• Non ci sono risultati.

Analysis of the current world biofuel production under a water–food–energy nexus perspective

N/A
N/A
Protected

Academic year: 2021

Condividi "Analysis of the current world biofuel production under a water–food–energy nexus perspective"

Copied!
10
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Advances

in

Water

Resources

journalhomepage:www.elsevier.com/locate/advwatres

Analysis

of

the

current

world

biofuel

production

under

a

water–food–energy

nexus

perspective

Emanuele Moioli

a

, Federico Salvati

a

, Marco Chiesa

a

, Roza T. Siecha

a

, Flavio Manenti

b

,

Francesco Laio

c

, Maria Cristina Rulli

d,∗

a Alta Scuola Politecnica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

b Politecnico di Milano, Dipartimento di Chimica, Materiali ed Ingegneria Chimica ‘G. Natta’, Piazza Leonardo da Vinci 32, 20133 Milano, Italy c Politecnico di Torino, Dipartimento di Ingegneria dell’Ambiente, del Territorio e delle Infrastrutture, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy d Politecnico di Milano, Dipartimento di Ingegneria Civile ed Ambientale, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

a

r

t

i

c

l

e

i

n

f

o

Keywords: Food–energy–water nexus Bioenergy 1st generation biofuels Energy efficiency

a

b

s

t

r

a

c

t

Thispaperassessesthesustainabilityofbioenergyproductionunderanexusperspectivethroughanew effi-ciencytypeindex.Theindexdescribes1stgenerationbiofuelproductionundertheperspectiveoftheimplied consumptionofnaturalresources.Weconsiderthesustainabilityofenergyproductionasasequenceofsteps, eachcharacterisedbyitsefficiency,andproposeanindexwhichreturnsanoverallefficiencyvaluedescribing theadequacyorinadequacyoftheconsideredprocessesunderanexusperspective.Thedirectapplicationof thenexusindexentailsanindicationofthepossibleimprovementsneededtomoveproductiontowardsmost sustainableprocessesorplaces.Moreover,itallowsevaluatingtheefficiencyofthemaincropscurrentlyusedin biofuelproductionwithrespecttothewater–food–energynexus.Theresultsdepictcountriespresentlycapable ofperformingsustainableproductionof1stgenerationbiofuelfromparticularcrops.Furthermore,theanalysis ofthesinglecomponentsofthenexusindexallowsunderstandingtheeffectsofpossibleimprovements(e.g.soil andwatermanagement,newgenerationbiofuels)ontheoverallproductionefficiencyunderanexusperspective.

1. Introduction

Someofthemostdebatedtopicsforscienceinthe21stcenturyare relatedtoenergyavailabilityandproduction(IEA,2014; Johansson, 2013).Theneedformoreenergy,duetopopulationincreaseandglobal economicgrowth,isconflicting withtherequestof lowerCO2 emis-sionsanddecreaseourrelianceonfossilfuels(Edenhoferetal.,2011) Theconcernforfoodsecurity,waterscarcityandlandconsumptionare becomingdaybydaymoreimportantandtheseaspectsarefarfrom be-ingindependentfromenergyproductionanduse.Thestrictlinkamong energy,foodandwaterisgenerallyreferredtoasthewater–food–energy nexus(Sanders,2015).

Itisimpossibletoboundtheanalysisofenergyproductiontoasingle limitedsectorbecauseactionsaimedtolocallyoptimisetheefficiency can,attheend,causethesettlingoftheglobalsystemtoacondition worsethantheinitialone(Dubreuiletal.,2013).

Inthiscontext,theproductionofbiofuelsisapointofgreatdebate amongstscholars.Recently,decisionmakershavegivenmany incen-tivestotheproductionofenergyfromrenewableresources,findingin biofuelsagoodopportunitytodecreaseCO2 emissions(EUparliament, 2009;EUcommission,2010;USCongress,2005; USCongress, 2007;

Correspondingauthor.

E-mail addresses: emanuele.moioli@fau.de(E.Moioli),cristina.rulli@polimi.it(M.C.Rulli).

IEA,2012).Infact,biofuelscandecreaseCO2 emissionsinenergy pro-ductionwithrespecttofossilfuelssincetheyproduceenergyfroma feedstockwithlowerlifecycletime(BentsenandFelby,2012;DaCosta etal.,2010;Campbelletal.,2008;Dornburgetal.,2010)Atthesame time,theycanincreasethequoteofself-producedenergyformany coun-tries(AminehandCrijns-Graus,2014;Thöneetal.,2009;Faveroand Pettenella,2014).Nevertheless,theuseofediblecropsasfeedstockfor energyconversionisindirectcompetitionwithfoodproduction(Harvey andPilgrim,2011),affectingwaterandlandmanagement.Thisisdue tothehigherrequestofcropscausedbythesimultaneousdemandfor foodandfeedstockforenergyproduction(Gude,2015).Moreover,the cropyieldisoftenincreasedbymassiveirrigation,givingahigherfood production, butaccompaniedbyalow efficiencyintheuseofwater resources.

Thedesignofenergyproductionsystems,carriedouttakinginto ac-countalltheseaspects,isachallengingduty.Aspecificdesignmethodis farfrombeingcompletelydefined(Howells,2013).Thecurrentenergy, foodandfreshwatersupplysystemsareoptimisedtogivethemaximum possibleoutputintermsofthecommodityor/andsourcetheyare de-signedtoproduceordeliver(CosgroveandLouck,2015;Hejazietal., 2015),Thisleadstothecreationofsystemswhichareefficientintheir ownscope,butwhicharefarawayfromtheabsoluteoptimalpointin

https://doi.org/10.1016/j.advwatres.2018.07.007

Received5May2017;Receivedinrevisedform31May2018;Accepted15July2018 Availableonline26July2018

(2)

termsofsustainableuseofwaterandenergyresourcesundera food-energy-water(hereafter,FEW)nexusperspective.

Manyauthorshaveanalysed thesinglesubcomponentsof water– food–energynexusandmanyindicators existtoanalyse theeffectof 1stgenerationbiofuel(asadefinition,1stgenerationbiofuelsareliquid fuelsproduceddirectlyfromcropsotherwiseusedforfoodproduction. Thisdistinguishestheseproductsfromthefuelsobtainedfrom conver-sionofwaste(2ndgeneration)ornon-foodcrops)productionintermsof wateruseanddepletion,competitionwithfoodandlandconsumption. Forexample,indicatorsofwaterandlanduseforbiofuelproduction alreadyassesstheimpactofbioenergyproductionofanysinglenatural resourcetheyaredealingwith(Rullietal.,2016).However,justfew attemptsofanalysingtheinterlinksbetweenfood,energyandwaterin biofuelproductionhavebeen done(D’ Odoricoetal., 2018).andat ourknowledgenoindicatordoesexisttotakeinbioenergyproduction underFEWnexusperspective.Historically,twodifferentworkssetthe basistodefineandanalysetheconceptofwater–food–energynexus.In ‘Thelimitstogrowth’(Meadowsetal.,1972)importantinsightsinthe problemweregiven,butthesehintsdidnotformasingletoolsuitable forpolicymakers.Thisstudyplacedthefirstmilestoneforthe sustain-abilityassessment,butitdidnotaddresstheWEFnexusasawhole. Fewyearslater,themethodWELMM (GrenonandLapillonne,1976) wasdeveloped, directly focusingonfiveconnectedresources:water, energy,land,materialsandmanpower.Thismethodologyprovidedthe firstexampleofdatasetusedforsustainabilityassessment,butitdidnot involveanintegratedanalysisusefulunderaWEFperspective. Nowa-days,thewayisstillopenforthedevelopmentofintegratedassessment models(Tol,2006).ThisstudyproposesanewmethodologyfortheFEW description,consideringalltheaspectsofthisconceptandsummarising theminasinglesimpleindicator.Mostoftheexistingmodelsconsider thesinglerelationshipsenergy-land andenergy-wateruse.However, mostoftheavailabletoolsdonotaddresstheproblemasawhole.The commonlyusedmethodsforenergysystemanalysisincludeMESSAGE (MessnerandStrubegger,1995),MARKAL(Zonoozetal.,2009),LEAP (Heaps,2012)models;ontheotherside,theWEAP(Stockholm envi-ronmentinstitute,2011)modelisoftenusedforwatersystemplanning. Thesemodels,whileprovidingusefulinformationintheirapplication field,lackthedataandmethodologicalcomponentsrequiredtoconduct anintegratedpolicyassessment(Bazilian,2011).Atool,whichshould besimpleenoughtobeusefulforpolicymakers,butpreciseenoughto welldescribethecurrentenergyproductionunderanexusperspective, isstillmissing.

Herewe proposea newindex, which resumesin onesingle out-puttheeffectof1stgenerationbiofuelenergyproductionon sustain-abilityunderaFEWnexusperspective.Theindexisaimedtoanalyse theinterrelationshipamongwater,foodandenergyin1stgeneration biofuel productionat the globalscale andto assess the sustainabil-ityofbiofuelproductionfromaspecificcropinasinglecountry.For thispurpose,thevariouscomponentsoftheFEWNexusarestudiedin detailforbiofuelproductionfromany specificcrop,and,inorderto defineanefficiencytypeindex,theuse oftheresources (water,food andland)iscomparedtoareferencevalue(i.e.theleastimpactinguse ofthespecificresource).Thisnewindexdoesnotsubstitutethe exist-ingtoolsusedfortheanalysisofthesingleaspectsoftheFEWnexus, butitintegratesandcomplementsthemgivinga preliminary assess-mentofthecomplexinterrelationsbetweenthecomponentsoftheFEW nexus.

2. Methodologicalframework

ThedesignofanindexassessingtheFEWnexusshouldfollowthe deepunderstandingofthepunctualindicatorscharacterisingthesingle aspectsofthenexusitself.Forthisreason,werecallheresomeliterature resourcesusefultoaddressthesinglefacetsoftheproblem.

2.1. Water

Sincethispaperisfocusedonbiofuelproduction,itisnecessaryto havetoolsforanalysingthewaterrequiredtoproduceareference quan-tityofenergyfrombiofuels.Waterisnotonlyusedinenergyconversion, butitisvirtuallycontainedincropsusedasfeedstock,becausethey re-quirelargeamountsofwatertogrow(FinleyandSeiber,2014).A con-ceptofprincipalimportanceinthisfieldisvirtualwater(Antonelliand Sartori,2015).Virtualwaterisanindicatorusedtodescribethequantity ofwaterrequiredtoproduceaspecificindustrialoutput(Allan,1993). Thisindicatoriswidelyusedtodescribetheembeddedwaterintraded goods,asshownintheexampleofvirtualwatertrade(Antonelliand Sar-tori,2015).However,thevirtualwaterconceptisdesignedtoassessthe waterembeddedonlyinphysicalgoods.Whenacommodityisusedto produceothergoods(derivedgoods)infurtherprocesses,thevirtual wa-terconceptresultsnotsufficient(AntonelliandSartori,2015).Toextend theconcepttoderivedgoods,thewaterfootprintindicatorwas devel-oped.Waterfootprintchangestheperspectivewithreferencetovirtual water:Theformerindicatorallowsthedeterminationofthequantityof waterusedinproductionofgoodsandservices,whilethelatterallows thequantificationoftheamountofwaterusedduringtheprocessof consumingthesamegoodsandservices(ChapagainandHoeksrtaetal. 2003).

Waterfootprintisafundamentalconcept,sinceitallowsdefiningin aprecisewaytheamountofwaterrequiredtoproducebioenergy.Many studiesaredevotedtothistopic(Grebens-Leenesetal.,2009;Velazquez etal.,2011)Theresultsofthesestudieswillbeusedasastartingpointin definingour“water-efficiency” index(seeSection3),buttheydescribe onlyasingleaspectofacomplexproblem.Theyallowdeterminingthe quantityofwaterneededthroughouttheproductionchainofbiofuels, buttheyallowneithertounderstandtherenewabilityofthewaterused, nortorelateittotheresourceseffectivelyusedduringproduction.

Thesustainabilityofthewaterusehasbeenrelatedtoasortof hier-archyinthetypologyofwatersources,withsomesourcesmorevaluable thanothers,alsofromaneconomicpointofview(Chapagainand Hoek-stra,2004).Toaddressthisproblem, theconceptsof greenandblue waterweredefined.Blue waterreferstotheliquidwaterabove and belowtheground(rivers,lakes,andgroundwater).Greenwateristhe soilwaterintheunsaturatedzonederivedfromprecipitations( Gerbens-Leenesetal.,2009).Onlygreenwaterisusuallyconsideredarenewable resourceinthestrictsense(MekonnenandHoekstra,2010).Bothgreen andbluewaterareintensivelyusedinagriculture,butbluewaterisused indirectcompetitionwithotherhumanuses(e.g.industries, municipal-ities…)(RulliandD’Odorico,2013).Wedonotconsidergreywaterin thisanalysisbecauseofthescarceaccuracyandspatialhomogeneityof theavailablegrey-waterfootprintestimators(Novoetal.,2009; Falken-mark,1986;Mancosuetal.,2015).

Theseparationofblueandgreenwateristhereforeusefulto under-standtheoverallsustainabilityoftheprocessunderawaterperspective, inparticularbecauseanalysingthebluewaterfootprintallowsoneto quantifytheimpactofbiofuelproductiononrenewableresources.The shareof renewableresourcesusedforbiofuelproductionistherefore usedasthemaincomponentofour“water-quality” indicator.

Alsoconsideringtheseparationbetweentheblueandgreenwater footprint,oneisleftwithawaterefficiencyindicatorwhichlacks in-formationabouttheabundance(orscarcity)ofwaterintheproduction place.WateravailabilityisaccountedforbyconsideringtheWorlddata bankWaterWithdrawalIndexasafurtherdeterminantoftheindex(see Section3).

2.2. Food

Thesecondelementtobediscussedinawater–food–energynexus analysis is the possible interaction of biofuel production with food production, includingbothcommoditiesused forhumanandanimal nutrition. We do not aim toconsider, separately for each crop, the

(3)

amountoffoodwhichissubtractedtohumanconsumptionbybiofuel production,becausethiskindofanalysiswouldinvolvedietaryand nu-tritionalfacetswhicharebeyondthescope ofthepaper. Incontrast, wewanttoincludeinourindexthesimpleconceptthat,atthe coun-tryscale,humancropconsumptionshouldbefavouredwithrespectto thecrop usefor energy-productionwhenmalnutritionaffects a non-negligibleportionofthecountry’spopulation.Thereferenceconceptin thisfieldisthusfoodsecurity.Foodsecurityisdefinedas‘asituation thatexistswhenallpeople,atalltimes,havephysical,socialandeconomic accesstosufficient,safeandnutritiousfoodthatmeetstheirdietaryneeds andfoodpreferencesforanactiveandhealthylife’(FAO,2003).While thisdefinitionisrathersimple,itisdifficulttoturnthisexpressioninto aquantitativeindex,whichstatestheeffectsoffoodinsecurity world-wide.Wethereforerefer,inthedefinitionofour“foodefficiency” index inSection3,toaverysimpleandwellagreedconcepttoatleastroughly characterisefoodsecurityinacountry:theprevalenceofmalnutrition, asdefinedbyFAOineachcountry.

2.3. Land

Thethirdelementtobeinvestigatedintheanalysisisland.Landis thebasicresourceneededinagricultureandthequantificationofland requiredtoproduceadefinedamountofcropisapointofcapital im-portance.Modelsarerequiredtohaveagoodunderstandingofthe effi-ciencyinexploitingthisresourceforanypurpose.

Thekeyparameterinagricultureiscropyield,definedasthe quan-tity of crop producedfor ha of land used (Gebbers andAdamchuk, 2010).Cropsyielddependsoncroptype,climate,cultivar,soiland ter-rainconditions,levelofinputs(waterandfertilizers)andmanagement. Yielddatasuffersimilarproblemsasdataoffoodsecuritybecause theyaremainlytheresultsofstatisticalmeasurements.Onlypunctual dataareprecise,buttherecoveryofsuchdataishardandtheyarenot alwayssuitableforfurtherstudies.Theuseofaverageorcountry-based datagiveslesspreciseindicationsonlandyield,butinmanycases,these aretheonlydataavailableorusable(Barretetal.,2002).

Anotherimportantfeaturetobeconsideredin asustainability as-sessmentoflanduseisthequantityoflandavailableandsuitablefor agriculture.Togetherwithagriculturalintensificationandincreased ap-plicationoffertilisersandpesticides,theexpansionincultivatedareais thekeyfactorfortheincreaseinfoodproductionobservedoverthelast 50years(KhanandHanjra,2008).Thetotalglobalagriculturalareahas expandedby11%to5billionha,andthearablelandareahasexpanded from1.27to1.4billionha(FAOSTAT,2014).Morelandhasbeen con-vertedtocroppingin the30 yearsafter1960thanin the150years between1700and1850(FAOSTAT,2014).Thesedataarefundamental tounderstandthepossiblefurtherincreaseinagriculturalproduction andiftheuseoflandiscompatibletoasustainabledevelopmentand changingclimateregimes.

3. Materialsandmethods

Inordertoassesstheeffectsofbiofuelproductiononglobal sustain-abilityunderawater–food–energynexusperspectivethecurrent pro-ductionofbiofuelsisevaluated bymeansof anewindex,which we callthenexusindex(NI).Wecalculatethenexusindexforthemost im-portantcropsusedinbiofuelproduction.Thelistofconsideredcropsis reportedinTable1.Theindexisdesignedtoevaluatetheresources re-quired,intermsofwater,foodandland,toproduceoneunitofenergy (Fig.1).

Theformulaofthenexusindexis:

𝑁𝐼= 𝜂𝑤𝑎𝑡𝑒𝑟𝜂𝑓𝑜𝑜𝑑𝜂𝑙𝑎𝑛𝑑 (1)

whichisthemathematicaldescriptionofasystemsimilar totheone shown in Fig.1, wherethe use of three resources (water,foodand land)isnecessarytogetthefinaloutput(energy).NIistheNexus In-dex,𝜂wateristheefficiencyinwateruse,𝜂foodtheefficiencywithrespect

Table1

Listofcropsconsideredduringanalysis.

Crops considered for analysis Bioethanol Biodiesel

Maize Oil palm

Rice Soybean

Rye Sorghum Sugar beet Wheat

Fig.1.Water–food–energynexusunderanenergyperspective.

tofoodproductionand𝜂landis theefficiencyin theuse ofland.The

firstterm(𝜂water)islinkedtothewaterusedforcropproduction,

stat-inganefficiencywithrespecttothelowestquantity ofwaterthatis possibletouseinaspecificprocess.Thesecondterm(𝜂food)is

country-relatedanddescribestheeffectsofthecompetitionbetweenbiofueland foodproduction.Thethirdterm(𝜂land)takesintoaccountthequantity

oflandrequiredtoproduceoneunitofproduct,againreferringtothe best attainableperformance.This methodallowscomparingdifferent systems,providingaresultintherangebetween0and1.Inordertoget agoodscore,aprocessmustworkwiththebestavailabletechnology, preventingtheresourcesfrombeingdepletedandguaranteethewater andfoodsecurityandarigoroususeofland.Thethreepartshavethe sameweightintheindex,sothattheinefficiencyinasinglestepis di-rectlytranslatedintotheresult.Themultiplicationof3differentfactors ischoseninordertoincreasetheinfluencetheinefficiencyofanysingle aspectoftheindex.Infact,thankstothetheoryoflimitingeffects,if onlyonefactorisnotefficientlymanaged,thevalueoftheindexresults stronglypenalised.Thisformispreferredtootherpossible mathemat-icalformulations(e.g.:additiveform)toavoidtheneedofweighting factors,whichwouldincludemorearbitrarychoicesintheindex defi-nition.Thenumberoffactorsislimitedtothreetohaveacompromise betweencomplexityinthedataminingphaseandprecisionoftheindex. Thethreefactorsdeterminetheinfluenceofbiofuelproductiononthe threemostimportantelementsthataffectsthewater–food–energynexus (wateruse,landconsumptionandfoodavailability),givingasimplebut preciseindicatorofefficiency.

InthefollowingeachcomponentoftheNexusIndexisdescribedin detail.

3.1. Waterefficiency

Thewaterefficiencyindexisintroducedforassessingtheuseof wa-terrelatedtobiofuelproduction.Tothisaimthisindexconsidersboth theamountofwaterandthesourceofwaterusedforcropproduction (i.e.soilmoistureduetoprecipitation,thatisthesocalledgreen wa-terorirrigationwater,thesocalledbluewater)requiredtoproducea pre-definedamountofenergyviabiofuels.

(4)

Thewaterefficiencyishereexpressedastheproductoftwoterms:

𝜂𝑤𝑎𝑡𝑒𝑟= 𝜂𝑤𝑎𝑡𝑒𝑟.𝑞𝑢𝑎𝑛𝑡.𝜂𝑤𝑎𝑡𝑒𝑟.𝑠𝑜𝑢𝑟𝑐𝑒 (2)

Thetwotermsareequallyimportantanddeterminetheefficiencyof wateruseinbiofuelproductionbothforthequantityofwaterusedand forthequalityofthiswater.

Thefirstpartofthisindexreferstothequantityofwaterusedinthe stepsrequiredtoproducethecropadoptedforenergeticpurposesand toconvertitintoliquidfuel.Inordertoassessthisquantity,thewater footprintofenergyfromaselectedcrophasbeencalculatedfollowing theapproachintroducedbyGerben-Lenensetal.(2009).Wethendivide thebioenergywaterfootprint(inm3 /MJ)bythelowestglobalvalue ofthebioenergywaterfootprint,whichcorrespondstothehighest ef-ficiency.Thereverseofthisratioisanefficiency,lyinginthedesired rangeofvalues,[0,1].Theresultingformulais:

𝜂𝑤𝑎𝑡𝑒𝑟.𝑞𝑢𝑎𝑛𝑡.= (𝑊𝐹 𝑚𝑖𝑛 𝑊𝐹𝑖 ) (3) where𝜂water. quant. isthequantitativepartofwaterefficiency,WFiisthe

waterfootprintofbioenergy(fromselectedcrop)ofthecountryi,WFmin

istheminimumwaterfootprintofbioenergy(fortheselectedcrop)at theglobalscale.Thehyperbolicformischosenafterasensitivity anal-ysis,whichshowedthatthisformprovidesthemostrealisticresults. Otherfunctionalforms(e.g.exponential)wouldmaketheindexmore complicated,withanincreasedcomputationalcomplexitynot compen-satedbyahigheraccuracy.

Thispartoftheindexneedsbeingcomplementedwithsome addi-tionalinformationonthewaterused.Forthispurpose,itisimportant toconsidertheeffectofwaterfootprintaccordingtotheavailabilityof freshwaterresourcesinaregion.Moreover,thereisagreatdifferenceif thewaterusedinbiofuelproductioncomesfromirrigation(bluewater footprint)orfromsoilwater(greenwaterfootprint).Toquantifythese aspectsaspecificindexisdefined.

Thestartingpointtocalculatethiseffectistheratiobetweengreen waterfootprintofbiofuelproductionaccordingto(Gerben-Lenensetal., 2009)andthetotalwaterfootprint.Themaximumvalue(equalto1)is reachedifonlygreenwater(i.e.onlyarenewableresource)isusedto producebiofuel.Topenalisecountrieswherewaterislessabundant,we considerthefollowingdefinition

𝜂𝑤𝑎𝑡𝑒𝑟.𝑠𝑜𝑢𝑟𝑐𝑒= (𝑊𝐹 𝑔𝑟𝑒𝑒𝑛 𝑊𝐹𝑡𝑜𝑡 )𝑊𝑊𝐼 (4) where𝜂water.sourceisthesource-relatedpartofwaterefficiency,WFgreenis

thegreenwaterfootprintofbiofuelproduction,WFtotisthetotalwater

footprintofbiofuelproductionandWWIisthecalculatedwater with-drawalsindex.Thisexponentiscalculatedaccordingtodataonwater withdrawalscomingfromtheWorldBankdata(Worldbank,2014).This indexassumesincreasingvaluesaccordingtothewaterwithdrawalrate ofaspecificcountry.Thewaterwithdrawalindexusedhereisdefined as:

𝑊𝑊𝐼=𝑤𝑎𝑡𝑒𝑟𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙𝑠[%] (5)

3.2. Foodefficiency

Thefoodefficiencycomponentofthenexusindexaimstoaccount forthepotentialcompetitionforflexiblecrops(cropsusablebothfor nutritionandenergypurposes)betweenfoodandbiofuelsectorsinfood insecurecountries.

ThedatafromFAOSTATdescribingtheprevalenceof undernourish-ment(FAOSTAT,2014)areusedtoassessfoodefficiency.Thisindicator (M.I)assumesvaluesbetween0and1andexpressesthepercentageof populationwithinacountrythatdoesnotconsumeasufficientamount offood.Thisvalueisthenadjustedwithanexponent(𝛼)thataimsat penalisingthecountriesmoreaffectedbythisphenomenon.This param-eter(𝛼)issetat5,avaluechosenafterasensitivityanalysisshowing

Table2

Listofcountriesavailableforeachcropandlocation ofthemaximuminnexusindex.

Item No. of countries Maximum country

Wheat 110 Belgium

Maize 140 Belgium

Rice 100 China

Rye 58 Denmark

Sorghum 32 Algeria

Sugar beet 57 Mexico

Soybean 100 Algeria

Oil palm 50 Peru

thatlarger𝛼 valuesproducemoresensibleresults,andforvaluesof𝛼 greaterthen5𝜂foodisstable.Theresultingformulais:

𝜂𝑓𝑜𝑜𝑑=(1−𝑀.𝐼)𝛼 (6)

where𝜂foodisthefoodefficiencyandM.Iistheprevalenceof

malnutri-tionaccordingtoFAOSTAT(2014).Foodefficiencyasdefinedhereis notcropbased,butitconsidersthefoodsecurityconditionofacountry, becausewedonotaimtoconsidertheenergy-foodcompetitionforeach crop,buttheoverallnutritionalpictureforeachcountry.

3.3. Landefficiency

Themainaimofthelandefficiencyindexistheevaluationofthe impactof biofuelproductionontheavailabilityof cultivablelandin aspecificcountry.Todoso,similarlytothecaseofwaterefficiency, itisnecessarytoconsiderboththeuseoftheresource(land)andits availability.Theefficiencyinusinglandforgrowingacertaincropis definedasthecropyieldregisteredinthespecificcountrydividedby themaximumvalueofthecropyieldreachablewiththecurrent technol-ogy(i.e.,themaximumyieldregisteredworldwide)(FAOSTAT,2014). ThesedataareprovidedbyFAO(FAOSTAT).

Inordertoaccountforthecountryavailablelandsuitablefor agri-culture(notalreadyused),acountryspecificlandusedindex(LU)is developed. Thisindexis theratiobetween thelandalreadyusedfor agriculture(the arablelandinFAOSTAT) andthetotalareasuitable foragricultureinaspecificcountry.Weselectedtheextentofvery suit-able,suitableormoderatelysuitablelandformixedinputunderrainfed and/orirrigationconditionsforallcropsasreportedbyGAEZ(2014). Finally,thelandcomponentoftheNIis:

𝜂𝑙𝑎𝑛𝑑= ( 𝑦𝑖𝑒𝑙𝑑 𝑖 𝑦𝑖𝑒𝑙𝑑𝑚𝑎𝑥 )𝐿𝑈 (7) where𝜂landisthelandefficiency,yieldi istheyieldfortheconsidered

cropinthecountryi,yieldmaxisthemaximumpossibleyieldforthe

spe-cificcropandLUisthelandusedindex.Similarlytothecaseofsource waterefficiency,thehyperbolicformischosentohavearightbalance betweenthetwocontributions(useandavailabilityoftheresource).

4. Resultsanddiscussion

Forapplyingtheproposedmethodology,thenexusindexforvarious cropsusedin1stgenerationbiofuelproductionwascalculated.Inorder tohaveahomogeneousandcompleteframework,avoidingtheproblems duetothedifferencesintheuseddatabases,thecalculationwaslimited to191countries(eliminatingincongruentdatacomingfromcountries withincompleteorunreliablestatisticaldata).Thenumberofavailable countriesdependsonthedistributionofthecropintheworld.The to-talnumberofcountrieswithacalculatednexusindexforeachcropis showninTable2.Thestudyisperformedwiththedatareferredtoyear 2014.Largelydiffusedcropslikemaize,rice,wheatandsoybeanhavea largequantityofavailabledata,becausetheyarecultivatedandusedas feedstockforbiofuelsinmostpartoftheconsideredcountries.Onthe otherhand,forlessdiffusedcultivations,likeSorghumandOilPalm,the

(5)

Fig.2. MaximumNexusIndexvaluesfortheconsideredcrops.

numberofcountriesinwhichtheNexusIndexcanbecalculatedisquite low.Table2 alsoreportsthelocalisationofthehighestscoreforeach consideredcrop.Thisdependsontheareawheretheclimateismost suit-ableforcultivation,butalsoontheefficiencyofcultivationtechniques. Themaximumvaluesattainablehaveagreatvariability(Fig.2),with cropscharacterisedbyhighmaximumefficiency(especiallyWheat)and cropswithlowmaximumefficiency(e.g.sorghum).Themethodis de-signedtogiveexcellentresultswhenonecountryishighlyefficientin allof thestepscomposingNexusIndex.Thismeansthatcrops culti-vatedwithminimumwaterrequirement,maximumagriculturalyield andwithoutcompetingwithfoodproductionwillgivehighscores; mis-managementofonlyoneofthesestepsstronglydecreasestheoverall performance.

Themostproducedcropshaveingeneralthehighestmaximal effi-ciency.Thisisanaturalconsequenceoftheintensiveresearchperformed

inthepasttoimproveagriculturalyieldforthesespecies(Fisheretal., 2002).Ontheotherhand,somecropswithlow diffusion(e.g.,Palm Oil)alsoscoregoodresults.Thisismainlyduetothehigh specialisa-tioninthesecultivationsthatsomecountrieswereabletoestablishin somecasesduetothehighprofitabilityofsuchcashcrops.Themaxima areonlyrepresentativeoftheglobalcapabilitytoreachgoodscoresin thenexusindex;tohaveacompleteunderstandingoftheworld per-formanceitisnecessarytodiscusstheresultsindetailfortheselected crop.Asanexample,resultsformaizearediscussedinthefollowing section.Theresultsfortheothercrops(limitedtothecaseswithmore than50 countriesavailable) arereported asmapsin the supplemen-tarymaterial.Theresultsofthesingleelementsoftheproposedindex can becomparedwiththeindicatorsrepresentingthecomponentsof theFEWnexusavailableinliteraturetoverifytheconsistencyofthe results.

4.1. Nexusindexformaize

Maizeisoneofthemostproducedcommoditiesintheworldandit iswidelyusedasafeedstockforbiofuelproduction(Rullietal.,2016). Thismakesmaizeaninterestingcroptobeanalysed.Asmentioned,the maximumvalueforthenexusindexformaizeis0.611anditisreached inBelgium.Themaximumvalueisnothigh,statingtheexistenceof in-efficienciesinbioethanolproduction.Thegeneralanalysisofthenexus indexisdisplayedinFig.3asamapandthevaluesfortop10countries arereportedinTable3.Thenumberofcountrieswithscoresclosetothe highestvaluesisnotlarge.Thismeansthat,despitethelargediffusionof Maizeattheglobalscale,inefficienciesarewidelypresentand,inmany cases, thecurrent bioethanol production does not fulfil the require-mentsofsustainabilityunderaWFEnexusperspective.The geographi-caldistributionofscoresdoesnotshowspecificareaswherebioethanol production is particularly favourable or penalised. Inall continents, therearecountrieswithNexusIndexvaluesclosetothemaximum.In

(6)

Table3

Thetop10countriesinnexusindexformaize.

Nexus index Quantitative water eff Source water eff Food efficiency Land efficiency

Belgium 0,611 1,000 0,999 1,000 0,611 Luxembourg 0,565 0,625 1,000 1,000 0,905 Netherlands 0,475 0,858 0,995 1,000 0,557 New Zealand 0,445 0,503 0,992 1,000 0,892 Switzerland 0,366 0,700 1,000 1,000 0,523 Austria 0,362 0,749 1,000 1,000 0,483 Germany 0,353 0,699 0,999 1,000 0,505 Slovenia 0,351 0,503 1,000 1,000 0,699 Greece 0,310 0,558 0,913 1,000 0,608 Canada 0,307 0,622 1,000 1,000 0,494

Fig.4. Quantitativewaterefficiencyformaize.

general,thelargestvaluesarefoundinindustrialisedcountries.Mostof thecountrieswithlowscoresareinthesub-SaharanAfrica;other inef-ficientcountriesareplacedintheareacomprisedbetweentheMiddle EastandtheIndiansubcontinent.Thediscussionofthesingle compo-nentsofthenexusindexwilldisentangletheproblemsthatmakesome countriesnotefficient.

4.1.1. Waterefficiency

Quantitativewaterefficiencystronglyinfluencestheindexbecause itdirectlystatesthequantityofwaterneededtoproducebioethanolin aspecificcountry.ResultsareshowninFig.4.Maizeissuitabletobe growninmanyclimates,sothatitscultivationisdiffusedinmany ar-easoftheworld.Thecultivationtechniqueshavebeenrefinedinallthe industrialisedcountriessincelongtimeago.Forthisreason,inthese

placesitisnotpossibletodetermineareaswherethecultivationis par-ticularefficient.Thisrelativehomogeneityoftheresultsisbecausethe quantityofwaterrequiredforgrowingmaizeisquitesimilar.Inalmost all theindustrialisedcountries,specificcountrywater andsoil man-agementdoesnotsignificantlychangethecropwaterfootprint. Con-versely,othercountries(suchasmostofthesub-SaharanAfricanand southeastAsiancountries)arepenalisedinthisindex,becauseofthe largequantityofwaterrequiredtocultivatemaize,bothintermofcrop waterrequirementandascropwaterfootprint.Thislargeneedof wa-tercanderivebothfromclimateconditionsthatdeterminehighercrop waterrequirementandfromproductioninefficiency(lowyieldthat re-sults inlow production perunit of waterused). Wewilldistinguish betweenthetwophenomena,whilediscussingthequality-basedwater efficiency.

(7)

Fig.5. Sourcewaterefficiencyformaize.

Thesourcewater(greenvs.bluewater)efficiencycompletesthe in-formationonsustainableuseofwaterinbiofuelproduction.The situa-tiondescribedbythesourcewaterefficiencyislargelydifferentfromthe previouspartoftheindex(Fig.5).Wenoticethatthescaleoftheresults isextremelynarrow:thelowestvalueis0.77.Thismeansthatmaizeis producedinthegreatmajorityofcountriesusingmainlygreenwater resources.Interestingly,someofthecountrieswithhighlevelofsource waterefficiencyhave,atthesametime,alowscoreinquantitativewater efficiency.ThisisthecaseofBrazil,ofmanysub-SaharanAfrican coun-triesandofsomecountriesoftheAsianSoutheast.Thisisaclearclueof thehighcropwaterrequirementofmaizeinthesecountries.Other coun-trieshavehighquantitativewaterefficiencyandrelativelylowsource waterefficiency.These countries(e.g.,theUSA,Western Europeand China)producemaizeusinglowquantitiesofwater(green+blue),but withaconsiderablecontributioncomingfromirrigation.

4.1.2. Foodefficiency

Thesecondcomponentofthenexusindexisfoodefficiency.This in-dexis,bydefinition,independentofthebiomassconsidered.Theresults aredisplayedinFig.6.Mostoftheworld’scountrieshavethemaximum score;butinAfrica,SouthAmericaandSoutheasternAsiasome coun-triesarenotefficientinprovidingfoodtotheirpopulation.

4.1.3. Landefficiency

Landuseefficiencycharacterisesthelastpartofwater–food–energy nexus,assessingtheappropriateuseoflandincropproduction.The re-sultsformaizearedisplayedinFig.7.Thisindexislinkedtoquantitative waterefficiency,butwithsomeexceptions.Infact,agriculturalyield, cropwaterrequirementsandirrigationarestrictlyconnected.Usually, largeuseofirrigationcanguaranteehighagriculturalyield,butthisis

notnecessarilythecase.Furthermore,agriculturalyieldispartofthe definitionofwaterfootprint,sothatahighyieldcandecreasethewater footprint.Thesecomplexrelationshipshighlighttheneedofapunctual analysisof thesituationforeverysinglecrop.Inthespecificcaseof maize,wecannoticethatthedistributionofscoresforlandefficiency issensiblydifferentfromthequantitativewaterefficiency.

Mostof theindustrialisedcountrieshave lowvalues of land effi-ciency,oppositetothehighvaluesofwaterefficiency.Thisisdueto thefocusintherationalisationofuseofwaterincultivation.Theuseof waterisadjustedtotheoptimalpoint,butthisdoesnotcorrespondtothe highestlevelofcropyield.Furthermore,inthesecountriesmostofthe suitable landis alreadydedicatedtointensivecultivation,preventing thepossibilityofincreasingtheproduction.Acaseofparticularinterest isBelgium,leadingcountryinnexusindexranking.InBelgium,water andfoodefficiencyhavethemaximumvalue,whilelandefficiency re-sultsthebottleneckofthebiofuelproductionprocess.Inthiscountry, landsuitabletobecroppeddoesexist,buttheratiobetweenthemaize cropyieldinBelgiumandthemaximumyieldintheworldislow(0.5). Someothernationsarecharacterisedbylowscoresinwaterefficiency, butalsobyhighcrop yield.This isthecaseof somesmallcountries (e.g.,Israel)wherethelittlelandavailableforcultivationisexploited inahighlyefficientway.Theanalysisofsub-Saharancountriesgives someotherinterestinghints:mostofthecountriespenalisedin quanti-tativewaterefficiencyhavehighlandefficiencyscores.Thisisdueto thelargequantityoflandavailableforcultivation.Inthesecountries, maizeproductioncanbeincreasedwithoutdecreasingthenexusindex. Measurestomakethesecountriesmoreefficientshouldfirstfocuson thereductionof thewaterfootprint.Thegoodmanagementofwater isingeneralakeypointtogenerateasustainablebiofuelproduction system.

(8)

Fig.6. Foodefficiency.

(9)

5. Conclusions

Thesustainabilityof1stgenerationbiofuelproductionattheglobal scaleisassessedthroughthedefinitionofanewindex,calledtheNexus Index.Theoutputofthemethodisascore,whichdefinestheefficiency oftheproductionofbiofuels.Theindexistheproductofthree interme-diateindexesthatquantifyallthekeyparametersinbiofuelproduction. TheNexusIndexdeterminesifacountryisefficientlymanagingbiofuel productionfromaspecificcrop,definingthelowestattainable consump-tionofresourcesinthisprocess.

Theresultsoftheanalysisprovidethestartingpointfor considera-tionsconcerninggeographicdifferencesinbiofuelproduction.Evenif weacknowledgethesubcountryspatialvariabilityofresources avail-abilityanddemand,thecountryscaleofanalysisischoseninorderto havehomogenousandreliableresultsbecause,often,onlyatcountry levelalltherequiredinformation(forwater,foodandland)is avail-able.

EfficiencyinProductionofbiofuelsfromthesamecropcanbevery differentfromonecountrytoanother.Thisisduetodifferencesin agri-culturalyield,butalsotodifferencesin resourcesdeploymentdueto farming.Inthecaseofmaize,whosecultivationisoptimisedinmost partof theworld,theeffectoffarmingtechniqueson globalprocess sustainabilityisparticularlyevident.Somecountriescouldbe ableto increaseyieldtooptimalvalues,butonlywhileincreasingbluewater consumption.Ontheotherhand,alsolandissometimesmismanaged. Nevertheless,inmanysituations,watermanagementisthekey param-etertodesignasustainableenergeticsystem.

Theanalysisofthenexusindexmakesitevidentwhatthebest cul-tivablecropsinthecountryare,givingtodecisionmakersaninstrument tounderstandhowtodefineanenergypolicyinbiofuelproductionto exploitinthebestwaythecountry’sresources.Furthermore,the inef-ficienciespresentinthecountrybecomeevidentthankstotheNexus Index,allowingonetodesignthebestsolutionstoincreaseefficiency.

OneofthemainpotentialityoftheNexusIndexisthepossibilityto analyseinasimpleanddirectwaytheeffectsof correctivemeasures usedtoimproveprocessefficiencyanddecreasetheimpactofbiofuel production.Todoso,theNexusIndexcanbeusedinadynamicway, consideringthevariabilityofthesameovertime,andcomparingthe expectedeffectsofnewtechnologiesontheresultsofpastchanges.In thisway,itispossiblealsotoanalysetheeffectsofclimatechangeon theWEFnexus.

Inadditiontothis,thenexusindexiscapabletodeterminethe pos-sible impactin termsof increasedordecreased waterandland con-sumptionofimportantinnovationsinthefieldofbioenergyproduction, likeaswitchto2ndgenerationbiofuels.Thisispossible,becausethese changesareonlymodifyingsomeparametersusedtogeneratethenexus index,butnotthegeneralassumptionsthemethodisrelyingon. More-over,itisimportanttohighlightthattheNexusindexreturnsthe sustain-abilityof1stgenerationbiofuelinthecurrentscenariosofsoilandwater technologymanagement,climateandsoiluseandatcountryscale. Fu-tureimprovementstranslatingbothincrop’syieldincreaseand/orin moreefficientwaterusecanbetakenintoaccountbytheNexusindex, sodescribingtheeffectsofagricultureintensificationon1stgeneration biofuelproduction.

Acknowledgements

Thisresearchhasbeenconductedwithinthemasterdegreeprogram ‘AltaScuolaPolitecnica’financedbyPolitecnicodiMilanoand Politec-nicodiTorino.FLacknowledgesfinancialsupportfromtheERCproject CWASI,grantno.647473.

Supplementarymaterials

Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.advwatres.2018.07.007.

References

Allan, J.A. , 1993. Fortunately there are substitutes for water otherwise our hydro-politi- cal futureswould be impossible. ODA, Priorities for Water Resources Allocation and Management. ODA, London .

Amineh, M.P. , Crijns-Graus, W.H.J. , 2014. Rethinking EU energy security considering past trends and future prospects. Perspect. Global Dev. Technol. 13 (5-6), 757–825 . Antonelli, M. , Sartori, M. , 2015. Unfolding the potential of the virtual water concept. What

is still under debate? Env. Sci. 50, 240–251 .

Barrett, C.B. , Gardner, B.L. , Rausser, G.C. , 2002. Handbook of Agricultural Economics, 2B. Elsevier Science, Amsterdam .

Bazilian, M. , 2011. Considering the energy, water and food nexus: towards an integrated modelling approach. Energy Policy 39 (12), 7896–7906 .

Bentsen, N.S. , Felby, C. , 2012. Biomass for energy in the European Union - A review of bioenergy resource assessments. Biotechnol. Biofuels 5, 25 Article number . Campbell, J.E. , Lobell, D.B. , Genova, R.C. , Field, C.B. , 2008. The global potential of bioen-

ergy on abandoned agriculture lands. Environ. Sci. Technol. 42 (15), 5791–5794 . Chapagain, A.K. , Hoekstra, A.Y. , 2003. Virtual water trade: A quantification of virtual wa-

ter flows between nations in relation to international trade of livestock and livestock products. In: Virtual water trade. Proceedings of the international expert meeting on virtual water trade .

Chapagain A.K., Hoekstra A.Y., 2004. Water footprints of nations. Value of Water Research Report Series. 16. UNESCO: IHE, Institute for water education. Delft, The Netherlands. Commission, E. , 2010. Energy 2020 A Strategy for Competitive, Sustainable and Secure

Energy. European Commission, Brussels, BE .

Congress, U.S. , 2005. Energy Policy Act of 2005 U.S. Congress, Washington DC, US . Congress, U.S. , 2007. Energy Independence and Security Act of 2007 U.S. Congress, Wash-

ington DC, US .

Cosgrove, W.J., Louck, D.P., 2015. Water management: Current and future challenges and research directions. Water Resour. Res. 51, 4823–4839. https://doi.org/10.1002/2014WR016869 .

Da Costa, A.C.A. , Junior, N.P. , Aranda, D.A.G. , 2010. The situation of biofuels in Brazil, new generation technologies. Renew. Sustain. Energy Rev. 14 (9), 3041–3049 . D’Odorico, P., Davis, K.F., Rosa, L., Carr, J.A., Chiarelli, D., Dell’Angelo, J., Gephart, J.,

MacDonald, G.K., Seekell, D.A., Suweis, S., Rulli, M.C., 2018. The global food ‐energy ‐water nexus. Rev. Geophys. https://doi.org/10.1029/2017RG000591 . Dornburg, V. , Van Vuuren, D. , Van De Ven, G. , Langeveld, H. , Meeusen, M. , Banse, M. ,

Van Oorschot, M. , Faaij, A. , 2010. Bioenergy revisited: Key factors in global potentials of bioenergy. Energy Environ. Sci. 3, 258–267 .

Dubreuil, A , Assoumou, E , Bouckaert, S , Selosse, S , Maïzi, N. , 2013. Water modelling in an energy optimization framework – the water-scarce middle east context. Appl Energy 101–268, 79 .

Edenhofer, O. , Pichs-Madruga, R. , Sokona, Y. , Seyboth, K. , Matschoss, P. , Kadner, S. , 2011. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 953–972 .

EU, Parliament , Council, T , 2009. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renew- able Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. The European Parliament and the Council. Brussels, BE .

Falkenmark, M. , 1986. Freshwater: Time for a modified approach. Ambio 15, 192–200 . FAOSTAT (2014), Data of Undernourishment, faostat.fao.org .

Favero, M. , Pettenella, D. , 2014. Italian import flows of woody biomasses for energy use: A sustainable supply? New Medit. 13 (2), 56–64 .

Finley, J.W. , Seiber, J.N. , 2014. The nexus of food, energy, and water. J. Agric. Food Chem. 62 (27), 6255–6262 .

Food and Agriculture Organization of the United Nations (FAO), 2003. Review of World WaterResources by Country. FAO, Rome, Italy Water Report No. 23 .

Fischer, G , van Velthuizen, H , ShahMand Nachtergaele, F. , 2002. Global Agro-ecological Assessment for Agriculture in the 21st Century: Methodology and Results. Interna- tional Institute for Applied Systems Analysis; Food and Agriculture Organization of the United Nations, Laxenburg, Austria; Viale delle Terme di Caracalla, Rome, Italy, p. 156 .

Gebbers, R. , Adamchuk, V.I. , 2010. Precision Agriculture and Food Security. Science 327, 825–828 .

Gerbens-Leenes, W. , Hoekstra, A.J. , van der Meer, T.H. , 2009. The water footprint of bioenergy. PNAS 106 (25), 10219–10223 .

Global Agro-Ecological Zones of FAO, 2014. internet portal, http://gaez.fao.org/ Main.html .

Grenon, M., Lapillonne, B., 1976. The WELMM Approach to Energy Strategies and Options, IIASA Report RR-76-19 December.

Gude, V.G. , 2015. Energy and water autarky of wastewater treatment and power genera- tion systems. Renew. Sust. Energ. Rev. 45, 52–68 .

Harvey, Mark , Pilgrim., Sarah , 2011. The new competition for land: food, energy, and climate change. Food Policy 36, S40–S51 .

Heaps, C.G., 2012. Long-range Energy Alternatives Planning (LEAP) System. Stock- holm Environment Institute, Somerville, MA, USA Software version 2014.0.1.29. www.energycommunity.org .

Hejazi, M.I. , Voisin, N. , Liu, L. , Bramer, L.M. , Fortin, D.C. , Hathaway, J.E. , Huang, M. , Kyle, P. , Leung, L.R. , Li, H. , Liu, Y , Patel, P. , Pulsipher, T.C. , Rice, J.S. , Tesfa, T.K. , Vernon, C.R. , Zhou, Y. , 2015. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating. Proc. Natl Acad. Sci. 112 (34), 10635–10640 .

Howells, M. , 2013. Integrated analysis of climate change, land-use, energy and water strategies. Nature Climate Change 3 (7), 621–626 .

(10)

International Energy Agency, 2014, World Energy Outlook.

Johansson, B. , 2013. Security aspects of future renewable energy systems – a short overview. Energy 61 (1), 598–605 .

Khan, S. , Hanjra, M.A. , 2008. Sustainable land and water management policies and prac- tices: a pathway to environmental sustainability in large irrigation systems. Land De- grad. Dev. 19 (3), 469–487 .

Mancosu, N. , Snyder, L. , Kyriakakis, G. , Spano, D. , 2015. Water scarcity and future chal- lenges for food production. Water 7, 975–992 .

Meadows, D. , Meadows, D. , Randers, D. , Behrens, W. , 1972. The Limits to Growth. Uni- verse Books, New York ISBN: 0-87663-165-0 .

Mekonnen, M.M., Hoekstra, A.Y., 2010. The green, blue and grey water footprint of crops and derived crop products, Value of Water Research Report Series No. 47, UNESCO- IHE, Delft, the Netherlands.

Messner, S., Strubegger, M., 1995. User’s Guide for MESSAGE III. International Insti- tute for Applied Systems Analysis. http://www.iiasa.ac.at/Admin/PUB/Documents/ WP-95-069.pdf .

Novo, P. , Garrido, A. , Varela-Ortega, C. , 2009. Are virtual water flows in Spanish grain consistent with relative water scarcity? Ecol. Econ. 68 (5), 1454–1464 .

Rulli, M.C., D’Odorico, P., 2013. The water footprint of land grabbing. Geophys. Res. Lett. 40, 1–6. https://doi.org/10.1002/2013GL058281 .

Rulli, M.C., Bellomi, D., Cazzoli, A., De Carolis, G., D’Odorico, P., 2016. Sci. Rep. 6, 22521. https://doi.org/10.1038/srep22521 .

Sanders, Kelly T. , 2015. Critical Review: Uncharted Waters? The Future of the Electrici- ty-Water Nexus Environ . Sci. Technol. 49 (1), 51–66 .

Stockholm Environment Institute, 2011. WEAP Water Evaluation and Planning System User Guide. Stockholm Environment Institute, U.S. Center Somerville, MA, USA. http://www.weap21.org/index.asp?action = 208 .

Thöne, E. , Fahl, U. , Biesl, M. , 2009. The overall situation of the energy economy in Ger- many [Energiewirtschaftliche Gesamtsituation]. BWK- Energie-Fachmagazin 61 (4), 36–53 .

Tol, R.S.J. , 2006. Integrated Assessment Modelling. Hamburg University and Centre for Marine and Atmospheric Science, Hamburg FNU-102 .

Velazquez, E. , Madrid, C. , Beltran, M.J. , 2011. Rethinking the concepts of virtual water and water footprint in relation to the production–consumption binomial and the wa- ter– energy nexus. Water Resour. Manag. 25, 743–761 .

WORLD BANK. Water Withdrawal Data From World Bank Statistical Service .

Zonooz, M.R.F. , Nopiah, Z.M. , Mohd.Yusof, A. , Sopian, K. , 2009. A review of MARKAL energy modelling. Eur. J. Sci. Res. 26 (3), 352–361 .

Riferimenti

Documenti correlati

vanishes when highly saturated third codon positions are ex- cluded, or when an amino acid data set was employed, indi- cating that signal contradicting the nuclear phylogeny carried

RBC represent a convenient model system for the study of ABA transport in mammalian cells, for two reasons: (i) RBC plasma membranes (ghosts) can be easily isolated and

A valle di tale consumo si ha l’esigenza di sottrarre dalle acque i residui delle diverse lavorazioni mediante impianti di tratta- mento semplici o complessi che sfruttano

Di nuovo il meccano, il bricolage, un approccio giocoso e infantile a una materia molto impegnativa e complessa come la morfologia degli insetti analiz- zata e smontata da Levi:

The selected results of statistical analysis of daily distribution of electrical energy production for the recommended days of the summer, autumn, spring, and winter

Indeed, the analysis of transcriptional activation by enhancers on a single cell basis (by using immunofluorescence or fluorescence-activated cell sorting to determine reporter

A notable example is the Milan Urban Food Policy Pact (MUFPP), gathering almost 200 cities all over the world and committed to work jointly to promote more sustainable and

The author shows a strong link between migration and development in light of the huge financial revenues that it generates, and security as re- flected in the stories of