• Non ci sono risultati.

Acute effects of different inspiratory efforts on ventilatory pattern and chest wall compartmental distribution in elderly women

N/A
N/A
Protected

Academic year: 2021

Condividi "Acute effects of different inspiratory efforts on ventilatory pattern and chest wall compartmental distribution in elderly women"

Copied!
7
0
0

Testo completo

(1)

Armele

Dornelas

de

Andrade

a,∗∗

aDepartmentofPhysicalTherapy,UniversidadeFederaldePernambuco—UFPE,Recife,Brazil

bDepartmentofRespiratoryTherapyLewisSchoolofNursingandHealthProfessions,GeorgiaStateUniversity,Atlanta,GA,USA cDipartimentodiElettronica,InformazioneeBioingegneriaPolitecnicodiMilano,Milan,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received2April2015 Receivedinrevisedform 18December2015 Accepted11February2016 Availableonline18February2016 Keywords: Breathingpattern Opto-electronicplethysmography Aging Respiratorymechanics

a

b

s

t

r

a

c

t

Itisnotcompletelydescribedhowagingaffectventilatorykinematicsandwhatarethemechanisms adoptedbytheelderlypopulationtoovercomethesestructuralmodifications.Giventhis,theaimwasto evaluatetheacuteeffectsofdifferentinspiratoryeffortsonventilatorypatternandchestwall compart-mentaldistributioninelderlywomen.Variablesassessedincluded:tidalvolume(Vt),totalchestwall volume(Vcw),pulmonaryribcage(Vrcp%),abdominalribcage(Vrca%)andabdominalcompartment (Vab%)relativecontributionstotidalvolume.Thesevariableswereassessedduringquietbreathing, max-imalinspiratorypressuremaneuver(MIP),andmoderateinspiratoryresistance(MIR;i.e.,40%ofMIP). 22youngwomen(age:23.9±2.5years)and22elderlywomen(age:68.2±5.0years)participatedtothis study.Itwaspossibletoshowthatduringquietbreathing,Vab%waspredominantinelderly(p<0.001), inyoung,however,Vab%wassimilartoVrcp%(p=0.095).DuringMIR,Vrcp%waspredominantinyoung (p<0.001)andcomparabletoVab%inelderly(p=0.249).WhenMIPwasimposed,bothgroupspresented apredominanceofVrcp%.Inconclusion,therearedifferencesinabdominalkinematicsbetweenyoung andelderlywomenduringdifferentinspiratoryefforts.Inelderly,duringmoderateinspiratoryresistance, thepatternisbeneficial,deep,andslow.Although,duringmaximalinspiratoryresistance,theventilatory patternseemstopredictimminentmusclefatigue.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Withagingrespiratorymusclesperformancedecreasesdueto

sarcopeniaandchangesinmusclefibers(Lalley,2013)decreasing

maximal strength development (Williams et al., 2002).

Addi-tionally,as a consequence of the calcificationof costovertebral

cartilagesandjoints,intercostalspacesandthoracic compliance

arereduced(Rossietal.,2008).

Allthesechangesmightaffectventilatorykinematics;however,

theadaptivemechanismsadoptedtoovercomethesestructural

changesintheelderlypopulationarestillnotcompletely

under-∗ Correspondingauthor.Fax:+558121268491. ∗∗ Correspondingauthor.

E-mailaddresses:[email protected]

(H.MunizdeSouza),[email protected]

(T.Rocha),[email protected](S.L.Campos),[email protected]

(D.C.Brandão),fi[email protected](J.B.Fink),[email protected]

(A.Aliverti),[email protected](A.D.deAndrade).

stood.It´ıs mandatorytodifferentiate thephysiological changes

inducedbyagefrompathologicalchanges.

The chest wall kinematics evaluation using opto-electronic

plethysmography(OEP)hasemergedasausefulmethodtoevaluate

thechangesgeneratedindifferentsituations(Paisanietal.,2013;

Wilkensetal.,2010).TheOEPrecordseachrespiratorycycleinreal

timemakingitpossibletoevaluatetheventilatorypatternandthe

chestwallvolumewithitscompartmentaldistribution(pulmonary

ribcage,abdominalribcageandabdomen)(Parreiraetal.,2012).

However,studiesthatobservedtheeffectsofsenescenceoverchest

wallkinematicsusingtheOEP(Brittoetal.,2009)arestillscarce.

Moreover,thechangesgeneratedin differentinspiratory efforts

havenotbeenevaluatedyet.

Wehypothesizedthatelderlydevelopdifferentchestwall

kine-maticandventilatorypatterns,comparedtoyoung,whentheyare

submittedtodifferentinspiratoryloads.Intheelderlypopulation,

this differencewould bemore noticeableintheabdominal

vol-umecontributionsince,duetosenilesarcopenia,thedecreasein

respiratory musclestrength wouldimpairthecapacity to

over-come upperchest wallrestrictive forces.Considering that after

http://dx.doi.org/10.1016/j.resp.2016.02.004

(2)

Fig.1.Maximalinspiratorypressureassessmentduringopto-electronicplethysmographyevaluation(left)andthree-dimensionalmodelofribcagecompartments. Pul-monaryribcage(Rcp),abdominalribcage(Rca),andabdomen(Ab)(right).

menopausewomen havelower levelsof estrogenand that this

intensifies thesenilesarcopenia(Kenny etal., 2003), theaging

relatedchangesinchestwallkinematicsmightbemoreevident

inthisgender.Giventhis,wedecidedtotestourhypothesisina

groupformedexclusivelybywomen.Therefore, theaimwasto

evaluatetheacuteeffectsofdifferentinspiratoryeffortson

venti-latorypatternandchestwallcompartmentaldistributioninelderly

women.

2. Methods

2.1. Studydesign

Thiswasacross-sectionalstudyapprovedbytheResearchEthics

CommitteeoftheCenterforHealthSciencesattheFederal

Uni-versityofPernambuco(CEP/CCS/UFPENo457/11).Theresearch

wasconductedintheLaboratoryofCardiopulmonary

Physiother-apy,DepartmentPhysiotherapy,FederalUniversityofPernambuco

(UFPE)fromAugusttoDecember2014.Allvolunteerssignedafree

andinformedconsentform.

2.2. Participants

Thesamplewasformedby22 elderlywomenand22 young

women.Apilotstudywasmadewithfiveindividualsineachgroup

tocalculatethesample.Atotalof34participantswouldprovide

95%powerand alphalevelof0.05todetectdifferencebetween

groupsinthepulmonaryribcagecontribution.Thefollowing

inclu-sioncriteria were adopted: agebetween20 to 80 years;tobe

able towalk without assistance; to have cognitive integrity in

theelderlygroup,assessedbytheMini-MentalStateExamination

(MMSE).Theexclusioncriteriawere:contraindicationordifficulty

toperformtheevaluationprocedures;respiratorymusclestrength

lower than 70% of the predict (Neder et al., 1999); smoking;

hemodynamicinstability;neuromusculardegenerative diseases;

pulmonarycomorbidities;heartdiseaseandusersofmedications

thatchangethebonemetabolismorthemusclestrength.

2.3. Datacollection

Allvolunteerswereinitiallysubmittedtoananthropometric,

clinical,anddemographicevaluation.Thelevelofphysical

activ-ity was evaluated through a self-reported instrument adapted

totheBrazilianpopulation,theProfileofHumanActivity (PHA)

(Souzaetal.,2006).Thisinstrumentquantifiesthelevelofphysical

activitythroughtheadjustedactivityscore(AAS)sortingthe

indi-vidualintothreecategories:inactive(AAS<53),moderatelyactive

(53≤AAS≤74),andactive(AAS>74).Afterwards,thevolunteers

wereinstructedtobreathewithamoderateinspiratoryresistance,

toensurethecorrectperformanceofthetechniqueseveraldays

beforethemeasurements.Theevaluationwasconductedintwo

stages.Inthefirst,weassessedpulmonaryfunctionandmaximal

respiratorypressures.Inthesecond,ventilatorypatternandchest

wallcompartmentaldistributionwereassessedbytheOEP.

2.3.1. Pulmonaryfunctiontests

Testswereperformedusingaportablespirometer(Micro

Med-ical,Microloop,MK8,England).Thehighestvalueinforcedvital

capacity (FVC), forced expiratoryvolumein one second (FEV1),

forcedexpiratoryflow25–75%(FEF25–75%),andtheFEV1/FVCratio

wasused,afterthreeacceptablemaneuvers.Referencevaluesfor

Brazilianadultpopulationwereconsidered(Pereiraetal.,2007).

2.3.2. Maximalrespiratorypressures

Themeasurementofthemaximuminspiratorypressure(MIP)

andmaximumexpiratorypressure(MEP)wasperformedusinga

digitalmanometer(MVD300,Globalmed,Brazil)fromresidual

vol-umeandtotallungcapacity,respectively(Nederetal.,1999).At

leastfivemeasurementswerecarriedoutuntilthreeacceptableand

reproduciblemeasurementswereobtained,i.e.,withoutair

leak-ageandwithlessthan10%differenceamongthem,withthehighest

valueobtainedbeingregistered(EvansandWhitelaw,2009).

2.3.3. Breathingwithmoderateinspiratoryresistance(MIR)

The moderateinspiratory resistancewasperformedwithan

inspiratorymuscletrainingdevice,theThreshold®IMT

(Respiron-ics,NJ,USA),commonlyusedtotrainhealthypeople(Downeyetal.,

2007;EnrightandUnnithan,2011)aswellasotherspopulations (Gosselinket al.,2011;Plentzetal., 2012).Thevolunteers

per-formedtheMIRinaseatedpositionandwereorientedtobreathe

quietlyandkeeparegularrespiratoryratepriortothetest.

Dur-ingtheevaluation,therewasnoincentiveorverbalinstructionsto

thevolunteers.Thedevicewascoupledtothevolunteerthrougha

mouthpiecethatprovidesalinearresistiveload(DeAndradeetal.,

2005)establishedat40%ofthepreviouslyobtainedMIP.Nasalclips

werealsousedduringMIR.ThedurationoftheMIRsessionwas

threeminutes(Souzaetal.,2014).Duringexpiration,therewasno

(3)

Vrca%MIR 22.6±5.5 24.7±12.3 0.639 Vab%MIR 31.1±13.5 40.2±13.7 0.046 VcwMIP(L) 19.3±3.2 25.9±5.2 <0.001 Vrcp%MIP 55.0±3.9 50.0±4.9 0.003 Vrca%MIP 15.5±2.5 16.4±2.4 0.197 Vab%MIP 29.5±3.1 33.6±4.3 0.002

BMI:bodymassindex;HAP:humanactivityprofile;FEV1:forcedexpiratoryvolumeinthefirstsecond;FVC:forcedvitalcapacity;FEF25–75:forcedexpiratoryflow25%e 75%;MIP:maximalinspiratorypressure;MEP:maximalexpiratorypressure;QB:quietbreathing;MIR:moderateinspiratoryresistance;Vt:tidalvolume;Vcw:chestwall volume;Vrcp%:pulmonaryribcagecontributionvolume;Vrca:abdominalribcagecontributionvolume;Vab:abdominalcontributionvolume.

2.3.4. Opto-electronicplethysmography(OEP)

TheOEP(BTSBioengineering,Milano,Italy)wasusedtoassess

theventilatorypatternandthechestwallcompartmental

distri-bution.Eighty-ninereflectivemarkerswereplaced accordingto

anatomical referencesand attached to thetrunk of volunteers

seatedwithoutabackrestwithhypoallergenicadhesive(Aliverti

andPedotti,2005).

Eightinfraredcameras(fourinfrontandfourbehindthe

vol-unteers)tracedthethree-dimensionalcoordinatesofthereflective

markersastheymovedandthedevicesoftwarecalculatedthechest

wallvolume(Vcw)throughsurfacetriangulation(Brandãoetal.,

2012).Thechestwallcompartmentaldistributionwascomposedof

threecompartments:pulmonaryribcage(Vrcp—portionoftherib

cageincontactwiththelungs),abdominalribcage(Vrca—portion

oftheribcageopposed tothediaphragm),and abdomen(Vab)

(Parreiraetal.,2012)(Fig.1).

The chest wall compartmental distribution was assessed in

threedifferentconditions:(a)during3minofquietbreathing(QB);

(b)during3minwithmoderateinspiratoryresistance(MIR);(c)

whileperforming2 maneuversof maximalinspiratorypressure

(MIP)(Fig.1).TheventilatorypatternwasevaluatedduringtheQB

andMIR.Thedatawasassessedwith5minrestbetweeneach

con-ditions.DuringQBandMIR,thefollowingvariableswereassessed:

tidalvolume(Vt),chestwallvolumecompartmentaldistribution

(Vrcp%,Vrca%andVab%),respiratoryrate(RR),inspiratorytime(Ti),

expiratorytime(Te),totalrespiratorycycletime(Ttot),andworkof

breathing(WOB).DuringMIP,chestwalltotalvolumeandits

com-partmentaldistributions(Vrcp%,Vrca%andVab%)wereevaluated.

2.4. Statisticalanalysis

The sample characteristics and statistical analysis of the

datawereexpressedas meanand standarddeviation (SD).The

Shapiro–Wilktestwasusedtoevaluatethenormalityofthedata.

Differences between controls and elderly women were

evalu-ated by the Mann–Whitney test. The comparison between the

ventilatorypatterninQBand MIRwasdonewiththeWilcoxon

test.Tocomparethepercentageofthecontributionofthe

com-partments in each situation (QB, MIR or MIP) and between

situations (QB×MIR×MIP), we used the nonparametric

Fried-mantest.Wherestatisticalsignificancewasfound,thedifferences

amongthedatawereevaluatedusingtheWilcoxontest.The

Spear-mancorrelationtestwasusedtoevaluatetherelationshipbetween

ageandventilatoryvariables.Theanalysiswasconductedusing

theprogramSPSSforWindows(version20.0,Chicago,IL)anda

significancelevelofp<0.05wasestablished.

3. Results

The study included 22 elderly women and a control group

with22 youngwomen(Fig.2).Anthropometricdata,

spiromet-ricvariables,respiratorymusclestrength,levelofphysicalactivity

(evaluatedthroughPHA),totalvolumes,andchestwall

compart-mentaldistributionareinTable1.Thecontrolgroupdidnotuse

medications.Intheelderlygroup,tenvolunteers(45%)used

med-icationsforhypertensioncontrol,three(14%)fordiabetescontrol,

two(9%)forboth,andsevenvolunteers(32%)didnotuse

medica-tions.

Thepatternventilatoryvariablesintheelderlyandthecontrol

groupsduringtheQBandMRIwereexposed inTable2.During

MIR,theventilatorypatternshowedchangescomparedtoQBin

bothgroups.

Thecomparisonofchestwallvolumecompartmental

distribu-tion(Vrcp%,Vrca%andVab%)ineachsituation(QB,MIRorMIP)is

showninFig.3.WeobservedthatintheQB,theVab%was

predomi-nantinelderlywhileVrcp%andVab%weresimilarincontrolgroup.

InbothgroupsduringtheMIR,theVrcp%predominated,followed

byVab%andVrca%.IntheMIP,theVrcp%increasedinbothgroup.

In the comparison of each chest wall compartment (Vrcp%,

Vrca% and Vab%) between situations (QB×MIR×MIP), we

observedthatthebehaviorwassimilarinbothgroups.TheVrcp%

increasedduringMRIandMIPinrelationtoQB.TheVab%decreased

whentheinspiratoryeffortwasmajor(MIRandMIP)whileVrca%

increaseduringtheMIRbutdecreasedintheMIP.

Theageshowedsignificative(p<0.05)correlationwith:Vt,QB

(r=−0.524), Vrcp%,QB (r=−0.585), Vab%,QB (r=0.585), Ttot,QB

(4)

Fig.2.Flowchartofparticipants.

Vt,MIR (r=0.407), Vrcp%,MIR (r=−0.307), Ti,MIR (r=0,324),

WOB,MIR(r=0.034),Vcw,MIP (r=0.596), Vrcp%,MIP(r=−0.391)

andVab%,MIP(r=0,457).Therewerenocorrelationsbetweenage

andothersvariables.

4. Discussion

Tothebestofourknowledge,thisisthefirststudythat

evalu-atestheventilatorykinematicsinelderlyduringthreeprogressive

(5)

Fig.3. Comparisonbetween pulmonaryrib cage(Vrcp%),abdominal ribcage (Vrca%),andabdominal(Vab%)contributionsineachsituation:quietbreathing (QB),breathingwithmoderateinspiratoryresistance(MIR),andmaximal inspira-torypressuremeasurement(MIP).(Graphrepresentedasmeanandstandarderror. *p<0.05,**p<0.01and***p<0.001;Wilcoxontest).

revealedthatduringQB,Vab%ispredominantintheelderly,while

inyoungwomen,Vrcp%prevails.Furthermore,ventilatorypattern

changeswhenmoderateinspiratoryloadsareadded.Therewere

differences onchestwallvolumedistributionfrom QBto

max-imalinspiratoryefforts.Although,despitethedifferences inthe

chestwallvolumedistribution,bothgroupsbehavedsimilarly

dur-ingtheincreaseininspiratoryresistance.Weobservedamoderate

correlationbetweenage,Vrcp%,andVab%duringtheQB.

Sincehealthyindividualswithoutpreviousclinicallimitations

formedbothgroups,itwaspossibletocomparetheirbaseline

val-uesandalldifferencesobservedmightberestrictedtotheaging

process(Table1).

DuringQB,Vab%waspredominantintheelderlygroupbut

sim-ilartotheVrcp%inthecontrolgroup.Ourfindingsagreewiththe

reportsofBrittoetal.(2009)whereabdominalcontributionwas

prevalentinelderlysubjectsduringQB(Brittoetal.,2009).The

decline ofchestwallmovementdue totheaging process(Berg

etal.,2012)isreinforcedinourstudy,wherearelationshipwas

foundbetweenageanddecreasedtidalvolumeandVrcp%,aswell

aswithanincreasedVab%.Thissuggeststhatabdominal

contribu-cleactivityofthelowerribcageandthelungventilationinthe

middlethirdwhilemoderateinspiratoryloadswereset.

Althoughwedidnotfindpreviousliteratureinelderly

popula-tion,ourresultsreinforcethehypothesisthatthedecreaseofthe

chestwallcompliancealtersthevolumedistributionandmoderate

inspiratoryeffortsareinsufficienttoovercometheresistiveforces

oftheupperchestwall.However,thehealthyelderlypresented

a similarventilatorybehaviorcompared toyoungvolunteersin

theseconditions.Thissuggeststhatduringsenescenceventilatory

behaviorinmoderateeffortsremainsthesamedespiteallparticular

structuralchanges(Lalley,2013).

In thepresentstudy,itwaspossibletoobservethat

respira-torypatternchangesinbothgroupsduringtheMIR(Table2).This

suggeststhat breathingbecomes deeperand slowerin orderto

overcometheresistanceimposed.Moreover,despitetheincreased

work ofbreathing, ventilatory pattern adoptedduring MIR

dif-fered from respiratory muscles fatigue prediction model (Berg

etal.,2012;Phillipsetal.,2015).Inthismodelthebreathingoften

becomesrapidandsuperficial(Hostettleretal.,2011).Ourresults

suggestthat changesintheventilatorypatternsand ventilatory

kinematicsduringMIRintheelderlymightbeabeneficial

venti-lationstrategy.Thus,wereinforcetheideathattheapplicationof

exerciseprotocolsandactivitiesthatrequiremoderateinspiratory

effortscanbesafelyperformedinthispopulation.

WhenthevolunteerswereevaluatedduringMIP,Vrcp%

pre-vailedinbothgroups.However,theincreaseinVrcp%intheelderly

groupoccurredwithadecreaseinVab%.Meanwhile,inthecontrol

group,thehighervaluesofVrcp%happenedduetoadecreasein

Vrca%andVab%,comparedtoQB(Fig.3).

Table2

Ventilatorypatternchangesbetweenquietbreathing(QB)andbreathingwith mod-erateinspiratoryresistance(MIR)inbothgroups.

Variables QB MIR Pvalue

VtEG(l) 0.4±0.1 1.3±0.5 <0.001 VtCG(l) 0.6±0.2 0.9±0.5 0.035 RREG(ipm) 18.5±4.4 11.8±6.3 <0.001 RRCG(ipm) 14.2±3.6 12.9±4.1 0.372 TtotEG(s) 3.5±0.8 7.0±4.0 <0.001 TtotCG(s) 4.6±1.2 5.4±1.9 0.101 TiEG(s) 1.4±0.4 4.4±2.8 <0.001 TiCG(s) 2.0±0.6 2.9±1.3 0.003 TeEG(s) 2.1±0.5 2.6±1.6 0.527 TeCG(s) 2.6±0.8 2.5±1.0 0.123 WBEG 41.0±4.4 61.8±9.5 <0.001 WBCG 42.1±4.4 61.8±9.5 <0.001

QB:quietbreathing;MIR:moderateinspiratoryresistance;EG:elderlygroup;CG: controlgroup;Vt:tidalvolume;RR:respiratoryrate;Ttot:totalrespiratorycycle time;Ti:inspiratorytime;Te:expiratorytime;WB:workofbreathig;l:liters;s: seconds;ipm:incursionsperminute.

(6)

TheMIPmaneuverisperformedwithamaximalisometric

con-tractionofdiaphragmmusclewithoutvolumechange(Cohnetal.,

1997).Giventhis,whenthesubjectsareundermaximal

respira-toryefforts,accessoryrespiratorymusclesmighthavetoovercome

chestwallstiffnessandthiscouldbethereasonforanincreased

Vrcp%.However,intheelderly,theincreaseinVrcp%occurredwith

adecreaseinVrca%andVab%.ItisknownthatVab%ishighlyrelated

todiaphragmmobility(AlivertiandPedotti,2005;Illietal.,2011).

Therefore,wehypothesizethatagainsthighrespiratoryresistances,

theelderlypresentsadecreasedactivationofdiaphragmmuscle

(i.e.,lowerVrca%)aswellasadecreaseddiaphragmmobility(i.e.,

lowerVab%).Accordingtothisbehavior,theelderlymightbemore

vulnerabletoventilatorymusclefatiguewhenmaximaleffortsare

required.Thisreinforcestheneedtoestablishspecific

therapeu-ticstrategiesforthepreventionofsenilemuscleweaknesssince

maximaleffortswillbenecessaryinextremesituations.After

per-formingaprotocolofnormocapnichyperpneainhealthyadults,Illi

etal.(2013)observedadecreaseinVab%startingfromthemiddle

ofthetest,withasimultaneousincreaseinVrcp%andreductionof

theendinspiratoryvolumesuggestingimpendingfatigueofcostal

inspiratorymuscles.Thus,thisstudysuggeststhattheventilatory

kinematicsobservedduringmaximalefforts shouldnotbe

per-formedforlongperiods,sinceitscontinuitymightpredisposeto

thedevelopmentofrespiratorymusclefatigue.

TheincreaseinVrca%duringMIRandVcrp%duringMIPinboth

groupssuggestthat, dependingontheintensityof thenegative

pressuregenerated, thelung volumecanbeshiftedtospecifics

segments,which maybeuseful toimplementing techniquesof

selectivepulmonaryre-expansion.However,itisstillnecessaryto

understandtheimpactofthisventilatorybehaviorduring

max-imum inspiratory efforts in the clinical practice. Thus, at this

moment,treatmentprotocolsthatrequireexhaustiveinspiratory

workshouldstillbeindicatedwithcautioninelderlypatients.

4.1. Limitations

Itwasnotpossibletostratifythestatisticalanalysisbyneither

age(i.e.,60–69yearsandabove69years)neitherbyBMI(i.e.,<18;

18–24;>24),inordertounderstandtherelationshipofthese

sub-groupstochestwallvolumecompartmentaldistributionduetothe

baselineheterogeneitybetweengroups.Despitethis,ourresearch

contributedtoexploitthepeculiaritiesofventilatorypatternand

thoracoabdominalkinematicsduringdifferentinspiratoryefforts

inelderlywomen.

5. Conclusion

Thepresentstudyshowedthattherearedifferencesbetween

youngandelderlyventilatorykinematicsduringinspiratoryefforts.

However,wealsofoundthatbothgroupshaveasimilar

ventila-torybehaviorastheinspiratoryeffortresistanceincreases.During

moderateefforts,theventilatorypatternisbeneficialwithslowand

deepbreaths.However,whenhighresistanceisimposed,the

ven-tilatorybehaviorseemstopredictimminentmusclefatigue.Given

this,inordertoadoptsaferexerciseprotocolstothisagegroup,

theserespiratorydifferencesmustbeconsidered.

Acknowledgments

This research was supported by grant: FACEPE APQ 0821

4.08/08,CNPq:Proc482069/2012-0andPVE400801/2013-2.

References

Aliverti,A.,Pedotti,A.,2005.Opto-electronicplethysmography.MonaldiArch. ChestDis.59,12–16.

Berg,K.M.,Lang,G.R.,Salciccioli,J.D.,Bak,E.,Cocchi,M.N.,Gautam,S.,Donnino, M.W.,2012.Therapidshallowbreathingindexasapredictoroffailureof noninvasiveventilationforpatientswithacuterespiratoryfailure.Respir.Care 57,1548–1554,http://dx.doi.org/10.4187/respcare.01597.

Brandão,D.C.,Lage,S.M.,Britto,R.R.,Parreira,V.F.,deOliveira,W.A.,Martins,S.M., Aliverti,A.,deAndradeCarvalho,L.,doNascimentoJunior,J.F.,Alcoforado,L., Remígio,I.,deAndrade,A.D.,2012.Chestwallregionalvolumeinheartfailure patientsduringinspiratoryloadedbreathing.Respir.Physiol.Neurobiol.180, 269–274,http://dx.doi.org/10.1016/j.resp.2011.12.002.

Britto,R.R.,Zampa,C.C.,deOliveira,T.A.,Prado,L.F.,Parreira,V.F.,2009.Effectsof theagingprocessonrespiratoryfunction.Gerontology55,505–510,http://dx. doi.org/10.1159/000235853.

Cohn,D.,Benditt,J.O.,Eveloff,S.,McCool,F.D.,1997.Diaphragmthickeningduring inspiration.J.Appl.Physiol.83,291–296.

DeAndrade,A.D.,Silva,T.N.S.,Vasconcelos,H.,Marcelino,M.,Rodrigues-Machado, M.G.,Filho,V.C.G.,Moraes,N.H.,Marinho,P.E.M.,Amorim,C.F.,2005. Inspiratorymuscularactivationduringthresholdtherapyinelderlyhealthy andpatientswithCOPD.J.Electromyogr.Kinesiol.15,631–639,http://dx.doi. org/10.1016/j.jelekin.2005.06.002.

Downey,A.E.,Chenoweth,L.M.,Townsend,D.K.,Ranum,J.D.,Ferguson,C.S.,Harms, C.A.,2007.Effectsofinspiratorymuscletrainingonexerciseresponsesin normoxiaandhypoxia.Respir.Physiol.Neurobiol.156,137–146,http://dx.doi. org/10.1016/j.resp.2006.08.006.

Enright,S.J.,Unnithan,V.B.,2011.Effectofinspiratorymuscletrainingintensities onpulmonaryfunctionandworkcapacityinpeoplewhoarehealthy:a randomizedcontrolledtrial.Phys.Ther.91,894–905,http://dx.doi.org/10. 2522/ptj.20090413.

Evans,J.A.,Whitelaw,W.A.,2009.Theassessmentofmaximalrespiratorymouth pressuresinadults.Respir.Care54,1348–1359.

Gosselink,R.,DeVos,J.,VanDenHeuvel,S.P.,Segers,J.,Decramer,M.,Kwakkel,G., 2011.ImpactofinspiratorymuscletraininginpatientswithCOPD:whatisthe evidence?Eur.Respir.J.37,416–425,http://dx.doi.org/10.1183/09031936. 00031810.

Hostettler,S.,Illi,S.K.,Mohler,E.,Aliverti,A.,Spengler,C.M.,2011.Chestwall volumechangesduringinspiratoryloadedbreathing.Respir.Physiol. Neurobiol.175,130–139,http://dx.doi.org/10.1016/j.resp.2010.10.001. Illi,S.K.,Hostettler,S.,Aliverti,A.,Spengler,C.M.,2013.Compartmentalchestwall

volumechangesduringvolitionalhyperpnoeawithconstanttidalvolumein healthyindividuals.Respir.Physiol.Neurobiol.185,410–415,http://dx.doi. org/10.1016/j.resp.2012.08.018.

Illi,S.K.,Hostettler,S.,Mohler,E.,Aliverti,A.,Spengler,C.M.,2011.Compartmental chestwallvolumechangesduringvolitionalnormocapnichyperpnoea.Respir. Physiol.Neurobiol.177,294–300,http://dx.doi.org/10.1016/j.resp.2011.05. 007.

Kenny,A.M.,Dawson,L.,Kleppinger,A.,Iannuzzi-Sucich,M.,Judge,J.O.,2003.

Prevalenceofsarcopeniaandpredictorsofskeletalmusclemassinnonobese womenwhoarelong-termusersofestrogen-replacementtherapy.J.Gerontol. ABiol.Sci.Med.Sci.58,M436–40.

Lalley,P.M.,2013.Theagingrespiratorysystem—pulmonarystructure,function andneuralcontrol.Respir.Physiol.Neurobiol.187,199–210,http://dx.doi.org/ 10.1016/j.resp.2013.03.012.

Neder,J.A.,Andreoni,S.,Lerario,M.C.,Nery,L.E.,1999.Referencevaluesforlung functiontests.II.Maximalrespiratorypressuresandvoluntaryventilation.Rev. Bras.Pesqui.Med.Biol.32,719–727.

Nobre,M.E.P.,Lopes,F.,Cordeiro,L.,Marinho,P.E.M.,Silva,T.N.S.,Amorim,C., Cahalin,L.P.,DornelasdeAndrade,A.,2007.Inspiratorymuscleendurance testing:pulmonaryventilationandelectromyographicanalysis.Respir. Physiol.Neurobiol.155,41–48,http://dx.doi.org/10.1016/j.resp.2006.04.005. Paisani,D.,de,M.,Lunardi,A.C.,daSilva,C.C.B.M.,Porras,D.C.,Tanaka,C.,Carvalho,

C.R.F.,2013.Volumeratherthanflowincentivespirometryiseffectivein improvingchestwallexpansionandabdominaldisplacementusing optoelectronicplethysmography.Respir.Care58,1360–1366,http://dx.doi. org/10.4187/respcare.02037.

Parreira,V.F.,Vieira,D.S.R.,Myrrh,M.A.C.,Pessoa,I.M.B.S.,Lage,S.M.,Britto,R.R., 2012.Optoelectronicplethysmography:areviewoftheliterature.Braz.J.Phys. Ther.16,439–453.

Pereira,C.,Sato,T.,Rodrigues,S.,2007.Newreferencevaluesforforcedspirometry inwhiteadultsinBrazil.J.Bras.Pneumol.33,397–406.

Phillips,D.B.,Stickland,M.K.,Petersen,S.R.,2015.Ventilatoryresponsesto prolongedexercisewithheavyloadcarriage.Eur.J.Appl.Physiol.,http://dx. doi.org/10.1007/s00421-015-3240-7.

Plentz,R.D.M.,Sbruzzi,G.,Ribeiro,R.A.,Ferreira,J.B.,DalLago,P.,2012.Inspiratory muscletraininginpatientswithheartfailure:meta-analysisofrandomized trials.Arq.Bras.Cardiol.99,762–771.

Rossi,A.,Fantin,F.,DiFrancesco,V.,Guariento,S.,Giuliano,K.,Fontana,G., Micciolo,R.,Solerte,S.B.,Bosello,O.,Zamboni,M.,2008.Bodycompositionand pulmonaryfunctionintheelderly:a7-yearlongitudinalstudy.Int.J.Obes.32, 1423–1430,http://dx.doi.org/10.1038/ijo.2008.103.

Souza,A.C.,Magalhães,L.,de,C.,Teixeira-Salmela,L.F.,2006.Cross-cultural adaptationandanalysisofthepsychometricpropertiesintheBrazilianversion ofthehumanactivityprofile.Cad.SaudePublica22,2623–2636.

Souza,H.,Rocha,T.,Pessoa,M.,Rattes,C.,Brandão,D.,Fregonezi,G.,Campos,S., Aliverti,A.,Dornelas,A.,2014.Effectsofinspiratorymuscletraininginelderly womenonrespiratorymusclestrength,diaphragmthicknessandmobility.J. Gerontol.ABiol.Sci.Med.Sci.69,1545–1553,http://dx.doi.org/10.1093/ gerona/glu182.

(7)

Riferimenti

Documenti correlati

La produzione a cui assistiamo vede, con il progredire delle tecniche di rilievo e di rappresentazione, il graduale passaggio dal vedutismo alla cartografia e alla topografia;

Presque tous les prophètes dont nous parlerons se référaient au christianisme et combattaient les religions païennes ; ils ont cependant hérité de ces dernières le souci

Ou seja, a pena longa de privação de liberdade é para Beccaria até mais penosa para a alma do homem que o suplício do corpo – se seu objetivo é apenas humanizar a

We tested the effect of two different stocking density cut-off values (the median and 75th percentile values), dividing the data into two groups (low vs. high stocking densities)

Relative mean and standard deviation of MUNIX and CMAP measurements in individual muscles of the experienced group (filled circles) and less-experienced group (empty circles)

Tali limitazioni sono principalmente dovute alle difficoltà di identificazione dei pazienti (anche per l’assenza di registri di popolazione, i limiti dei flussi informativi