a
r
t
i
c
l
e
i
n
f
o
a
b
s
t
r
a
c
t
Articlehistory:
Received23May2018
Receivedinrevisedform28October2018 Accepted12November2018
Availableonline29December2018 Editor: M.Doser
Inclusive ϒ(1S) and ϒ(2S) production have been measuredin Pb–Pbcollisions at the centre-of-mass energypernucleon–nucleon pair√sNN=5.02 TeV,usingthe ALICEdetector atthe CERNLHC.The ϒ mesons are reconstructed in the centre-of-mass rapidity interval 2.5<y<4 and in the transverse-momentum range pT<15 GeV/c,via their decays to muon pairs. In thisLetter, we present results onthe inclusiveϒ(1S) nuclearmodificationfactor RAA as afunctionofcollisioncentrality, transverse momentumandrapidity.Theϒ(1S) andϒ(2S) RAA,integratedoverthecentralityrange0–90%,are0.37± 0.02(stat)±0.03(syst)and0.10±0.04(stat)±0.02(syst),respectively,leadingtoaratioRϒ(AA2S)/Rϒ(AA1S)of 0.28±0.12(stat)±0.06(syst).Theobservedϒ(1S) suppressionincreaseswiththecentralityofthecollision andnosignificantvariationisobservedasafunctionoftransversemomentumandrapidity.
©2018PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
Adetailedstudyofthepropertiesof theQuark–Gluon Plasma (QGP) [1] is the main goal of heavy-ion experiments at ultra-relativisticenergies [2–6].Quarkonia,i.e. boundstatesofcharmor bottomquark–antiquarkpairs,aresensitiveprobesofcolor decon-finement,duetotheQuantum-ChromoDynamicsDebyescreening mechanism [7–9] leading to quarkonium suppression. Moreover, thevariousquarkoniumstateshavedifferentbindingenergiesand thereforedifferentdissociationtemperatures ina QGP, leading to sequentialsuppression[7,10]. Theoryestimates[11] indicate that bottomoniumformationmayoccurbeforeQGPthermalization[12] becauseofthelargebottomquark mass.Inthissituation,a quan-titativedescriptionofthe influenceofthemedium on thebound states becomes challenging. While the dissociation temperatures varysignificantly between differentmodels [8,9], it is commonly acceptedthatthewidthsofthespectralfunctionsofthe bottomo-nium statesincrease compared to the widthsin vacuum, dueto the high temperature of the surrounding medium [13]. Finally, taking into account that feed-down processes from higher-mass resonances(around40%forthe
ϒ
(1S) and30% fortheϒ
(2S) [9]) arenot negligible,the evaluationof themedium temperaturevia bottomoniummeasurementsremainsacomplexendeavour.Thefirst studies ofquarkonium productionin heavy-ion colli-sions were devoted to charmonium states, anda suppression of theiryieldswas observedattheSPS [14–16],atRHIC [17,18] and
E-mailaddress:alice -publications @cern .ch.
attheLHC [19–22]. TheweakerJ/
ψ
suppression observedatLHC energies, where the centre-of-mass energy per nucleon–nucleon pair (√
sNN) is one order of magnitude larger than at RHIC, canbe explained by means of a competitive (re)generation mecha-nism, which occurs during the deconfined phase and/or at the hadronization stage [23–26]. Thisproduction mechanismstrongly dependson the(re)combination probability of deconfinedquarks presentinthemediumandthusontheinitialnumberofproduced cc pairs. Theeffect hasbeenfound tobe more importantatlow
pT andinthemostcentralcollisions[22,20,27].
The high-energy collisions delivered by the LHC allow for a detailed studyof bottomonium states. For bottomonium produc-tion, perturbative calculations of production rates in elementary nucleon–nucleoncollisionsaremorereliablethanforcharmonium yieldsduetothehighermassofthebottomquarkwithrespectto charm.Sincethe numberofproducedbb pairsincentralheavy-ion collisions amountto afewpairsper eventattheLHC,the proba-bilityfor(re)generationofbottomoniathrough(re)combination is muchsmallerthaninthecaseofcharmonia.
The
ϒ
(1S) nuclearmodificationfactor RAA isquantified astheratioof the
ϒ
(1S) yieldinnucleus–nucleus collisions tothe pro-ductioncrosssection measuredinpp collisionsscaled bythe nu-clearoverlapfunctionTAA.ThelatterisobtainedviatheGlaubermodel [28,29]. Astrong suppression ofthe
ϒ
(1S) state inPb–Pb collisions has been observed at√
sNN=
2.
76 TeV by ALICE [30]andCMS[31,32] intherapidity ranges2
.
5<
y<
4 and|
y|
<
2.
4, respectively. The suppression increaseswith the centralityof the collision, reaching about60% and 80% forthe mostcentral colli-sionsatmid [32] andforwardrapidity [30],respectively.Moreover,https://doi.org/10.1016/j.physletb.2018.11.067
the
ϒ
(2S) suppressionreachesabout 90%and forϒ
(3S) dataare compatiblewithacompletesuppression[32].Asafunctionof pTthe
ϒ
(1S) RAA,measured forpT<
20 GeV/c byCMS [32],iscom-patiblewithaconstantvalue.Whenconsideringthe y-dependence
resultingfromthecomparisonofALICEandCMSresults,thereis an indication for a stronger suppression at forward y. Transport models [26,33] aswell asan anisotropic hydro-dynamical model [34] fairlyreproducetheexperimental observationsofCMS,while theytendtooverestimatetheRAAvaluesmeasuredbyALICE.
The bottomoniumsuppression due tothe QGPshould be dis-entangledfromthesuppressionduetoColdNuclearMatter(CNM) effects, such as the nuclear modification of the parton distribu-tionfunctionsduetoshadowing[35,36],aswellaspartonenergy loss[37].Theseeffectsonthebottomoniumproductionwere stud-iedinp–PbcollisionsbyALICE[38] andLHCb[39],who reported for the
ϒ
(1S) a nuclear modification factor slightly lower than unityatforward rapidityandcompatiblewithunity atbackward rapidity, although with significant uncertainties. Recently, ATLAS resultsindicateasignificantsuppressionoftheϒ
(1S) for pT<
40GeV/c aroundmid-rapidity [40]. Additional measurements at for-ward/backwardrapiditywithhigherstatistics,areneededtofully constrain the models and perform a meaningful extrapolation of CNMeffectstoPb–Pbcollisions.
In this Letter we present the first results on the
ϒ
(1S) andϒ
(2S) RAA measured by the ALICE Collaboration in Pb–Pbcolli-sions at
√
sNN=
5.
02 TeV. The pp reference cross sections usedinthe RAA calculationshavebeendetermined byaninterpolation
procedurebasedonvariousALICE[41,42] andLHCb[43,44] results atdifferentenergies.Thenuclearmodificationfactorforthe
ϒ
(1S) ispresentedasafunctionofthecentralityofthecollisionandalso differentially in pT andrapidity. Fortheϒ
(2S), an RAA valuein-tegratedover thecentralityofthe collisionisquoted. Finally,the resultsarecomparedtotheoreticalcalculations.
2. Experimentalapparatusanddatasample
An extensivedescriptionof theALICEapparatus canbe found in[45,46].TheanalysispresentedinthisLetterisbasedonmuons detected atforwardrapidity (2
.
5<
y<
4)1 withthemuon spec-trometer [47].Thedetectorsrelevantforϒ
measurementsinPb–Pb collisionsaredescribedbelow.TheSiliconPixelDetector,correspondingtothetwo innermost layers ofthe Inner TrackingSystem [48], is usedforthe primary vertexdetermination.Theinnerandouterlayercoverthe pseudo-rapidityranges
|
η
|
<
2 and|
η
|
<
1.
4,respectively.TheV0scintillatorhodoscopes [49] providethecentrality esti-mate.They are made oftwo arraysof scintillatorsplaced in the pseudo-rapidity ranges 2
.
8<
η
<
5.
1 and−
3.
7<
η
<
−
1.
7. The logical AND of the signals from the two hodoscopes constitutes theMinimumBias(MB)trigger.TheMBtriggerisfullyefficientfor thestudied0–90%mostcentralcollisions.TheZeroDegreeCalorimeters (ZDC)areinstalled at
±
112.
5 m fromthe nominalinteraction point along the beam line. Eachof thetwoZDCsiscomposedoftwosamplingcalorimetersdesigned for detecting spectator protons, neutrons andnuclear fragments. Theevaluationofthesignalamplitude oftheZDCsallows forthe rejectionofeventscorrespondingtoanelectromagneticinteraction ofthecollidingPbnuclei[50].Themuonspectrometercovers thepseudorapidityrange
−
4<
η
<
−
2.
5.Itiscomposedofafrontabsorber, whichfiltersmuons1 IntheALICEreferenceframe,themuonspectrometercoversanegativeηrange
andconsequentlyanegativey range.Wehavechosentopresentourresultswitha positivey notation.
upstream ofthemuon tracker,consistingoffivetracking stations with two planes of cathode-pad chambers each, andof a dipole magnetprovidinga 3 T
·
mintegratedmagneticfield.Downstream of the tracking system, a 1.2 m thick iron wall stops efficiently the punch-through hadrons. The muon trigger systemis located downstream of the iron wall and consists of two stations, each one equippedwithtwoplanesofResistive PlateChambers (RPC), withanefficiencyhigherthan 95% [51].Themuon-triggersystem isabletodeliversingleanddimuontriggersselectingmuonswithpT largerthana programmablethreshold,viaan algorithmbased
ontheRPCspatialinformation [52].Throughoutitsentirelength,a conicalabsorbershieldsthemuonspectrometeragainstsecondary particles produced by the interaction of primary particles in the beampipe.
The trigger condition used for data taking is a dimuon-MinimumBias(
μμ
-MB)triggerformedby thelogicalANDofthe MBtriggerandanunlike-signdimuontriggerwitha pT thresholdof1 GeV/c foreachofthetwomuons.
ThecentralityestimationisperformedusingaGlauberfittothe sumofthesignalamplitudesoftheV0scintillators [53–55]. Cen-tralityrangesaregivenaspercentagesofthetotalhadronicPb–Pb cross section.In additionto thecentrality,the Glauber model al-lows an estimate of the average number of participantnucleons
Npart,of the averagenumber ofbinary collisions Ncoll andofthenuclearoverlapfunction
TAA,foreachcentralityinterval[56].In the present analysis, the data sample corresponds to an inte-gratedluminosity Lint
≈
225 μb−1 inthecentralityinterval0–90%that hasbeendividedintofourcentralityclasses:0–10%,10–30%, 30–50%and50–90%.
3. Dataanalysis
The evaluationof RAA is performedthroughthe following
ex-pression: RAA
=
Nϒ BRϒ→μ+μ−· (A×ε
)ϒ→μ+μ−·Nμμ-MB·Fnorm·σ
ppϒ· TAA , (1)where Nϒ is the numberof detected resonance decays to muon
pairs, while BRϒ→μ+μ−
= (
2.
48±
0.
05)
% and(
1.
93±
0.
17)
% are the branching ratios for the dimuon decay ofϒ
(1S) andϒ
(2S), respectively [57].The(
A×
ε
)
ϒ→μ+μ− factoristheproductofac-ceptanceanddetectionefficiencyforthe
ϒ
stateunderstudy.The normalization factor Nμμ-MB·
Fnorm is the product of thenum-ber of analyzed
μμ
-MB events and the inverse of the proba-bility to obtain an unlike-sign dimuon trigger in a MB-triggered event [22].Adatasetof1.
5·
109 minimumbiasequivalentevents,Nμμ-MB
·
Fnorm,hasbeenusedforbottomoniummeasurements.Fi-nally,
σ
ϒpp is the referencepp cross section and
TAA representsthenuclearoverlapfunction [55].
Thesignalyieldsareevaluatedbyperformingfitstothe
μ
+μ
−invariant massdistributions.Inordertoimprovethepurityofthe dimuonsampleasetofselectioncriteria [30] hasbeenappliedon the muon tracks, includingthe requestof the matchingbetween the tracks reconstructed in the trigger and tracking detectors of themuonspectrometerandacutonthetracktransverse momen-tum(pT
>
2 GeV/c).Thelattercuthasasmalleffect(∼
2%)onthenumber of detected resonances. The raw
ϒ
yields are extracted using thesumof threeextended Crystal Ball(CB)functions [58], one foreach ofϒ
(1S),ϒ
(2S) andϒ
(3S). The extended CB func-tion consistsof a Gaussian corewith non-Gaussian tails onboth sidestotakeintoaccounttheradiativecontributionsoftheϒ
pro-duction andtheabsorber effects ofmuon energylossin thelow masstail,whereas thehighmasstailisattributedtothemultipleFig. 1. Redandmagentasolidlinescorrespondtoϒ(1S) andϒ(2S) signalfunctions,respectively.Thecontributionfromϒ(3S) yieldiscompatiblewithzero.Dottedbluelines representthebackground(left)andresidualbackground(right),respectively.Thesumofthevariousfunctionsisalsoshownasasolidblueline.
Coulombscatteringinthefrontabsorberandthemomentum reso-lutionofthetrackingchambers.Thebackgroundisfittedwiththe sumoftwo exponentialfunctions(see left panel ofFig.1). Since the signal-to-background (S/B)ratio is low in the tail regions of theextendedCBfunctions, thetailparameters arefixedtovalues obtainedfrom the Monte Carlo(MC) simulation. The mass posi-tionand thewidth parameters of the
ϒ
(1S) are left free forthe integratedspectrum(i.e. centralityclass0–90%,pT<
15 GeV/c and2
.
5<
y<
4). Whereas for the signal extraction asa function of centrality,themasspositionandwidth(160±
15 MeV/c2)oftheϒ
(1S) arefixedto thevaluesobtainedinthefittothe centrality-integrated(0–90%)massspectrum.Finally,forstudiesasafunction of pT and y, the mass position and the width obtained for thecentrality-integratedmass spectrum are scaled accordingto their evolution observedin the MC. Due to the poorS/B ratio forthe highermassstates,thevaluesofthemassofthe
ϒ
(2S) andϒ
(3S) arefixed to thePDG massdifferenceswithrespect totheϒ
(1S), and the ratio ofϒ
(2S) (ϒ
(3S)) toϒ
(1S) widths is fixed to val-ues fromthe MC simulation, i.e. 1.03 (1.06). In the fit shownin Fig.1onlysignalscorresponding totheϒ
(1S) andϒ
(2S) are vis-ible,sincetheϒ
(3S) contribution iscompatiblewithzero events. Alternatively, the combinatorial background is modeled with the event-mixingmethod.Inthisapproach,aninvariant massdimuon spectrum is constructed by pairing muonsfrom different events with similar multiplicities as described in [22]. The combinato-rialbackgroundisthensubtractedfromtherawdimuonspectrum (rightpanel ofFig. 1)andtheresultingdistributionisfittedwith thesumofthreeextended CBandanexponential functionto ac-countfortheresidualbackground.Finally,thenumberofdetectedϒ
resonances, Nϒ,is obtained as the average [58] of the fittingmethodsdescribedabove(andalsobelowinthediscussionon sig-nalsystematics),leadingtoNϒ(1S)
=
1126±
53(stat)±
47(syst) andNϒ(2S)
=
77±
33(stat)±
17(syst).Themeasured
ϒ
yields, Nϒ,arecorrected forthe detectorac-ceptanceandefficiencyusingMCsimulations.Sincetheoccupancy ofthedetectorvarieswiththecentralityofthecollisions,the gen-erated
ϒ
decaysareembeddedintorealMBeventstosimulatethe variousparticlemultiplicityscenariosasindata.The pTandydis-tributionsofthegenerated
ϒ
areobtainedfromexistingpp mea-surements [59–61] using the interpolation procedure described in [62]. The EKS98 nuclear shadowing parameterization [35] is used to includean estimate of CNM effects. Since available data favora small ornull polarization forϒ
(1S) [63–66], an unpolar-izedproductionisassumed. Thevariations oftheperformance ofthetrackingandtriggeringsystemsthroughoutthedata-taking pe-riodaswellastheresidualmisalignmentofthetrackingchambers aretakenintoaccountinthesimulation.The A
×
ε
values,forthe range pT<
15 GeV/c, 2.
5<
y<
4 and the0–90% centralityclassare0
.
263 and0.
264 fortheϒ
(1S) andϒ
(2S),respectively,witha negligible statisticaluncertainty. A decrease of 2% is observed inA
×
ε
forthe0–10%centralcollisionswithrespecttothe50–90% sample dueto the higher occupancy in the most central events. The A×
ε
ishigherby20%in3<
y<
3.
5 comparedtothevalues at2.
5<
y<
3 and3.
5<
y<
4 mainlyduetothegeometric accep-tanceofthedetector,whereasithasnovariationasafunctionofpT.ThesystematicuncertaintyonA
×
ε
isdiscussedbelow.The systematic uncertainty on the signal extraction is evalu-atedusingvarious functionsformodellingthebackgroundshape, as well as adopting two fitting ranges, i.e. (7–14) GeV/c2 and (7.5–14.5)GeV/c2.Thetailparametersofthesignalfunctionshave
been varied using estimates provided by two MC particle trans-port models:GEANT4 [67] andGEANT3 [68].Inthecentrality, pT
or y differential studies, the mass position and width are also varied by amounts,whichcorrespond totheuncertainties on the masspositionandthewidthreturnedbythefittothe centrality-integratedinvariantmassspectrum. Theratioof
ϒ
(2S) (ϒ
(3S))toϒ
(1S) widthsisvariedfrom1(1)to1.06(1.12).ThevaluesofNϒandtheirstatisticaluncertaintiesareobtainedbytakingthe aver-ageof Nϒ andofthecorresponding statisticaluncertainties from
the variousfits. Thisprocedure isapplied to bothfits ofthe raw and combinatorial-background subtracted spectra. The systematic uncertainties areestimatedastherootmeansquare ofthe distri-bution of Nϒ obtained from the various fits. The effect induced
by the pT
>
2 GeV/c cutonsingle muonsonthe A×
ε
-correctedϒ
yields was estimatedby varyingthatcut by±
0.2GeV/c inthe MC.A±
2%maximumvariationon Nϒ/(
A×
ε
)
wasobservedandincludedinthesystematicuncertainties.
Various sources contribute to the systematic uncertainties of
A
×
ε
,suchasthe pT and y shapesoftheinput distributionsfortheMCsimulations,thetriggerefficiency,thetrackreconstruction efficiencyandfinallythematchingefficiencybetweentracksinthe muon tracking and triggering chambers. Various sets of simula-tions areproducedwithdifferent
ϒ
input pT and y distributions,obtainedfromempiricalparameterizationsand/orextrapolationsof availabledatasetsatdifferentenergies.Themaximumrelative dif-ferenceof A
×
ε
forthevariousshapesistakenasthesystematic uncertaintyduetotheinputMC.Inordertocalculatethe system-aticuncertaintyontriggerefficiency,thetriggerresponsefunctionTable 1
SummaryofthesystematicuncertaintiesfortheRAAcalculation.TypeI(II)referstocorrelated(uncorrelated)systematicuncertainties.
Sources ϒ(1S) ϒ(2S)
Centrality y pT Integrated Integrated
Signal extraction 4.3–6.1%(II) 4.2–6.8%(II) 5.2–8.7%(II) 4.1% 21.7%
Muon pTcut 0.3–2.4%(II) 0.1–1.2%(II) 0.1–2.4%(II) 0.7% 0.7%
Input MC 0.9%(I) 0.6–2.6%(II) 1–1.4%(II) 0.9% 0.9%
Tracker efficiency 3%(I) and 0–1%(II) 1%(I) and 3%(II) 1%(I) and 3%(II) 3% 3%
Trigger efficiency 3%(I) 1.4–3.7%(II) 0.4–2.6%(II) 3% 3%
Matching efficiency 1%(I) 1%(II) 1%(II) 1% 1%
Centrality 0.2–2.4%(II) – – – –
Fnorm 0.5%(I) 0.5%(I) 0.5%(I) 0.5% 0.5%
TAA 3.1–5.3%(II) 3.2%(I) 3.2%(I) 3.2% 3.2%
BRϒ→μ+μ−·σϒpp 6.3%(I) 6.6–11.3%(II) 5.5–11.5%(II) 6.3% 7.5%
for single muons is evaluated using eitherMC or data. The two response functions are then separately applied to simulations of an
ϒ
sample and the difference obtained for theϒ
reconstruc-tion efficiencyis taken assystematic uncertainty. The systematic uncertainty on the tracking efficiency is obtained starting from an evaluation of the single muon tracking efficiency in MC and data.Thisevaluationisperformedviaaprocedure,detailedin[22], basedontheredundancyofthetrackingchamberinformation.The dimuontrackingefficiencyisthenobtainedbycombiningthe sin-gle muon efficiencies and the systematicuncertainty is taken as thedifferenceofthevaluesobtainedwiththeprocedurebasedon MCanddata.Themuon tracksfordataanalysisarechosenbased on a selection on theχ
2 ofthe matching betweena trackseg-mentinthetriggersystemwithatrackinthetrackingchambers. The matching systematics are obtainedby varying the
χ
2selec-tioncut indata andMC andcomparingtheeffects onthe muon reconstructionefficiency [22].
The systematic uncertainty on the centrality measurement is evaluated by varying the V0 signal amplitude by
±
0.
5% corre-spondingto90%ofthehadroniccrosssectioninPb–Pbcollisions, usedasanchorpointtodefine thecentralityclasses.The system-atic uncertainty on the evaluationofσ
ϒpp is detailedin the next
section.Finally,thesystematicuncertaintyevaluationofFnormand
TAA are described in [22] and [53], respectively. The differentsystematicuncertaintysourcesonthe RAAcalculationare
summa-rizedinTable1.Iftheabovementionedsystematicuncertaintyis correlatedasa functionofcentrality, pT or y,itisquotedas
cor-related(type I) systematic uncertainty, otherwise it istreated as uncorrelated(typeII).
4. Proton–protonreferencecrosssections
Theppreferencecrosssectionfor
ϒ
(1S) andϒ
(2S) production arecomputedbymeansofaninterpolationprocedureasdescribed forϒ
(1S) in [69].Theenergyinterpolationfortheϒ
crosssection, asa function of rapidity andfor the pT and y integrated result,usesthemeasurements of
ϒ
productioncrosssectionsinpp col-lisionsat√
s=
7 and8TeV byALICE[41,42] andat√
s=
2.
76,
7 and8TeVby LHCb[43,44].Theinterpolationisperformedby us-ing variousempiricalfunctionsand, inaddition,the shapeofthe energydependenceof thebottomonium crosssectionscalculated usingtwo theoreticalmodels,i.e.theLeadingOrderColour Evap-orationModel(LO-CEM)[70] andtheFixedOrderNext-to-Leading Logs(FONLL)model [71].The lattergivescross sectionsforopen beauty,whichishereusedasaproxytostudytheevolutionofthe bottomoniumcross section [69]. Theenergy interpolationfor theϒ
(1S) crosssectionasafunctionof pTisbasedonLHCbmeasure-ments only, since the pT coverage of the results of this analysis
(pT
<
15 GeV/c) is more extended than that of thecorrespond-ing ALICEpp data (pT
<
12 GeV/c). The result of theinterpola-tion procedure gives BRϒ(1S)→μ+μ−
·
σ
ppϒ(1S)=
1221±
77(syst) pbTable 2
Theinterpolatedbranchingratiotimescrosssectionofϒ(1S) forthepTandy bins
understudy.Thequoteduncertaintiesaresystematic.
pT(GeV/c) y BRϒ(1S)→μ+μ−·σppϒ(1S)(pb) [0–2] [2.5–4] 226±26 [2–4] 361±20 [4–6] 288±24 [6–15] 311±23 [0–15] [2.5–3] 506±57 [3–3.5] 415±28 [3.5–4] 288±24
andBRϒ(2S)→μ+μ−
·
σ
ppϒ(2S)=
302±
23(syst) pb assumingunpolar-ized quarkonia and integrating over the ranges 2
.
5<
y<
4 andpT
<
15 GeV/c.Theuncertaintiescorrespondtothequadraticsumof two terms. The first term dominates the total uncertainty on the interpolated value andreflects the statistical and systematic uncertainties on the data points used in the interpolation pro-cedure. The second term is relatedto the spreadamong the in-terpolated cross sections obtained by using either the empirical functionsorthe energydependenceestimatedfromthe theoreti-cal modelsmentionedabove.Thenumericalvaluesobtainedfrom theinterpolationprocedurearesummarizedinTable2forthe var-iouskinematicrangesusedintheanalysis.
5. Results
The nuclearmodificationfactorsforinclusive
ϒ
(1S) andϒ
(2S) productioninPb–Pb collisionsat√
sNN=
5.
02 TeV fortheranges pT<
15 GeV/c, 2.
5<
y<
4 and the 0–90% centrality classare Rϒ(AA1S)
=
0.
37±
0.
02(stat)±
0.
03(syst) and Rϒ(AA2S)=
0.
10±
0.
04(stat)±
0.
02(syst), respectively. The ratio RAAϒ(2S)/
Rϒ(AA1S) is 0.
28±
0.
12(stat)±
0.
06(syst). Since the decay kinematics of the twoϒ
states is very similar, mostof the systematic uncertainty sources entering the ratiocancel out except those on the signal extraction and on the pp crosssection, which are the dominant contributions to the total systematic uncertainty. The measure-ments show a strong suppression for both bottomonium states with themore weakly bound state being significantly more sup-pressed. The ratio between theϒ
(1S) RAA at√
sNN=
5.
02 TeVand2.76TeV [30] is 1
.
23±
0.
21(stat)±
0.
19(syst).The sourcesof systematic uncertainties entering the calculation of the ratio are considered uncorrelated, except forthe TAA component, whoseuncertaintycancelsout.Theratioiscompatiblewithunitywithin uncertainties.
Thecentrality, pT andy dependencesofthe
ϒ
(1S) RAA atfor-wardrapidityat
√
sNN=
5.
02 TeVareshowninFig.2.Adecreaseof RAA with increasing centrality is observed down to Rϒ(AA1S)
=
0
.
34±
0.
03(stat)±
0.
02(syst) forthe0–10%mostcentralcollisions. No significant pT-dependence is observed up to pT=
15 GeV/cFig. 2. Inclusiveϒ(1S) RAAasafunctionofcentrality(top),pT(left)andy (right)atforwardrapidityat√sNN=5.02 TeV.ALICEresultsat√sNN=2.76 TeVasafunction
ofcentralityand y areshownforcomparison [30].Theverticalerrorbarsandtheboxesrepresentthestatisticalanduncorrelatedsystematicuncertainties,respectively. Therelativecorrelateduncertaintyisshownasboxesatunity.ALICEϒ(1S) RAAmeasurementsat√sNN=5.02 TeVarecomparedtopredictionsfromtwotransportmodels
[33,72] andonehydro-dynamicalmodel[34] asafunctionofcentrality(top),pT(left)andy (right).Seetextfordetailsonthemodels.
withinuncertainties.Thenuclearmodificationfactorshowsno sig-nificantdependence on rapidity.The
ϒ
(1S) RAA asa function ofcentralityandrapiditymeasuredbyALICEat
√
sNN=
2.
76 TeV [30]are alsoshownin Fig. 2.Similar trends can be observedat both collisionenergies.
Theinclusive
ϒ
(1S) RAA measurementsarecompared inFig.2to several calculations: two transport models (TM) [33,72] and onehydro-dynamicalmodel[34].Todescribethequarkonium mo-tioninthemedium,bothtransportcodes usearate-equation ap-proach which accounts for both suppression and (re)generation mechanisms in the QGP. In the TM1 model [33] the evolution ofthe thermal medium is based ona thermal-fireball expansion while the TM2 model [72] uses a 2+1 dimensional version of the idealhydrodynamic equations.The two models usedifferent rateequationsandbothmodels includeafeed-downcontribution fromhigher-mass bottomonia to the
ϒ
(1S). In TM2,two sets of feed-down fractions are assumed. Finally, theϒ
(1S) production cross section in pp collisions at√
s=
5.
02 TeV in the rapidity range2.
5<
y<
4 istaken asdσ
ppϒ(1S)/
d y=
28.
8 nb inTM1 andd
σ
ppϒ(1S)/
d y=
30 nb in TM2. Those values deviate by about 2σ
(TM1)and1
.
4σ
(TM2)fromtheresultobtainedusingthepp inter-polationmethodreportedintheprevioussection.TM1predictions areshownasbandsaccountingforshadowingeffectsascalculated in [36]. The upper limit shownin Fig. 2 corresponds to the ex-treme case of the absence of shadowing while the lower limitreflects a reduction of 30% due to shadowing. The TM1 model implements the feed-down fractions reported in[9]. In the TM2 model, the shadowing parameterization is based on EKS98 [35] andthebandedgescorrespondtotwodifferentsetsoffeed-down fractions (27%from
χ
b; 11% fromϒ(
2S+
3S)
and37% fromχ
b;12%from
ϒ(
2S+
3S)
)adoptedbytheauthors.Inthethirdmodel [34], a thermal suppression of the bottomonium states is calcu-latedusinga complex-valued heavy-quarkpotential parametrized bymeansoflatticeQCDandembeddedinamediumevolving ac-cording to 3+1d anisotropic hydrodynamics.In this recent study, the RAA shows no sensitivity to the plasma shearviscosity-to-entropy density ratio (4
π η
/
s) parameter of the hydro evolution, whichisthereforesetto4π η
/
s=
2 consistentwithparticle spec-trafits.Thebandofthemodelquantifiestheheavy-quarkpotential uncertainty,which hasbeenestimatedbyincludinga±
15% vari-ation of theDebye mass ofthe QCD medium that is tuned by a fit to the real-part of the lattice in-medium heavy-quark poten-tial.Furthermore,thepredictionsshownarereferringtotheinitial momentum-spaceanisotropyparameterξ
0=
0,whichcorrespondsto a perfectly isotropic QGP at the starting point of the hydro-dynamicalevolutionat
τ
0=
0.
3 fm/c.Finally,thismodelaccountsforfeed-down contributions butit includes neither a (re)genera-tionmechanismnorCNMeffects.Thecentralitydependenceofthe
ϒ
(1S) RAAisfairlyreproducedbythemodelcalculationsinthetoppanelofFig.2.ThedataarebestdescribedbyTM1when (re)gen-eration isincludedandby TM2when (re)generationisnot taken
into account. The hydro-dynamical model describesthe trend of thedata, thefact that thedatalie on theupper edgeofthe un-certaintybandforNpart
>
70 couldindicateasmallerDebyemassandthus astrongerheavy-quarkpotential.Thedataasafunction of pT (bottomleftpanel ofFig.2)canbedescribed withor
with-out the(re)generation scenarioofthe TM1modelwhile showing agreementwiththehydro-dynamicalmodelfortheupperedgeof theuncertaintyband.Finally,the y-dependenceofthe
ϒ
(1S) RAAisdescribed, within uncertainties, by the hydro-dynamicalmodel inthe bottom rightpanel ofFig. 2despite the possibly different trendbetweendataandcalculations.
Thelow
ϒ
(1S) RAA reportedinthisLetterraisestheimportantquestion whetherdirect
ϒ
(1S) aresuppressed atLHCenergies or only the feed-down contribution from higher mass states. How-ever,thelargeuncertaintiesofthecurrentmeasurements ofCNM effects[38–40] preventafirmconclusion.6. Summary
The nuclearmodification factors ofinclusive
ϒ
(1S) andϒ
(2S) productionatforwardrapidity(2.
5<
y<
4)andforpT<
15 GeV/cinPb–Pbcollisionsat
√
sNN=
5.
02 TeVhavebeenmeasuredusingtheALICEdetector.Theobserved
ϒ
(1S) suppressionincreaseswith the centrality of the collision andno significant variation is ob-servedasafunctionoftransversemomentumorrapidity.Alarger suppression of theϒ
(2S) bound state compared to the ground stateisalsoreported.Transportanddynamicalmodelcalculations reproducequalitativelythecentralityandkinematicdependenceof theϒ
(1S) nuclearmodificationfactor.Acknowledgements
The ALICE Collaboration would like to thank all its engineers andtechnicians fortheir invaluablecontributionstothe construc-tionoftheexperimentandtheCERNacceleratorteamsforthe out-standingperformanceoftheLHCcomplex.TheALICECollaboration gratefully acknowledges the resources and support provided by all Gridcentres andtheWorldwide LHCComputing Grid(WLCG) collaboration. The ALICE Collaboration acknowledges the follow-ing funding agencies for their support in building and running the ALICE detector: A. I.Alikhanyan National Science Laboratory (YerevanPhysicsInstitute)Foundation(ANSL),StateCommittee of Science andWorld Federationof Scientists (WFS), Armenia; Aus-trian Academy of Sciences and Österreichische Nationalstiftung für Forschung, Technologie undEntwicklung, Austria; Ministry of CommunicationsandHighTechnologies,NationalNuclearResearch Center,Azerbaijan;Conselho NacionaldeDesenvolvimento Cientí-ficoeTecnológico(CNPq), UniversidadeFederaldo RioGrande do Sul(UFRGS), Financiadorade Estudose Projetos(Finep)and Fun-dação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), Na-tionalNaturalScienceFoundationofChina(NSFC)andMinistryof EducationofChina(MOEC),China;MinistryofScienceand Educa-tion,Croatia;MinistryofEducation,YouthandSportsoftheCzech Republic,CzechRepublic;TheDanishCouncilforIndependent Re-search — Natural Sciences, the Carlsberg Foundation and Danish NationalResearchFoundation(DNRF), Denmark;HelsinkiInstitute ofPhysics(HIP),Finland;Commissariatàl’EnergieAtomique(CEA) andInstitutNationaldePhysiqueNucléaireetdePhysiquedes Par-ticules (IN2P3) andCentre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat forResearchandTechnology,MinistryofEducation,Researchand
Religions, Greece; National Research Development and Innova-tion Office, Hungary; Department ofAtomic Energy, Government of India (DAE), Department of Science and Technology, Govern-ment of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Sciences, Indonesia; Centro Fermi - MuseoStorico della Fisica e Centro Studi e Ricerche En-rico Fermi andIstituto Nazionale diFisica Nucleare (INFN), Italy; Institute forInnovativeScienceandTechnology,NagasakiInstitute of AppliedScience (IIST), Japan Societyforthe Promotion of Sci-ence(JSPS)KAKENHIandJapaneseMinistryofEducation,Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional deCiencia(CONACYT)yTecnología,throughFondodeCooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; NederlandseOrganisatievoorWetenschappelijkOnderzoek(NWO), Netherlands; The Research Council of Norway, Norway; Commis-sion on Science and Technology for Sustainable Development in theSouth(COMSATS),Pakistan;PontificiaUniversidadCatólicadel Perú,Peru;MinistryofScienceandHigherEducationandNational Science Centre, Poland; Korea Institute of Science and Technol-ogyInformationandNationalResearchFoundationofKorea(NRF), Republic of Korea;Ministry of Educationand Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research(JINR), MinistryofEducationandScienceofthe Russian FederationandNationalResearch CentreKurchatov Insti-tute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológi-cas yDesarrolloNuclear(CEADEN),Cubaenergía,Cuba andCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT),Spain;SwedishResearchCouncil(VR) andKnut&Alice WallenbergFoundation(KAW),Sweden;EuropeanOrganizationfor Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technol-ogy (SUT) andOffice of theHigher EducationCommission under NRU projectofThailand,Thailand;TurkishAtomicEnergy Agency (TAEK),Turkey;NationalAcademyofSciencesofUkraine,Ukraine; ScienceandTechnologyFacilitiesCouncil(STFC),UnitedKingdom; NationalScienceFoundationoftheUnitedStatesofAmerica(NSF) andUnitedStatesDepartmentofEnergy,OfficeofNuclear Physics (DOENP),UnitedStatesofAmerica.
References
[1]E.V. Shuryak, Quark–gluon plasma and hadronic production of leptons, photons and psions, Phys. Lett. B 78 (1978) 150, Yad. Fiz. 28 (1978) 796.
[2]BRAHMS Collaboration, I. Arsene, et al., Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment, Nucl. Phys. A 757 (2005) 1–27, arXiv:nucl -ex /0410020 [nucl -ex].
[3]PHOBOS Collaboration, B.B. Back, et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28–101, arXiv:nucl -ex /0410022 [nucl -ex]. [4]STAR Collaboration, J. Adams, et al., Experimental and theoretical challenges in
the search for the quark gluon plasma: the STAR Collaboration’s critical assess-ment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102–183, arXiv:nucl -ex /0501009 [nucl -ex].
[5]PHENIX Collaboration, K. Adcox, et al., Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184–283, arXiv:nucl -ex / 0410003 [nucl -ex].
[6]B. Muller, J. Schukraft, B. Wyslouch, First results from Pb+Pb collisions at the LHC, Annu. Rev. Nucl. Part. Sci. 62 (2012) 361–386, arXiv:1202 .3233 [hep -ex]. [7]T. Matsui, H. Satz, J/ψ suppression by quark–gluon plasma formation, Phys.
Lett. B 178 (1986) 416–422.
[8]N. Brambilla, et al., Heavy quarkonium: progress, puzzles, and opportunities, Eur. Phys. J. C 71 (2011) 1534, arXiv:1010 .5827 [hep -ph].
[9]A. Andronic, et al., Heavy-flavour and quarkonium production in the LHC era: from proton–proton to heavy-ion collisions, Eur. Phys. J. C 76 (3) (2016), arXiv: 1506 .03981 [nucl -ex].
mentum in p+p and Cu+Cu collisions at sNN=200 GeV, Phys. Rev. C 80
(2009) 041902, arXiv:0904 .0439 [nucl -ex].
[19]ALICE Collaboration, B. Abelev, et al., J/ψ suppression at forward rapidity in Pb–Pb collisions at √sNN=2.76 TeV, Phys. Rev. Lett. 109 (2012) 072301, arXiv:
1202 .1383 [hep -ex].
[20]ALICE Collaboration, B.B. Abelev, et al., Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb–Pb collisions at √sNN=
2.76 TeV, Phys. Lett. B 734 (2014) 314–327, arXiv:1311.0214 [nucl -ex]. [21]CMS Collaboration, V. Khachatryan, et al., Suppression and azimuthal
anisotropy of prompt and nonprompt J/ψ production in PbPb collisions at
√s
NN=2.76 TeV, Eur. Phys. J. C 77 (4) (2017) 252, arXiv:1610 .00613 [nucl -ex].
[22]ALICE Collaboration, J. Adam, et al., J/ψsuppression at forward rapidity in Pb– Pb collisions at √sNN=5.02 TeV, Phys. Lett. B 766 (2017) 212–224, arXiv:
1606 .08197 [nucl -ex].
[23]P. Braun-Munzinger, J. Stachel, (Non)thermal aspects of charmonium produc-tion and a new look at J/ψ suppression, Phys. Lett. B 490 (2000) 196–202, arXiv:nucl -th /0007059 [nucl -th].
[24]R.L. Thews, M. Schroedter, J. Rafelski, Enhanced J/ψproduction in deconfined quark matter, Phys. Rev. C 63 (2001) 054905, arXiv:hep -ph /0007323 [hep -ph]. [25]X. Zhao, R. Rapp, Medium modifications and production of charmonia at LHC,
Nucl. Phys. A 859 (2011) 114–125, arXiv:1102 .2194 [hep -ph].
[26]K. Zhou, N. Xu, Z. Xu, P. Zhuang, Medium effects on charmonium production at ultrarelativistic energies available at the CERN Large Hadron Collider, Phys. Rev. C 89 (5) (2014) 054911, arXiv:1401.5845 [nucl -th].
[27]ALICE Collaboration, J. Adam, et al., Differential studies of inclusive J/ψ and ψ(2S) production at forward rapidity in Pb–Pb collisions at √sNN=2.76 TeV,
J. High Energy Phys. 05 (2016) 179, arXiv:1506 .08804 [nucl -ex].
[28]M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Glauber modeling in high en-ergy nuclear collisions, Annu. Rev. Nucl. Part. Sci. 57 (2007) 205–243, arXiv: nucl -ex /0701025 [nucl -ex].
[29]C. Loizides, J. Kamin, D. d’Enterria, Precision Monte Carlo Glauber predictions at present and future nuclear colliders, arXiv:1710 .07098 [nucl -ex].
[30]ALICE Collaboration, B.B. Abelev, et al., Suppression of ϒ(1S) at forward rapid-ity in Pb-Pb collisions at √sNN=2.76 TeV, Phys. Lett. B 738 (2014) 361–372,
arXiv:1405 .4493 [nucl -ex].
[31]CMS Collaboration, S. Chatrchyan, et al., Observation of sequential ϒ suppres-sion in Pb–Pb collisuppres-sions, Phys. Rev. Lett. 109 (2012) 222301, arXiv:1208 .2826 [nucl -ex].
[32]CMS Collaboration, V. Khachatryan, et al., Suppression of ϒ(1S), ϒ(2S) and ϒ(3S) production in PbPb collisions at √sNN=2.76 TeV, Phys. Lett. B 770
(2017) 357–379, arXiv:1611.01510 [nucl -ex].
[33]X. Du, R. Rapp, M. He, Color screening and regeneration of bottomonia in high-energy heavy-ion collisions, Phys. Rev. C 96 (5) (2017) 054901, arXiv: 1706 .08670 [hep -ph].
[34]B. Krouppa, A. Rothkopf, M. Strickland, Bottomonium suppression using a lat-tice QCD vetted potential, Phys. Rev. D 97 (1) (2018) 016017, arXiv:1710 .02319 [hep -ph].
[35]K.J. Eskola, V.J. Kolhinen, C.A. Salgado, The scale dependent nuclear effects in parton distributions for practical applications, Eur. Phys. J. C 9 (1999) 61–68, arXiv:hep -ph /9807297 [hep -ph].
[36]K.J. Eskola, H. Paukkunen, C.A. Salgado, EPS09: a new generation of NLO and LO nuclear parton distribution functions, J. High Energy Phys. 04 (2009) 065, arXiv:0902 .4154 [hep -ph].
[37]F. Arleo, S. Peigne, Heavy-quarkonium suppression in p-A collisions from parton energy loss in cold QCD matter, J. High Energy Phys. 03 (2013) 122, arXiv: 1212 .0434 [hep -ph].
[38]ALICE Collaboration, B.B. Abelev, et al., Production of inclusive ϒ(1S) and ϒ(2S) in p-Pb collisions at √sNN=5.02 TeV, Phys. Lett. B 740 (2015) 105–117, arXiv:
1410 .2234 [nucl -ex].
[46]ALICE Collaboration, B.B. Abelev, et al., Performance of the ALICE experiment at the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402 .4476 [nucl -ex].
[47]ALICE Collaboration, K. Aamodt, et al., Rapidity and transverse momentum de-pendence of inclusive J/ψproduction in pp collisions
at
√s=7 TeV, Phys. Lett. B 704 (2011) 442, arXiv:1105 .0380 [hep -ex].[48]ALICE Collaboration, K. Aamodt, et al., Alignment of the ALICE inner tracking system with cosmic-ray tracks, J. Instrum. 5 (2010) P03003, arXiv:1001.0502 [physics .ins -det].
[49]ALICE Collaboration, E. Abbas, et al., Performance of the ALICE VZERO system, J. Instrum. 8 (2013) P10016, arXiv:1306 .3130 [nucl -ex].
[50]ALICE Collaboration, B. Abelev, et al., Measurement of the cross section for elec-tromagnetic dissociation with neutron emission in Pb–Pb collisions at √sNN=
2.76 TeV, Phys. Rev. Lett. 109 (2012) 252302, arXiv:1203 .2436 [nucl -ex]. [51] ALICECollaboration,F.Bossù,M.Gagliardi,M.Marchisone,Performanceofthe
RPC-based ALICEmuontrigger systemattheLHC,J.Instrum.7 (12) (2012) T12002,http://stacks .iop .org /1748 -0221 /7 /i =12 /a =T12002.
[52]R. Arnaldi, et al., Design and performance of the ALICE muon trigger system, Nucl. Phys., Proc. Suppl. 158 (2006) 21–24.
[53]ALICE Collaboration, B. Abelev, et al., Centrality determination of Pb–Pb col-lisions at √sNN=2.76 TeV with ALICE, Phys. Rev. C 88 (4) (2013) 044909,
arXiv:1301.4361 [nucl -ex].
[54]ALICE Collaboration, J. Adam, et al., Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb–Pb collisions at √sNN=
5.02 TeV, Phys. Rev. Lett. 116 (22) (2016) 222302, arXiv:1512 .06104 [nucl -ex]. [55] ALICE Collaboration,Centralitydetermination inheavyioncollisions,
ALICE-PUBLIC-2018-011,2018.
[56]D.G. d’Enterria, Hard scattering cross-sections at LHC in the Glauber approach: from pp to pA and AA collisions, arXiv:nucl -ex /0302016 [nucl -ex].
[57]C. Patrignani, et al., Particle Data Group, Chin. Phys. C 40 (10) (2016) 100001 and 2017 update.
[58] ALICE Collaboration, Quarkonium signal extractionin ALICE, ALICE-PUBLIC-2015-006,https://cds .cern .ch /record /2060096.
[59]CDF Collaboration, D. Acosta, et al., ϒproduction and polarization in p¯p colli-sions at √s=1.8-TeV, Phys. Rev. Lett. 88 (2002) 161802.
[60]LHCb Collaboration, R. Aaij, et al., Measurement of ϒproduction in pp colli-sions at √s=7 TeV, Eur. Phys. J. C 72 (2012), arXiv:1202 .6579 [hep -ex]. [61]CMS Collaboration, V. Khachatryan, et al., Upsilon production cross-section in
pp collisions at √s=7 TeV, Phys. Rev. D 83 (2011) 112004, arXiv:1012 .5545 [hep -ex].
[62]F. Bossu, Z.C. del Valle, A. de Falco, M. Gagliardi, S. Grigoryan, G. Martinez Garcia, Phenomenological interpolation of the inclusive J/ψ cross section to proton–proton collisions at 2.76 TeV and 5.5 TeV, arXiv:1103 .2394 [nucl -ex]. [63]D0 Collaboration, V.M. Abazov, et al., Measurement of the polarization of the
ϒ1S and ϒ2S states in pp collisions¯
at
√s=1.96-TeV, Phys. Rev. Lett. 101 (2008) 182004, arXiv:0804 .2799 [hep -ex].[64]CDF Collaboration, T. Aaltonen, et al., Measurements of angular distributions of muons from ϒmeson decays in pp collisions¯
at
√s=1.96 TeV, Phys. Rev. Lett. 108 (2012) 151802, arXiv:1112 .1591 [hep -ex].[65]CMS Collaboration, S. Chatrchyan, et al., Measurement of the ϒ(1S), ϒ(2S) and ϒ(3S) polarizations in pp collisions
at
√s=7 TeV, Phys. Rev. Lett. 110 (8) (2013) 081802, arXiv:1209 .2922 [hep -ex].[66]LHCb Collaboration, R. Aaij, et al., Measurement of the ϒpolarizations in pp collisions at √s=7 and 8 TeV, J. High Energy Phys. 12 (2017), arXiv:1709 . 01301 [hep -ex].
[67]GEANT4 Collaboration, S. Agostinelli, et al., GEANT4: a simulation toolkit, Nucl. Instrum. Methods, Sect. A 506 (2003) 250–303.
[68] R. Brun,F. Bruyant,F. Carminati,S. Giani,M. Maire,A. McPherson,G. Patrick, L. Urban,GEANT:DetectorDescriptionandSimulationTool;Oct1994,CERN ProgramLibrary,CERN,Geneva,1993,http://cds .cern .ch /record /1082634,Long WriteupW5013.
[69] ALICEandLHCCollaboration,Referenceppcross-sectionsforϒ(1S) studiesin proton-leadcollisions at √sNN=5.02 TeVand comparisonsbetweenALICE
and LHCbresults,http://cds .cern .ch /record /1748460,ALICE-PUBLIC-2014-002, LHCb-CONF-2014-003.
[70]V. Cheung, R. Vogt, Polarization of prompt J/ψ and ϒ(1S) production in the color evaporation model, Phys. Rev. D 96 (5) (2017) 054014, arXiv:1706 .07686 [hep -ph].
[71]M. Cacciari, M. Greco, P. Nason, The pTspectrum in heavy flavor
hadroproduc-tion, J. High Energy Phys. 05 (1998) 007, arXiv:hep -ph /9803400 [hep -ph]. [72]K. Zhou, N. Xu, P. Zhuang, ϒproduction in heavy ion collisions at LHC, Nucl.
Phys. A 931 (2014) 654–658, arXiv:1408 .3900 [hep -ph].
ALICECollaboration