• Non ci sono risultati.

Analysis of laser-generated plasma ionizing radiation by synthetic single crystal diamond detectors

N/A
N/A
Protected

Academic year: 2021

Condividi "Analysis of laser-generated plasma ionizing radiation by synthetic single crystal diamond detectors"

Copied!
5
0
0

Testo completo

(1)

ContentslistsavailableatSciVerseScienceDirect

Applied

Surface

Science

j o ur na l ho me p age :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Analysis

of

laser-generated

plasma

ionizing

radiation

by

synthetic

single

crystal

diamond

detectors

M.

Marinelli

a

,

E.

Milani

a

,

G.

Prestopino

a

,

C.

Verona

a,∗

,

G.

Verona-Rinati

a

,

M.

Cutroneo

b

,

L.

Torrisi

b

,

D.

Margarone

c

,

A.

Velyhan

c

,

J.

Krasa

c

,

E.

Krousky

c aDip.diIng.Meccanica,UniversitàdiRoma“TorVergata,”Roma00133,Italy bDip.diFisica,UniversitàdiMessina,S.Agata98166,Italy

cInstituteofPhysicsofASCR,Prague,CzechRepublic

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Available online 15 June 2012 Keywords:

Singlecrystaldiamond Diamonddetector Laser-generatedplasma Ionizingradiation Time-of-fightspectrometer

a

b

s

t

r

a

c

t

Diamondbaseddetectorshavebeenusedinordertoanalyzetheionizingradiationemittedfromthe laser-generatedplasma.Highenergyproton/ionbeamsweregeneratedatPragueAsterixLaserSystem (PALS)Centrebythesub-nanosecondkJ-classlaseratintensitiesabove1016W/cm2.

Thetesteddetectorsconsistedofaphotoconductivedevicebasedonhighqualitychemicalvapor depo-sition(CVD)singlecrystaldiamond,producedatRome“TorVergata”University.Theyhavebeenoperated inplanarconfiguration,havinginter-digitizedelectrodes.

TheproposeddiamonddetectorswereabletomeasureUV,X-rays,electronsandions.Theyhavebeen employedintime-of-flight(TOF)configurationandtheirreliabilitywascheckedbycomparisonwith standardioncollectors(mostlyusedatPALS).Boththeforwardandbackwardexpandingplasmawas characterizedintheexperiment.Theresultsindicatethatdiamonddetectorsareverypromisingforthe characterizationoffastprotonandionbeamsproducedbyhighpowerlasersystems.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Theinvestigation of fastion emission from laser plasmasis crucialfor future applicationsof laser-acceleratedionbeams in differentareas,suchaswarmdensemattergeneration,probing ofhighelectricandmagneticfields,nuclearapplications(compact neutronsources,isotopeproduction,fissionreactions),medicine, astrophysics,etc.Recently,thegenerationofionswithenergyof fewMeV/uandcurrentdensitiesoffewA/cm2bytheuseofthe

sub-nanosecond,kJ-classlaseratPragueAsterixLaserSystem(PALS) laboratoryhasbeenreported[1–3].Thebeamparametersare esti-matedwithapplicationofvariousdevicesandtechniquesusually operatedin“singleshot”mode.Inparticular,time-of-flight(TOF) spectrometryisaneffectivediagnostictool[4]sinceit provides time-resolvedmeasurementswhicharefundamentalforadetailed studyofionbeamparameters,suchasspeciesandcharge-states, theirkineticenergy,andtotalcharge.However,thereexistvarious difficultiesinsuchdiagnostictechniqueswhenhigh-energylaser pulsesareused,e.g.highelectromagneticnoise,overlappingofthe signalduetophotopeak,difficultiesinseparationoftheionsignals fromit,breakdownsatveryhighioncurrents,lowsensitivityto fastelectronsandprotonsortolowchargestateions.Toovercome

∗ Correspondingauthor.

E-mailaddress:[email protected](C.Verona).

the above measurement difficulties, the development of new detectorsisincontinuousgrowing.Inparticular,semiconductor detectorsseemtobeverypromisingfordetectionoffastprotons andionbeamsproducedbyhighpowerlasersystems[5–7].Among them,theuseofdiamonddetectors,producingsignalsproportional totheenergydepositedbytheincidentradiation,isveryattractive becausethesedetectorsarenotsensitivetothevisiblelight(band gap5.48eV).Moreover,highthermalconductivity,highresistivity, lowdielectricconstant,highcarriermobilityandradiation hard-ness[8,9]suggestthatdiamondisanidealmaterialformonitoring theradiationemissionfromlaser-generatedplasmas.Thanksto thefastresponsetime,detectorsbasedonnaturalandsynthetic diamondhavebeenemployedinTOFtechniquesinseveral exper-imentsreported in literature, in particular for thedetection of electrons[10]andheavyions[11].Detectorsbasedonhighquality chemicalvapordeposition(CVD)singlecrystaldiamondhavebeen developedattheDepartmentofMechanicalEngineeringof Univer-sityofRome“TorVergata”forbothnuclearparticles(thermaland fastneutrons,highenergyions,chargedparticles)[12]andphoton radiations(X-rays,UV,etc.)[13].Suchdiamonddetectorshavebeen permanentlyinstalled atJointEuropeanTorus(JET)tomeasure UV/X-rayradiationandneutronsproducedbyJETplasma demon-stratingafasttimeresponse,goodsensitivity,highsignal-to-noise ratioandagoodstabilityandreliabilityoftheresponse[14].

In this work, single-crystal CVD diamond detectors are employed in TOF technique to monitor the different plasma

0169-4332/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.apsusc.2012.05.142

(2)

products(i.e.photons,electronandions)generatedbyhighpower pulsesfocalizedondifferenttargetsatPALSlaboratoryinPrague. Bothforwardandbackwardemissionoftheplasmawas character-ized.Inparticular,differentthinhydrogenatedtargetswereused intheexperimentinordertogenerateforwardprotons,i.e.,proton emissionfromthereartargetsides.Adifferentelectrode configu-rationwasadoptedforthesinglecrystaldiamonddetectorswith respecttoRefs.[12–14]inordertoimprovethetimeresolutionand betterseparatethedifferentreactionproducts.

Inthiswork,single-crystalCVDdiamonddetectorsoperatingin planarconfigurationareemployedinTOFtechniquetomonitorthe emissionofphotons,electronandionsejectedfrombothforward andbackwardemissionoftheplasmaproducedatPALSlaboratory inPrague.

2. Materialandmethods

The diamond detectors were fabricated in a planar inter-digitizedelectrodeconfiguration.Anominallyintrinsicdiamond layer, which operates as the detecting region, was homoepi-taxiallygrownby MicrowavePlasmaEnhanced ChemicalVapor Deposition(MWPECVD)ona4mm×4mm×0.5mmcommercial low-costsyntheticHighPressureHighTemperature(HPHT) dia-mondsubstrate.Thethicknessoftheintrinsic layerwaschosen tobeapproximately50␮m.Thehydrogenterminationoftheas grown diamond surface was removed by isothermal annealing at 500◦C for 1h in air. Finally, 50nm thick aluminum fingers werepatternedbyastandardlift-offphoto-lithographictechnique and bythermal evaporation.The metalfingers were processed to5␮minwidthwithspacingbetweentheelectrodesof20␮m. Thedetectoractiveareawasapproximately8mm2.Sucha

struc-ture,operating in planar configuration, acts as a two terminal metal-diamond-metal(MDM)device.Anexternalvoltageof50V wasappliedbetween themetal contactsgeneratingan electric fieldperpendiculartotheincominglightacrossthedevice.Mobile chargesproducedbytheabsorbedradiationdriftinthiselectric fieldandgenerateacurrentintheexternalcircuit.From simula-tionsbasedontheShockley–Ramo–Gunntheorywiththehelpof ComsolMultiphysicsfiniteelementsoftware[15],thecharge col-lectionefficiencyoftheMDMdetectorissuchtoallowcollecting electron–holepairsgenerateduptoabout25␮mbelowthe super-ficialmetallicelectrodes.Sothatthediamondsubstrate,whichis poorinelectricalquality,doesnotcontributetothedetection pro-cess.Thesensitivelayeristhickenoughtocollectmostoftheenergy oftheemittedionsand,inparticular,protonsofenergyupto2MeV arefullycapturedinthislayer(SRIMMonteCarlocode[16]).

Inordertoreduceelectromagneticnoise,thediamonddetectors wereplaced inashieldedholder havinga pin-holetocollimate theradiationonlyonthedetectorsensitivearea.Theoutputsignal wasrecordedwitha1GHz,5GS/sfastoscilloscopethrougha bias-T.Allinputstoscopewereterminatedin50.Fig.1showsthe schematicstructure oftheMDMdevicewiththeschemeofthe usedelectroniccircuit(a),aphotoofAlinter-digitizedelectrodes (b)anditsassemblyintheexperiment(c).Thediamonddetectors wereemployedinTOFmeasurementstodetectallthecomponents oftheradiationemittedfromthelaser-generatedplasma.

Theexperiment hasbeen performed atthe PALS facility by focusingthefirstharmonics(0=1315nm)ofthe300pspulsed

laser at a maximum laser energy of 600J and laser intensity above1016W/cm2.Thickandthinmetallayersorpolymerswere

employedastargets.Moreover,multilayeredfilms,mostofthem constitutedby hydrogenatedpolymerscoupledtothin metallic films(Mylar/Al,Al/Mylar/Al,Au/polyethylene,polymers contain-ingnanoparticlesand/ornanostructures,etc.),wereusedinorder toincreasetheenergyofejectedions.Investigationofprotonand

Fig.1.SchematicstructureoftheMDMdevicewiththeschemeoftheused elec-troniccircuit(R=3.3MandC=0.68␮F)(a),aphotoofAlinter-digitizedelectrodes (b)anditsassemblyintheexperiment(c).

ionemissionsinbackwardandforwarddirections(thickand thin-nertargets,respectively)oftheplasmaswasanalyzed.Forward emissionofions(mainlyprotons)wasmeasuredfromthe rear-side(targetbackside)ofthintargetsalongthenormaltothetarget surface,besidesbackwardemissionoftheplasmaisfromthefront sideofthetarget.

TheMDMdetectors wereplacedata distanceof101cmand 123cmfromthetargetsurfaceinforwardandbackwarddirections, respectively,andat30◦ anglewithrespecttothetargetnormal directioninbothcases.Asimplesketchoftheexperimentalsetup isshowninFig.2.

Finally,aFaradayCupwasemployedasanioncollector(IC)ata distanceof100cmfromthetargetinforwarddirectionandat30◦ angleinordertocomparetheexperimentaldataobtainedfrom DiamondwiththatfromIC.

3. Resultsanddiscussion

First,thetimeresolutionanalysisoftheMDMdetectorshasbeen performedinourlaboratories.Then,theresultsobtainedbytwo photodetectors,oneplacedinforwardandanotheronein back-warddirectionoftheplasmaatPALSlaboratory,arereportedin thefollowing.

(3)

Fig.2. PhotoandschemeoftheexperimentalirradiationvacuumchamberatPALS laboratory.

3.1. Timeresponse

Thehighsaturationvelocityandhighmobilityofcharge carri-ersindiamondmakestheMDMdetector’sresponseveryfast.In thecaseofhomogeneouselectricfieldEdconditionand

neglect-inganyrecombinationandcapture(trapping),theeffectivecharge collectiontime()ofelectron–holepairsgeneratedinthediamond acrosstheelectrodesisgivenby[17]

= e·e+h·h e+h e/h= d e/hEd ·



1+

v

e/hEd sat(e,h)



(1)

wheredisthedistancebetweentheelectrodes,e/histhecharge

carriermobilityand

v

sat(e,h) isthesaturationvelocity.Usingthe

values d=20␮m, e=1714cm2V−1s−1, h=2064cm2V−1s−1,

Ed=2×104Vm−1 (drift field) and

v

sat(e)=9.6×106cms−1,

v

sat(h)=1.4×107cms−1 [18,19],Eq.(1)gives ≈200ps.Inorder

tostudytheeffectivetimeresponse oftheMDMdetectors,the devices are have been irradiated with 5.5MeV alpha particles (13␮m penetration depthin diamond [16]). The detector was placedatapproximately1cminfrontofthe241Amsource.Forsuch

measurement,alownoiseDiamondBroadbandAmplifier(DBA-III)

[20]wasusedasfastfront-endelectronicscoupledtoadigitalfast scope(2.3GHz bandwidthand 50GHz sampling rate). Charged ␣particlespassingthroughthediamonddetectorproduceshort electricalpulses.Apulsefrom5.5MeValphaparticlesmeasured bydiamonddetectorisshowninFig.3varyingthebiasappliedto thedetector.FromtheGaussianfitofthepulses,about350psfull widthathalfmaximum (FWHM)is observedwhen theapplied biasishigherthan40Vdemonstratinga highintrinsicresponse velocityoftheMDMdetectors.However,thediscrepancybetween thetheoreticalvaluecalculatedaboveandtheexperimentalone is probably to beascribed to the approximations, e.g. the non uniformity of the electric field in the bulk of MDM detector, trapping,etc. 2 1 0 -1 -2 0.00 0.05 0.10 0.15 0.20 0.25

FWHM=352 ps

FWHM=389 ps

Amplitude (V)

Time (ns)

Vbias=20V Gauss Fit Vbias=40V Gauss Fit Vbias=60V Gauss Fit FWHM=355 ps

Fig.3. Apulsefrom5.5MeValphaparticlesobtainedwiththeDBA-IIIpreamplifier andrecordedwithadigitalfastoscilloscope.

3.2. Time-of-flightmeasurementsatPals

AtypicalTOFspectrummeasuredbythediamonddetectorin backwardemissionoftheplasmaisshowninFig.4.Thisspectrum isobtainedbyirradiatingthepolyethyleneterephthalate(PET) tar-getmaterialat1064nm,494mJpulseenergyandwiththelaser focusexactlyonthetargetsurface.TheMDMdetectorisableto discriminatedifferentcomponentsoftheradiationemittedfrom thetarget.Inparticular,thefollowingpeakscanbeseenvs.time: atthebeginningofthescale,thephoto-peakarisingfromUVand X-rayradiation(0–20ns),thepeaksarisingfromfastplasma elec-trons(20–100ns),thepeakarisingfromfastprotons(120ns),the peaksfromdifferentionspeciesandionizationstages(190–400ns) andthepeaksarisingfromslowions(0.4–1␮s)emittedfromthe hottargetmaterialsurroundingtheplasmaspot.Thesedifferent plasmaproducts(radiationand particles)wereassigned toeach peakaccordingtopreviousresults[7,21]andalsothanksto simul-taneousmeasurementsbyparticlespectrometersemployedinthe experimentbutnotreportedinthiswork.TheconversionofTOF intothekineticenergyEpisdeterminedbythefollowingequation

usingtherelativistickinematics Ep= 12M0c2·



1



1−ˇ2 −1



ˇ= d c·TOF (2) 1.0 0.8 0.6 0.4 0.2 0.0 0 5 10 15 20

Cn+ Slow carbon ions Cn+ Fast carbon ions

H+protons e electrons -Yield (V) TOF (μs) MDM detector Target: PET EL= 494 J Fp= 0 μm Shot #40457 Photopeak

Fig.4. TypicalTOFspectrameasuredbydiamonddetectorinbackwardemissionof theplasma.

(4)

20 15 10 5 0 0 5 10 15

Yield (V)

TOF (ns)

MDM detector Zoom Shot #40457

Photo-Peak

Rise Time ~1ns 6.3 ns

Fig.5.Enlargedviewofthephoto-peakofthespectrumreportedinFig.4.

whereM0istherestmassofaproton,electronorion,cisthelight

velocityand dis theflight path(i.e.thetarget-diamond detec-tordistance). Thespectrum indicatesa proton energyof about 280keVandacarbonionenergyrangingbetweenabout295keV and11MeV.Intheportionofthespectrumbetween50and100ns, thephotodetectorresponseisnotaffectedbynoisebutan addi-tionalandoppositepolaritysignalduetocontributionofsecondary electron emission arising from the metallic interdigitated con-tactsinterfereswhenlowenergeticelectronsareincomingtothe diamondsurface.Suchelectrons,haveanenergyoftheorderof 2.8keV–500eV,confirmingthatthehottergeneratedplasmamay reachatemperatureoftheorderof2keV,inagreementwith liter-ature[21].AnenlargedviewoftheTOFspectrumdiscussedabove isreportedinFig.5.Becausethediamondisnotsensitivetothe plasmavisibleandsoft-UVradiationupto225nm,ashort photo-peakwithatemporaldecayofabout15nsandarisetimeof1nscan beobserved.Asecondpeakabout6nsafteriswellvisible, demon-stratingthehightimeresolutionofthedetector.Suchapeakcan possiblybeascribedtoafastplasmaelectroncomponentwithan averageenergyofabout50keV.

TwotypicalTOFspectraobtainedatPALSintheforward direc-tion(about 500J laser energy, thin Mylar and Al/Mylar/Al) are reported in Fig. 6(a) and (b). The TOF diamond spectra were comparedwithtraditional ion collectorspectra.Thex-axiswas normalizedatadistanceof100cminordertoperformadirect com-parisonoftheTOFspectrasimultaneouslyrecordedwiththetwo differentdetectors.Inallcases,theICspectrashowahuge photo-peakwithataillastingabout0.5␮ssothatthesignalrelatedtofast ionsandprotonsiscompletelyhiddenbysuchpeak.However,it showsahighefficiencyforthelow-energyionsbetween1and4␮s oftheTOFspectra.TheseslowCandAlionsatdifferentchargestate andenergyarealsomeasuredbythediamonddetectorasclearly seeninFig.6(a)andintheinsetofFig.6(b).Infact,theslowions donotloseenergyinthefrontelectrodesincetheMDMdetectors, operatinginaplanarconfiguration,haveitsactivediamondvolume directlyexposedtoimpingingradiation.TheCn+meanenergy

mea-suredbytheICR(30keV)isslightlylowerthantheonemeasured bythediamonddetector(40keV),sinceitsannulargeometrydoes notallowtomeasurethefasterionstreampassingonaxiswhere thediamonddetectorisplaced.Infact,inalaserplasmathehigher energyionstreamsaretypicallymorecollimated(smalleraperture cone)[22,23].Moreover,theprotonpeakiswellseparatedfrom thephoto-peak,whichisquitenarrow,andgivethepossibilityof measuringverywellfastprotonsandions.Finally,MDMdetector revealsalsoelectrons,whosepeaksarebetweenthephoto-peak and proton peak. It is possible to conclude that by using the

2.5

2.0

1.5

1.0

0.5

0.0

0

3

6

Yield [V]

TOF@1m [

μ

s]

4

3

2

1

0

0

1

2

3

4

TOF@1m [

μ

s]

Yield [V]

a

b

Fig.6.TypicaldiamondTOFspectrafordiamondandioncollectorobtainedby ablatingdifferentthintargetsatPALSlaboratoryinforwarddirection.

diamonddetectorsinTOFconfiguration,itiseasiertoemphasize thefastionpeakandelectronsatexpensesoftherelativelyshort XUVphotopeakrespecttotheICdetectorwhichisinsteadmore efficienttomeasureslowions,sinceithasalowersensitivitytothe highenergy,lowchargestatparticles,andalsobecauseitisvery sensitivetothesoft-UVplasmaradiationwhichoverlapswiththe fastionpeak[24].

4. Conclusion

Single-crystalCVD diamonddetectors withaninterdigitated metalelectrodehavebeenfabricatedandtestedat“TorVergata” RomeUniversity.Suchdiamonddetectorshavebeenemployedin time-of-flight(TOF)configurationtomonitortheemissionplasma obtainedatPALSlaboratoryinPraguebyusingalaserpulse inten-sityofabout1016W/cm2.

The achieved results demonstrated that diamond detectors showimportant advantages withrespect toother semiconduc-tordetectors.Theseincludetheabsenceofaresponsetovisible lightandthepossibilitytosimultaneouslydetectenergetic pho-tons,electrons,andionsejectedfromtheplasmabothinforward andbackwarddirections.Finally,diamonddetectorshaveagood sensitivitytofastionsandhighenergyresolution(fastresponse time)whichisagoodadvantagewhenitisnecessaryto distin-guishbetweentheacceleratedfastprotonsandtherelativelylong plasmaphotopeak.

(5)

Acknowledgements

ThisworkissupportedbyLIANA-INFNExperimentandpartially bytheFondazioneRoma.

References

[1]L.Laska,J.Kársa,A.Velyhan,K.Jungwirth,E.Krousk ´y,D.Margarone,M.Pfeifer, K.Rohlena,L.Ryc,J.Skála,L.Torrisi,J.Ullschmied,LaserandParticleBeams27 (2009)137.

[2]J.Krasa,A.Velyhan,D.Margarone,E.Krousk ´y,J.Ullschmied,J.Skala,L.Laska, K.Jungwirth,K.Rohlena,ReviewofScientificInstruments81(2010)02A504. [3]D.Margarone,J.Krasa,L.Laska,A.Velyhan,T.Mocek,J.Prokupek,E.Krousky,

M.Pfeifer,S.Gammino,L.Torrisi,J.Ullschmied,B.Rus,ReviewofScientific Instruments81(2010)02A506.

[4] E.Woryna,P.Parys,J.Wolowski,M.Mroz,LaserandParticleBeams14(1996) 293.

[5]M.Farnikova,J.Krasa,B.Kralikova,J.Skala,P.Parys,L.Ryc,J.Wolowski,E. Woryna,ProceedingsoftheSPIE:TheInternationalSocietyforOptical Engi-neering2767(1996)113.

[6]L.Torrisi,G.Foti,L.Giuffrida,D.Puglisi,J.Wolowski,J.Badziak,P.Parys,M. Rosinski,D.Margarone,J.Krasa,A.Velyhan,U.Ullschmied,JournalofApplied Physics105(2009)123304.

[7]L.Torrisi,D.Margarone,L.Laska,M.Marinelli,E.Milani,G.VeronaRinati,S. Cavallaro,L.Ryc,J.Krasa,K.Rohlena,J.Ullschmied,JournalofAppliedPhysics 103(2008)083106.

[8]J.E.Field,PropertiesofDiamond,Academic,London,1979.

[9] D.R.Kania,M.I.Landstrass,M.A.Plano,L.S.Pan,S.Han,DiamondandRelated Materials2(1993)1012.

[10]A.V.Krasilnikov,K.N.Makarov,I.N.Rastyagaev,Yu.A.Satov,Yu.B.Smakovskiy, A.G.Alekseyev,V.N.Amosov,ReviewofScientificInstruments72(2001)1258.

[11]E.Berdermann,K.Blasche,P.Moritz,H.Stelzer,B.Voss,DiamondandRelated Materials10(2001)1770.

[12]S.Almaviva,M.Marinelli,E.Milani,G.Prestopino,A.Tucciarone,C.Verona, G.Verona-Rinati,M.Angelone,D.Lattanzi,M.Pillon,R.M.Montereali,M.A. Vincenti,JournalofAppliedPhysics103(2008)054501.

[13]S.Almaviva,M.Marinelli,E.Milani,G.Prestopino,A.Tucciarone,C.Verona, G.Verona-Rinati,M.Angelone,M.Pillon,I.Dolbnya,K.Sawhney,N.Tartoni, JournalofAppliedPhysics107(1)(2010)014511.

[14]M.Angelone,M.Pillon,M.Marinelli,E.Milani,G.Prestopino,C.Verona,G. Verona-Rinati,I.Coffey,A.Murari,N.Tartoni,NuclearInstrumentsandMethods inPhysicsResearchSectionA623(2010)726.

[15] ConsolMultiPhysicswebsite:http://www.comsol.com/.

[16]J.F.Ziegler,J.P.Biersack,M.D.Ziegler,SRIM—TheStoppingandRangeofIonsin Matter,SRIM,Annapolis,MD,2008.

[17]G.F.Knoll,RadiationDetectionandMeasurement,3rded.,Wiley,NewYork, 2000.

[18]M.Pomorski,E.Berdermann,M.Ciobanu,A.Marte-myianov,P.Moritz,M. Rebisz,B.Marczewska,PhysicaStatusSolidiA202(2005)11.

[19]H.Pernegger,S.Roe,P.Weilhammer,V.Eremin,H.Frais-Kolbl,E.Griesmayer,H. Kagan,S.Schnetzer,R.Stone,W.Trischuk,D.Twitchen,A.Whitehead,Journal ofAppliedPhysics97(2005)173704.

[20]P.Moritz,E.Berdermann,K.Blasche,H.Stelzer,B.Voss,DiamondandRelated Materials10(2001)1765.

[21]D. Margarone, J. Krasa,L. Giuffrida,A. Picciotto, L. Torrisi, T.Nowak,P. Musumeci,A.Velyhan,J.Prokpek,L.Lska,T.Mocek,J.Ullschmied,B.Rus,Journal ofAppliedPhysics109(2011)103302.

[22]L.Torrisi,D.Margarone,PlasmaSourcesScienceandTechnology15(2006)635. [23]T.E.Cowan,J.Fuchs,H.Ruhl,A.Kemp,P.Audebert,M.Roth,R.Stephens,I. Barton,A.Blazevic,E.Brambrink,etal.,PhysicalReviewLetters92(2004) 204801.

[24]L.Torrisi,S.Gammino,L.Andò,L.Laska,J.Krasa,K.Rohlena,J.Ullschmied, J. Wolowski, J. Badziak, P. Parys, Journal of Applied Physics 99 (2006) 083301.

Figura

Fig. 1. Schematic structure of the MDM device with the scheme of the used elec- elec-tronic circuit (R = 3.3 M and C = 0.68 ␮F) (a), a photo of Al inter-digitized electrodes (b) and its assembly in the experiment (c).
Fig. 3. A pulse from 5.5 MeV alpha particles obtained with the DBA-III preamplifier and recorded with a digital fast oscilloscope.
Fig. 5. Enlarged view of the photo-peak of the spectrum reported in Fig. 4.

Riferimenti

Documenti correlati

ricevuto più silice, si osserva la formazione di gehlenite. La gehlenite si suppone che si formi dalla reazione dei silicati della calce e degli alluminati quando la

La politica deve quindi contenere un impegno a soddisfare i requisiti e al miglioramento continuo del sistema di gestione per la qualità, deve essere

Si è prevista una sottostazione elettrica costituita da una unità di trasformazione della tensione generata a 10,5 kV alla tensione da concordare con il gestore della

Gli indici ricavati sono di diversi tipi: indici individuali che considerano singolarmente le misure relative a fessurazione, irregolarità della tessitura

Il livello superiore viene mantenuto e per la stessa arteria sono pensate delle rampe di uscita e di immissioni, terminanti sul lungarno sinistro, con le quali

Studio sperimentale ed analisi prestazionale di un sistema WiMAX in area portuale. Candidato

Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; (b) School of Physics,