• Non ci sono risultati.

Tuning the surface morphology of self-assembled graphene-like thin films through pH variation

N/A
N/A
Protected

Academic year: 2021

Condividi "Tuning the surface morphology of self-assembled graphene-like thin films through pH variation"

Copied!
8
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Tuning

the

surface

morphology

of

self-assembled

graphene-like

thin

films

through

pH

variation

Michela

Alfè

a

,

Valentina

Gargiulo

a

,

Roberto

Di

Capua

b,∗

aIstitutodiRicerchesullaCombustione,ConsiglioNazionaledelleRicerche(IRC)-CNR,p.leV.Tecchio,80,80125Napoli,Italy bDipartimentodiFisica,UniversitàdiNapoli“FedericoII”,andCNR-SPINUOS-Napoli,viaCintia,80126Napoli,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received22February2015

Receivedinrevisedform19June2015 Accepted19June2015

Availableonline24June2015 Keywords: Graphene-like(GL)layers Zetapotential pH AFM

a

b

s

t

r

a

c

t

Graphene-like(GL)layerswerepreparedthroughatwostepsoxidation/reductionmethodstartingfrom ahighsurfacecarbonblack,andpHoftheGLlayersinwatersuspensionwasvaried.TheeffectofpHof suchsuspensiononthemorphologyofself-assembledGLfilmshasbeenstudied.Zetapotentialsofthe watersuspensionsweremeasuredtoestimatethestabilityofthesuspensionatseveralpHvaluesand toselectthesamplesfordeeperinvestigationbyatomicforcemicroscopy(AFM).AFMmeasurements onfourdifferentsamplesarethendescribedanddiscussed.Thereportedresultsshowhowthesurface roughnessandmorphologyareaffectedbythepHinthepreparationprocess:inparticular,thelowest pHsampleexhibitsagranularsurface,whileathigherpHmoreregularmorphologiesareproduced, withinterestingobservationsasconcernsthethicknessofsomesurfacefeatures.Theobservationsare interpretedintermsoftheforcesactinginwatersuspensionandoftheroleofhydrophobicorhydrophilic behaviors.TheresultsdemonstratethepossibilitytotunethesurfacepropertiesofGLfilmsbysimply actingonthepHofthesuspensionduringthefabrication,andhelptounderstandthemicroscopicphysical mechanismsinvolvedinthefilmassembly.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Therapiddevelopmentandupgradingofoptoelectronicdevices (liquidcrystaldisplays,organiclightemittingdiodes,organic pho-tovoltaiccellsandtouchpanels)hasinducedagrowingdemand of transparent conductive films. Films have to be conductive and transparent but also flexible, cheap, and compatible with largescalemanufacturingmethods(currentoptoelectronicdevices are normally assembled on hard substrates such as glass) [1]. Organic␲-conjugatedmolecules(aromatichydrocarbonsasacenes andfusedarenesandsubstitutedderivates)haveattractedgreat attention in nanodevices fabrication [2,3] due to the presence of delocalized electrons inside their structure, which offer the developmentofproperconductivepathways.Numerousreports addressingtheuseofcarbonnanotubes,reducedgraphiteoxideand graphenethinfilmsasidealtransparentelectrodesfor optoelec-tronicdeviceshaveappearedinthepastyears[4–6].Carbon-based filmsaddressabroadrangeofcoatingapplications[7],andsome

∗ Correspondingauthor.Tel.:+39081676915.

E-mailaddress:roberto.dicapua@na.infn.it(R.DiCapua).

recentstudiesshowedtheirpossibleapplicationsformedical appli-cations[8],andphotocatalysis[9,10].

The production of carbon-based films simultaneously with highstability,controlledthickness,andtunableperformancesstill remainsaninterestingchallenge.Theset-upofversatileand inex-pensivecoatingmethodsforthedepositionofcarbon-basedfilms withcontrollablemorphologyandthicknessisstillagoalin mate-rialscienceresearch.

Anewapproach for producinggraphene-like(GL) thin films hasbeenrecentlyreported[11].IntheproposedmethodGLlayers wereproducedinmildconditionsandinaqueousenvironments with highyields (55% mass yield) through a two steps oxida-tion/reductionmethodstartingfromananostructuredcarbonblack (CB).TheproposedapproachformakingGLthinfilmsis environ-mentallyadvantageousbecauseallproceduresareperformedin aqueousmedia,anditishighlycompatibletoanindustrialscale-up process.Thankstotheirgoodstabilityinwater,drivenby residu-alsoxygenfunctionalgroupsontheGLlayersedge,GLappearsasa veryversatilenanomaterial,suitableforthepreparationinaqueous environmentofcompositeswithtunablechemical/physical prop-ertiessuchasmicroporosity,conductivity,catalyticperformances andbiocompatibility[12–14].

TheGLlayersundergotoself-assemblinginthinfilmon sur-facesafterdrying,asshownbytransmissionelectronmicroscopy http://dx.doi.org/10.1016/j.apsusc.2015.06.117

(2)

andatomicforcemicroscopy(AFM)[11],thankstothe instaura-tionofhydrophobicinteractionsbetweenthegrapheniclayers,as typicallyobservedinreducedgraphiteoxide[15].

Foraconvenientexploitationoftheprocessandfilmthickness controlitisfundamentaltocarefullyexploreeachaspectofthefilm preparation.DuetotheresidualfunctionalgroupsontheGLlayers edge,thequalityofthethinfilmisexpectedtobestrongly depend-entonthepHofthegraphene-likelayerssuspension.Thisstudy clarifiestheeffectofthepHonthegraphene-likefilmqualityand itscapabilityindeterminingthesurfaceproperties,andintroduces asimplepictureoftheprocesstodescribetheinvolvedphysical mechanisms.

2. Materialsandmethods 2.1. Samplespreparation

Allthechemicals(analyticalgrade)werepurchasedfromSigma Aldrichandusedasreceived.FurnaceCBtypeN110wasobtained bySidRichardsonCarbonCo.NaClandNaOHsolutionsfor poten-tiometricstudywerepreparedbydissolvingtheCarloErbaRPE productsinwater. NaOHsolutions weretitratedwithHClstock solutionsusingaphenolphthaleinindicator.HClstocksolutionwas analyzedbyKHCO3,usingamixedmethylred–bromocresolgreen

indicator,withareproducibilityof0.1%.

GLlayersin water suspensionwereobtainedthrougha two stepsoxidation/reductionmethod[11]startingfromaCB.Briefly, 500mgofCBpowder(15–20nmprimaryparticlesdiameter, spe-cific BETarea139m2/g) wasoxidized with10mLof nitricacid

(67wt.%) at 100◦C under stirring for 90h. The oxidative step destroys the CB backbone providing hydrophilic nanoparticles functionalizedwithoxygenfunctionalgroups(mainlycarboxylic). Thistreatmentaffects theedgeof theCBgraphitic layers leav-inguntouchedthebasalplane.Theoxidizedcarbonnanoparticles wererecoveredbycentrifugationandwasheduntilacidtraceswere successfullyremoved.Followingtheoxidationstep,the nanoparti-cles(20mg)weredispersedin20mLdistilledwaterandtreated with450␮Lof hydrazine hydrate (50%) at 100◦C underreflux for24h.Thistreatmentreducesthehydrophiliccharacterofthe nanoparticlesandpromotesself-assemblingphenomenaasa con-sequence ofthe hydrophobicinteractionbetween thegraphitic planes[11].Attheendofthereactiontheexcessofhydrazinewas neutralizedwithnitricacid(4M).Thesolidwaswashedwith dis-tilledwater,recoveredbycentrifugation(3000rpm,30min)three timesinordertoremove tracesofunreactedreagentsand acid andnamedGLlayers.ThepHoftheas-preparedGLlayerswater suspensionwas3.70.ThedriedGLlayersareinsolubleinwater andin themostcommonorganicsolvents, bothpolarand apo-lar (ethanol, N-methylpirrolidinone, dichloromethane, heptane, dimetilformammide).

2.2. Characterizationprocedure

ThedeterminationofGLlayerssurfaceacidicfunctionalitieswas performedadaptingthetestreportedbyVisentinetal.[16]for oxi-dizedcarbonnanotubes.ThetotalamountofGLlayersusedforeach assaywasestimatedtobe0.01mg.GLlayerswatersuspensions weretreatedwithanethanolicsolutionofthioninacetate(THA, 1.5mL,4.3␮M)for30minwithconstantstirringatroom tempera-ture.Thesuspensionwasfilteredusinga0.02␮mAnotop25filter (Whatman),andtheabsorbancewasmeasuredat604nm[17]with aHP8453DiodeArrayspectrometer.TheTHAthathadnot inter-actedwiththematerialwasestimatedthroughacalibrationcurve. ThetotalamountofTHAthathadinteractedwiththeGLwas esti-matedandcorrectedfortheunspecificinteractionbysubtracting

theamountofTHAinteractingwithareferencecarbonaceous mate-rial(CB)exhibitingnoacidicfunctionalities(5.28×10−2mmol/g). Thequantificationoftheacidicsiteswasperformedbyconsidering a1:1stoichiometrybetweenthecationicTHAandthecarboxylic functionalities.

Theacid–basebehaviorofthecarboxylicfunctionalgroupon surfaceofGLlayershasbeenstudiedinNaCl0.25M,measuring thepotentialofaglasselectrodesensitivetoprotonactivity.The intervalofpHinvestigatedwas2.7<pH<7.Theglassmembrane electrodesaswellastheautomaticburettes“640MultiDosimat” weresuppliedbyMetrohm.Measurementswerecarriedoutintoan airthermostat.Thetemperaturewaskeptat25.00±0.02◦C (mea-suredusingaPt100TERSIDthermocouple).Coulometricvariations ofthesolutioncompositionhavebeencarriedoutusingaHewlett PackardDC Power Supply.Thecurrent intensitywasaccurately determinedbyreadingthepotentialdropattheendsofacalibrated resistancecoil,connectedinseriestothecoulometricdevice.

Thestudywasperformedbymeasuringtheelectromotiveforce (Emf)ofthecell(I):

G.E.|TS|R.E. (I)

inwhichG.E.indicatesaglassmembraneelectrodereversibleto protons;R.E.isanexternalreferenceelectrode,connectedtotest solution(TS)throughasaltbridge.Inthefirststepthecell con-stant(*Eg)andtheinitialnumberofmicromolesofH+(n

0)were

determined.Acoulometric–potentiometrictitrationwasthen per-formed:aweighedvolumeV0(50.00cm3)ofasolutionTS0=0.25M

NaClwasintroducedintothemeasuringvessel.Thehydrogenion concentration,H,wascoulometricallyvariedbymeansofthecircuit (II):

(II)

where A.E.: 025MNaCl/HgO(s)/Hg(s)(Pt)is an external aux-iliaryelectrode, connected toTS0 through a salt bridge and Pt

denotesaplatinumelectrode.Inordertoestimatetheamountof electrolysisproducedbycircuit(II),accordingtoreaction2H2O(l)

4H+(aq)+4e+O

2(g),aftereachdeliveryofcurrentofintensityi(A),

foratimet(s),theEmfofcell(II),E(mV),wasmeasureduntil con-stancy.TheNernstpotentialofcell(I),E,canbewrittenasinEq. (1):

E=∗Eg+59.16logh+Ej (1)

where *Egis the glasselectrode constant and h representsthe equilibriumconcentrationofprotons.Foracidities,h,lowerthan 10−3M, the junction potential Ej, can be neglected. Similarly, thetermaccounting for theactivityfactorchanges canbe also neglected,becausethecompositionofTSdoesnotdiffer appre-ciablyfromthatoftheionicmedium.AccordingtoFaraday’slaw, thenumberofmicromolesofproducedH+ions,,isnumerically

equaltothemicrofaradaysgeneratedbythecircuit(II),aswritten intheEq.(2):

= (i∗t)

0.096487 (2)

Thesetsofexperimentaldata(Eg,␮)canbefurthertransformed intoalinearfunction,i.e.aGranplot[18],whichprovidesthevalue ofn0,aswellasE0,thatareindispensableforthenextstep.

Apotentiometric–volumetrictitrationof0.250gofsamplein NaCl0.25Mhasbeencarriedout.Titrationwasperformedby step-wiseadditions,bymeansofanautomaticburetissuingvolumesVT

(3)

Theexperimentaldata(Eg,VT)wereinterpretedbythesoftware

LETAGROP-ETITR[19].

ThezetapotentialsoftheGLsuspensionsweremeasuredusing aMalvernZetasizerNanoZSinstrument.Thezetapotential mea-surementswereperformedataGLconcentrationof0.05mg/mLasa functionofpHinthe2-12pHrange.EachpointofpHwasreachedby adding100␮LofNaOH0.1MtotheGLlayerssuspensionsandthen bysubsequentadditionsoftheproperamountofHCl(0.1M).The pHandthezetapotentialmeasurementswereperformedafterthe timenecessaryforthepHstabilization(approximately1hunder continuousstirring).

SamplesforAFMimagingwerepreparedbydrop-castingthe GLsuspensionsontofreshlycleavedmicasubstrates(gradeV-1, ElectronMicroscopySciences)whichwerethenallowedtodryin air.AFMimagesweretakenbymeansofanXE100Park instru-mentoperatinginnoncontactmode(amplitudemodulation,silicon nitridecantileverfromNanosensor)atroomtemperatureandin ambientconditions.

X-rayphotoemissionspectroscopy(XPS) wasperformedin a ultra high vacuum chamber (base pressure of 1×10−10mbar) equippedwithaSpecsPhoibos150electronanalyzer,usingAlK␣

(photonenergy:1486.6eV)X-raysource.

3. Resultsanddiscussion

GLlayersinwatersuspensionconsistofsmallflat nanoparti-clesdecoratedattheedgewithoxygen-containinggroups(mainly carboxylic/carbonylicandhydrazones)withgraphenicbasalplane untouched[11].The amountofcarboxylic groups estimatedby themodifiedTHAmethodresultedtobe0.16mmolCOOH/g,lower

withrespecttotheamountestimatedfortheunreducedGLlayers (0.46mmolCOOH/g).

The functional groups on the surface of GL were also investigated by coulometric–potentiometric titration in the pH range 2.7<pH<7. Two functional groups on thesurface in the carboxylateregion(pK2.0–5.0)[20]withpKa=3.40±0.05

(num-ber of sites=900±30mmol/g) and pKa=5.5±0.1 (number of

sites=240±30mmol/g) respectively, have been identified. The higherpKavalue(5.5)isascribabletothepresenceoflactonesand

carboxylicanhydridegroups thattendtohydrolyzeinthe pres-enceofacidsandbases[21].Itisnoteworthythatthenumberof sitesattributabletocarboxylicacidsitesissignificantlyhigherwith respecttothevalueestimatedbytheTHAmethodandmore con-sistentwithliteraturedatareferringtorelatedmaterialssuchas graphiteoxide[22].Thisdiscrepancycanberationalized consid-eringthatthemethodwithTHA,optimizedforthedetectionof lowconcentrationofcarboxylicsites(∼10−2mmol/g)astypically

detectedoncarbonnanotubes[16]andsoot afterreactionwith hydroxylradicals(∼10−4mmol/g[17]),probablyfailswhenapplied

tonanomaterialsfeaturingamoredensedistributionofcarboxylic sitesduetothesterichindranceofTHA.

ThestabilityoftheGLlayerswatersuspensionswasevaluated byzetapotentialanalyses.Themeasuredzetapotentials(Fig.1) werealwaysnegativeindicatingthepresenceofpartlypreserved anionic charge. The zeta potential of the GL dispersion is pH-dependentwhichisconsistentwiththefactthattheionizationof residualsofcarboxylicgroups,responsibleoftheanioniccharge, isstrongly related topH. GLwasfound tobestable in a wide rangeofpHvalues,namely3–12.Thezetapotentialwasbelow −30mVwhenthepHwasgreaterthan2anditreached−45mV whenthepHapproached12.Thezetapotentialvalueslowerthan −30mVareconventionallyconsideredasanindicationofsufficient mutualrepulsiontoensurethestabilityofdispersions[23].The filmsandtheeffectofthereductionprocesshavebeenalso investi-gatedbyRamanspectroscopyandUV–visiblespectroscopy,whose

Fig. 1.pH-dependent zeta potential curves of the GL layers suspensions (0.05mg/mL).

mainresultsarereportedelsewhere[11].Briefly,theshapeofthe Ramanspectraisconsistentwiththeoccurrenceofamultilayer structure.ThecomparableheightoftheDadGbandsisindicative ofsignificantstructuraldisorder,whilethefactthattheD-band totheG-bandratioisnearlythesameforthereducedGLlayers andtheunreducedonesindicatesthattheoxidationprocess pre-servesthepresenceofthegraphiticnetworkbeingthechemical functionalizationattheedgeandnotatthebasalplanesoftheGL layers.UV–visiblespectroscopyconfirmsthepreservationofthe graphiticnetworkinthereductionprocess;furthermore,the spec-tracollectedonthemareblue-shiftedcomparedtotheonesonCB, indicatingadecreaseinthesizeofthe␲conjugationdomains.

FourpHpointswereselectedforadeeperinvestigation,namely pH2.0,3.7,4.6and9.5,whichinthefollowingwillbeindicated asSampleA,B,C,D,respectively.ThefoursamplesandpHpoints correspondto:(1)GLlayersinacidsuspensionatthelimitofthe stabilityrangeofthesuspension(pH2.0,SampleA);(2)asprepared GLlayerssuspension(pH3.7,SampleB);(3)GLlayerssuspension withinthelimitofthestabilityrangeofthesuspension(pH4.6, SampleC);(4)GLlayersinbasicsuspension(pH9.5,SampleD).

TheGLlayerswaterdispersionsattheselectedpHpointswere drop-castedattheconcentrationof1mg/mLontofreshlycleaved micasubstrates,toensureanatomicallyflatsubstrate, driedat roomtemperature.Informationaboutthesurfacefeaturesofthe filmsobtainedafterGLdryingwereobtainedbyAFM.

Fig.2showsthetopographicimagesacquiredonthefour inves-tigatedsamples.Allimagesreporta5␮m×5␮mscan,acquired intheTrueNonContactTMmodeofoperationoftheXE-100Park

system,togetherwithalineprofilerepresentativeofthesurface morphology.

SampleA(Fig.2a),preparedinacidsuspensionatthelimitofthe stabilityrange,exhibitsaveryroughsurface,characterizedbythe presenceofgrainshavingwidthoftheorderofoneorfewhundreds nanometers,which leadtoasurfacepeak-to-peakroughnessof about50–100nanometers.

On the contrary,the samples prepared in suspensions with higherpHshowanextremelydifferentmorphology.

ThesurfacesofbothSampleBandSampleClookatomicallyflat overlargeareas(Fig.2bandc).However,onthesurfaceofSampleC, therearesomeisolated“islands”havingdifferentlateralsizes.For statisticalcomparison,onSampleAthegrainsresultinarootmean squareroughnessofabout43nm,whileonthecollectedimageon SampleBitislessthan1 ˚AandonsampleCitisabout9 ˚A.

Theselectedprofileonthelargestislandontheimagedsurface ofSampleCshowsstepsofverticalheightslightlymorethan4nm, havingthesameflatnessofthesurroundingsurface.Suchflatness suggeststhattheobservedislandsareactuallymadebythesame

(4)

Fig.2. AFMtopographicimageswithalineprofileforeachinvestigatedsample;allthereportedimagescorrespondtoascanareaof5␮m×5␮m.(a)SampleA;(b)Sample B;(c)SampleC(intheinset:thephasecontrastprofileonalinecrossingthelarge“island”onthetop-rightoftheimage);(d)SampleD(intheinset:histogramofthe distributionofmeasuredheightvaluesontheimage).

(5)

Fig.3.(a)ImagesofthedropcastedfilmscorrespondingtomeasuredSamplesA(pH2.0),B(pH3.7),C(pH4.6),D(pH9.5);(b)C1sXPSspectrumonGLsurface,andits deconvolutioninGaussianshapepeakscorrespondingtodifferentfunctionalgroups.

materialasthesurroundingcarbonsurface,andnotbyspurious phasesorunrelatedparticles.Thisisconfirmedbythephase con-trastimage:theinsetinFig.2cshowsaphaseprofiletakenacross theedgeoftheisland.ThephaseimageinthenoncontactAFMscan (repulsivevanderWaalsregime,amplitudemodulatedoscillation) isindeedabletoprovidequalitativeinformationaboutthechemical natureoftheimagedsurface,thephaseshiftoftheinduced oscil-lationbeingsensitivetothechemicalfunctionalitiesofthesurface itself(throughdifferencesinthemechanicalinteractionbetween thetipand thesurfaceitself).It hasbeenshowedongraphene nanosheetsproducedbychemicalreductionofgrapheneoxide[24] thatthedifferentdegreeofhydrophilicityandhydrophobicicityor differentlyoxidizedregionsarerevealedbyaphaseupper-shiftof theorderof2◦–3◦(suchphaseshiftsarewellabovethesensitivity ofourinstrument,cf.insetofFig.2c).Thereportedprofileshows thatnodifferencesaredetectedbetweenthephaseshiftonthe mainsurfaceandontheisland.

AsconcernsSampleD,representativeofsamplesobtainedin basicsuspension,an“uncompleted”layerappearsoveran under-lyingflatsurface:thetopographicimage(Fig.2d)exhibitsregions withlacksinthetopmostsurface.Thiscircumstanceisconfirmed byahistogram(intheinset)ofthemeasuredrelativeheights,which formaclearlybimodaldistribution.Theupperpeakisassociatedto theupmostlayer,whilethepresenceofthesecondpeakatalower valueindicatesthattheholesinthislayerhavebasicallythesame depth.Itisworthtonotethattheverticalseparationbetweenthese twolayersisbetween4and5nm,asshownalsointhereported topographicprofile.Thesamevalueordoubledis measuredon theisolated“brighter”spotonthesurfaces,alsoresemblingwhat alreadydescribedforthesurfaceofSampleC.Theseobservations suggestthattheuncompletedlayersofSampleD,aswellasthe largeisland imagedonthesurfaceof SampleC, couldbeseeds forfurtherlayers.Surprisingly,thereisapparentlya “fundamen-tal”verticalthicknessofmorethan4nm:inRef.[11],AFMscanson fracturedflatgraphene-likesamplesseemedtoshowstepshaving thesamebasicverticalunit.

ThetrendofthemorphologicalbehaviorasafunctionofthepH solutioncanbeinterpretedintermsofforcesactingintothewater suspensionandtheconsequentaggregationprocessesbetweenGL particlesandlayers.

TheincreaseofsolutionpHresultsinanincreaseofthecharge densitydrivenbytheprogressivedeprotonationoftheresidual car-boxylicfunctionalgroups(thecarboxylicgroupsareprogressively convertedintheanionicform COO−).Asaconsequence,theGL layershaveamorehydrophiliccharactergoingfromSampleAto SampleD,monotonically.Theincreaseofthehydrophilicitymakes

theformationofGL–waterinterfacesenergeticallyfavorable, lead-ingtoapositivespreadingcoefficient[25]andtotheconsequent formation of“wet” GL layers:inother words,theenergetically favorableinterfaceformationcorrespondstoalowsurfacetension betweenGLlayersandwater,andtotheconsequenttendencyto maximizethecontactsurface.ThissituationoccursinSamplesB, C,D,andtheflatlayersareformedinthesolution.Onthe con-trary,inSampleA,atlowerpH,acompletelydifferentregimetakes place:thesurfacechargetendstodecreaseasaconsequenceof thepresenceofthecarboxylicgroupsattheedgeoftheGL lay-ersintheneutralform( COOH).TheresultisthatGLlayersare forcedtoaggregatetominimizethecontactwiththepolarsolvent, producingthegrainsobservedintheAFMimage.

Avisualinspectionofthedriedfilmsqualitativelysupportsour identificationoftwofluidodynamicalregimes.Fig.3ashowshow thefilmsB,C,D,exhibitthesocalled“coffeeringstain”, characteris-ticofaqueouscolloidaldispersionsinwhichthedispersedmaterial caneasilyflowthroughthesolution[26];onthecontrary,SampleA hasamoreuniformaspect,whichcanbeascribedtotheformation ofthelargeobservedGLgrains.

Asconcernsthesurfacechemistryanditsroleindetermining theobservedbehavior,thepresenceofresidualcarboxylicgroups isalsoconfirmedbyX-rayPhotoemissionSpectroscopy(XPS) per-formedontheGLsurface.TheC1sXPSspectrumisreportedin Fig.3b.ThespectrumhasbeendeconvolvedusingGaussianpeak shape.AShirleybackgroundcorrectionhasbeenappliedbeforethe deconvolution,andthedeconvolution hasbeenperformedwith eachcomponentconstrainedtohavethesamefull-widthat half-maximum(resultingtobe1.5eV).TheC1sspectrumexhibitsthe mainpeak(atabindingenergyofabout284.5eV)correspondingto carboninvolvedinC CandC Hbonding,togetherwiththepeaks assignedtoC OH,C OandCOOHfunctionalgroups.Inparticular, astrongshoulderatabout289eVisobserved,characteristicofthe presenceofcarboxylic(COOH)groups.Suchshoulderisfittedbya Gaussiancontributionfromcarboxylicgroupwithaweightlarger thanwhatusuallyreportedinXPSmeasurementsontypical car-bonaceoussurfaces[27,28],suggestingthat,despitethereduction process,thereisstillarelativelylargeamountofsurfacecarboxylic functionalgroupsabletodrivethesurfaceaggregationinthe sus-pension.

From the point of view of microscopic forces between ele-mentaryconstituents,thecrossoverbetweenthetworegimesis determined,inthesimplestpicture,bythecompetitionbetween vanderWaals(vdW)andelectrostatic doublelayer(DL)forces. ThevdWattractionexhibitsatypicalpowerlawasafunctionof theseparation(longrangeinteraction)betweenchargedparticles

(6)

Fig.4.(a)QualitativepictureoftheinteractionenergybetweensuspendedparticlesasafunctionoftheirseparationL,resultingfromthecombinedactionofvdWattraction andDLrepulsion,fordifferentsurfacechargedensity.(b)SketchofonepossiblemechanismleadingtotheformationofGLlayersofselectedthickness.

inthesuspension, whiletherepulsiveDL contribution(itmust be specified that the repulsion arising from the DL forces has osmotic/entropicnature,ratherthanelectrostatic)ischaracterized byanexponentialdecayvs.separationwithacharacteristicdecay length(shortrangeinteraction),theDebyescreeninglengthdue, tothecounterionsinthesolution.Theircombinedactionresults ina total particle–particleinteractionpotentialasa functionof separationhhavingamaximumforagivenvalue(typicallyfew nanometers),i.e.apotentialbarrierwhichactsagainstaggregation (Fig.4a).However,whentheparticlesurfacechargeapproaches zeroorwhentheelectrolyteconcentrationincreasesabovesome concentration(criticalconcentrationcoagulation),andboth circum-stancesoccurinourcaseatlowerpH,theDLrepulsionhaslower intensityand shorter Debyelength, sothat thevdW attractive forcedominates:thepotentialprofilecanlosethebarrier(itmay approachtheshapeofapurevdWinteraction)andtheparticles inthesuspensioncaneasilycoagulate.Thesurfacemorphologies observedbyAFMindicatethatthisregimecharacterizessampleA. Intheothersamples,thehydrophilicforcesdrivetheaggregation processtothesurfacemaximizationdescribedabove.

InsamplesB,C,D,anidealmaximizationofexposedsurfaces wouldleadtoidealGLmonolayers.However,ourmeasurements indicatetheformationofthickerlayers,havingawelldefined thick-ness,i.e.composedbyagivennumberofmonolayers.Apossible explanationofthisinterestingphenomenoncanbegivenagainin termsofcompetitionbetweentheforcesactingintothesuspension, butactingbetweenextendedflatsurfacesinsteadofsmall parti-cles.Inthispicture,thevdWandDLforces(perunitsurface,i.e.the pressures)asafunctionofseparationLcanbewrittenrespectively as[29]: ˘vdW(L)= AH 6L3 (3) ˘DL(L)=− 2 2Z·exp(−L) (4)

whichcorrespondtointerfacialGibbsfreeenergiesperunitarea of−AH/12L2and(/2)e−Lrespectively.AHistheHamaker

con-stantofthetrilayerwater-GL-water,Zisaconstantdefiningthe strengthoftheDLinteraction,−1istheDebyescreeninglength. AquantitativeevaluationofsuchforcesandrelatedGibbs ener-giesiswellbeyondthepurposesofthiswork:inparticular,theZ andparametersarerelatedinanon-trivialwaytothepHofthe solution(i.e.tothecounterionsconcentration)andtothecharge (orpotential)ofthechargedsurfaces(whilevdWforcesarenearly independentonpH).Whatonecansay,isthat ourobservation

suggeststhatthevdW/hydrophilicattractionbetweenmonolayers drivesthemtoaggregateagainstDLrepulsion.

Thissimplepicturewellreconcilesthemeasured morphologi-caltrendwiththesurfacedeprotonationasaconsequenceofpH variation.Nevertheless,itcannotyetaccountforthe experimen-talindicationofaselectedthicknessinthemultilayerformation, attheleastinSamplesCandD:amechanismdependingonthe layer thickness (or,equivalently, on the number of aggregated monolayers)mustbeinvoked.We suggesttwopossiblegeneral mechanisms,providedthatfurtherexperimentalworkisneeded foraconclusiveanswer.

Afirstexplanationcanbegivenintermsofbalancebetween surfaceenergiesofthelayersandtheaggregationenergy(energy requiredforthecrystalformation),similartowhathappensinthe nucleationofpolymersinsolutions[30,31].Inthisframe,the vari-ationofGibbsfreeenergyassociatedtotheformationofalayerof averagethicknessdandsurfaceScanbewrittenas:

G=2S−FSd (5)

Intheexpressionabove,isthesurfacefreeenergyperunit area(onelayerexposestwosurfacesofareaS),andFisthebulk freeenergyofcrystallizationperunit volume(sinceweobserve layerthicknessesmuchsmallerthanthelateralsizes,weneglect thecontributionofthelateralsurfaceenergy).Thelayer forma-tionisenergeticallyfavorable(i.e.theformedlayerisstableagainst disaggregation)ifG<0,whichmeansif:

d> 2

F≡dmin (6)

TheGLlayerisstableonlyoveragivenminimumthicknessdmin

(whosevalueisindependentonthesurfaceS);afurther aggrega-tionoverdmincanbepreventedbythearisingDLrepulsion,atleast

inSamplesCandD,whereweobservedthepreferredthickness andwheretheDLrepulsioncanbeactuallyexpectedtobestronger (accordingtothetrendoftheinteractionvs.surfacechargedepicted inFig.4a;notethatastrongerDLrepulsioncouldalsocompetewith theaggregationprocessoccurringtominimizeG,andbetherefore responsibleofthehigherobserved“fragmentation”inSamplesC andDthaninSampleB).SinceFand arebasicallyrelatedto thematerialpropertiesandnottothepH(evenforintothe solu-tion:fromanenergeticallypointofview,theexcesssurfacecharge is compensated by a higher counterion concentrationnear the surface),thiswouldalsobeconsistentwiththefactthattheselected thicknessisnearlythesameinbothSampleCandD.

(7)

Fig.5. AFMcharacterization:NC-AFMtopographicimages,4␮m×4␮mand300nm×300nm,showingthepresenceofGLnanoparticlesonamicasubstrate;theprofiles takenonsomenanoparticlesshowthatsuchstructureshaveheightrangingfromlessthan1nmtofewnanometers.

Alternatively,asecond,thickness-dependent,mechanismcan befoundtakingintoaccounttheinteractionbetweentheopposite chargedsurfacesofalayer.TheDLpropertiesareusuallyderived bythinkingintermsofanisolatedchargedsurfaceinanelectrolyte. Inourcase,wehavetwochargedsurfacesseparatedbyathinGL layer:asaconsequence,thepropertiesofeachDLinsuchlayerare affectedbythepresenceofthechargeontheoppositesurface.Inthe simplestelectrostaticpicture,sketchedinFig.4b,a“close” oppo-sitechargedsurfaceproducesanon-negligibleelectrostaticfield whoseeffectistonarrowtheDLthickness;assuminganunchanged surfacechargedensity,thisresultsinalowerDLpotential (accord-ingtoGrahameequation[32]),andthereforeinalowerstability againstaggregation(asafirstintuitiveapproximation,theDLcan beassimilatedtoanidealcapacitorwithconstantcharge,inwhich thepotentialmustdecreasewhentheplatesapproacheachother). Whenagiventhicknessisreached,thiseffectislowenough(the fieldfromtheoppositesurfacemustbeactuallyseenasadipole fieldratherthanasolelysurfacefield)toallowtheDLrepulsionto preventfurtherlayeraggregation.

Finally,we wantedtodissipate thedoubtthat theobserved 4nmlayersarenotmadebysomewhatfundamentalconstituents, or to an artifact apparent thickness due to the interaction between AFM tip and GL surface (similarly to what observed, actually with much lower values, in graphene films grown on SiO2 [33]).Tothis purpose,a verydilutedGL water-suspension

(0.1␮g/mL),wasusedfordrop-castingontomicasubstrate.Such a low value was chosen in order to prevent the formation of aggregates on the substrate, allowing instead the observation of rather individual GL units. The concentration of water sus-pension,however, washighenoughtoallowthepresence of a certainnumber of nanoparticlesper unit areaof thesubstrate, sothattobeeasilydetectableinthescanningareaofthe micro-scope.

Fig.5showstheimagescollectedonthissample,characterized bythepresenceofnanoparticlesdepositedonthemicaflatsurface. Adetailedcharacterizationofsuchparticlesrevealsasize distri-bution,which canbeascribedtodifferentaggregationamounts ofelementaryconstituents.Selectedheightprofilescrossingthe particlesdemonstrate,firstofall,theflatnessofthesubstrateand itssuitabilityforareliablecharacterizationofthenanoparticles.

Fromsuchprofilesweobservedverticalsizesrangingfromabout 1nm or less tofew nanometers; thelarger lateraldimensions, a fewtens ofnanometers, confirms that atthechosen concen-trationofwatersuspensionsomeaggregationsarestilloccurring (thiscircumstancesalsorepresentsanindirectproofthatthe pri-maryaggregationprocessoccurstoformextendedthinplanes). Thesefindingssupporttheideathattheelementaryunitshave sub-nanometricverticalsize,whiletheirassemblingexhibitpreferred thicknessvalues.

4. Conclusions

Zetapotentialand AFMmeasurementsdemonstratethatthe qualityandthefeaturesoftheproducedself-assembledGLfilms arestronglyaffectedbythepHofthewatersuspensionfromwhich thefilmsthemselvesareprepared.Theobservedmorphologic dif-ferencesareconsistentwiththeinteractionsfeaturesexpectedfor surfaceshavingdifferenthydrophiliccharacterasaconsequence ofadifferentamountofdeprotonationofcarboxylicgroups:the observationofgrainsorofflatsurfacescanbeeasilyunderstoodin termsofconsequentsurfacetension(macroscopicpointofview) or,equivalently,intermsofmicroscopicinteractionbetweenthe fundamentalunitsinthewatersuspension.Besidessuchevident important difference in the quality of films surfaces, the mor-phological measurements seemto indicate theoccurrence of a preferredbasicthicknessfortheassembledlayers:this circum-stancecan bealso interpreted in terms of simple fundamental principlesbasedontheforcesconcurringinacolloidalsuspension. Ofcourse,theproposedmechanismsfortheobservedpreferred thicknessaresuggestedhypotheses,whichdeservefurther experi-mentalworktobeverifiedorimproved,forexamplebymeasuring thefilmsfeatureswhenvaryingfurtherpreparationparameter.On theotherhand,therole ofsurfacetensionandofthedescribed microscopicforcesindeterminingthetwoobserved morphologi-calregimes,theirrelationwiththecarboxylicgroupsonthefilm surface,aswellasthefactthat theobservedlayersareformed bysmallerfundamental constituents,arewellsupportedbythe measuredmorphologyandfurtherexperimentalobservation,and openthewaytothepossibilitytocontrolthesurfacefeatureof

(8)

GLlayers byproperlyacting onaccessible preparation parame-ters.

Acknowledgments

The workwaspartially financed by AccordoCNR-MSE “Uti-lizzopulitodeicombustibilifossiliaifinidelrisparmioenergetico” 2011–2012.Theauthorsgreatlyacknowledgeprof.CarlaManfredi (DipartimentoofChemistry,UniversitàdiNapoli“FedericoII”)for coulometric– potentiometrictitration. XPSmeasurementswere performedwithintheproposal20142026financedbyCERiC-ERIC: “StructuralcharacterizationofHKUST-1intercalatedwith conduc-tivegraphene-likelayers”.

References

[1]A.Dimiev,D.V.Kosynkin,A.Sinitskii,A.Slesarev,Z.Z.Sun,J.M.Tour,Science 331(2011)1168.

[2]S.Varghese,S.Das,J.Phys.Chem.Lett.2(2011)863.

[3]C.Wang,H.Dong,W.Hu,Y.Liu,D.Zhu,Chem.Rev.112(2012)2208.

[4]L.Hu,D.S.Hecht,G.Gruner,Chem.Rev.110(2010)5790.

[5]J.Du,S.Pei,L.Ma,H.M.Cheng,Adv.Mater.26(2014)1958.

[6]X.Ou,P.Chen,L.Jiang,Y.Shen,W.Hu,M.Liu,Adv.Funct.Mater.24(2014) 543.

[7]M.Inagaki,Carbon50(2012)3247.

[8]R.Hauert,K.Thorwarth,G.Thorwarth,Surf.Coat.Technol.233(2013)119.

[9]D.Zhang,H.Tang,Y.Wang,K.Wu,H.Huang,G.Tang,J.Yang,Appl.Surf.Sci. 319(2014)306.

[10]L.Luo,Y.Li,J.Hou,Y.Yang,Appl.Surf.Sci.319(2014)332.

[11]M.Alfè,V.Gargiulo,R.DiCapua,F.Chiarella,J.N.Rouzaud,A.Vergara,A. Ciajolo,ACSAppl.Mater.Interfaces4(2012)4491.

[12]M.Alfè,V.Gargiulo,L.Lisi,R.DiCapua,Mater.Chem.Phys.147(2014) 744.

[13]M.Alfè,D.Spasiano,V.Gargiulo,G.Vitiello,R.DiCapua,R.Marotta,Appl. Catal.A:Gen.487(2014)91.

[14]V.Gargiulo,M.Alfè,R.DiCapua,A.R.Togna,V.Cammisotto,S.Fiorito,A. Musto,A.Navarra,S.Parisi,A.Pezzella,J.Mater.Chem.B3(2015)5070.

[15]S.Stankovich,D.A.Dikin,R.D.Piner,K.A.Kohlhaas,A.Kleinhammens,Y.Jia,Y. Wu,S.T.Nguyen,R.S.Ruoff,Carbon45(2007)1558.

[16]S.Visentin,N.Barbero,S.Musso,V.Mussi,C.Biale,R.Ploeger,G.Viscardi, Chem.Commun.46(2010)1443.

[17]E.Carella,M.Ghiazza,M.Alfè,E.Gazzano,D.Ghigo,V.Gargiulo,A.Ciajolo,B. Fubini,I.Fenoglio,BioNanoSci3(2013)112.

[18]G.Gran,Analyst77(1952)661.

[19]L.G.Sillén,B.Warnqvist,Ark.Kemi31(1969)315.

[20]V.StrelkoJr.,D.J.Malik,M.Streat,Carbon40(2002)95.

[21]H.F.Gorgulho,J.P.Mesquita,F.Goncalves,M.F.R.Pereira,J.L.Figueiredo, Carbon46(2008)1544.

[22]A.M.Dimiev,L.B.Alemany,J.M.Tour,ACSNano7(2013)576.

[23]D.H.Everett,BasicPrinciplesofColloidScience,TheRoyalSocietyof Chemistry,London,1988.

[24]J.I.Paredes,S.Villar-Rodil,P.Solis-Fernandez,A.Martınez-Alonso,J.M.D. Tascon,Langmuir25(2009)5957.

[25]P.G.deGennes,Rev.Mod.Phys.57(1985)827.

[26]R.D.Deegan,O.Bakajin,T.F.Dupont,G.Huber,S.R.Nagel,T.A.Witten,Nature 389(1997)827.

[27]D.Yang,A.Velamakanni,G.Bozoklu,S.Park,M.Stoller,R.D.Piner,S. Stankovich,I.Jung,Da.A.Field,C.A.VentriceJr.,R.S.Ruoff,Carbon47(2009) 145.

[28]S.Yumitori,J.Mater.Sci.35(2000)139.

[29]J.N.Israelachvili,IntermolecularandSurfaceForces,AcademicPress,London, 1992.

[30]G.Reiter,G.R.Strobl,ProgressinUnderstandingofPolymerCrystallization, SpringerVerlag,Berlin,2007.

[31]K.Armitstead,G.Goldbeck-Wood,A.Keller,Polymercrystallizationtheories, in:Macromolecules:Synthesis,OrderandAdvancedProperties,Adv.Polymer Sci.100(1)(1992)219–312.

[32]H.J.Butt,K.Graf,M.Kappl,PhysicsandChemistryofInterfaces,Wiley-VCH, 2013.

[33]C.Casiraghi,A.Hartschuh,E.Lidorikis,H.Qian,H.Harutyunyan,T.Gokus,K.S. Novoselov,A.C.Ferrari,NanoLett.7(2007)2711.

Riferimenti

Documenti correlati

 conoscenze sulla sicurezza alimentare, sezione nella quale sono riportate domande con risposta vero o falso su intossicazioni alimentari, igiene del personale,

PMDS: Pediatric Myelodysplastic Syndrome; BM: Bone marrow; DEGs: : Dif‑ ferentially expressed genes; RNA‑seq: RNA sequencing; MDSs: Myelodysplastic syndromes; AML: Acute

Nei casi in cui proprio i luoghi e le scenografie sono il fulcro di aspetti emozionali del narrato, come anche ne Il nome della rosa – in cui il mona- stero e il luoghi dentro e

267 ulteriormente l’ambito di applicazione della politica commerciale comune. In particolare, la domanda di parere proposta dalla Commissione intendeva stabilire se tale

Illustrato e in italiano moderno - Il giornalino di Gian Burrasca e un divertente classico della letteratura per ragazzi, scritto da Luigi Bertelli, detto Vamba, nel 1907 e

This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/)... a) Ultrasound image of the femoral area showing a mass with

Passato alla cinematografia dalla fine degli anni ’90, nel 2008 Green dedica un film a un testo canonico della letteratura francese secen- tesca, il romanzo epistolare