity of 4:98  0:11 fb1of proton-proton collisions atpffiffiffis¼ 7 TeV, recorded by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) in 2011. The central feature of the apparatus is a supercon-ducting solenoid, of 6 m internal diameter, providing a field of 3.8 T. Inside the magnet coil are the silicon pixel and strip tracker, the lead tungstate crystal electromagnetic calorimeter, and the brass-scintillator hadron calorimeter.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

Muons are measured in gas-ionization detectors embedded in the steel return yoke. In addition to the barrel and end cap detectors, CMS has extensive forward calorimetry. The trigger system, composed of a custom hardware layer feeding into a commercial processor farm, reduces the event rate to approximately 300 Hz for storage and further analysis. A detailed description of the CMS apparatus may be found elsewhere [20].

TheWZ ! 3‘ decay under study is characterized by a pair of same-flavor, opposite-charge, isolated leptons with high transverse momentum (pT), having an invariant mass consistent with that of the Z boson, along with a third, high-pT, isolated lepton, and missing transverse energy (Emiss

T ) associated with the escaping neutrino. Other sources of events with three leptons, genuine or misidenti-fied, constitute the background, and can be grouped into the following classes: (1) The irreducible SM WZ back-ground. (2) Nonresonant events with no genuineZ boson in the final state, including top pair (tt), multijet, W þ jet, W, and WW þ jet production. Only the first of these makes a significant background contribution, and the others are therefore not considered in this analysis. (3) Events with a genuine Z boson decaying to leptons and a third misidentified or nonisolated lepton that is reconstructed as isolated. These events include Z þ jets (both light and heavy flavor) andZ processes. (4) Events with a genuine Z boson decaying to leptons and a third genuine isolated lepton, dominated byZZ ! 4‘ decays in which one of the four leptons is undetected. Although irreducible, this contribution is small because of the low ZZ production cross section and dilepton decay branching fraction.

The background was modeled using samples produced with a full GEANT4[21] simulation of the CMS detector. The primary SM background arises from theWZ ! 3‘ process, which was generated using theMADGRAPH5.1[22] generator, interfaced to PYTHIA 6.4.22 [23] for parton showering, hadronization, and simulation of the underlying event. The CTEQ6L1 [24] parton distribution functions (PDFs) were used withPYTHIAtune Z2 [25]. Higher-order effects were estimated using next-to-leading-order (NLO) K-factor corrections, obtained using MCFM6.1 [26]. The other background processes were also generated with MADGRAPH in combination withPYTHIA, with the excep-tion of theZZ process, which was generated usingPOWHEG 1.1 [27]. The signal was simulated using PYTHIA 6.4.22 with mass-dependent next-to-next-to-leading-order cross sections obtained using the simulation code FEWZ 2.0 [28]. Characteristic signal widths are in the range 50–150 GeV for theW0and 50–70 GeV for theTCmasses examined. These are dominated by the detector resolution, as the natural widths are approximately 10 and 2 GeV, respectively.

Candidate events were triggered using a double-electron or double-muon requirement, withpTthresholds of 17 and

8 GeV, respectively, for the highest-pT and second-highest-pT leptons. In the offline selection, events were required to have at least three reconstructed leptons within the tracking acceptance of jj < 2:5 (2.4) for electrons (muons), where    ln½tanð=2Þ, and  is the polar angle with respect to the counterclockwise proton beam. To reduce background from jets misidentified as leptons, all lepton candidates were required to satisfy a series of identification and isolation criteria. In calculating isolation variables, the track momenta and energy deposits, exc-luding those associated with the lepton itself, were summed in a cone of R < 0:3 around the lepton direction, where R ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðÞ2þ ðÞ2, and divided by the lepton transverse momentum. These sums were corrected for additional proton-proton interactions in each bunch cross-ing (pileup) uscross-ing the fast jet energy density technique [29,30]. For simulated samples, pileup was modeled by superimposing generated minimum-bias interactions onto simulated events, weighted such that the interaction multi-plicity agreed with the luminosity profile of the data set used. An additional scale factor (equal to one within 5%) derived from ‘‘tag-and-probe’’ [31] studies was applied to simulated events to correct for differences in lepton

M(WZ) (GeV) 0 200 400 600 800 1000 1200 1400 Events / 50 GeV -1 10 1 10 2 10 3 10 4 10 CMS 2011 = 7 TeV s -1 L dt = 4.98 fb

W' (600 GeV) Data WZ Z+Jets t t γ ZZ/Z M(WZ) (GeV) 0 200 400 600 800 1000 1200 1400 Events / 50 GeV -1 10 1 10 2 10 3 10 CMS 2011 = 7 TeV s -1 L dt = 4.98 fb

W' (600 GeV) Data WZ Z+Jets t t γ ZZ/Z

FIG. 1 (color online). Distribution of the WZ invariant mass (top) before application of theLTrequirement and (bottom) after applying the LT requirement (LT> 290 GeV) for the W0 mass point at 600 GeV.

(3)

selection efficiency measured in recorded and simulated event samples.

Z boson candidates were reconstructed from pairs of opposite-sign, same-flavor leptons with the highest and second-highest lepton pT greater than 20 and 10 GeV, respectively, and with an invariant mass between 60 and 120 GeV. In events where more than one such pair was found, the one with invariant mass closest to the nominalZ mass was selected. If four leptons compatible with two distinctZ candidates were present, the event was rejected in order to suppressZZ background. The candidate for the W boson decay product was required to pass tighter iso-lation and identification requirements. If multiple lepton candidates existed, the highest-pTremaining lepton, with pT greater than 20 GeV, was chosen. Finally, candidate events were required to haveEmissT > 30 GeV, as measured with a particle-flow algorithm [32], in order to discriminate againstZ þ jets events with high-pT jets misidentified as leptons and againstZ events with converted photons.

As the momentum component of the neutrino along the beam direction is unknown, the invariant mass of WZ candidates cannot be uniquely determined. However, by assuming theW to have its nominal mass, the value of the neutrino longitudinal momentum is constrained to one of the two solutions of a quadratic equation. Owing to detec-tor resolution effects, the reconstructed transverse mass was found to lie above the invariant W mass, MðWÞ, in 20% of events, leading to complex solutions for the neu-trino longitudinal momentum. In these cases, a real solu-tion was recovered by settingMðWÞ equal to the measured transverse mass. This results in two identical solutions for the neutrino longitudinal momentum. In simulated events with two unique solutions, the smaller-magnitude solution was found to be correct in approximately 75% of the cases,

and this solution was therefore chosen for all events. The observed invariant mass distribution of WZ candidates, MðWZÞ, is shown on the upper panel of Fig.1.

In order to optimize the expected upper limit on the signal cross section, an additional selection requirement was applied on the scalar sum of the transverse momenta of the charged leptons coming from the W and Z bosons (LT). For each W0=TC mass hypothesis considered, an optimized WZ mass search window and a minimum LT requirement were jointly determined to give the best ex-pected limit. The chosen LT and mass-window require-ments are listed in TableI, and theWZ invariant mass after applying the LT requirement for the W0 mass point at 600 GeV is shown on the lower panel of Fig. 1. There is no excess observed in the data above the expected standard model background.

As a cross-check of the simulation, theZ þ jets and tt backgrounds were estimated from the data by measuring the efficiencies for genuine and misidentified leptons to pass the isolation criteria and applying those efficiencies to a sample of events passing all requirements except for isolation. The total background result agrees with the numbers from simulation, and the uncertainties assigned to the Z þ jets and tt contributions when determining limits were based on the uncertainties in the estimates from data.

Systematic uncertainties affecting the product of accep-tance, reconstruction, and identification efficiencies for the final-state objects were determined from simulation. These include uncertainties stemming from lepton and EmissT en-ergy scales and resolutions, NLO effects, and pileup simu-lation. Following the recommendations of the PDF4LHC group [33], PDF and svariations of the MSTW2008 [34], CTEQ6.6 [35], and NNPDF2.0 [36] PDF sets were taken

TABLE I. Minimum LT requirements and search windows for each W0=ðTCÞ mass point along with the number of expected background events, observed events, and signal efficiency. Indicated uncertainties are statistical and systematic combined in quadrature.

MðW0=TCÞ (GeV) LT(GeV) WZ Mass-Window (GeV) NMC

Bkg Data Sig (%) 200 0 190–210 50  9 52 8:0  0:4 250 150 230–270 34  6 40 8:8  0:4 300 160 280–320 24  5 23 18  1 400 220 360–440 13  2 7 29  1 500 230 450–550 8  2 9 41  1 600 290 540–660 3:4  0:7 2 45  1 700 360 620–780 1:8  0:4 2 48  1 800 400 710–890 1:0  0:2 1 52  2 900 400 760–1040 1:0  0:2 0 61  2 1000 400 820–1180 0:8  0:2 0 65  2 1100 400 890–1310 0:6  0:1 0 63  1 1200 400 940–1460 0:4  0:1 0 58  1 1300 400 1020–1580 0:3  0:1 0 50  1 1400 400 1110–1690 0:18  0:05 0 36  1 1500 400 1200–1800 0:13  0:04 0 30  1

(4)

into account and their impact on the signal cross sections estimated.

The uncertainty on the background simulation is dominated by the 10% uncertainty due to NLO K-factor corrections for the WZ component. Cross section uncer-tainties of 7:5% for ZZ [26], 13% forZ [37], and 17% for WZ [38] were also taken into account, along with a 2:2% uncertainty on the integrated luminosity [39].

Exclusion limits on the production cross section ðpp ! W0=TC ! WZÞ  BðWZ ! 3‘Þ were deter-mined by comparing the number of observed events with the numbers of expected signal and background events in each search window. The calculations were performed using theROOSTATSimplementation [40] of the CLs statis-tic. The event counts and efficiencies are shown in TableI. We note that the efficiency drops at highW0mass because of the isolation requirement as the leptons from the boosted Z boson become more collimated. We interpolate between mass points where we have simulated the signal to estab-lish mass limits for each model.

In the SSM, these limits allow the exclusion of W0 bosons with masses below 1143 GeV (Fig. 2). For LSTC, with the chosen parametersMðTCÞ ¼34MðTCÞ  25 GeV, TC hadrons with masses between 167 and 687 GeV are excluded (see Fig. 3). Figure 3 also shows LSTC limits determined as a function of theTCandTC masses. The lower mass limits are obtained by extrapo-lating below 200 GeV. For the parameters chosen by the D0 experiment, MðTCÞ < MðTCÞ þ MðWÞ, more strin-gent limits are obtained, excluding the range 180 to 938 GeV forMðTCÞ. It can be seen that the LSTC inter-pretation of a deviation from the SM observed by the CDF experiment in the W þ jets channel [41], with proposed

parameters MðTCÞ ¼ 290 GeV and MðTCÞ ¼ 160 GeV [42], is excluded by the 95% C.L. upper bound of 150 GeV on MðTCÞ for the required TC mass. A more recent publication [43] proposes the evaluation of the cross sec-tion for TC! WZ as a function of the LSTC parameter sin . Changes in this parameter impact the decay branch-ing fractions for WZ and WTC (the channel studied in Ref. [42]), among others. Figure 2 shows the predicted cross sections corresponding to sin ¼12and sin ¼14, as well as the value sin ¼13 used to establish the reported limit.

The W0 production cross section and the W0 ! WZ branching fraction are both affected by the strength of the coupling between theW0,W, and Z bosons. Figure4 shows the 95% C.L. upper limit on the coupling as a function of the mass of theW0resonance.

In summary, a search for new exotic particles decaying via WZ to final states with electrons and muons has been performed using pp collisions at pffiffiffis¼ 7 TeV corres-ponding to an integrated luminosity of 4:98  0:11 fb1, collected by the CMS experiment. No significant excess was observed in the invariant mass distribution of WZ candidates, compared to the expectation from standard model processes. The results have been interpreted in the context of several theoretical models, with the data used to establish bounds at 95% C.L. on the masses of hypo-thetical particles decaying viaWZ. In the framework of the sequential standard model, W0 bosons with masses below 1143 GeV have been excluded. TechnicolorTC hadrons with masses between 167 and 687 GeV have been ex-cluded, assuming MðTCÞ ¼34MðTCÞ  25 GeV. Under the alternative assumption MðTCÞ < MðTCÞ þ MðWÞ, TC hadrons with masses between 180 and 938 GeV have been excluded. These are the most stringent limits to date in theWZ channel.

We thank Kenneth Lane for his help with the interpre-tation of the results within the context of low-scale techni-color models. We wish to congratulate our colleagues in the CERN accelerator departments for the excellent ) (GeV) TC ρ M(W', 200 400 600 800 1000 1200 1400 ) (pb)ν 3 → WZ → TC ρ W', B(× σ -4 10 -3 10 -2 10 -1 10 1 CMS 2011 = 7 TeV s -1 L dt = 4.98 fb

Obs. Limit Expect. Limit σ 1 ± Expect. σ 2 ± Expect. W' 2 1 )= χ TC sin( ρ 31 )= χ TC sin( ρ 4 1 )= χ TC sin( ρ

FIG. 2 (color online). Expected and observed 95% C.L. upper limits on  BðW0=TC! 3‘Þ as a function of the resonance mass for W0 or TC, along with the 1 and 2 combined statistical and systematic expected variation shown as green (dark) and yellow (light) bands, respectively. The theoretical cross sections, with PDF uncertainties, include a mass-dependent next-to-next-to-leading-orderK factor. The LSTC cross sections assume the relationshipMðTCÞ ¼34MðTCÞ  25 GeV.

) (GeV) TC ρ M( 200 400 600 800 1000 ) (GeV) TC π M( 200 400 600 800 Exp. Limit Obs. Limit CDF Anomaly CMS 2011 = 7 TeV s -1 L dt = 4.98 fb

) - M(W) TC ρ ) = M( TC π M( ) - 25 GeV TC ρ M( 4 3 ) = TC π M(

FIG. 3 (color online). Exclusion region at 95% C.L. for LSTC as a function of theTCandTCmasses.

(5)

performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes and acknowledge support from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania);

CINVESTAV, CONACYT, SEP, and UASLP-FAI

(Mexico); MSI (New Zealand); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS, and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); and DOE and NSF (USA).

[1] J. C. Pati and A. Salam,Phys. Rev. D 10, 275 (1974);11, 703 (1975).

[2] G. Altarelli, B. Mele, and M. Ruiz-Altaba,Z. Phys. C 45, 109 (1989);47, 676 (1990).

[3] A. Birkedal, K. Matchev, and M. Perelstein, Phys. Rev. Lett. 94, 191803 (2005).

[4] M. Perelstein,Prog. Part. Nucl. Phys. 58, 247 (2007). [5] K. Agashe, S. Gopalakrishna, T. Han, G.-Y. Huang, and

A. Soni,Phys. Rev. D 80, 075007 (2009).

[6] C. Grojean, E. Salvioni, and R. Torre, J. High Energy Phys. 07 (2011) 002.

[7] G. Aad et al. (ATLAS Collaboration),Phys. Lett. B 705, 28 (2011).

[8] S. Chatrchyan et al. (CMS Collaboration),J. High Energy Phys. 08 (2012) 023.

[9] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 104, 061801 (2010).

[10] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. Lett. 104, 241801 (2010).

[11] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 107, 011801 (2011).

[12] G. Aad et al. (ATLAS Collaboration),Phys. Rev. D 85, 112012 (2012).

[13] K. Nakamura et al.,J. Phys. G 37, 075021 (2010). [14] H.-J. He, Y.-P. Kuang, Y.-H. Qi, B. Zhang, A. Belyaev,

R. S. Chivukula, N. D. Christensen, A. Pukhov, and E. H. Simmons,Phys. Rev. D 78, 031701 (2008).

[15] S. Weinberg,Phys. Rev. D 19, 1277 (1979). [16] L. Susskind,Phys. Rev. D 20, 2619 (1979). [17] K. Lane,Phys. Rev. D 60, 075007 (1999).

[18] E. Eichten and K. Lane,Phys. Lett. B 669, 235 (2008). [19] G. Brooijmans et al.,arXiv:1005.1229.

[20] S. Chatrchyan et al. (CMS Collaboration), JINST 3, S08004 (2008).

[21] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003). [22] J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet,

F. Maltoni, T. Plehn, D. L. Rainwater, and T. Stelzer,J. High Energy Phys. 09 (2007) 028.

[23] T. Sjostrand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006) 026.

[24] J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, and W.-K. Tung, J. High Energy Phys. 07 (2002) 012.

[25] S. Chatrchyan et al. (CMS Collaboration),J. High Energy Phys. 09 (2011) 109.

[26] J. M. Campbell, R. K. Ellis, and C. Williams, J. High Energy Phys. 07 (2011) 018.

[27] S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070.

[28] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush,Comput. Phys. Commun. 182, 2388 (2011).

[29] M. Cacciari and G. P. Salam, Phys. Lett. B 659, 119 (2008).

[30] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 005.

[31] S. Chatrchyan et al. (CMS Collaboration),J. High Energy Phys. 10 (2011) 132.

[32] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-10-003, 2010 [http://cdsweb .cern.ch/record/1279347].

[33] M. Botje, J. Butterworth, A. Cooper-Sarkar, A. de Roeck, J. Feltesse, S. Forte, A. Glazov, J. Huston, R. McNulty, T. Sjo¨strand, and R. S. Thorne,arXiv:1101.0538v1. [34] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt,

Eur. Phys. J. C 63, 189 (2009).

[35] P. M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, and C.-P. Yuan,Phys. Rev. D 78, 013004 (2008).

[36] R. D. Ball, L. Del Debbio, S. Forte, A. Guanti, J. I. Latorre, J. Rojo, and M. Ubiali, Nucl. Phys. B838, 136 (2010).

[37] S. Chatrchyan et al. (CMS Collaboration),Phys. Lett. B 701, 535 (2011). M(W') (GeV) 200 400 600 800 1000 1200 1400 Normalized W'WZ Coupling 0 0.5 1 1.5 2 2.5 3 3.5 4 Obs. Limit Expect. Limit σ 1 ± Expect. σ 2 ± Expect. WZ Coupling SSM W' CMS 2011 = 7 TeV s -1 L dt = 4.98 fb

FIG. 4 (color online). Upper limit at 95% C.L. on the strength of theW0WZ coupling normalized to the SSM prediction, as a function of theW0mass. The 1 and 2 combined statistical and systematic expected variation is shown as green (dark) and yellow (light) bands, respectively. PDF uncertainties on the theoretical cross section are not included.

(6)

[38] G. Aad et al. (ATLAS Collaboration),Phys. Lett. B 709, 341 (2012).

[39] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-SMP-12-008, 2012 [http://cdsweb .cern.ch/record/1434360].

[40] L. Moneta et al., Proc. Sci., ACAT2010 (2010) 057 [arXiv:1009.1003].

[41] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. Lett. 106, 171801 (2011).

[42] E. J. Eichten, K. Lane, and A. Martin,Phys. Rev. Lett. 106, 251803 (2011).

[43] E. Eichten, K. Lane, A. Martin, and E. Pilon, arXiv:1201.4396.

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2E. Aguilo,2T. Bergauer,2 M. Dragicevic,2J. Ero¨,2C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2J. Hammer,2N. Ho¨rmann,2 J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2V. Knu¨nz,2M. Krammer,2,bD. Liko,2I. Mikulec,2M. Pernicka,2,a B. Rahbaran,2C. Rohringer,2H. Rohringer,2R. Scho¨fbeck,2J. Strauss,2A. Taurok,2W. Waltenberger,2G. Walzel,2 E. Widl,2C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3S. Bansal,4T. Cornelis,4E. A. De Wolf,4

X. Janssen,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4Z. Staykova,4 H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5

J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5A. Olbrechts,5W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Villella,5B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6T. Hreus,6 A. Le´onard,6P. E. Marage,6T. Reis,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wang,6V. Adler,7K. Beernaert,7

A. Cimmino,7S. Costantini,7G. Garcia,7M. Grunewald,7B. Klein,7J. Lellouch,7A. Marinov,7J. Mccartin,7 A. A. Ocampo Rios,7D. Ryckbosch,7N. Strobbe,7F. Thyssen,7M. Tytgat,7P. Verwilligen,7S. Walsh,7E. Yazgan,7

N. Zaganidis,7S. Basegmez,8G. Bruno,8R. Castello,8L. Ceard,8C. Delaere,8T. du Pree,8D. Favart,8 L. Forthomme,8A. Giammanco,8,cJ. Hollar,8V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8D. Pagano,8A. Pin,8

K. Piotrzkowski,8N. Schul,8J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9 G. A. Alves,10M. Correa Martins Junior,10D. De Jesus Damiao,10T. Martins,10M. E. Pol,10M. H. G. Souza,10

W. L. Alda´ Ju´nior,11W. Carvalho,11A. Custo´dio,11E. M. Da Costa,11C. De Oliveira Martins,11

S. Fonseca De Souza,11D. Matos Figueiredo,11L. Mundim,11H. Nogima,11V. Oguri,11W. L. Prado Da Silva,11 A. Santoro,11L. Soares Jorge,11A. Sznajder,11T. S. Anjos,12,dC. A. Bernardes,12,dF. A. Dias,12,e

T. R. Fernandez Perez Tomei,12E. M. Gregores,12,dC. Lagana,12F. Marinho,12P. G. Mercadante,12,dS. F. Novaes,12 Sandra S. Padula,12V. Genchev,13,fP. Iaydjiev,13,fS. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13 V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14V. Kozhuharov,14L. Litov,14B. Pavlov,14

P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15J. Tao,15 J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15Z. Zhang,15C. Asawatangtrakuldee,16Y. Ban,16 S. Guo,16Y. Guo,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16H. Teng,16D. Wang,16L. Zhang,16B. Zhu,16W. Zou,16 C. Avila,17J. P. Gomez,17B. Gomez Moreno,17A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18

R. Plestina,18,gD. Polic,18I. Puljak,18,fZ. Antunovic,19M. Kovac,19V. Brigljevic,20S. Duric,20K. Kadija,20 J. Luetic,20S. Morovic,20A. Attikis,21M. Galanti,21G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21

P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,hS. Elgammal,23,iA. Ellithi Kamel,23,jS. Khalil,23,i M. A. Mahmoud,23,kA. Radi,23,lM. Kadastik,24M. Mu¨ntel,24M. Raidal,24L. Rebane,24A. Tiko,24P. Eerola,25 G. Fedi,25M. Voutilainen,25J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26M. J. Kortelainen,26 T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26T. Peltola,26E. Tuominen,26

J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26L. Wendland,26K. Banzuzi,27A. Karjalainen,27A. Korpela,27 T. Tuuva,27M. Besancon,28S. Choudhury,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28

S. Ganjour,28A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28 L. Millischer,28A. Nayak,28J. Rander,28A. Rosowsky,28I. Shreyber,28M. Titov,28S. Baffioni,29F. Beaudette,29

L. Benhabib,29L. Bianchini,29M. Bluj,29,mC. Broutin,29P. Busson,29C. Charlot,29N. Daci,29T. Dahms,29 L. Dobrzynski,29R. Granier de Cassagnac,29M. Haguenauer,29P. Mine´,29C. Mironov,29M. Nguyen,29 C. Ochando,29P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Veelken,29A. Zabi,29J.-L. Agram,30,n J. Andrea,30D. Bloch,30D. Bodin,30J.-M. Brom,30M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,n F. Drouhin,30,nC. Ferro,30J.-C. Fontaine,30,nD. Gele´,30U. Goerlach,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30 F. Fassi,31D. Mercier,31S. Beauceron,32N. Beaupere,32O. Bondu,32G. Boudoul,32J. Chasserat,32R. Chierici,32,f

(7)

M. Lethuillier,32L. Mirabito,32S. Perries,32V. Sordini,32Y. Tschudi,32P. Verdier,32S. Viret,32Z. Tsamalaidze,33,y G. Anagnostou,34S. Beranek,34M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34R. Jussen,34K. Klein,34

J. Merz,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34 B. Wittmer,34V. Zhukov,34,oM. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35 R. Fischer,35A. Gu¨th,35T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35P. Kreuzer,35C. Magass,35

M. Merschmeyer,35A. Meyer,35M. Olschewski,35P. Papacz,35H. Pieta,35H. Reithler,35S. A. Schmitz,35 L. Sonnenschein,35J. Steggemann,35D. Teyssier,35M. Weber,35M. Bontenackels,36V. Cherepanov,36G. Flu¨gge,36

H. Geenen,36M. Geisler,36W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36T. Kress,36Y. Kuessel,36A. Nowack,36 L. Perchalla,36O. Pooth,36P. Sauerland,36A. Stahl,36M. Aldaya Martin,37J. Behr,37W. Behrenhoff,37U. Behrens,37 M. Bergholz,37,pA. Bethani,37K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37E. Castro,37

F. Costanza,37D. Dammann,37C. Diez Pardos,37G. Eckerlin,37D. Eckstein,37G. Flucke,37A. Geiser,37 I. Glushkov,37P. Gunnellini,37S. Habib,37J. Hauk,37G. Hellwig,37H. Jung,37M. Kasemann,37P. Katsas,37

C. Kleinwort,37H. Kluge,37A. Knutsson,37M. Kra¨mer,37D. Kru¨cker,37E. Kuznetsova,37W. Lange,37 W. Lohmann,37,pB. Lutz,37R. Mankel,37I. Marfin,37M. Marienfeld,37I.-A. Melzer-Pellmann,37A. B. Meyer,37

J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37J. Olzem,37H. Perrey,37A. Petrukhin,37D. Pitzl,37 A. Raspereza,37P. M. Ribeiro Cipriano,37C. Riedl,37E. Ron,37M. Rosin,37J. Salfeld-Nebgen,37R. Schmidt,37,p

T. Schoerner-Sadenius,37N. Sen,37A. Spiridonov,37M. Stein,37R. Walsh,37C. Wissing,37C. Autermann,38 V. Blobel,38J. Draeger,38H. Enderle,38J. Erfle,38U. Gebbert,38M. Go¨rner,38T. Hermanns,38R. S. Ho¨ing,38 K. Kaschube,38G. Kaussen,38H. Kirschenmann,38R. Klanner,38J. Lange,38B. Mura,38F. Nowak,38T. Peiffer,38 N. Pietsch,38D. Rathjens,38C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Schro¨der,38

T. Schum,38M. Seidel,38V. Sola,38H. Stadie,38G. Steinbru¨ck,38J. Thomsen,38L. Vanelderen,38C. Barth,39 J. Berger,39C. Bo¨ser,39T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39M. Guthoff,39,f C. Hackstein,39F. Hartmann,39T. Hauth,39,fM. Heinrich,39H. Held,39K. H. Hoffmann,39S. Honc,39I. Katkov,39,o

J. R. Komaragiri,39P. Lobelle Pardo,39D. Martschei,39S. Mueller,39Th. Mu¨ller,39M. Niegel,39A. Nu¨rnberg,39 O. Oberst,39A. Oehler,39J. Ott,39G. Quast,39K. Rabbertz,39F. Ratnikov,39N. Ratnikova,39S. Ro¨cker,39

A. Scheurer,39F.-P. Schilling,39G. Schott,39H. J. Simonis,39F. M. Stober,39D. Troendle,39R. Ulrich,39 J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39M. Zeise,39G. Daskalakis,40T. Geralis,40S. Kesisoglou,40 A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40C. Markou,40C. Mavrommatis,40E. Ntomari,40 L. Gouskos,41T. J. Mertzimekis,41A. Panagiotou,41N. Saoulidou,41I. Evangelou,42C. Foudas,42,fP. Kokkas,42

N. Manthos,42I. Papadopoulos,42V. Patras,42G. Bencze,43C. Hajdu,43,fP. Hidas,43D. Horvath,43,qF. Sikler,43 V. Veszpremi,43G. Vesztergombi,43,rN. Beni,44S. Czellar,44J. Molnar,44J. Palinkas,44Z. Szillasi,44J. Karancsi,45

P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. B. Beri,46V. Bhatnagar,46N. Dhingra,46R. Gupta,46M. Jindal,46 M. Kaur,46M. Z. Mehta,46N. Nishu,46L. K. Saini,46A. Sharma,46J. Singh,46S. Ahuja,47A. Bhardwaj,47

B. C. Choudhary,47A. Kumar,47A. Kumar,47S. Malhotra,47M. Naimuddin,47K. Ranjan,47V. Sharma,47 R. K. Shivpuri,47S. Banerjee,48S. Bhattacharya,48S. Dutta,48B. Gomber,48Sa. Jain,48Sh. Jain,48R. Khurana,48

S. Sarkar,48M. Sharan,48A. Abdulsalam,49R. K. Choudhury,49D. Dutta,49S. Kailas,49V. Kumar,49P. Mehta,49 A. K. Mohanty,49,fL. M. Pant,49P. Shukla,49T. Aziz,50S. Ganguly,50M. Guchait,50,sM. Maity,50,tG. Majumder,50

K. Mazumdar,50G. B. Mohanty,50B. Parida,50K. Sudhakar,50N. Wickramage,50S. Banerjee,51S. Dugad,51 H. Arfaei,52H. Bakhshiansohi,52,uS. M. Etesami,52,vA. Fahim,52,uM. Hashemi,52H. Hesari,52A. Jafari,52,u M. Khakzad,52M. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52B. Safarzadeh,52,wM. Zeinali,52,v M. Abbrescia,53a,53bL. Barbone,53a,53bC. Calabria,53a,53b,fS. S. Chhibra,53a,53bA. Colaleo,53aD. Creanza,53a,53c N. De Filippis,53a,53c,fM. De Palma,53a,53bL. Fiore,53aG. Iaselli,53a,53cL. Lusito,53a,53bG. Maggi,53a,53cM. Maggi,53a

B. Marangelli,53a,53bS. My,53a,53cS. Nuzzo,53a,53bN. Pacifico,53a,53bA. Pompili,53a,53bG. Pugliese,53a,53c G. Selvaggi,53a,53bL. Silvestris,53aG. Singh,53a,53bR. Venditti,53aG. Zito,53aG. Abbiendi,54aA. C. Benvenuti,54a

D. Bonacorsi,54a,54bS. Braibant-Giacomelli,54a,54bL. Brigliadori,54a,54bP. Capiluppi,54a,54bA. Castro,54a,54b F. R. Cavallo,54aM. Cuffiani,54a,54bG. M. Dallavalle,54aF. Fabbri,54aA. Fanfani,54a,54bD. Fasanella,54a,54b,f P. Giacomelli,54aC. Grandi,54aL. Guiducci,54a,54bS. Marcellini,54aG. Masetti,54aM. Meneghelli,54a,54b,f A. Montanari,54aF. L. Navarria,54a,54bF. Odorici,54aA. Perrotta,54aF. Primavera,54a,54bA. M. Rossi,54a,54b T. Rovelli,54a,54bG. Siroli,54a,54bR. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55bM. Chiorboli,55a,55b S. Costa,55a,55bR. Potenza,55a,55bA. Tricomi,55a,55bC. Tuve,55a,55bG. Barbagli,56aV. Ciulli,56a,56bC. Civinini,56a R. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56bE. Gallo,56aS. Gonzi,56a,56bM. Meschini,56aS. Paoletti,56a

(8)

G. Sguazzoni,56aA. Tropiano,56a,fL. Benussi,57S. Bianco,57S. Colafranceschi,57,xF. Fabbri,57D. Piccolo,57 P. Fabbricatore,58R. Musenich,58S. Tosi,58A. Benaglia,59a,59b,fF. De Guio,59a,59bL. Di Matteo,59a,59b,f S. Fiorendi,59a,59bS. Gennai,59a,fA. Ghezzi,59a,59bS. Malvezzi,59aR. A. Manzoni,59a,59bA. Martelli,59a,59b

A. Massironi,59a,59b,fD. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59aS. Ragazzi,59a,59b N. Redaelli,59aS. Sala,59aT. Tabarelli de Fatis,59a,59bS. Buontempo,60aC. A. Carrillo Montoya,60a,fN. Cavallo,60a,y

A. De Cosa,60a,60b,fO. Dogangun,60a,60bF. Fabozzi,60a,yA. O. M. Iorio,60aL. Lista,60aS. Meola,60a,z M. Merola,60a,60bP. Paolucci,60a,fP. Azzi,61aN. Bacchetta,61a,fP. Bellan,61a,61bD. Bisello,61a,61bA. Branca,61a,f R. Carlin,61a,61bP. Checchia,61aT. Dorigo,61aU. Dosselli,61aF. Gasparini,61a,61bU. Gasparini,61a,61bA. Gozzelino,61a

K. Kanishchev,61a,61cS. Lacaprara,61aI. Lazzizzera,61a,61cM. Margoni,61a,61bA. T. Meneguzzo,61a,61b M. Nespolo,61a,fJ. Pazzini,61aP. Ronchese,61a,61bF. Simonetto,61a,61bE. Torassa,61aS. Vanini,61a,61bP. Zotto,61a,61b

G. Zumerle,61a,61bM. Gabusi,62a,62bS. P. Ratti,62a,62bC. Riccardi,62a,62bP. Torre,62a,62bP. Vitulo,62a,62b M. Biasini,63a,63bG. M. Bilei,63aL. Fano`,63a,63bP. Lariccia,63a,63bA. Lucaroni,63a,63b,fG. Mantovani,63a,63b

M. Menichelli,63aA. Nappi,63a,63bF. Romeo,63a,63bA. Saha,63aA. Santocchia,63a,63bA. Spiezia,63a,63b S. Taroni,63a,63b,fP. Azzurri,64a,64cG. Bagliesi,64aT. Boccali,64aG. Broccolo,64a,64cR. Castaldi,64a R. T. D’Agnolo,64a,64cR. Dell’Orso,64aF. Fiori,64a,64b,fL. Foa`,64a,64cA. Giassi,64aA. Kraan,64aF. Ligabue,64a,64c T. Lomtadze,64aL. Martini,64a,aaA. Messineo,64a,64bF. Palla,64aA. Rizzi,64a,64bA. T. Serban,64a,bbP. Spagnolo,64a P. Squillacioti,64a,fR. Tenchini,64aG. Tonelli,64a,64b,fA. Venturi,64a,fP. G. Verdini,64aL. Barone,65a,65bF. Cavallari,65a

D. Del Re,65a,65b,fM. Diemoz,65aM. Grassi,65a,65b,fE. Longo,65a,65bP. Meridiani,65a,fF. Micheli,65a,65b S. Nourbakhsh,65a,65bG. Organtini,65a,65bR. Paramatti,65aS. Rahatlou,65a,65bM. Sigamani,65aL. Soffi,65a,65b

N. Amapane,66a,66bR. Arcidiacono,66a,66cS. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66aN. Cartiglia,66a M. Costa,66a,66bN. Demaria,66aC. Mariotti,66a,fS. Maselli,66aE. Migliore,66a,66bV. Monaco,66a,66bM. Musich,66a,f

M. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66aA. Potenza,66a,66bA. Romero,66a,66bM. Ruspa,66a,66c R. Sacchi,66a,66bA. Solano,66a,66bA. Staiano,66aA. Vilela Pereira,66aS. Belforte,67aV. Candelise,67a,67b F. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67aM. Marone,67a,67b,fD. Montanino,67a,67b,fA. Penzo,67a A. Schizzi,67a,67bS. G. Heo,68T. Y. Kim,68S. K. Nam,68S. Chang,69D. H. Kim,69G. N. Kim,69D. J. Kong,69 H. Park,69S. R. Ro,69D. C. Son,69T. Son,69J. Y. Kim,70Zero J. Kim,70S. Song,70S. Choi,71D. Gyun,71B. Hong,71

M. Jo,71H. Kim,71T. J. Kim,71K. S. Lee,71D. H. Moon,71S. K. Park,71M. Choi,72J. H. Kim,72C. Park,72 I. C. Park,72S. Park,72G. Ryu,72Y. Cho,73Y. Choi,73Y. K. Choi,73J. Goh,73M. S. Kim,73E. Kwon,73B. Lee,73

J. Lee,73S. Lee,73H. Seo,73I. Yu,73M. J. Bilinskas,74I. Grigelionis,74M. Janulis,74A. Juodagalvis,74 H. Castilla-Valdez,75E. De La Cruz-Burelo,75I. Heredia-de La Cruz,75R. Lopez-Fernandez,75R. Magan˜a Villalba,75

J. Martı´nez-Ortega,75A. Sa´nchez-Herna´ndez,75L. M. Villasenor-Cendejas,75S. Carrillo Moreno,76 F. Vazquez Valencia,76H. A. Salazar Ibarguen,77E. Casimiro Linares,78A. Morelos Pineda,78M. A. Reyes-Santos,78

D. Krofcheck,79A. J. Bell,80P. H. Butler,80R. Doesburg,80S. Reucroft,80H. Silverwood,80M. Ahmad,81 M. I. Asghar,81H. R. Hoorani,81S. Khalid,81W. A. Khan,81T. Khurshid,81S. Qazi,81M. A. Shah,81M. Shoaib,81

G. Brona,82K. Bunkowski,82M. Cwiok,82W. Dominik,82K. Doroba,82A. Kalinowski,82M. Konecki,82 J. Krolikowski,82H. Bialkowska,83B. Boimska,83T. Frueboes,83R. Gokieli,83M. Go´rski,83M. Kazana,83

K. Nawrocki,83K. Romanowska-Rybinska,83M. Szleper,83G. Wrochna,83P. Zalewski,83N. Almeida,84 P. Bargassa,84A. David,84P. Faccioli,84P. G. Ferreira Parracho,84M. Gallinaro,84J. Seixas,84J. Varela,84 P. Vischia,84I. Belotelov,85P. Bunin,85M. Gavrilenko,85I. Golutvin,85I. Gorbunov,85A. Kamenev,85V. Karjavin,85

G. Kozlov,85A. Lanev,85A. Malakhov,85P. Moisenz,85V. Palichik,85V. Perelygin,85S. Shmatov,85V. Smirnov,85 A. Volodko,85A. Zarubin,85S. Evstyukhin,86V. Golovtsov,86Y. Ivanov,86V. Kim,86P. Levchenko,86V. Murzin,86 V. Oreshkin,86I. Smirnov,86V. Sulimov,86L. Uvarov,86S. Vavilov,86A. Vorobyev,86An. Vorobyev,86Yu. Andreev,87

A. Dermenev,87S. Gninenko,87N. Golubev,87M. Kirsanov,87N. Krasnikov,87V. Matveev,87A. Pashenkov,87 D. Tlisov,87A. Toropin,87V. Epshteyn,88M. Erofeeva,88V. Gavrilov,88M. Kossov,88,fN. Lychkovskaya,88

V. Popov,88G. Safronov,88S. Semenov,88V. Stolin,88E. Vlasov,88A. Zhokin,88A. Belyaev,89E. Boos,89 M. Dubinin,89,eL. Dudko,89A. Ershov,89A. Gribushin,89V. Klyukhin,89O. Kodolova,89I. Lokhtin,89A. Markina,89

S. Obraztsov,89M. Perfilov,89S. Petrushanko,89A. Popov,89L. Sarycheva,89,aV. Savrin,89A. Snigirev,89 V. Andreev,90M. Azarkin,90I. Dremin,90M. Kirakosyan,90A. Leonidov,90G. Mesyats,90S. V. Rusakov,90 A. Vinogradov,90I. Azhgirey,91I. Bayshev,91S. Bitioukov,91V. Grishin,91,fV. Kachanov,91D. Konstantinov,91 A. Korablev,91V. Krychkine,91V. Petrov,91R. Ryutin,91A. Sobol,91L. Tourtchanovitch,91S. Troshin,91N. Tyurin,91

(9)

M. Aguilar-Benitez,93J. Alcaraz Maestre,93P. Arce,93C. Battilana,93E. Calvo,93M. Cerrada,93 M. Chamizo Llatas,93N. Colino,93B. De La Cruz,93A. Delgado Peris,93D. Domı´nguez Va´zquez,93 C. Fernandez Bedoya,93J. P. Ferna´ndez Ramos,93A. Ferrando,93J. Flix,93M. C. Fouz,93P. Garcia-Abia,93

O. Gonzalez Lopez,93S. Goy Lopez,93J. M. Hernandez,93M. I. Josa,93G. Merino,93J. Puerta Pelayo,93 A. Quintario Olmeda,93I. Redondo,93L. Romero,93J. Santaolalla,93M. S. Soares,93C. Willmott,93C. Albajar,94

G. Codispoti,94J. F. de Troco´niz,94H. Brun,95J. Cuevas,95J. Fernandez Menendez,95S. Folgueras,95 I. Gonzalez Caballero,95L. Lloret Iglesias,95J. Piedra Gomez,95,ddJ. A. Brochero Cifuentes,96I. J. Cabrillo,96

A. Calderon,96S. H. Chuang,96J. Duarte Campderros,96M. Felcini,96,eeM. Fernandez,96G. Gomez,96 J. Gonzalez Sanchez,96A. Graziano,96C. Jorda,96A. Lopez Virto,96J. Marco,96R. Marco,96C. Martinez Rivero,96 F. Matorras,96F. J. Munoz Sanchez,96T. Rodrigo,96A. Y. Rodrı´guez-Marrero,96A. Ruiz-Jimeno,96L. Scodellaro,96 M. Sobron Sanudo,96I. Vila,96R. Vilar Cortabitarte,96D. Abbaneo,97E. Auffray,97G. Auzinger,97P. Baillon,97 A. H. Ball,97D. Barney,97J. F. Benitez,97C. Bernet,97,gG. Bianchi,97P. Bloch,97A. Bocci,97A. Bonato,97C. Botta,97

H. Breuker,97T. Camporesi,97G. Cerminara,97T. Christiansen,97J. A. Coarasa Perez,97D. D’Enterria,97 A. Dabrowski,97A. De Roeck,97S. Di Guida,97M. Dobson,97N. Dupont-Sagorin,97A. Elliott-Peisert,97B. Frisch,97

W. Funk,97G. Georgiou,97M. Giffels,97D. Gigi,97K. Gill,97D. Giordano,97M. Giunta,97F. Glege,97 R. Gomez-Reino Garrido,97P. Govoni,97S. Gowdy,97R. Guida,97M. Hansen,97P. Harris,97C. Hartl,97J. Harvey,97

B. Hegner,97A. Hinzmann,97V. Innocente,97P. Janot,97K. Kaadze,97E. Karavakis,97K. Kousouris,97P. Lecoq,97 Y.-J. Lee,97P. Lenzi,97C. Lourenc¸o,97T. Ma¨ki,97M. Malberti,97L. Malgeri,97M. Mannelli,97L. Masetti,97 F. Meijers,97S. Mersi,97E. Meschi,97R. Moser,97M. U. Mozer,97M. Mulders,97P. Musella,97E. Nesvold,97 T. Orimoto,97L. Orsini,97E. Palencia Cortezon,97E. Perez,97L. Perrozzi,97A. Petrilli,97A. Pfeiffer,97M. Pierini,97

M. Pimia¨,97D. Piparo,97G. Polese,97L. Quertenmont,97A. Racz,97W. Reece,97J. Rodrigues Antunes,97 G. Rolandi,97,ffT. Rommerskirchen,97C. Rovelli,97,ggM. Rovere,97H. Sakulin,97F. Santanastasio,97C. Scha¨fer,97

C. Schwick,97I. Segoni,97S. Sekmen,97A. Sharma,97P. Siegrist,97P. Silva,97M. Simon,97P. Sphicas,97,hh D. Spiga,97A. Tsirou,97G. I. Veres,97,rJ. R. Vlimant,97H. K. Wo¨hri,97S. D. Worm,97,iiW. D. Zeuner,97W. Bertl,98

K. Deiters,98W. Erdmann,98K. Gabathuler,98R. Horisberger,98Q. Ingram,98H. C. Kaestli,98S. Ko¨nig,98 D. Kotlinski,98U. Langenegger,98F. Meier,98D. Renker,98T. Rohe,98J. Sibille,98,jjL. Ba¨ni,99P. Bortignon,99 M. A. Buchmann,99B. Casal,99N. Chanon,99A. Deisher,99G. Dissertori,99M. Dittmar,99M. Donega`,99M. Du¨nser,99

J. Eugster,99K. Freudenreich,99C. Grab,99D. Hits,99P. Lecomte,99W. Lustermann,99A. C. Marini,99 P. Martinez Ruiz del Arbol,99N. Mohr,99F. Moortgat,99C. Na¨geli,99,kkP. Nef,99F. Nessi-Tedaldi,99F. Pandolfi,99

L. Pape,99F. Pauss,99M. Peruzzi,99F. J. Ronga,99M. Rossini,99L. Sala,99A. K. Sanchez,99A. Starodumov,99,ll B. Stieger,99M. Takahashi,99L. Tauscher,99,aA. Thea,99K. Theofilatos,99D. Treille,99C. Urscheler,99R. Wallny,99

H. A. Weber,99L. Wehrli,99C. Amsler,100V. Chiochia,100S. De Visscher,100C. Favaro,100M. Ivova Rikova,100 B. Millan Mejias,100P. Otiougova,100P. Robmann,100H. Snoek,100S. Tupputi,100M. Verzetti,100Y. H. Chang,101

K. H. Chen,101C. M. Kuo,101S. W. Li,101W. Lin,101Z. K. Liu,101Y. J. Lu,101D. Mekterovic,101A. P. Singh,101 R. Volpe,101S. S. Yu,101P. Bartalini,102P. Chang,102Y. H. Chang,102Y. W. Chang,102Y. Chao,102K. F. Chen,102 C. Dietz,102U. Grundler,102W.-S. Hou,102Y. Hsiung,102K. Y. Kao,102Y. J. Lei,102R.-S. Lu,102D. Majumder,102

E. Petrakou,102X. Shi,102J. G. Shiu,102Y. M. Tzeng,102X. Wan,102M. Wang,102A. Adiguzel,103 M. N. Bakirci,103,mmS. Cerci,103,nnC. Dozen,103I. Dumanoglu,103E. Eskut,103S. Girgis,103G. Gokbulut,103 E. Gurpinar,103I. Hos,103E. E. Kangal,103T. Karaman,103G. Karapinar,103,ooA. Kayis Topaksu,103G. Onengut,103

K. Ozdemir,103S. Ozturk,103,ppA. Polatoz,103K. Sogut,103,qqD. Sunar Cerci,103,nnB. Tali,103,nnH. Topakli,103,mm L. N. Vergili,103M. Vergili,103I. V. Akin,104T. Aliev,104B. Bilin,104S. Bilmis,104M. Deniz,104H. Gamsizkan,104 A. M. Guler,104K. Ocalan,104A. Ozpineci,104M. Serin,104R. Sever,104U. E. Surat,104M. Yalvac,104E. Yildirim,104

M. Zeyrek,104E. Gu¨lmez,105B. Isildak,105,rrM. Kaya,105,ssO. Kaya,105,ssS. Ozkorucuklu,105,ttN. Sonmez,105,uu K. Cankocak,106L. Levchuk,107F. Bostock,108J. J. Brooke,108E. Clement,108D. Cussans,108H. Flacher,108

R. Frazier,108J. Goldstein,108M. Grimes,108G. P. Heath,108H. F. Heath,108L. Kreczko,108S. Metson,108 D. M. Newbold,108,iiK. Nirunpong,108A. Poll,108S. Senkin,108V. J. Smith,108T. Williams,108L. Basso,109,vv K. W. Bell,109A. Belyaev,109,vvC. Brew,109R. M. Brown,109D. J. A. Cockerill,109J. A. Coughlan,109K. Harder,109

S. Harper,109J. Jackson,109B. W. Kennedy,109E. Olaiya,109D. Petyt,109B. C. Radburn-Smith,109 C. H. Shepherd-Themistocleous,109I. R. Tomalin,109W. J. Womersley,109R. Bainbridge,110G. Ball,110 R. Beuselinck,110O. Buchmuller,110D. Colling,110N. Cripps,110M. Cutajar,110P. Dauncey,110G. Davies,110 M. Della Negra,110W. Ferguson,110J. Fulcher,110D. Futyan,110A. Gilbert,110A. Guneratne Bryer,110G. Hall,110

(10)

Z. Hatherell,110J. Hays,110G. Iles,110M. Jarvis,110G. Karapostoli,110L. Lyons,110A.-M. Magnan,110 J. Marrouche,110B. Mathias,110R. Nandi,110J. Nash,110A. Nikitenko,110,llA. Papageorgiou,110J. Pela,110,f M. Pesaresi,110K. Petridis,110M. Pioppi,110,wwD. M. Raymond,110S. Rogerson,110A. Rose,110M. J. Ryan,110

C. Seez,110P. Sharp,110,aA. Sparrow,110M. Stoye,110A. Tapper,110M. Vazquez Acosta,110T. Virdee,110 S. Wakefield,110N. Wardle,110T. Whyntie,110M. Chadwick,111J. E. Cole,111P. R. Hobson,111A. Khan,111 P. Kyberd,111D. Leggat,111D. Leslie,111W. Martin,111I. D. Reid,111P. Symonds,111L. Teodorescu,111M. Turner,111

K. Hatakeyama,112H. Liu,112T. Scarborough,112O. Charaf,113C. Henderson,113P. Rumerio,113A. Avetisyan,114 T. Bose,114C. Fantasia,114A. Heister,114J. St. John,114P. Lawson,114D. Lazic,114J. Rohlf,114D. Sperka,114

L. Sulak,114J. Alimena,115S. Bhattacharya,115D. Cutts,115A. Ferapontov,115U. Heintz,115S. Jabeen,115 G. Kukartsev,115E. Laird,115G. Landsberg,115M. Luk,115M. Narain,115D. Nguyen,115M. Segala,115 T. Sinthuprasith,115T. Speer,115K. V. Tsang,115R. Breedon,116G. Breto,116M. Calderon de la Barca Sanchez,116 S. Chauhan,116M. Chertok,116J. Conway,116R. Conway,116P. T. Cox,116J. Dolen,116R. Erbacher,116M. Gardner,116 R. Houtz,116W. Ko,116A. Kopecky,116R. Lander,116T. Miceli,116D. Pellett,116F. Ricci-tam,116B. Rutherford,116

M. Searle,116J. Smith,116M. Squires,116M. Tripathi,116R. Vasquez Sierra,116V. Andreev,117D. Cline,117 R. Cousins,117J. Duris,117S. Erhan,117P. Everaerts,117C. Farrell,117J. Hauser,117M. Ignatenko,117C. Jarvis,117 C. Plager,117G. Rakness,117P. Schlein,117,aV. Valuev,117M. Weber,117J. Babb,118R. Clare,118M. E. Dinardo,118 J. Ellison,118J. W. Gary,118F. Giordano,118G. Hanson,118G. Y. Jeng,118,xxH. Liu,118O. R. Long,118A. Luthra,118 H. Nguyen,118S. Paramesvaran,118J. Sturdy,118S. Sumowidagdo,118R. Wilken,118S. Wimpenny,118W. Andrews,119

J. G. Branson,119G. B. Cerati,119S. Cittolin,119D. Evans,119F. Golf,119A. Holzner,119R. Kelley,119 M. Lebourgeois,119J. Letts,119I. Macneill,119B. Mangano,119S. Padhi,119C. Palmer,119G. Petrucciani,119

M. Pieri,119M. Sani,119V. Sharma,119S. Simon,119E. Sudano,119M. Tadel,119Y. Tu,119A. Vartak,119 S. Wasserbaech,119,yyF. Wu¨rthwein,119A. Yagil,119J. Yoo,119D. Barge,120R. Bellan,120C. Campagnari,120 M. D’Alfonso,120T. Danielson,120K. Flowers,120P. Geffert,120J. Incandela,120C. Justus,120P. Kalavase,120 S. A. Koay,120D. Kovalskyi,120V. Krutelyov,120S. Lowette,120N. Mccoll,120V. Pavlunin,120F. Rebassoo,120 J. Ribnik,120J. Richman,120R. Rossin,120D. Stuart,120W. To,120C. West,120A. Apresyan,121A. Bornheim,121 Y. Chen,121E. Di Marco,121J. Duarte,121M. Gataullin,121Y. Ma,121A. Mott,121H. B. Newman,121C. Rogan,121

M. Spiropulu,121,eV. Timciuc,121P. Traczyk,121J. Veverka,121R. Wilkinson,121Y. Yang,121R. Y. Zhu,121 B. Akgun,122V. Azzolini,122R. Carroll,122T. Ferguson,122Y. Iiyama,122D. W. Jang,122Y. F. Liu,122M. Paulini,122

H. Vogel,122I. Vorobiev,122J. P. Cumalat,123B. R. Drell,123C. J. Edelmaier,123W. T. Ford,123A. Gaz,123 B. Heyburn,123E. Luiggi Lopez,123J. G. Smith,123K. Stenson,123K. A. Ulmer,123S. R. Wagner,123J. Alexander,124 A. Chatterjee,124N. Eggert,124L. K. Gibbons,124B. Heltsley,124A. Khukhunaishvili,124B. Kreis,124N. Mirman,124

G. Nicolas Kaufman,124J. R. Patterson,124A. Ryd,124E. Salvati,124W. Sun,124W. D. Teo,124J. Thom,124 J. Thompson,124J. Tucker,124J. Vaughan,124Y. Weng,124L. Winstrom,124P. Wittich,124D. Winn,125S. Abdullin,126

M. Albrow,126J. Anderson,126L. A. T. Bauerdick,126A. Beretvas,126J. Berryhill,126P. C. Bhat,126I. Bloch,126 K. Burkett,126J. N. Butler,126V. Chetluru,126H. W. K. Cheung,126F. Chlebana,126V. D. Elvira,126I. Fisk,126

J. Freeman,126Y. Gao,126D. Green,126O. Gutsche,126J. Hanlon,126R. M. Harris,126J. Hirschauer,126 B. Hooberman,126S. Jindariani,126M. Johnson,126U. Joshi,126B. Kilminster,126B. Klima,126S. Kunori,126 S. Kwan,126C. Leonidopoulos,126J. Linacre,126D. Lincoln,126R. Lipton,126J. Lykken,126K. Maeshima,126 J. M. Marraffino,126S. Maruyama,126D. Mason,126P. McBride,126K. Mishra,126S. Mrenna,126Y. Musienko,126,zz

C. Newman-Holmes,126V. O’Dell,126O. Prokofyev,126E. Sexton-Kennedy,126S. Sharma,126W. J. Spalding,126 L. Spiegel,126P. Tan,126L. Taylor,126S. Tkaczyk,126N. V. Tran,126L. Uplegger,126E. W. Vaandering,126R. Vidal,126

J. Whitmore,126W. Wu,126F. Yang,126F. Yumiceva,126J. C. Yun,126D. Acosta,127P. Avery,127D. Bourilkov,127 M. Chen,127T. Cheng,127S. Das,127M. De Gruttola,127G. P. Di Giovanni,127D. Dobur,127A. Drozdetskiy,127

R. D. Field,127M. Fisher,127Y. Fu,127I. K. Furic,127J. Gartner,127J. Hugon,127B. Kim,127J. Konigsberg,127 A. Korytov,127A. Kropivnitskaya,127T. Kypreos,127J. F. Low,127K. Matchev,127P. Milenovic,127,aaa G. Mitselmakher,127L. Muniz,127R. Remington,127A. Rinkevicius,127P. Sellers,127N. Skhirtladze,127 M. Snowball,127J. Yelton,127M. Zakaria,127V. Gaultney,128S. Hewamanage,128L. M. Lebolo,128S. Linn,128

P. Markowitz,128G. Martinez,128J. L. Rodriguez,128T. Adams,129A. Askew,129J. Bochenek,129J. Chen,129 B. Diamond,129S. V. Gleyzer,129J. Haas,129S. Hagopian,129V. Hagopian,129M. Jenkins,129K. F. Johnson,129

H. Prosper,129V. Veeraraghavan,129M. Weinberg,129M. M. Baarmand,130B. Dorney,130M. Hohlmann,130 H. Kalakhety,130I. Vodopiyanov,130M. R. Adams,131I. M. Anghel,131L. Apanasevich,131Y. Bai,131

(11)

V. E. Bazterra,131R. R. Betts,131I. Bucinskaite,131J. Callner,131R. Cavanaugh,131C. Dragoiu,131O. Evdokimov,131 L. Gauthier,131C. E. Gerber,131D. J. Hofman,131S. Khalatyan,131F. Lacroix,131M. Malek,131C. O’Brien,131

C. Silkworth,131D. Strom,131N. Varelas,131U. Akgun,132E. A. Albayrak,132B. Bilki,132,bbbW. Clarida,132 F. Duru,132S. Griffiths,132J.-P. Merlo,132H. Mermerkaya,132,cccA. Mestvirishvili,132A. Moeller,132J. Nachtman,132 C. R. Newsom,132E. Norbeck,132Y. Onel,132F. Ozok,132S. Sen,132E. Tiras,132J. Wetzel,132T. Yetkin,132K. Yi,132 B. A. Barnett,133B. Blumenfeld,133S. Bolognesi,133D. Fehling,133G. Giurgiu,133A. V. Gritsan,133Z. J. Guo,133

G. Hu,133P. Maksimovic,133S. Rappoccio,133M. Swartz,133A. Whitbeck,133P. Baringer,134A. Bean,134 G. Benelli,134O. Grachov,134R. P. Kenny Iii,134M. Murray,134D. Noonan,134S. Sanders,134R. Stringer,134 G. Tinti,134J. S. Wood,134V. Zhukova,134A. F. Barfuss,135T. Bolton,135I. Chakaberia,135A. Ivanov,135S. Khalil,135

M. Makouski,135Y. Maravin,135S. Shrestha,135I. Svintradze,135J. Gronberg,136D. Lange,136D. Wright,136 A. Baden,137M. Boutemeur,137B. Calvert,137S. C. Eno,137J. A. Gomez,137N. J. Hadley,137R. G. Kellogg,137 M. Kirn,137T. Kolberg,137Y. Lu,137M. Marionneau,137A. C. Mignerey,137K. Pedro,137A. Peterman,137A. Skuja,137 J. Temple,137M. B. Tonjes,137S. C. Tonwar,137E. Twedt,137A. Apyan,138G. Bauer,138J. Bendavid,138W. Busza,138

E. Butz,138I. A. Cali,138M. Chan,138V. Dutta,138G. Gomez Ceballos,138M. Goncharov,138K. A. Hahn,138 Y. Kim,138M. Klute,138K. Krajczar,138,dddW. Li,138P. D. Luckey,138T. Ma,138S. Nahn,138C. Paus,138D. Ralph,138

C. Roland,138G. Roland,138M. Rudolph,138G. S. F. Stephans,138F. Sto¨ckli,138K. Sumorok,138K. Sung,138 D. Velicanu,138E. A. Wenger,138R. Wolf,138B. Wyslouch,138S. Xie,138M. Yang,138Y. Yilmaz,138A. S. Yoon,138

M. Zanetti,138S. I. Cooper,139B. Dahmes,139A. De Benedetti,139G. Franzoni,139A. Gude,139S. C. Kao,139 K. Klapoetke,139Y. Kubota,139J. Mans,139N. Pastika,139R. Rusack,139M. Sasseville,139A. Singovsky,139 N. Tambe,139J. Turkewitz,139L. M. Cremaldi,140R. Kroeger,140L. Perera,140R. Rahmat,140D. A. Sanders,140 E. Avdeeva,141K. Bloom,141S. Bose,141J. Butt,141D. R. Claes,141A. Dominguez,141M. Eads,141J. Keller,141 I. Kravchenko,141J. Lazo-Flores,141H. Malbouisson,141S. Malik,141G. R. Snow,141U. Baur,142A. Godshalk,142

I. Iashvili,142S. Jain,142A. Kharchilava,142A. Kumar,142S. P. Shipkowski,142K. Smith,142G. Alverson,143 E. Barberis,143D. Baumgartel,143M. Chasco,143J. Haley,143D. Nash,143D. Trocino,143D. Wood,143J. Zhang,143

A. Anastassov,144A. Kubik,144N. Mucia,144N. Odell,144R. A. Ofierzynski,144B. Pollack,144A. Pozdnyakov,144 M. Schmitt,144S. Stoynev,144M. Velasco,144S. Won,144L. Antonelli,145D. Berry,145A. Brinkerhoff,145 M. Hildreth,145C. Jessop,145D. J. Karmgard,145J. Kolb,145K. Lannon,145W. Luo,145S. Lynch,145N. Marinelli,145 D. M. Morse,145T. Pearson,145R. Ruchti,145J. Slaunwhite,145N. Valls,145M. Wayne,145M. Wolf,145B. Bylsma,146 L. S. Durkin,146C. Hill,146R. Hughes,146K. Kotov,146T. Y. Ling,146D. Puigh,146M. Rodenburg,146C. Vuosalo,146 G. Williams,146B. L. Winer,146N. Adam,147E. Berry,147P. Elmer,147D. Gerbaudo,147V. Halyo,147P. Hebda,147

J. Hegeman,147A. Hunt,147P. Jindal,147D. Lopes Pegna,147P. Lujan,147D. Marlow,147T. Medvedeva,147 M. Mooney,147J. Olsen,147P. Piroue´,147X. Quan,147A. Raval,147B. Safdi,147H. Saka,147D. Stickland,147 C. Tully,147J. S. Werner,147A. Zuranski,147J. G. Acosta,148E. Brownson,148X. T. Huang,148A. Lopez,148 H. Mendez,148S. Oliveros,148J. E. Ramirez Vargas,148A. Zatserklyaniy,148E. Alagoz,149V. E. Barnes,149 D. Benedetti,149G. Bolla,149D. Bortoletto,149M. De Mattia,149A. Everett,149Z. Hu,149M. Jones,149O. Koybasi,149 M. Kress,149A. T. Laasanen,149N. Leonardo,149V. Maroussov,149P. Merkel,149D. H. Miller,149N. Neumeister,149 I. Shipsey,149D. Silvers,149A. Svyatkovskiy,149M. Vidal Marono,149H. D. Yoo,149J. Zablocki,149Y. Zheng,149

S. Guragain,150N. Parashar,150A. Adair,151C. Boulahouache,151K. M. Ecklund,151F. J. M. Geurts,151 B. P. Padley,151R. Redjimi,151J. Roberts,151J. Zabel,151B. Betchart,152A. Bodek,152Y. S. Chung,152R. Covarelli,152

P. de Barbaro,152R. Demina,152Y. Eshaq,152A. Garcia-Bellido,152P. Goldenzweig,152J. Han,152A. Harel,152 D. C. Miner,152D. Vishnevskiy,152M. Zielinski,152A. Bhatti,153R. Ciesielski,153L. Demortier,153K. Goulianos,153

G. Lungu,153S. Malik,153C. Mesropian,153S. Arora,154A. Barker,154J. P. Chou,154C. Contreras-Campana,154 E. Contreras-Campana,154D. Duggan,154D. Ferencek,154Y. Gershtein,154R. Gray,154E. Halkiadakis,154 D. Hidas,154A. Lath,154S. Panwalkar,154M. Park,154R. Patel,154V. Rekovic,154J. Robles,154K. Rose,154S. Salur,154

S. Schnetzer,154C. Seitz,154S. Somalwar,154R. Stone,154S. Thomas,154G. Cerizza,155M. Hollingsworth,155 S. Spanier,155Z. C. Yang,155A. York,155R. Eusebi,156W. Flanagan,156J. Gilmore,156T. Kamon,156,eee V. Khotilovich,156R. Montalvo,156I. Osipenkov,156Y. Pakhotin,156A. Perloff,156J. Roe,156A. Safonov,156

T. Sakuma,156S. Sengupta,156I. Suarez,156A. Tatarinov,156D. Toback,156N. Akchurin,157J. Damgov,157 P. R. Dudero,157C. Jeong,157K. Kovitanggoon,157S. W. Lee,157T. Libeiro,157Y. Roh,157I. Volobouev,157 E. Appelt,158A. G. Delannoy,158C. Florez,158S. Greene,158A. Gurrola,158W. Johns,158C. Johnston,158P. Kurt,158 C. Maguire,158A. Melo,158M. Sharma,158P. Sheldon,158B. Snook,158S. Tuo,158J. Velkovska,158M. W. Arenton,159

(12)

M. Balazs,159S. Boutle,159B. Cox,159B. Francis,159J. Goodell,159R. Hirosky,159A. Ledovskoy,159C. Lin,159 C. Neu,159J. Wood,159R. Yohay,159S. Gollapinni,160R. Harr,160P. E. Karchin,160

C. Kottachchi Kankanamge Don,160P. Lamichhane,160A. Sakharov,160M. Anderson,161M. Bachtis,161 D. Belknap,161L. Borrello,161D. Carlsmith,161M. Cepeda,161S. Dasu,161L. Gray,161K. S. Grogg,161M. Grothe,161

R. Hall-Wilton,161M. Herndon,161A. Herve´,161P. Klabbers,161J. Klukas,161A. Lanaro,161C. Lazaridis,161 J. Leonard,161R. Loveless,161A. Mohapatra,161I. Ojalvo,161F. Palmonari,161G. A. Pierro,161I. Ross,161A. Savin,161

W. H. Smith,161and J. Swanson161 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium 8

Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17

Universidad de Los Andes, Bogota, Colombia 18Technical University of Split, Split, Croatia

19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 40

Institute of Nuclear Physics ‘‘Demokritos,’’ Aghia Paraskevi, Greece 41University of Athens, Athens, Greece

42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46Panjab University, Chandigarh, India

(13)

48Saha Institute of Nuclear Physics, Kolkata, India 49Bhabha Atomic Research Centre, Mumbai, India 50Tata Institute of Fundamental Research—EHEP, Mumbai, India 51Tata Institute of Fundamental Research—HECR, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53aINFN Sezione di Bari, Bari, Italy 53bUniversita` di Bari, Bari, Italy 53cPolitecnico di Bari, Bari, Italy 54a

INFN Sezione di Bologna, Bologna, Italy 54bUniversita` di Bologna, Bologna, Italy 55aINFN Sezione di Catania, Catania, Italy

55bUniversita` di Catania, Catania, Italy 56aINFN Sezione di Firenze, Firenze, Italy

56bUniversita` di Firenze, Firenze, Italy

57INFN Laboratori Nazionali di Frascati, Frascati, Italy 58INFN Sezione di Genova, Genova, Italy 59aINFN Sezione di Milano-Bicocca, Milano, Italy

59bUniversita` di Milano-Bicocca, Milano, Italy 60aINFN Sezione di Napoli, Napoli, Italy 60bUniversita` di Napoli ‘‘Federico II,’’ Napoli, Italy

61aINFN Sezione di Padova, Padova, Italy 61bUniversita` di Padova, Padova, Italy

61cUniversita` di Trento, Trento, Italy 62aINFN Sezione di Pavia, Pavia, Italy

62b

Universita` di Pavia, Pavia, Italy 63aINFN Sezione di Perugia, Perugia, Italy

63bUniversita` di Perugia, Perugia, Italy 64aINFN Sezione di Pisa, Pisa, Italy

64bUniversita` di Pisa, Pisa, Italy 64cScuola Normale Superiore di Pisa, Pisa, Italy

65aINFN Sezione di Roma, Roma, Italy 65bUniversita` di Roma ‘‘La Sapienza,’’ Roma, Italy

66aINFN Sezione di Torino, Torino, Italy 66bUniversita` di Torino, Torino, Italy

66cUniversita` del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Trieste, Trieste, Italy

67bUniversita` di Trieste, Trieste, Italy 68Kangwon National University, Chunchon, Korea

69Kyungpook National University, Daegu, Korea

70Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 71Korea University, Seoul, Korea

72University of Seoul, Seoul, Korea 73Sungkyunkwan University, Suwon, Korea

74Vilnius University, Vilnius, Lithuania

75Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 76Universidad Iberoamericana, Mexico City, Mexico

77Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 78

Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico 79University of Auckland, Auckland, New Zealand

80University of Canterbury, Christchurch, New Zealand

81National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 82Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

83Soltan Institute for Nuclear Studies, Warsaw, Poland

84Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 85Joint Institute for Nuclear Research, Dubna, Russia

86Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 87

Institute for Nuclear Research, Moscow, Russia

88Institute for Theoretical and Experimental Physics, Moscow, Russia 89Moscow State University, Moscow, Russia

90P.N. Lebedev Physical Institute, Moscow, Russia

(14)

92University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 93Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain

94Universidad Auto´noma de Madrid, Madrid, Spain 95Universidad de Oviedo, Oviedo, Spain

96Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 97CERN, European Organization for Nuclear Research, Geneva, Switzerland

98Paul Scherrer Institut, Villigen, Switzerland

99Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 100

Universita¨t Zu¨rich, Zurich, Switzerland 101National Central University, Chung-Li, Taiwan 102National Taiwan University (NTU), Taipei, Taiwan

103Cukurova University, Adana, Turkey

104Middle East Technical University, Physics Department, Ankara, Turkey 105Bogazici University, Istanbul, Turkey

106Istanbul Technical University, Istanbul, Turkey

107National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 108University of Bristol, Bristol, United Kingdom

109Rutherford Appleton Laboratory, Didcot, United Kingdom 110Imperial College, London, United Kingdom 111Brunel University, Uxbridge, United Kingdom

112Baylor University, Waco, Texas, USA

113The University of Alabama, Tuscaloosa, Alabama, USA 114Boston University, Boston, Massachusetts, USA 115Brown University, Providence, Rhode Island, USA 116

University of California, Davis, Davis, California, USA 117University of California, Los Angeles, Los Angeles, California, USA

118University of California, Riverside, Riverside, California, USA 119University of California, San Diego, La Jolla, California, USA 120University of California, Santa Barbara, Santa Barbara, California, USA

121California Institute of Technology, Pasadena, California, USA 122Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 123University of Colorado at Boulder, Boulder, Colorado, USA

124Cornell University, Ithaca, New York, USA 125Fairfield University, Fairfield, Connecticut, USA 126Fermi National Accelerator Laboratory, Batavia, Illinois, USA

127University of Florida, Gainesville, Florida, USA 128Florida International University, Miami, Florida, USA

129Florida State University, Tallahassee, Florida, USA 130Florida Institute of Technology, Melbourne, Florida, USA 131University of Illinois at Chicago (UIC), Chicago, Illinois, USA

132The University of Iowa, Iowa City, Iowa, USA 133Johns Hopkins University, Baltimore, Maryland, USA

134The University of Kansas, Lawrence, Kansas, USA 135Kansas State University, Manhattan, Kansas, USA

136Lawrence Livermore National Laboratory, Livermore, California, USA 137University of Maryland, College Park, Maryland, USA 138Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

139

University of Minnesota, Minneapolis, Minnesota, USA 140University of Mississippi, University, Mississippi, USA 141University of Nebraska-Lincoln, Lincoln, Nebraska, USA 142State University of New York at Buffalo, Buffalo, New York, USA

143Northeastern University, Boston, Massachusetts, USA 144Northwestern University, Evanston, Illinois, USA 145University of Notre Dame, Notre Dame, Indiana, USA

146The Ohio State University, Columbus, Ohio, USA 147Princeton University, Princeton, New Jersey, USA

148

University of Puerto Rico, Mayaguez, USA 149Purdue University, West Lafayette, Indiana, USA 150Purdue University Calumet, Hammond, Indiana, USA

151Rice University, Houston, Texas, USA 152University of Rochester, Rochester, New York, USA

(15)

153The Rockefeller University, New York, USA

154Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA 155University of Tennessee, Knoxville, Tennessee, USA

156Texas A&M University, College Station, Texas, USA 157Texas Tech University, Lubbock, Texas, USA 158Vanderbilt University, Nashville, Tennessee, USA 159University of Virginia, Charlottesville, Virginia, USA

160Wayne State University, Detroit, Michigan, USA 161

University of Wisconsin, Madison, Wisconsin, USA

aDeceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. dAlso at Universidade Federal do ABC, Santo Andre, Brazil.

eAlso at California Institute of Technology, Pasadena, CA, USA.

fAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

gAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. hAlso at Suez Canal University, Suez, Egypt.

iAlso at Zewail City of Science and Technology, Zewail, Egypt. jAlso at Cairo University, Cairo, Egypt.

kAlso at Fayoum University, El-Fayoum, Egypt. lAlso at Ain Shams University, Cairo, Egypt. m

Also at Soltan Institute for Nuclear Studies, Warsaw, Poland.

nAlso at Universite´ de Haute-Alsace, Mulhouse, France. oAlso at Moscow State University, Moscow, Russia.

pAlso at Brandenburg University of Technology, Cottbus, Germany. qAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. rAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

sAlso at Tata Institute of Fundamental Research—HECR, Mumbai, India. tAlso at University of Visva-Bharati, Santiniketan, India.

uAlso at Sharif University of Technology, Tehran, Iran. vAlso at Isfahan University of Technology, Isfahan, Iran.

wAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. xAlso at Facolta` Ingegneria Universita` di Roma, Roma, Italy.

yAlso at Universita` della Basilicata, Potenza, Italy.

zAlso at Universita` degli Studi Guglielmo Marconi, Roma, Italy. aaAlso at Universita` degli studi di Siena, Siena, Italy.

bb

Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania.

ccAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia. ddAlso at University of Florida, Gainesville, FL, USA.

eeAlso at University of California, Los Angeles, Los Angeles, CA, USA. ffAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

ggAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. hhAlso at University of Athens, Athens, Greece.

iiAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. jjAlso at The University of Kansas, Lawrence, KS, USA.

kkAlso at Paul Scherrer Institut, Villigen, Switzerland.

llAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. mmAlso at Gaziosmanpasa University, Tokat, Turkey.

nnAlso at Adiyaman University, Adiyaman, Turkey. ooAlso at Izmir Institute of Technology, Izmir, Turkey. ppAlso at The University of Iowa, Iowa City, IA, USA. qq

Also at Mersin University, Mersin, Turkey.

rrAlso at Ozyegin University, Istanbul, Turkey. ssAlso at Kafkas University, Kars, Turkey.

(16)

uuAlso at Ege University, Izmir, Turkey.

vvAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. wwAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

xxAlso at University of Sydney, Sydney, Australia. yyAlso at Utah Valley University, Orem, UT, USA. zzAlso at Institute for Nuclear Research, Moscow, Russia.

aaaAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. bbbAlso at Argonne National Laboratory, Argonne, IL, USA.

cccAlso at Erzincan University, Erzincan, Turkey.

dddAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. eeeAlso at Kyungpook National University, Daegu, Korea.

Riferimenti

Documenti correlati

[r]

Lo scopo di questo lavoro è la descrizione del modello di riabilitazione multispecialistica sviluppato ed implementato presso l’AORN Santobono Pausilipon, composto da un team

Arca Beato Bartolomeo Cappella Nievo Cappella Monza Cappella Barbarano Cappella maggiore, Sesso Cappella Thiene Cappella Valmarana (sotto- coro) Altare

1ES 1959 +650 during the 9.5 yr period. The X-ray flares were sometimes not accompanied with an increasing activity in the γ -ray part of the spectrum and vice versa. In some cases,

(2014) and Planck Collaboration XXXIX (2016) who noted that the sub-mm flux densities of proto-cluster candidates measured by Planck are about 2 to 3 times larger than the

Seventeen Asino Amiatina donkeys semi-extensively farmed in paddocks showed alopecic nummular, scaling areas mainly on head and neck.. Microsporum racemosum cultivated from the

(a) The polymorphous cell population mainly represented by small and large lymphoid cells, plasma cells and numerous large cells with abundant cytoplasm and a round to oval nucleus