• Non ci sono risultati.

ese geo bio 1

N/A
N/A
Protected

Academic year: 2021

Condividi "ese geo bio 1"

Copied!
15
0
0

Testo completo

(1)

Esercizi di Geometria - 1

Samuele Mongodi - s.mongodi@sns.it

Di seguito si trovano alcuni esercizi assai simili a quelli che vi troverete ad affrontare nei test e negli scritti dell’esame. Non `e detto che vi sar`a un problema per tipo, n´e che quelli qui presentati coprano tutte le possibili richieste, ma farli certo non sar`a controproducente ai fini dell’esame. La sezione 3 contiene alcuni suggerimenti su come affrontare gli esercizi.

1

Test

Esercizio 1 Sia V = R2[x], munito della base {1, x, x2}, e sia {L0, L1, L2} la

base duale di V∗. Determinare in tale base le coordinate del funzionale lineare

p(x) 7→ Z 1

0

p(x)dx

Esercizio 2 Sia {e1, e2, e3, e4} la base canonica di R4 e sia {e∗1, e∗2, e∗3, e∗4} la

base duale di (R4)∗. Determinare quanto vale e∗1(2e1+ e2+ 3e3− 2e4).

Esercizio 3 Sia V = R3[x], munito della base {1, x, x2, x3}, e sia {L0, L1, L2, L3}

la base duale di V∗. Determinare M (x2+ 3x) dove M = L1+ 2L3.

Esercizio 4 Sia (1, 2, 3)t∈ R3 e sia φ

v∈ (R3)∗∗ l’elemento del biduale

canon-icamente associato a v. Se {e∗1, e∗2, e∗3} `e la base duale della base canonica,

determinare φv(e∗1− e∗2).

Esercizio 5 Sia V = R2[x], munito della base {1, x, x2}, e sia {L0, L1, L2} la

base duale di V∗. Determinare in tale base le coordinate del funzionale lineare p(x) 7→ p(2)

Esercizio 6 Sia {v1, v2, v3} una base di V su K, sia {v∗1, v2∗, v∗3} la base duale

di V∗; determinare v3∗(v1− v2+ 3v3).

Esercizio 7 Sia V = R2[x], munito della base {1, 1 + x, 1 + x + x2}, e sia

{M0, M1, M2} la base duale di V∗. Determinare M1(2 + 2x).

Esercizio 8 Sia v ∈ R3 e sia φ

v ∈ (R3)∗∗l’elemento del biduale canonicamente

associato a v; sapendo che {e∗1, e∗2, e∗3} `e la base duale della base canonica e che φv(e∗1) = 0, φv(e∗2) = 1, φv(e∗3) = 1, determinare le coordinate di v rispetto alla

base canonica. Esercizio 9 Sia h  v1 v2  ,  w1 w2  i = −v1w1 + v1w2 + w1v2 un prodotto

scalare su R2; si scriva la matrice di tale prodotto scalare rispetto alla base

 1 1  ,  1 −1  .

(2)

Esercizio 10 Sia h   v1 v2 v3  ,   w1 w2 w3  i = v1w2+ w1v2− w1v3− v1w3+ v3w3un

prodotto scalare su R3; si scriva la matrice di tale prodotto scalare rispetto alla

base      1 0 0  ,   0 1 1  ,   1 0 −1      . Esercizio 11 Sia b   v1 v2 v3 

= v12+ v22− v32+ 2v1v3+ 4v2v3 una forma

quadrat-ica; si scriva la matrice del prodotto scalare associato a b rispetto alla base      1 0 1  ,   0 1 1  ,   1 1 1      . Esercizio 12 Sia b  v1 v2  = v2

1−2v22−3v1v2una forma quadratica; si scriva la

matrice del prodotto scalare associato a b rispetto alla base  1 1  ,  −2 3  . Esercizio 13 Dire per quali valori di α il prodotto scalare su R2 associato rispetto alla base canonica alla matriceα 1

1 α − 1 

`e indefinito non degenere. Esercizio 14 Dire per quali valori di α il prodotto scalare su R2 associato rispetto alla base canonica alla matrice−1 α

α 1 

`

e definito negativo.

Esercizio 15 Dire per quali valori di α il prodotto scalare su R2

associa-to rispetassocia-to alla base canonica alla matrice  1 α2− 1 α2− 1 1  `e semidefinito positivo.

Esercizio 16 Determinare una base del sottospazio di R3ortogonale a

  1 0 4  

rispetto al prodotto scalare euclideo.

Esercizio 17 Determinare una base del sottospazio di R4 ortogonale ai due

vettori     1 0 1 0     e     1 1 0 0    

rispetto al prodotto scalare euclideo.

Esercizio 18 Determinare una base del sottospazio di R3ortogonale a

  1 −2 3  

rispetto al prodotto scalare euclideo.

Esercizio 19 Determinare una base del sottospazio di R3ortogonale a

  1 1 1  

(3)

Esercizio 20 Determinare la lunghezza del vettore   1 1 1   in R3 rispetto al prodotto scalare euclideo.

Esercizio 21 Determinare la lunghezza del vettore     1 2 3 2     in R 4 rispetto al

prodotto scalare euclideo.

Esercizio 22 Determinare la lunghezza del vettore   1 0 4   in R3 rispetto al prodotto scalare hx, yi = x1y2+ x2y1− x2y3− x3y2.

Esercizio 23 Determinare l’applicazione aggiunta di f   x1 x2 x3  =   x1+ 3x3 x2− x1 x3+ 2x2  

rispetto al prodotto scalare euclideo.

Esercizio 24 Determinare l’applicazione aggiunta di f   x1 x2 x3  =   x2− x3 x2 x1− x2  

rispetto al prodotto scalare euclideo.

Esercizio 25 Determinare l’applicazione aggiunta di f   x1 x2 x3   =   x3 x3 x3  

rispetto al prodotto scalare euclideo.

Esercizio 26 Determinare l’applicazione aggiunta di f   x1 x2 x3   =   x2 x3 x1  

rispetto al prodotto scalare hx, yi = x1y1+ x1y3+ x3y1− x2y2.

Esercizio 27 Dire se il prodotto scalare su R3dato da hx, yi = x1y1+ 2x1y2+

2x2y1−x1y3−x3y1+x2y2−2x3y3`e degenere o non degenere, definito o indefinito.

Esercizio 28 Dire se il prodotto scalare su R3dato da hx, yi = −x

1y1+ x1y2+

x2y1− 2x1y3− 2x3y1+ 2x3y3`e degenere o non degenere, definito o indefinito.

Esercizio 29 Dire se il prodotto scalare su R3dato da hx, yi = 2x

1y1+ x1y2+

x2y1−x2y3−x3y2+2x2y2+2x3y3`e degenere o non degenere, definito o indefinito.

Esercizio 30 Calcolare la dimensione dello spazio radicale di R3 rispetto al

prodotto scalare hx, yi = x1y1+ x1y3+ x3y1+ x3y3.

Esercizio 31 Calcolare la dimensione dello spazio radicale di R3 rispetto al

prodotto scalare hx, yi = x1y1− x1y3− x3y1+ x2y2+ x3y3.

Esercizio 32 Calcolare la dimensione dello spazio radicale di R3 rispetto al prodotto scalare hx, yi = x1y1+ 2x1y2+ 2x2y1+ 5x2y2+ x2y3+ x3y2+ x3y3.

(4)

2

Scritto

Esercizio 1 Sia R2[x] lo spazio dei polinomi a coefficienti reali di grado minore

o uguale a 2 e sia dato il seguente prodotto scalare

hp(x), q(x)i = p(0)q(0) + p(1)q(1) − p0(0)q0(0)

i. Determinare la matrice associata a h·, ·i rispetto alla base {1, x, x2}.

ii. Dire se il prodotto scalare `e degenere o meno e determinare lo spazio radicale.

iii. Trovare, se esiste, un vettore isotropo non nullo. iv. Trovare una base ortogonale.

v. Trovare l’ortogonale del vettore p(x) = x2− x − 3.

Esercizio 2 Sia R2[x] lo spazio dei polinomi a coefficienti reali di grado minore

o uguale a 2 e sia dato il seguente prodotto scalare hp(x), q(x)i =

Z 1 0

p(x)q(x)dx − p0(1)q0(1)

i. Determinare la matrice associata a h·, ·i rispetto alla base {1, x, x2}.

ii. Dire se il prodotto scalare `e degenere o meno e determinare lo spazio radicale.

iii. Trovare, se esiste, un vettore isotropo non nullo. iv. Trovare una base ortogonale.

v. Trovare l’ortogonale del vettore p(x) = x2− 1.

Esercizio 3 Sia R2[x] lo spazio dei polinomi a coefficienti reali di grado minore

o uguale a 2 e sia dato il seguente prodotto scalare hp(x), q(x)i = (pq)0(0) − p(1)q(1)

i. Determinare la matrice associata a h·, ·i rispetto alla base {1, x, x2}.

ii. Dire se il prodotto scalare `e degenere o meno e determinare lo spazio radicale.

iii. Trovare, se esiste, un vettore isotropo non nullo. iv. Trovare una base ortogonale.

v. Trovare l’ortogonale del vettore p(x) = 2x2+ x.

Esercizio 4 Sia V lo spazio vettoriale generato su R dalle funzioni {ex, e−x, x, x2}

e sia dato su V il seguente prodotto scalare

(5)

i. Determinare la matrice associata a h·, ·i rispetto alla base {ex, e−x, x, x2}.

ii. Dire se il prodotto scalare `e degenere o meno e determinare lo spazio radicale.

iii. Trovare, se esiste, un vettore isotropo non nullo. iv. Trovare una base ortogonale.

v. Trovare l’ortogonale del vettore p(x) = 4ex− 3x2.

Esercizio 5 Sia V lo spazio vettoriale generato su R dalle funzioni {ex, e−x, x, x2} e sia dato su V il seguente prodotto scalare

hf (x), g(x)i = f (0)g(0) + Z 1

0

f (x)g(x)dx

i. Determinare la matrice associata a h·, ·i rispetto alla base {ex, e−x, x, x2}.

ii. Dire se il prodotto scalare `e degenere o meno e determinare lo spazio radicale.

iii. Trovare, se esiste, un vettore isotropo non nullo. iv. Trovare una base ortogonale.

v. Trovare l’ortogonale del vettore p(x) = 2ex− 2e−x+ x.

Esercizio 6 Sia V lo spazio vettoriale generato su R dalle funzioni {sin x, cos x, 1} e sia dato su V il seguente prodotto scalare

hf (x), g(x), =i Z 1

0

f (x)g(x)dx

i. Determinare la matrice associata a h·, ·i rispetto alla base {sin x, cos x, 1}. ii. Dire se il prodotto scalare `e degenere o meno e determinare lo spazio

radicale.

iii. Trovare, se esiste, un vettore isotropo non nullo. iv. Trovare una base ortogonale.

v. Trovare l’ortogonale del vettore p(x) = 2 cos x + 1.

Esercizio 7 Sia V lo spazio vettoriale generato su R dalle funzioni {sin x, cos x, 1} e sia dato su V il seguente prodotto scalare

hf (x), g(x), =if (0)g(π) + f (π)g(0)

i. Determinare la matrice associata a h·, ·i rispetto alla base {sin x, cos x, 1}. ii. Dire se il prodotto scalare `e degenere o meno e determinare lo spazio

radicale.

(6)

iv. Trovare una base ortogonale.

v. Trovare l’ortogonale del vettore p(x) = 2 sin x + 1.

Esercizio 8 Sia V lo spazio vettoriale generato su R dalle funzioni {sin x, cos x, 1} e sia dato su V il seguente prodotto scalare

hf (x), g(x), =if (0)g0(0) + f0(0)g(0)

i. Determinare la matrice associata a h·, ·i rispetto alla base {sin x, cos x, 1}. ii. Dire se il prodotto scalare `e degenere o meno e determinare lo spazio

radicale.

iii. Trovare, se esiste, un vettore isotropo non nullo. iv. Trovare una base ortogonale.

v. Trovare l’ortogonale del vettore p(x) = 2 cos x + sin x. Esercizio 9 Sia data su R3la matrice simmetrica

A =   0 −√3 √6 −√3 2 √2 6 √2 1  

i. Si determini una matrice ortogonale M che porti A in forma diagonale.

ii. Sia f   x1 x2 x3   =   x3 x2+ x1 x3+ x2 

 un’applicazione lineare; si determini la matrice associata all’aggiunta di f rispetto al prodotto scalare indotto da A nella base trovata al punto precedente.

Esercizio 10 Sia data su R3 la matrice simmetrica

A =   −1 1 0 1 −1 1 0 1 −1  

i. Si determini una matrice ortogonale M che porti A in forma diagonale.

ii. Sia f   x1 x2 x3   =   x2 x2+ x3 x3− x1 

 un’applicazione lineare; si determini la matrice associata all’aggiunta di f rispetto al prodotto scalare indotto da A nella base trovata al punto precedente.

Esercizio 11 Sia data su R3 la matrice simmetrica

A =   0 −3 1 −3 1 −3 1 −3 0  

(7)

i. Si determini una matrice ortogonale M che porti A in forma diagonale. ii. Sia f   x1 x2 x3  =   x1+ x3 2x2− 3x3 x1− x2+ 2x3 

un’applicazione lineare; si determini la matrice associata all’aggiunta di f rispetto al prodotto scalare indotto da A nella base trovata al punto precedente.

Esercizio 12 Sia data su R3 la matrice simmetrica

A =   2 0 1 0 3 0 1 0 2  

i. Si determini una matrice ortogonale M che porti A in forma diagonale.

ii. Sia f   x1 x2 x3   =   x1− x3 −4x3 x1− x2 

 un’applicazione lineare; si determini la matrice associata all’aggiunta di f rispetto al prodotto scalare indotto da A nella base trovata al punto precedente.

Esercizio 13 Sia data su R4 la matrice simmetrica

A =     1 2 0 0 2 1 0 0 0 0 1 2 0 0 2 1    

i. Si determini una matrice ortogonale M che porti A in forma diagonale.

ii. Sia f     x1 x2 x3 x4     =     x1− x4 −2x2 x3− x2 x4+ x2    

un’applicazione lineare; si determini la

matrice associata all’aggiunta di f rispetto al prodotto scalare indotto da A nella base trovata al punto precedente.

Esercizio 14 Sia data su R4 la matrice simmetrica

A =     2 0 0 1 0 2 1 0 0 1 2 0 1 0 0 2    

i. Si determini una matrice ortogonale M che porti A in forma diagonale.

ii. Sia f     x1 x2 x3 x4     =     x1− x2 −2x3 2x2− x4 x1+ 3x4    

un’applicazione lineare; si determini la

matrice associata all’aggiunta di f rispetto al prodotto scalare indotto da A nella base trovata al punto precedente.

(8)

2.1

Possibili varianti

Gli esercizi dello scritto saranno, probabilmente, del tipo riportato sopra, ma potrebbero comparire alcune varianti.

Ad esempio, una domanda possibile negli esercizi del primo tipo potrebbe essere:

Si trovi un piano iperbolico, se esiste.

Trovare un piano iperbolico equivale a trovare due vettori isotropi che non siano tra loro ortogonali; due tali vettori vanno cercati ovviamente fuori dal rad-icale. Un piccolo trucco: se sulla diagonale della matrice associata al prodotto scalare si trovano due zeri (il che vuol dire due vettori isotropi) e se agli altri due vertici del rettangolo individuato da quelle due caselle si trova un numero non nullo, i due vettori della base corrispondenti ai due zeri generano un piano iperbolico. Ad esempio, nella matrice

    0 1 2 0 1 −1 1 2 2 1 0 −2 0 2 −2 0    

possiamo trovare subito i due piani iperbolici Span{e1, e3} e Span{e3, e4},

men-tre non possiamo prendere e1, e4 in quanto gli elementi sulla diagonale sono s`ı

zero, ma lo sono anche gli altri due vertici del rettangolo (le posizioni (1, 4) e (4, 1)).

Ancora, nel primo esercizio, potrebbe comparire la domanda: Determinare lo spazio radicale del prodotto scalare

Questo `e anche un esercizio da test, ma potrebbe comunque comparire nello scritto. Ovviamente, vanno bene sia una base dello spazio radicale che una parametrizzazione.

Una possibile variante del secondo esercizio, invece, potrebbe essere: Si trovi la matrice associata all’aggiunta di f nella base canonica rispetto al prodotto scalare indotto dalla matrice A.

In questo caso, questa `e una semplificazione notevole: invece di dover cal-colare l’aggiunta nella base diagonalizzante, si deve svolgere tutto nella base canonica. Quindi `e simile agli esercizi del test che chiedono di trovare l’aggiunta di una certa applicazione rispetto ad un certo prodotto scalare. In particolare, se f `e associata alla matrice B rispetto alla base canonica, allora la sua aggiunta sar`a associata alla matrice A−1BtA, dove A `e la matrice del prodotto scalare,

sempre rispetto alla base canonica (quindi, per intenderci, non diagonale). Non ho inserito altri esercizi con queste richieste, in quanto basta che rifac-ciate i precedenti quattordici esercizi inserendo anche queste domande.

(9)

3

Brevi richiami

In questa sezione non vi sono soluzioni di esercizi specifici, ma vengono presentati i metodi risolutivi da usare.

3.1

Duale

Data una base di V composta dai vettori {v1, . . . , vn}, la base duale {v1∗, . . . , vn∗}

di V∗`e definita come

v∗i(vj) =



0 se i 6= j 1 se i = j

Quindi vi∗(a1v1+ . . . + anvn) = ai; se inoltre M `e un generico elemento di V∗,

M = λ1v∗1+ . . . + λnvn∗

e i coefficienti λi sono dati da

λi= M (vi)

In particolare, se v = a1v1+ . . . + anvn e M = λ1v1∗+ . . . + λnv∗n, allora

M (v) = a1λ1+ . . . + anλn

L’isomorfismo canonico tra V e V∗∗ `e dato da v 7→ φv

dove φv `e un elemento del biduale (ovvero un’applicazione lineare dal duale al

campo base) tale che

φv(M ) = M (v) ∀M ∈ V∗

. In particolare, se v = a1v1+ . . . + anvn e M = λ1v1∗+ . . . + λnv∗n, si ha

φv(M ) = a1λ1+ . . . + anλn

3.2

Cambi di base del prodotto scalare

Dato un prodotto scalare h·, ·i sullo spazio vettoriale V , la sua matrice nella base {v1, . . . , vn} `e data da      hv1, v1i hv1, v2i · · · hv1, vni hv2, v1i hv2, v2i · · · hv2, vni .. . ... . .. ... hvn, v1i hvn, v2i · · · hvn, vni     

(10)

3.3

Forme quadratiche e prodotti scalari

Ad ogni prodotto scalare `e associata la forma quadratica b(v) = hv, vi; avendo solo tale forma si pu`o ricostruire il prodotto scalare: hv, wi = (b(v + w) − b(v − w))/4.

Inoltre, dalla forma quadratica si pu`o ricavare direttamente la matrice del prodotto scalare rispetto alla base canonica: supponiamo di essere in R3 per semplicit`a e che sia data la forma quadratica

b(v) = av21+ bv22+ cv23+ dv1v2+ ev1v3+ f v2v3

Allora la matrice associata al prodotto scalare indotto da b rispetto alla base canonica `e   a d/2 e/2 d/2 b f /2 e/2 f /2 c  

(attenzione ai diviso 2 fuori dalla diagonale!!).

3.4

Segnatura

Un prodotto scalare `e degenere se e solo se il radicale dello spazio (V⊥) `e diverso da {0}; in pratica, ci`o significa che un prodotto scalare `e degenere se e solo se il determinante della matrice associata in una qualche base `e nullo e la dimensione dello spazio radicale `e la dimensione del nucleo. Inoltre, un prodotto scalare `e indefinito se esiste un vettore isotropo (ovvero tale che hv, vi = 0) che non stia in V⊥; in pratica, `e indefinito se la matrice associata in una qualche base ha due autovalori di segno diverso. Viceversa, `e definito positivo o negativo (e questo ha senso solo su R o pi`u in generale su un campo ordinato) se e solo se per ogni vettore non nullo si ha hv, vi > 0 (nel caso di positivo) o hv, vi < 0 (nel caso di negativo); in pratica vuol dire che tutti gli autovalori sono positivi o negativi. Infine `e semidefinito positivo (o negativo) se `e degenere e per ogni vettore non nullo si ha hv, vi ≥ 0 (o hv, vi ≤ 0); in pratica vuol dire che gli autovalori sono tutti nulli o positivi (o negativi).

Trucchi: Se sulla diagonale c’`e uno 0, il prodotto `e sicuramente indefinito (quello `e un vettore isotropo); se sulla diagonale ci sono un numero positivo e uno negativo, il prodotto `e sicuramente indefinito (corrispondono a due vettori uno con prodotto scalare con se stesso positivo, l’altro con prodotto scalare con se stesso negativo).

3.5

Sottospazio ortogonale

Il sottospazio ortogonale ad un vettore v =    v1 .. . vn  

rispetto al prodotto scalare h·, ·i `e l’insieme delle soluzioni del sistema lineare (ad una equazione ed n incognite) h    v1 .. . vn   ,    x1 .. . xn   i = 0

(11)

In particolare, se il prodotto scalare `e quello euclideo (o canonico) si ha v1x1+ . . . + vnxn= 0

Il sottospazio ortogonale al sottospazio generato dai due vettori v e w `e l’insieme delle soluzioni del sistema lineare (a due equazioni e n incognite



hv, xi = 0 hw, xi = 0

e se il prodotto scalare `e quello euclideo (o canonico) si ha 

v1x1+ . . . + vnxn = 0

w1x1+ . . . + wnxn = 0

E cos`ı via per gli ortogonali a sottospazi generati da pi`u vettori.

3.6

Lunghezze e angoli

La lunghezza di un vettore v rispetto al prodotto scalare h·, ·i esiste solo se questo `e definito positivo ed `e

kvk =phv, vi Nel caso del prodotto scalare canonico,

kvk = q

v2

1+ . . . + v2n

se v1, . . . , vnsono le coordinate di v rispetto alla base canonica (o pi`u in generale

rispetto ad una base ortonormale).

Similmente, l’angolo θ tra i due vettori v, w, sempre per un prodotto definito positivo, si definisce come

θ = arccos

 hv, wi kvkkwk



Ovvero, pi`u usualmente si dice che

cos θ = hv, wi kvkkwk Quindi, rispetto al prodotto scalare euclideo

cos θ = v1w1+ . . . + vnwn pv2

1+ . . . + vnpw12+ . . . + w2n

3.7

Applicazione aggiunta

L’applicazione aggiunta di f : V → V rispetto al prodotto scalare h·, ·i `e l’applicazioneaf : V → V tale che

(12)

per ogni v, w ∈ V . Se il prodotto scalare `e quello euclideo, la matrice di af

rispetto alla base canonica non `e altro che la trasposta della matrice di f rispetto alla base canonica.

Se invece il prodotto scalare `e associato, rispetto alla base canonica, alla matrice simmetrica A e f `e associata alla matrice B, alloraaf `e associata alla

matrice A−1BtA.

Se infine abbiamo ottenuto una matrice ortogonale M tale che MtAM = eA

`

e diagonale, nella base formata dalle colonne di M l’aggiunta di f `e associata alla matrice

e

A−1MtBtM eA

3.8

Basi ortogonali

Per trovare una base ortogonale per un prodotto scalare si applica il metodo di Lagrange a partire da una base qualsiasi (di solito quella canonica). In breve, il metodo si compone di tre mosse:

1. se hv1, v1i 6= 0, si sostituisce ogni vettore vi con vi−hv1 ,vii

hvi,vii;

2. se hv1, v1i = 0 ma c’`e un vi tale che hvi, vii 6= 0, si scambiano v1 e vi e si

torna al passo 1;

3. se per ogni i si ha hvi, vii = 0, ma esistono i, j tali che hvi, vji 6= 0, si

mette vi+ vj al posto di v1 e si mette v1 al posto di vi (o di vj), a meno

che v1 non sia gi`a uno dei due vettori, allora si mette vi+ vj al posto di

v1e basta.

Dopo aver applicato il primo passo, si ottiene una nuova base e si ricomincia, escludendo il primo vettore e considerando solo dal secondo in poi; dopo il secondo passo si considereranno i vettori dal terzo in poi e cos`ı via. Se non si pu`o applicare nessuna delle tre mosse, la matrice che rimane `e tutta nulla, quindi la base `e gi`a ortogonale.

Nel caso il prodotto scalare sia definito positivo, si applicher`a sempre la prima mossa e, una volta terminato il processo, dividendo ogni vettore della base per la propria norma (ovvero perphv, vi), si otterr`a una base ortonormale.

3.9

Diagonalizzazione tramite matrici ortogonali

Per diagonalizzare una matrice simmetrica A tramite matrici ortogonali si pro-cede come segue: si trova una base di autovettori di A, data da {v1, . . . , vn}

e si applica il procedimento di Grahm- Schmidt (oppure Lagrange pi`u la nor-malizzazione finale) rispetto al prodotto scalare euclideo a tale base. Si noti che, per il teorema spettrale, gli autovettori relativi ad autovalori diversi sono gi`a ortogonali, quindi basta applicare l’ortodiagonalizzazione solo ai gruppi di autovettori dello stesso autovalore.

E’ importante ricordarsi sempre di normalizzare i vettori (rispetto al prodot-to scalare euclideo), ovvero di dividere perpv2

1+ . . . + v2n, per ottenere alla fine

una base di vettori di norma 1.

I vettori cos`ı trovati formano le colonne di una matrice M tale che Mt =

M−1, quindi M−1AM = MtAM `e una matrice diagonale e la base trovata `e

contemporaneamente ortogonale per A e ortonormale per il prodotto scalare euclideo.

(13)

3.10

Vettori isotropi

Se il prodotto scalare `e degenere, un vettore isotropo non nullo `e semplicemente un elemento del nucleo della matrice associata; oppure, se nella matrice c’`e uno zero sulla diagonale, diciamo in posizione (i, i), allora vuol dire che hvi, vii = 0,

con vi l’i−esimo elemento della base, quindi quello `e un vettore isotropo.

Se invece il prodotto scalare `e non degenere e definito (positivo o negativo) il vettore isotropo non esiste.

Se infine il prodotto scalare `e indefinito e non degenere (e non vi sono 0 sulla diagonale), si pu`o procedere come segue: si scrive un vettore incognito x =    x1 .. . xn   e si calcola h    x1 .. . xn   ,    x1 .. . xn   i = x tAx

che sar`a un polinomio nelle variabili xi di grado 2. Si vuole trovare dei numeri

x1, . . . , xn che annullano questa espressione; un metodo possibile `e assegnare

valori a n − 1 di queste variabili (valori facili, ad esempio 0,1 o −1) e cercare di ricavare l’ultima variabile di modo che tutto faccia 0. Attenzione, questo metodo non funziona sempre al primo colpo, perch´e l’equazione `e di grado 2 e non `e detto che si possa risolvere per ogni valore messo a caso nelle prime variabili, quindi eventualmente si pu`o provare a cambiare i valori assegnati.

4

Risposte numeriche per i test

1.   1 1/2 1/3   2. 2 3. 3 4. −1 5.   1 2 4   6. 3 7. 2 8.   0 1 1   9.  1 −1 −1 3 

(14)

10.   0 0 1 0 1 −1 1 −1 3   11.   2 2 4 2 4 5 4 5 7   12. −4 19 19 4  13. {1/2 < α < 1/2 +√5/2} ∪ {α < 1/2 −√5/2} 14. nessun α. 15. α = 0,√2, −√2 16.   −4 0 1  ,   0 1 0   17.     1 −1 −1 0     ,     0 0 0 1     18.   2 1 0  ,   −3 0 1   19.   −1 1 0  ,   1 0 1   20. √3 21. 3√2 22. 0 23. af   x1 x2 x3  =   x1− x2 x2+ 2x3 3x1+ x3   24. af   x1 x2 x3  =   x3 x1+ x2− x3 −x1   25. af   x1 x2 x3  =   0 0 x1+ x2+ x3   26. af   x1 x2 x3  =   −x2 −x1− x3 x1+ x2  

(15)

27. non degenere, indefinito 28. non degenere, indefinito 29. non degenere definito positivo 30. 2

31. 1 32. 1.

Riferimenti

Documenti correlati

Le configurazioni di due vettori applicati in un punto O del piano o dello spazio possono essere classificate nel modo seguente: (1) due vettori non allineati (in particolare ciascuno

Si ricavi la formula per la matrice inversa di una matrice non singolare di ordine 2, specializzando la formula generale (cfr. Lezione IX).. Si verifichi la correttezza della

[r]

Cosi’ come la definizione di lunghezza per n qualsiasi e’ puramente algebrica, anche gli argomenti che useremo per mostrarne le proprieta’ saranno puramente

 Le giaciture di due rette parallele

Determinare la tensione del cavo se il corpo ruota intorno al punto P compiendo 1 giro al secondo.. Esprimere il risultato in newton (

L’energia meccanica totale del punto si conserva durante il moto poiché gli attriti sono trascurabili. Determinare la reazione vincolare del piano

I Se x0 e un vettore di due componenti fzero assume che x0 ` e un intervallo e che il segno di fun(x0(1)) e diverso del segno di fun(x0(2))... Che cosa si osserva sulla velocit` a