• Non ci sono risultati.

Anti-angiogenic activity of iridoids from Galium tunetanum

N/A
N/A
Protected

Academic year: 2021

Condividi "Anti-angiogenic activity of iridoids from Galium tunetanum"

Copied!
4
0
0

Testo completo

(1)

RevistaBrasileiradeFarmacognosia28(2018)374–377

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Short

communication

Anti-angiogenic

activity

of

iridoids

from

Galium

tunetanum

César

Mu ˜

noz

Camero

a

,

Maria

Paola

Germanò

b

,

Antonio

Rapisarda

b

,

Valeria

D’Angelo

b

,

Smain

Amira

c

,

Fatima

Benchikh

c

,

Alessandra

Braca

a,∗

,

Marinella

De

Leo

a

aDipartimentodiFarmacia,UniversitàdiPisa,Pisa,Italy

bDipartimentodiScienzeChimiche,Biologiche,FarmaceuticheeAmbientali,UniversitàdegliStudidiMessina,PoloUniversitarioSS,Annunziata,Messina,Italy cDepartmentofAnimalBiologyandPhysiology,UniversityofSetif,Setif,Algeria

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29January2018 Accepted29March2018 Availableonline25May2018 Keywords:

Anti-angiogenicactivity Asperuloside

Chickchorioallantoicmembrane Geniposidicacid

IridoidV1

a

b

s

t

r

a

c

t

ThephytochemicalstudyofGaliumtunetanumLam.,Rubiaceae,leavesledtotheisolationof13 com-poundsfromthechloroform–methanolandthemethanolextracts,including sixiridoidglycosides, onenon-glycosideiridoid,twop-coumaroyliridoidglycosides,twophenolicacids,andtwoflavonoid glycosides.Thestructuraldeterminationoftheisolatedcompoundswasperformedbymono-and bidi-mensionalNMRspectroscopicdata,aswellasESI-MSexperiments.Allcompoundswereisolatedfrom thisspeciesforthefirsttime.Theanti-angiogeniceffectsoftheisolatediridoidswerealsoreportedon newbloodvesselsformationusingthechickembryochorioallantoicmembraneasinvivomodel.Results showedthatamongtheisolatediridoidstestedatthedoseof2␮g/egg,asperuloside(1),geniposidicacid (2),andiridoidV1(3)reducedmicrovesselformationofthechorioallantoicmembraneonmorphological observationsusingastereomicroscope.Theanti-angiogeniceffectsoftheactivecompounds,expressed aspercentagesofinhibitionversuscontrol,were67%(1),59%(2),and54%(3),respectively.Inaddition, theactivecompoundswereabletoinhibitangiogenesisinthechorioallantoicmembraneassay,ina dose-dependentmanner(0.5–2␮g/egg)ascomparedtothestandardretinoicacid.

©2018SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Plants belonging to Galium genus, Rubiaceae, comprising

approximately1300species,areknowninethnobotanicalfieldfor

thetreatmentofavarietyofpathologicalconditions,suchas

psori-asis,skininfections(Oumeish,1999),hepatitis(Bolivaretal.,2011),

kidneydisorders,andassedative,diuretic,andtotreattheepilepsy

andhysteria(Shahetal.,2006).G.tunetanumLam.isaperennial

herb,nativetoTunisia,Algeria,Marocco,Spain,andSicily(Casimiro

etal.,2012).Tothebestofourknowledge,intheliteraturethere

isonlyonereportabouttheantioxidantactivityofthemethanol

extractofitsleaves(Gaamouneetal.,2014)butnophytochemical

studieshavebeencarriedoutsofar.

Galium genus is well-known for producing several classes

of secondary metabolites such as iridoid glycosides, saponins,

triterpenes, anthraquinones, and flavonoid glycosides (Mocan

et al., 2016). Iridoids are a large class of natural products,

exhibitingawiderangeofpharmacologicalactivitiessuchas

anti-inflammatory,anticancer,cardioprotective,andneuroprotective.

Interestingly,theiridoidglycosidegeniposidewasfoundtohave

∗ Correspondingauthor.

E-mail:alessandra.braca@unipi.it(A.Braca).

apotentanti-angiogenicactivityinthechickembryo

chorioallan-toicmembrane(CAM)assay(Kooetal.,2004).Angiogenesisisthe

growthofnewbloodvesselstoensurewoundhealing,

reproduc-tion,anddevelopmentsofcells.Thisphysiologicalprocessplaysan

importantroleintheexpansionofveinsandbloodcapillariesand

inthenutritionoftumorcells.Thus,angiogenesisinhibitionmight

beapromisingapproachforanticancertherapies.

Inthecourseofourinvestigationonplantsbelongingtothe

African flora (Beladjila et al., 2017), the chemical study of G.

tunetanum leaves was performed, and the isolation and

struc-tural characterization of 13 compounds, including nine iridoid

glycosides(1–9),twophenolic acids(10–11),andtwo flavonoid

glycosides(12–13)washereinreported.Theanti-angiogeniceffect

ofiridoids1–8onnewbloodvesselsformation,usingtheCAMassay

asinvivomodel,wasalsoexplored.

Materialsandmethods

Oneandtwo-dimensionalNMRexperimentswereperformed

on a Bruker DRX-600 spectrometer at 300K (Bruker BioSpin,

Rheinstetten,Germany) equippedwitha Bruker5mm TCI

Cry-oProbe, acquiring the spectra in methanol-d4. Pulse sequences

and phase cycling wereused for DQF-COSY,TOCSY, HSQC, and

HMBC,experiments.NMRdatawereprocessedusingXWinNMR

https://doi.org/10.1016/j.bjp.2018.03.010

0102-695X/©2018SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

C.M.Cameroetal./RevistaBrasileiradeFarmacognosia28(2018)374–377 375

software (De Leo et al., 2017). ESI-MSwere obtained from an

LCQAdvantageThermoFinniganspectrometer(ThermoFinnigan,

USA), equipped with Xcalibur software. Column

chromatogra-phies (CC) were performed over Sephadex LH-20 (40–70␮m,

AmershamPharmaciaBiotechAB,Uppsala,Sweden)andIsolera®

Biotage® purificationsystem(flashSilicagel60SNAP340g

car-tridge,flowrate90ml/min)(Milellaetal.,2016).Reversephase–

highperformance liquidchromatography(RP-HPLC)separations

were conducted on a Shimadzu LC-8A series pumping system

equippedwithaShimadzuRID-10Arefractiveindexdetectorand

ShimadzuinjectoronaC18␮-Bondapakcolumn(30cm×7.8mm,

10␮mWaters,flowrate2ml/min,Milford,MA,USA).ThinLayer

Chromatography(TLC)analyseswerecarriedoutusingprecoated

Kieselgel60F254(0.20mmthickness)plates(Merck,Darmstadt,

Germany);compoundsweredetectedbyceriumdisulfate/sulfuric

acid(Sigma–Aldrich, Milan,Italy). Allthesolvents used forthe

extractionandseparationprocessesandretinoicacidusedforthe

CAMassayasantiangiogenicreferencecompoundwerepurchased

fromSigma-Aldrich(Milan,Italy).

GaliumtunetanumLam.,Rubiaceae,leaveswerecollectedand

identifiedbyauthorsSmainAmiraandFatimaBenchikhinDjilma,

45kmawayfromJijel,NortheastAlgeria,inJune2013.Avoucher

specimen has been deposited at the Herbarium Horti Botanici

Pisani,Pisa,Italy(n.8486Galiumtunetanum/1,NuoveAcquisizioni).

Briefly, dried leaves of the plant (1kg) were extracted

with solvents of increasing polarity: n-hexane, chloroform,

chloroform–methanol(9:1),andmethanolbyexhaustive

macera-tiontogive4.0,13.3,11.9,and48goftherespectiveresidues.The

methanolextractwaspartitionedbetweenn-butanolandwaterto

affordan-butanolresidue(10.8g),thatwassubmittedtoSephadex

LH-20 column chromatography (5×75cm, flow rate 1ml/min)

usingmethanolaseluentandcollectingninemajorfractions(A–I)

groupedbyTLC.PartofthefractionB(1.5g)wassubjectedto

RP-HPLCwithmethanol–water(3:7)aseluent,togivecompounds2

(0.7mg,tR7min)and7(1.4mg,tR14min).FractionsE(273.3mg),

F(707.3mg),G(724.0mg),andI(818.2mg)weresubmittedto

RP-HPLCusingmethanol–water(35:65)aseluent,togivecompounds

3(5.0mg, tR 14min) and 8(1.7mg, tR 55min) fromfractionE;

compounds10(1.5mg,tR9min)and 9(0.5mg,tR22min)from

fractionF;compounds 11 (6.0mg, tR 6min) and 12 (1.3mg, tR

32min) fromfractionG;compound13 (2.6mg,tR 39min)from

fractionI,respectively.TheremainingfractionsB(874.2mg)andC

(922.3mg)weresubjectedtoRP-HPLCwithmethanol–water(1:4)

aseluent,togivecompound6(1.3mg,tR5min)fromfractionBand

compound2(1.3mg,tR8min)fromfractionC,respectively.Partof

thechloroform–methanolresidue(5.6g)wassubjectedtoIsolera

Biotagecolumnchromatography(340gsilicaSNAPcartridge,flow

rate90ml/min),elutingwithchloroformfollowedbyincreasing

concentrationsofmethanolinchloroform(between1%and100%).

Fractionsof27mlwerecollected,analyzedbyTLCandgroupedinto

fivemajorfractions(A–E).FractionsB(331.4mg)andC(1481.8mg)

weresubjectedtoRP-HPLCwithmethanol–water(3:7)aseluent,

togivecompounds5(1.3mg, tR 6min)and 7(3mg, tR 15min)

from fractionB; compound 1 (23.6mg, tR 8min) from fraction

C,respectively.FractionE(509.7mg)wassubmittedtoRP-HPLC

withmethanol–water(1:4)aseluent,togivecompound4(6.6mg,

tR7min).

The CAM assay was performed following the method of

Germanòetal.(2015)modified(Certoetal.,2017).Fertilizedeggs

ofGallusgalluswerepreviouslymaintainedinahumidified

incu-batorat37◦Cand,afterfourdaysofincubation,asmallwindow

wascreatedonthebroadsideoftheeggstoapplydifferentdoses

ofpurecompounds(0.5–2␮g/egg) directlyontheCAMsurface,

previously suspended in albumen. Retinoicacid(2␮g/egg) was

used as antiangiogenic reference compound. After treatment,

theeggswerereincubatedfor24h,thentheywereobservedby

meansofasteromicroscope(ZeissStemi2000-c)equippedwith

a digitalcamera(Axiocam MRc5 Zeiss)andphotographed.The

antiangiogeniceffectsontheCAMwerequantifiedbycountingthe

numberofbloodvesselbranchpointsinastandardizedareausing

aZeisssoftwareformicromorphometricanalysisandexpressedas

%ofinhibitionrespecttocontrol.Eachexperimentwasrepeated

threetimes.Thesignificanceof thedifferenceswasassessedon

thebasisofthet-test,consideringthedifferencesforp<0.05,and

finallycalculatedwithrespecttothelotofcontroleggstreatedonly

withalbumen.

Resultsanddiscussion

The phytochemical study of chloroform–methanol and

methanol extracts of G. tunetanum leaves afforded the

isola-tionofthirteencompounds1–13.Theirstructuraldetermination

was performed by 1D and 2D NMR spectroscopic techniques,

massspectrometryanalyses, andcomparisonofthesedatawith

those reported in the literature. Isolated compounds included

six iridoid glycosides identified as asperuloside (1) (Otsuka

etal.,1991),geniposidicacid(2)(Güvenalpetal.,2006),iridoid

V1 (3) (Mitova et al., 1999), deacetylasperuloside (4) (Otsuka

etal.,1991),monotropein(6)(Tzakouetal.,2007),and

daphyl-loside (7) (Demirezer et al., 2006); one non-glycoside iridoid

macedonine (5) (Mitova et al., 1996); two p-coumaroyl

iri-doid derivatives, 10-O-p-coumaroyl-10-deacetyldaphylloside

(8) (Ahn and Kim, 2012) and

10-O-p-coumaroyl-10-deacetylasperuloside (9) (Bai and Hu, 2006); two phenolic

acids characterized as p-hydroxyhydrocinnamic acid (10) and

(3)

376 C.M.Cameroetal./RevistaBrasileiradeFarmacognosia28(2018)374–377 1 mm 1 mm 1 mm 1 mm

A

B

C

D

Fig.1. Chickembryochorioallantoicmembrane(CAM)treatedwithatadoseof2␮g/egg.(A)Control;(B)asperuloside(1);(C)geniposidicacid(2);(D)iridoidV1(3).

80% 0.5 µg 1 µg 2 µg 70% 60% 40% 50% 30% 20% 10% 0% INHIBITION Geniposidic acid Asperuloside Iridoid V1 Retinoic acid

Fig.2.Dose-dependentanti-angiogenicactivityofasperuloside(1),geniposidicacid(2),andiridoidV1(3)inthechickembryochorioallantoicmembrane(CAM)assay. Retinoicacidwasusedasapositivecontrol.CAMsweretreatedwithcompoundsatdosesof0.5–2␮g/egg.Eachgroupcontainedatleast10eggs.Eachvaluerepresentsthe mean±SDofthreeexperiments.

glycosidesrutin (12)andapigenin-7-O-glucoside(13)(Agrawal,

1989).

Isolatediridoids,except9thatwasobtainedintoosmall

quan-tity, were subjected to CAM assay in order to evaluate their

anti-angiogeniceffects.

Theanti-angiogeniceffectsofisolatediridoids(2␮g/egg)inthe

CAMassayshowedthatcompounds1,2,and3wereabletoreduce

CAMmicrovesselformationwithinhibitionsof67%,59%,and54%,

respectively.Besides,compounds4–8demonstratedthefollowing

inhibitionvalues:43%,31%,23%,19%,and16%.Noteworthy,1has

ahigheranti-angiogenicactivityinrespecttothestandardretinoic

acid(62%).RepresentativemicroscopicimagesoftheCAMafter

treatmentwiththeactivecompounds1–3arereportedinFig.1.

Controleggsshowedthepresenceofaclearvascularnet-workwith

largevesselsconvergingtowardtheembryo(Fig.1A).Conversely,

avisiblereductionofbloodvesselbranchpointsisevidencedin

theCAM treatedwith1,2,and 3(Fig.1B–D).In addition,these

activecompoundsdemonstratedtoinhibitCAMangiogenesisina

dose-dependentmanner(0.5–2␮g/egg)(Fig.2).

Itisknownthatinhibitionofangiogenesishasbeenrecognized

tobeadvantageousforthepreventionofinflammationand

neo-plasticgrowth.Forthisreasonnowadaysthereisagrowinginterest

todiscovernewinhibitorsofangiogenesisfromnaturalsources.

TheCAMmodeloffersadvantagesthat includethecomparative

easeofculture,lowcost,andeasyobservationofthe

neovasculari-sation(Koutsavitietal.,2017).Amongtheisolatediridoidstested,

asperuloside(1),geniposidicacid(2),andiridoidV1(3)exhibited

highinhibitoryactivityonCAMangiogenesis.Theseresultsarein

accordancewiththestudyofKooetal.(2004)wheretheiridoid

(4)

C.M.Cameroetal./RevistaBrasileiradeFarmacognosia28(2018)374–377 377

activityofGardeniajasminoidesfruitsethanolextract.Insummary,

theresultsobtainedmaybethestartingpointforconsideringG.

tunetanumanewsourceofanti-angiogeniccompounds.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare

thatnoexperimentswereperformedonhumansoranimalsfor

thisstudy.

Confidentialityofdata. Theauthorsdeclarethatnopatientdata

appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat

nopatientdataappearinthisarticle.

Authors’contributions

ABplannedtheexperiments.CMCcarriedouttheextractionand

purificationofcompounds.MDLperformedtheNMRandESI-MS

experiments.SAandFBcollected,identifiedtheplantmaterialand

contributedtotheinterpretationofresults.MPG,AP,VDperformed

thebiologicalassays.Allauthorscontributedtothecriticalrevision

ofthemanuscript.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

References

Agrawal,P.K.,1989.Carbon-13NMRofFlavonoids.Elsevier,NewYork.

Ahn,D.,Kim,D.K.,2012.IridoidglycosidesfromtheaerialpartsofGaliumspurium L.Nat.Prod.Sci.18,195–199.

Bai,H.,Hu,L.,2006.StudyonthechemicalconstituentsofDaphniphyllum angusti-folium.Helv.Chim.Acta89,884–894.

Beladjila,K.A.,Cotugno,R.,Berrehal,D.,Kabouche,Z.,DeTommasi,N.,Braca,A.,De Leo,M.,2017.CytotoxictriterpenesfromSalviabuchananiiroots.Nat.Prod.Res. 20,1–6.

Bolivar,P.,Cruz-Paredes,C.,Hernandez,L.R.,Juárez,Z.N.,Sánchez-Arreola,E., Av-Gay,Y.,Bach, H., 2011.Antimicrobial, anti-inflammatory,antiparasitic, and cytotoxicactivitiesofGaliummexicanum.J.Ethnopharmacol.137,141–147.

Casimiro,F.,Pérez,A.V.,Cabezudo,B.,2012.SobrelapresenciadeGaliumtunetanum Lam.enlaSierradelasNieves(MálagaEspa ˜na).Acta.Bot.Malac.37,238–240. Certo,G.,Costa,R.,D’Angelo,V.,Russo,M.,Albergamo,A.,Dugo,G.,Germanò,M.P.,

2017.Anti-angiogenicactivityandphytochemicalscreeningoffruitfractions fromVitexagnuscastus.Nat.Prod.Res.31,2850–2856.

DeLeo,M.,Peruzzi,L.,Granchi,C.,Tuccinardi,T.,Minutolo,F.,DeTommasi,N.,Braca, A.,2017.ConstituentsofPolygalaflavescensssp.flavescensandtheiractivityas inhibitorsofhumanlactatedehydrogenase.J.Nat.Prod.80,2077–2087. Demirezer, L.O., Gurbuz,F.,Güvenalp, Z., Stroch,K.,Zeeck, A.,2006. Iridoids,

flavonoidsandmonoterpeneglycosidesfromGaliumverumsubsp.verum.Turk. J.Chem.30,525–534.

Gaamoune,S.,Harzallah,D.,Kada,S.,Dahamna,S.,2014.Evaluationofantioxidant activityofflavonoidsextractedfromGaliumtunetanumPoiret.Res.J.Pharm. Biol.Chem.Sci.5,341–348.

Germanò,M.P.,Certo,G.,D’Angelo,V.,Sanogo,R.,Malafronte,N.,DeTommasi,N., Rapisarda,A.,2015.Anti-angiogenicactivityofEntadaafricanaroot.Nat.Prod. Res.29,1551–1556.

Güvenalp,Z.,Kilic¸,N.,Kazaz,C.,Kaya,Y.,Demirezer,L.O.,2006.Chemicalconstituents ofGaliumtortumense.Turk.J.Chem.30,515–523.

Koo,H.-J.,Lee,S.,Shin,K.-H.,Kim,B.-C.,Lim,C.-J.,Park,E.-H.,2004.Geniposide,an anti-angiogeniccompoundfromthefruitsofGardeniajasminoides.PlantaMed. 70,467–469.

Koutsaviti,A.,Tzakou,O.,Galati,E.M.,Certo,G.,Germanò,M.P.,2017.Chemical com-positionofJuniperusphoeniceaandJ.drupaceaessentialoilandtheirbiological effectsinthechoriallantoicmembrane(CAM)assay.Nat.Prod.Commun.12, 449–452.

Milella,L.,Milazzo,S.,DeLeo,M.,VeraSaltos,M.B.,Faraone,I.,Tuccinardi,T.,Lapillo, M.,DeTommasi,N.,Braca,A.,2016.␣-Glucosidaseand␣-amylaseinhibitors fromArcytophyllumthymifolium.J.Nat.Prod.79,2104–2112.

Mitova,M.,Handjieva,N.,Spassov,S.,Popov,S.,1996.Macedonine,anon-glycosidic iridoidfromGaliummacedonicum.Phytochemistry42,1227–1229.

Mitova,M.,Handjieva,N.,Anchev,M.,Popov,S.J.,1999.Iridoidglucosidesfrom Galiumhumifusum.J.Biosci.54,488–491.

Mocan,A.,Crisan,G.,Vlase,L.,Ivanescu,B.,Badarau,A.S.,Arsene,A.L.,2016. Phy-tochemicalinvestigationsonfourGaliumspecies(Rubiaceae)fromRomania. Farmacia64,95–99.

Otsuka,H.,Yoshimur,K.,Yamasaki,K.,Cantoria,M.C.,1991.Isolationof10-O-acyl iridoidglucosidesfromaPhilippinemedicinalplantOldenlandiacorymbosaL. (Rubiaceae).Chem.Pharm.Bull.39,2049–2052.

Oumeish,Y.,1999.TraditionalArabicmedicineindermatology.Clin.Dermatol.17, 13–20.

Owen,R.W.,Haubner,R.,Mier,W.,Giacosa,A.,Hull,W.E.,Spiegelhalder,B.,Bartsch, H.,2003.Isolation,structureelucidationandantioxidantpotentialofthemajor phenolicandflavonoidcompoundsinbrinedolivedrupes.FoodChem.Toxicol. 41,703–717.

Shah,S.R.U.,Quasim,M.,Khan,I.A.,Shah,S.A.U.,2006.Studyofmedicinalplants amongweedsofwheatandmaizeinPeshawarregion.Pak.J.Weed.Sci.Res.12, 191–197.

Tzakou,O.,Mylonas,P.,Vagias,C.,Petrakis,P.V.,2007.Iridoidglucosideswith insec-ticidalactivityfromGaliummelanantherum.J.Biosci.62,597–602.

Figura

Fig. 1. Chick embryo chorioallantoic membrane (CAM) treated with at a dose of 2 ␮g/egg

Riferimenti

Documenti correlati

Downloaded by [Universita degli Studi di Torino] at 23:20 03 March 2016.. In addition to VEGFR inhibition, cabozantinib acts through several mechanisms of action that are supposed

6.4.1 Stima della capacità portante mediante formule statiche

Tan Y, Jing L, Ding Y, Wei T (2015) A novel double-layer molecularly imprinted polymer film based surface plasmon resonance for determina- tion of testosterone in aqueous media.

All’interno del sistema particolare importanza è assegnata al Ciclo di Gestione delle Performance, con il quale si definiscono i processi di pianificazione strategica

Nella prima parte di questo capitolo saranno illustrate le tecnologie hardware utilizzate per la realizzazione del progetto, Raspberry Pi, scelto come piattaforma hardware a basso

The research activity of the doctoral student Mike Oluwatayo OJO during the first year is primarily focused on three research areas: Scheduling in IEEE 802.15.4-2015 Time

We have used a micro-econometric model of household labour supply in Italy in order to simulate and identify optimal (second-best) income tax-transfer rules within classes of two-

Example 2 outlines two different roles of the processes defining the translation of an interactive process: those processes encoding the reactions and the context provide the