• Non ci sono risultati.

Buchsbaum rings

N/A
N/A
Protected

Academic year: 2021

Condividi "Buchsbaum rings"

Copied!
183
0
0

Testo completo

(1)
(2)

❆◆❊▲▲■ ❉■ ❇❯❈❍❙❇❆❯▼

▼❛✉#♦ ▼❛❝❝✐♦♥✐ ✶✽ ▲✉❣❧✐♦ ✷✵✶✸

(3)
(4)

■♥❞✐❝❡

■♥"#♦❞✉③✐♦♥❡ ✶ ✶ +#❡❧✐♠✐♥❛#✐ ✽ ✶✳✶ ❆♥❡❧❧✐ ❡❞ ■❞❡❛❧✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽ ✶✳✷ ▼♦❞✉❧✐ ❡ ❙♦00♦♠♦❞✉❧✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✼ ✶✳✸ ❉❡❝♦♠♣♦7✐③✐♦♥❡ ♣9✐♠❛9✐❛ ❞✐ ✐❞❡❛❧✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✼ ✶✳✹ ❆♥❡❧❧✐ ❡ ▼♦❞✉❧✐ ❞✐ ❢9❛③✐♦♥✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼✵ ✷ ❆♥❡❧❧✐ ❞✐ ❈♦❤❡♥✲▼❛❝❛✉❧❛② ✼✼ ✷✳✶ ❉✐♠❡♥7✐♦♥❡ ❡❞ ❆❧0❡③③❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼✼ ✷✳✷ ■❧ ❚❡♦9❡♠❛ ❞❡❧❧✬✐❞❡❛❧❡ ♣9✐♥❝✐♣❛❧❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽✵ ✷✳✸ ❆♥❡❧❧✐ ❞✐ ❈♦❤❡♥✲▼❛❝❛✉❧❛② ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾✶ ✷✳✸✳✶ ❆♥❡❧❧✐ ❞✐ ❈♦❤❡♥✲▼❛❝❛✉❧❛② ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾✶ ✷✳✸✳✷ ❆✲7✉❝❝❡77✐♦♥✐ ❡ ♣9♦❢♦♥❞✐0D ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾✾ ✸ ❆♥❡❧❧✐ ❞✐ ❇✉❝❤;❜❛✉♠ ✶✷✾ ✸✳✶ ❉❡❝♦♠♣♦7✐③✐♦♥❡ ♣9✐♠❛9✐❛ ❞✐ ▼♦❞✉❧✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷✾ ✷

(5)

✸✳✷ ❆♥❡❧❧✐ ❞✐ ❇✉❝❤-❜❛✉♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✸✾ ✸✳✸ ▲✬✐♥✈❛6✐❛♥7❡ I (A) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✻✶

❇✐❜❧✐♦❣&❛✜❛ ✶✼✼

(6)

■♥"#♦❞✉③✐♦♥❡

◆❡❧❧♦ $%✉❞✐♦ ❞❡❧❧❛ ▼❛%❡♠❛%✐❝❛ ♦❞✐❡-♥❛✱ $❡♠♣-❡ ❞✐ ♣✐1 $✐ ❛❜❜❛♥❞♦♥❛ ❧❛ ♣✉-❛ $❡%%♦-✐❛❧✐%3 ❞❡✐ -✐$✉❧%❛%✐ ❡ ❞❡❧❧❡ ❛-❣♦♠❡♥%❛③✐♦♥✐ ✐♥ ❢✉♥③✐♦♥❡ ❞✐ $%✉❞✐ ♣✐1 ❵✐♥%❡-❛%%✐✈✐✬ ❡❞ ✐♥%❡-❞✐$❝✐♣❧✐♥❛-✐✱ ♦ $❡ ♥♦♥ ❛❧%-♦ ❞✐ ❡❧❛✲ ❜♦-❛③✐♦♥✐ ❝❤❡ ❛❜❜✐❛♥♦ ✜♥✐ ♣✐1 ❛♠♣✐ ❞❡❧❧❛ $❡♠♣❧✐❝❡ ❛✉%♦-❡❢❡-❡♥③✐❛✲ ❧✐%3✳ ❉❛%♦ ✐❧ $✉♦ -✉♦❧♦ ❜❛$✐❧❛-❡ ♥❡❧ $❡♥$♦ ❞❡❣❧✐ $%-✉♠❡♥%✐ ❡ ❞❡❧ ❧✐♥✲ ❣✉❛❣❣✐♦ ✭✐❧ %❡-♠✐♥❡ ❆❧❣❡❜-❛ ❞❡-✐✈❛ ❞❛❧❧✬❛-❛❜♦✱ ❛❧✲˘g❛❜-✱ ❝❤❡ $✐❣♥✐✜❝❛ ✉♥✐♦♥❡✱ ❝♦♥♥❡$$✐♦♥❡ ♦ ❝♦♠♣❧❡%❛♠❡♥%♦✱ ♠❛ ❛♥❝❤❡ ❛❣❣✐✉$%❛-❡✮✱ ❧✬❆❧✲ ❣❡❜-❛ ✭❡ ❧❛ ●❡♦♠❡%-✐❛ ❛❧❣❡❜-✐❝❛✮ ❣✐♦❝❛♥♦ ✉♥ ♠❛%❝❤ ❝❤✐❛✈❡ C✉❛♥❞♦ $✐ ✈✉♦❧❡ -❛❣✐♦♥❛-❡ ✐♥ C✉❡$%♦ $❡♥$♦✱ $♣❡❝✐❡ ♣❡-❝❤D ❧♦ $❝♦♣♦ ❞❡❧❧✬❆❧✲ ❣❡❜-❛ ✐♥ $❡ ❝♦♥$✐$%❡✱ ✐♥ $✐♥%❡$✐✱ ♥❡❧❧♦ $%✉❞✐❛-❡ ♣❛-%✐❝♦❧❛-✐ $%-✉%%✉-❡ ✭❛❧❣❡❜-✐❝❤❡✱ ❛♣♣✉♥%♦✮✱ ❞♦✈❡ ❡✈❡♥%✉❛❧✐ ❛♣♣❧✐❝❛③✐♦♥✐ ♦ ❡❧❛❜♦-❛③✐♦♥✐ ♠❛%❡♠❛%✐❝❤❡✱ ❣❡♦♠❡%-✐❝❤❡✱ ❛♥❛❧✐%✐❝❤❡✱ ✜$✐❝♦✲♠❛%❡♠❛%✐❝❤❡✱ ✐♥❣❡❣♥❡-✲ ✐$%✐❝❤❡✱ ❡%❝✳ ✈❛♥♥♦ ❛ ✈✐✈❡-❡✳ ✶

(7)

◆❡❧❧❛ ❢❛%%✐'♣❡❝✐❡✱ ✐❧ ♠❛♥♦'❝.✐%%♦ ✐♥ ♦❣❣❡%%♦ %.❛%%❛ ❞✐ '%.✉%%✉.❡ ❛❧❣❡✲ ❜.✐❝❤❡ ❝♦♥♦'❝✐✉%❡ ❝♦♠❡ ❛♥❡❧❧✐ ✭♠♦❞✉❧✐✮ ❞✐ ❇✉❝❤'❜❛✉♠✱ ♣❛''❛♥❞♦ ♣❡. ❛❧%.❡ '%.✉%%✉.❡ ♣.❡❧✐♠✐♥❛.✐ ❞❡%%❡ ❛♥❡❧❧✐ ✭♠♦❞✉❧✐✮ ❞✐ ❈♦❤❡♥✲▼❛❝❛✉❧❛② ✭❈✲▼✮ ❡ '✐ ♣.❡✜❣❣❡ ❧♦ '❝♦♣♦ '♦'%❛♥③✐❛❧❡ ❞✐ ❝❛.❛%%❡.✐③③❛.❧❡ '♦%%♦ ♦❣♥✐ ❛'♣❡%%♦✳ ❙✉❧❧❛ '❝✐❛ ❞✐ ?✉❛♥%♦ ❣✐@ ♣.❡♠❡''♦✱ '✐ ✈✉♦❧❡ ❞❛.❡ ✉♥✬✐♥✲ ?✉❛❞.❛%✉.❛ ❣❡♥❡.❛❧❡ '✉❣❧✐ '❝♦♣✐ ❡ ❧❡ ♣♦''✐❜✐❧✐%@ ❝❤❡ ❞❡.✐✈❛♥♦ ❞❛❧❧♦ '%✉❞✐♦ '✐'%❡♠❛%✐❝♦ ❞✐ ?✉❡'%✐ ♦❣❣❡%%✐✱ ♦❧%.❡ ❝❤❡ ❛❞ ✉♥❛ ❝❛.❛%%❡.✐③✲ ③❛③✐♦♥❡ ❛❝❝❡''✐❜✐❧❡ ❛✐ ♣✐C ❞❡❣❧✐ ♦❣❣❡%%✐ '%❡''✐✱ ❝❤❡ ❞✐ ♣❡. '❡ ✈❡♥❣♦♥♦ %.❛%%❛%✐ ✐♥ '❡❞❡ ❞✐ ❛'%.❛③✐♦♥❡✳ ■♥ ♣.✐♠♦ ❧✉♦❣♦✱ ♥♦%✐❛♠♦ ❝❤❡ ✐❧ ❝♦♥❝❡%%♦ ❞✐ ❛♥❡❧❧♦ ❞✐ ❈♦❤❡♥✲▼❛❝❛✉❧❛② ✈✐❡♥❡ ✐♥%.♦❞♦%%♦ ❛❧❧✬✐♥✐③✐♦ ❞❡❧ 1900✱ ❞❛❧ ♠❛%❡♠❛%✐❝♦ ❋✳❙✳ ▼❛❝❛✉❧❛②✱ ❝♦♥ ✐❧ ❚❡♦#❡♠❛ ❞✐ ▼❛❝❛✉❧❛②✱ ✐❧ ?✉❛❧❡ ❛✛❡.♠❛ ❝❤❡ ♣❡. ❣❧✐ ✐❞❡❛❧✐ ❞❡❧❧✬❛♥❡❧❧♦ C [X1, ..., Xn] ❞✐ ❛❧%❡③③❛ t ❡ ❣❡♥❡.❛%✐ ❞❛ ❡'❛%%❛♠❡♥%❡ t ❡❧❡♠❡♥%✐✱ ✐ ♣.✐♠✐ ❛''♦❝✐❛%✐ ❛❜❜✐❛♥♦ %✉%%✐ ❧❛ ♠❡❞❡'✐♠❛ ❛❧%❡③③❛✱ ♣❛.✐ ♣.♦♣.✐♦ ❛ t❀ ✐❧ ♥♦♠❡ ❞✐ ❈♦❤❡♥ ✈✐❡♥❡ ❛❣❣✐✉♥%♦ ❛❧❧❛ ♥♦♠❡♥❝❧❛%✉.❛ ♠❛%❡♠❛%✐❝❛ ❞✐ %❛❧✐ ♦❣❣❡%%✐ ♣❡.❝❤H ❡❣❧✐ ❞✐♠♦'%.I ❧❛ ♣.♦♣.✐❡%@ ❞✐ ♣✉.❡③✲ ③❛ .✐'♣❡%%♦ ❛❧❧✬❛❧%❡③③❛ ♣❡. ✉♥❛ ❝❧❛''❡ ❞✐ ❛♥❡❧❧✐ ❞✐✈❡.'✐ ❞❛❣❧✐ ❛♥❡❧❧✐ ❞✐ ♣♦❧✐♥♦♠✐ '✉❞❞❡%%✐✳ ❈♦♠❡ '✐ ✐♥%✉✐'❝❡ ❢❛❝✐❧♠❡♥%❡ ❞❛❧❧❡ ❉❡✜♥✐③✐♦♥✐ ✷

(8)

❡ ❝❛#❛$$❡#✐③③❛③✐♦♥✐ #✐♣♦#$❛$❡ ♥❡✐ ❈❛♣✐$♦❧✐ ✷ ❡ ✸✱ ❧❡ /$#✉$$✉#❡ ❇✉❝❤/✲ ❜❛✉♠ /♦♥♦ ✉♥ ✐♥❞❡❜♦❧✐♠❡♥$♦ ❞✐ 7✉❡❧❧❡ ❈✲▼❀ ✉♥ #✐/✉❧$❛$♦ ❝❤❡ ♠♦/$#❛ ❝♦♥ ❡✈✐❞❡♥③❛ 7✉❡/$♦ ❢❛$$♦ < ✉♥ #✐/✉❧$❛$♦ ❞❡❧ 1984✱ ❞✐ ❆♥♥❛ ▲♦#❡✲ ♥③✐♥✐✱ ❝❤❡✱ $#❛♠✐$❡ ✐❧ ♣#♦❝❡//♦ ❞✐ ❧♦❝❛❧✐③③❛③✐♦♥❡ ✭/✐ ✈❡❞❛ ✐❧ ❈❛♣✐$♦❧♦ ✶✮✱ ♠❡$$❡ ✐♥ #❡❧❛③✐♦♥❡ ❣❧✐ ❛♥❡❧❧✐ ✭♠♦❞✉❧✐✮ ❞✐ ❇✉❝❤/❜❛✉♠ ❡ ❞✐ ❈♦❤❡♥✲ ▼❛❝❛✉❧❛②✳ ▲❛ $❡♦#✐❛ ❞❡❣❧✐ ❛♥❡❧❧✐ ✭♠♦❞✉❧✐✮ ❞✐ ❇✉❝❤/❜❛✉♠ ♣❛#$❡ ✉❢✲ ✜❝✐❛❧♠❡♥$❡ ♥❡❧ 1965✱ ❞❛❧❧❛ #✐/♣♦/$❛ ♥❡❣❛$✐✈❛ ❛❞ ✉♥ 7✉❡/✐$♦ ♣♦/$♦ ❞❛❧ ♠❛$❡♠❛$✐❝♦ ❉✳❆✳ ❇✉❝❤/❜❛✉♠ /✉❧❧❛ ♣♦//✐❜✐❧✐$G ❝❤❡ ❧❛ 7✉❛♥$✐$G I(A) = L (A/I)−e (I, A)✱ ❞♦✈❡ A < ✉♥ ❛♥❡❧❧♦ ❝♦♠♠✉$❛$✐✈♦ ✉♥✐$❛#✐♦ ◆♦❡$❤❡#✐❛♥♦ ❧♦❝❛❧❡ ❡❞ I ✉♥ ✐❞❡❛❧❡ ♣❛#❛♠❡$#♦ ❞✐ A ✭❝✐♦< ✉♥ ✐❞❡❛❧❡ ❣❡♥❡#❛$♦ ❞❛ ✉♥ /✐/$❡♠❛ ❞✐ ♣❛#❛♠❡$#✐ ❞✐ A✮✱ ❢♦//❡ ✉♥ ✐♥✈❛#✐❛♥$❡ ♣❡# A✳ ❈✐I < ✈❡#✐✜❝❛$♦ ✐♥✈❡❝❡ ❞❛❣❧✐ ❛♥❡❧❧✐ ✭♠♦❞✉❧✐✮ ❞✐ ❇✉❝❤/❜❛✉♠✱ ❝♦♥✲ ❝❡$$♦ ❵♠❛$❡#✐❛❧♠❡♥$❡✬ ✐♥$#♦❞♦$$♦ ✐♥ ✉♥❛ ♣✉❜❜❧✐❝❛③✐♦♥❡ ❞✐ ❏✳ ❙$N❝❦#❛❞ ❡ ❲✳ ❱♦❣❡❧ ♥❡❧ 1973 ✭❬✽❪✮✳ ❉❛ ✉♥ ♣✉♥$♦ ❞✐ ✈✐/$❛ ✐♥$❡#❞✐/❝✐♣❧✐♥❛#❡✱ ❧♦ /$✉❞✐♦ ❞✐ $✉$$❡ 7✉❡/$❡ ♣#♦♣#✐❡$G ♣❡# ❣❧✐ ❛♥❡❧❧✐ ✭♠♦❞✉❧✐✮ < ✈❛♥$❛❣❣✐♦/♦✱ ♣❡# ❡/❡♠♣✐♦✱ ♥❡❧✲ ❧✬❛♠❜✐$♦ ❞❡❧❧❛ ●❡♦♠❡$#✐❛ ❛❧❣❡❜#✐❝❛✳ ■♥ ♣#✐♠❛ ❜❛$$✉$❛✱ /✐ ♣✉I ♥♦$❛#❡ ❝♦♠❡ ✉♥ ❝♦♥❝❡$$♦ ❛❧❣❡❜#✐❝❛♠❡♥$❡ ❜❛/✐❧❛#❡ ♣❡# ❛✛#♦♥$❛#❡ ❧♦ /$✉❞✐♦ ✸

(9)

❞❡✐ #✉❞❞❡%%✐ ❛♥❡❧❧✐ ✭♠♦❞✉❧✐✮✱ ♦✈✈❡/♦ ❧❛ ❞❡❝♦♠♣♦#✐③✐♦♥❡ ♣/✐♠❛/✐❛ ❞✐ ✐❞❡❛❧✐✱ ♣♦/%✐ #✉❜✐%♦ ❞❡✐ ✈❛♥%❛❣❣✐ ✐♥ ♠❡/✐%♦ ❛❧❧❛ %/❛%%❛③✐♦♥❡ ❞❡❧❧❡ ❞❡✲ ❝♦♠♣♦#✐③✐♦♥✐ ✐♥ ❝♦♠♣♦♥❡♥%✐ ✐//✐❞✉❝✐❜✐❧✐ ❞❡❧❧❡ ✈❛/✐❡%6 ❛❧❣❡❜/✐❝❤❡✳ ▼❛ ♣✐: ♥❡❧❧♦ #♣❡❝✐✜❝♦✱ ❧❛ ♣/♦♣/✐❡%6 ❞✐ ✉♥ ❛♥❡❧❧♦ ✭♠♦❞✉❧♦✮ ❞✐ ❡##❡/❡ ❞✐ ❇✉❝❤#❜❛✉♠ ♦ ❞✐ ❈✲▼ > ♥❡❝❡##❛/✐❛ ♣❡/ ♠♦❧%❡ ?✉❡#%✐♦♥✐ ❛♣❡/%❡ #✐❛ ♥❡❧✲ ❧✬❆❧❣❡❜/❛ ❝♦♠♠✉%❛%✐✈❛ ❝❤❡ ♥❡❧❧❛ ●❡♦♠❡%/✐❛ ❛❧❣❡❜/✐❝❛✱ ♣❡/ ❡#❡♠♣✐♦ ❧❛ ❝❧❛##✐✜❝❛③✐♦♥❡ ❞❡❧❧❡ ❝✉/✈❡ ❛❧❣❡❜/✐❝❤❡ ♥❡❧❧♦ #♣❛③✐♦ ♣/♦✐❡%%✐✈♦ %/✐❞✐✲ ♠❡♥#✐♦♥❛❧❡ ♦ ❧♦ #%✉❞✐♦ ❞❡❧❧❡ #✐♥❣♦❧❛/✐%6 ❞❡❧❧❡ ✈❛/✐❡%6 ❛❧❣❡❜/✐❝❤❡❀ #✐ ♣✉D ♣♦/%❛/❡ ✉♥ ❡#❡♠♣✐♦ ✭❬✾❪✱ ♣❛❣✐♥❛ 17✮✿ %/❛♠✐%❡ ❧❛ %❡♦/✐❛ ❞❡❣❧✐ ❛♥❡❧✲ ❧✐ ❞✐ ❇✉❝❤#❜❛✉♠✱ ♣/❡#❛ ✉♥❛ ❝✉/✈❛ ✐//✐❞✉❝✐❜✐❧❡ ❡ ♥♦♥ #✐♥❣♦❧❛/❡C ♥❡❧❧♦ #♣❛③✐♦ ♣/♦✐❡%%✐✈♦ ❛ %/❡ ❞✐♠❡♥#✐♦♥✐ ❝❤❡ ❛❜❜✐❛ ❣❡♥❡/❡ 3 ❡ ❣/❛❞♦ 6✱ ❝♦♥ ✐❞❡❛❧❡ ❛##♦❝✐❛%♦ I(C)✱ ❛❧❧♦/❛ #❡❣✉❡ ❝❤❡ ❧❛ ❝✉/✈❛ ♦ > ❛/✐%♠❡%✐❝❛♠❡♥%❡ ❞✐ ❈♦❤❡♥✲▼❛❝❛✉❧❛②✱ ♦ > ❛/✐%♠❡%✐❝❛♠❡♥%❡ ❞✐ ❇✉❝❤#❜❛✉♠✱ ❞♦✈❡ ❛/✐%✲ ♠❡%✐❝❛♠❡♥%❡ ❞✐ ❈♦❤❡♥✲▼❛❝❛✉❧❛② ✭❇✉❝❤#❜❛✉♠✮ #✐❣♥✐✜❝❛ ❝❤❡ ❧✬❛♥❡❧❧♦ ❞❡❧❧❡ ❝♦♦/❞✐♥❛%❡ ♣/♦✐❡%%✐✈❡✱ K [X0, X1, X2, X3] /I(C)✱ > ✉♥ ❛♥❡❧❧♦ ❞✐ ❈✲▼ ✭❇✉❝❤#❜❛✉♠✮✳ ●✐6 ♥❡❧ 1881 ✐❧ ♠❛%❡♠❛%✐❝♦ ❋✳ ❙❝❤✉/ ❛✈❡✈❛ ✐♥✲ ❞✐✈✐❞✉❛%♦ ✉♥❛ ♣/✐♠❛ ❞✐✛❡/❡♥③✐❛③✐♦♥❡ %/❛ ❧❡ ❝✉/✈❡ #♦♣/❛ ❝✐%❛%❡✱ ❞✐ ❣❡♥❡/❡ 3 ❡ ❣/❛❞♦ 6✳ ✹

(10)

❡" ❝♦♥❝❧✉❞❡"❡✱ ❞✐❛♠♦ ✉♥♦ -❣✉❛"❞♦ ❛❧❧❛ -/"✉//✉"❛ ❞❡❧ /❡-/♦✱ ♣❡" ❢❛❝✐❧✐/❛"❡ ❛❧ ❧❡//♦"❡ ❧❛ "✐❝❡"❝❛ ❞✐ ❡✈❡♥/✉❛❧✐ ♥♦③✐♦♥✐ ♣❛"/✐❝♦❧❛"✐✿ ❧❛ /❡-✐ -✐ ❞✐✈✐❞❡ ✐♥ /"❡ ❈❛♣✐/♦❧✐✱ ❞✐ ❝✉✐ ✐❧ ♣"✐♠♦ 6 ❞✐ ♥❛/✉"❛ ❞❡❧ /✉//♦ ♣"❡❧✐♠✐♥❛"❡ ❡ ❝♦♥-/❛ ❞✐✿ • ✉♥ ♣"✐♠♦ ♣❛"❛❣"❛❢♦✱ ❞♦✈❡ -✐ ❢♦"♥✐-❝♦♥♦ ❧❡ ♥♦③✐♦♥✐✱ ❣❧✐ ❡-❡♠♣✐ ❡ ❧❡ ♣"♦♣"✐❡/7 ❜❛-✐❧❛"✐ ❞✐ ❛♥❡❧❧♦✱ -♦//♦❛♥❡❧❧♦✱ ❛♥❡❧❧♦ 9✉♦③✐❡♥/❡✱ ✐❞❡❛❧❡ ♣"✐♠♦✱ ♠❛--✐♠❛❧❡✱ ❞✐ ❏❛❝♦❜-♦♥✱ ♥✐❧"❛❞✐❝❛❧❡✱ "❛❞✐❝❛❧❡✱ ❞✐ ♠♦"✜-♠♦ ❞✐ ❛♥❡❧❧✐❀ • ✉♥ -❡❝♦♥❞♦ ♣❛"❛❣"❛❢♦✱ ❞♦✈❡ -✐ ♣❛"❧❛ ❞✐ ♠♦❞✉❧✐✱ -♦//♦♠♦❞✉❧✐ ❡ ❧♦"♦ ♠♦"✜-♠✐✱ ✐♥ ✈❡-/❡ ❞✐ ❣❡♥❡"❛❧✐③③❛③✐♦♥❡ ❞❡✐ ❝♦♥❝❡//✐ ❡-♣♦-/✐ ♥❡❧ ♣❛"❛❣"❛❢♦ ♣"❡❝❡❞❡♥/❡❀ • ✉♥ /❡"③♦ ♣❛"❛❣"❛❢♦✱ ❞♦✈❡ ❝✐ -✐ ♦❝❝✉♣❛✱ ♥❡❧ ❞❡//❛❣❧✐♦✱ ❞❡❧❧❛ ❞❡✲ ❝♦♠♣♦-✐③✐♦♥❡ ♣"✐♠❛"✐❛ ❞✐ ✐❞❡❛❧✐✱ ♦✈✈❡"♦ ❢♦"♥✐-❝❡ ✐ ❝♦♥❝❡//✐ ❡ ❧❡ ♣"♦♣"✐❡/7 ❞❡❣❧✐ ✐❞❡❛❧✐ ♣"✐♠❛"✐ ❡❞ I✲♣"✐♠❛"✐ ❡ -✈✐-❝❡"❛ ❧❡ ❝❛"❛/✲ /❡"✐③③❛③✐♦♥✐ -✉❧❧❛ ♣♦--✐❜✐❧✐/7 ❝❤❡ ✉♥ ✐❞❡❛❧❡ -✐❛ -❝"✐//♦ ❝♦♠❡ ✜♥✐✲ /❛ ✐♥/❡"-❡③✐♦♥❡ ✐""✐❞♦♥❞❛♥/❡ ❞✐ ✐❞❡❛❧✐ ♣"✐♠❛"✐✱ ✐ ❝✉✐ "❛❞✐❝❛❧✐ -♦♥♦ ❣❧✐ ✐❞❡❛❧✐ ❛--♦❝✐❛/✐ ✭♣"✐♠✐✮ ❞❡❧❧✬✐❞❡❛❧❡ ❞✐ ♣❛"/❡♥③❛✳ ❈✐C 6 ❢♦♥❞❛♠❡♥/❛❧❡ ♣❡" /✉//♦ ✐❧ "❡-/♦ ❞❡❧❧❛ /❡-✐✳ ✺

(11)

• ✉♥ "✉❛$%♦ ♣❛$❛❣$❛❢♦✱ ❞❡❞✐❝❛%♦ ❛❧ ❝♦♥❝❡%%♦ ❞✐ ❧♦❝❛❧✐③③❛③✐♦♥❡✱ ❢♦♥❞❛♠❡♥%❛❧❡ ♣❡$ ✐❧ ♣$♦2✐❡❣✉♦ ❞❡❧❧✬❡❧❛❜♦$❛%♦✳ ■❧ 2❡❝♦♥❞♦ ❈❛♣✐%♦❧♦ 2✐ ❝♦♥❝❡♥%$❛ 2✉❣❧✐ ❛♥❡❧❧✐ ❞✐ ❈♦❤❡♥✲▼❛❝❛✉❧❛② ❡❞ < 2%$✉%%✉$❛%♦ ❝♦♠❡ 2❡❣✉❡✿ • ✐❧ ♣$✐♠♦ ♣❛$❛❣$❛❢♦ ♣$❡2❡♥%❛ ✐ ❝♦♥❝❡%%✐ ❞✐ ❛❧%❡③③❛ ❡ ❞✐♠❡♥2✐♦♥❡ ♣❡$ ❛♥❡❧❧✐ ❡❞ ✐❞❡❛❧✐✳ • ■❧ 2❡❝♦♥❞♦ ♣❛$❛❣$❛❢♦ 2✐ ♦❝❝✉♣❛ ❞❡❧ ❚❡♦#❡♠❛ ❞❡❧❧✬✐❞❡❛❧❡ ♣#✐♥✐❝✲ ✐♣❛❧❡ ❡ 2✉❛ ❞✐♠♦2%$❛③✐♦♥❡ ❞❡%%❛❣❧✐❛%❛✳ • ■❧ %❡$③♦ ♣❛$❛❣$❛❢♦ ♣$❡2❡♥%❛ ❣❧✐ ❛♥❡❧❧✐ ❞✐ ❈♦❤❡♥ ▼❛❝❛✉❧❛② ✈❡$✐ ❡ ♣$♦♣$✐✱ ♣❛$%❡♥❞♦ ❞❛❧ ❚❡♦#❡♠❛ ❞✐ ▼❛❝❛✉❧❛②✱ ♣❛22❛♥❞♦ ❛❧❧❛ ❉❡✜♥✐③✐♦♥❡ ❞✐ 2%$✉%%✉$❛ ❞✐ ❈✲▼ ❡ ❞❛♥❞♦♥❡ ❛♥❝❤❡ ✈❛$✐❡ ❝❛$❛%✲ %❡$✐③③❛③✐♦♥✐✱ ♣❡$ ♣♦✐ ❝♦♥❝❡♥%$❛$2✐ 2✉✐ ❝♦♥❝❡%%✐ ❞✐ A✲2✉❝❝❡22✐♦♥✐ ❡ 2✐2%❡♠✐ ❞✐ ♣❛$❛♠❡%$✐✱ 2❢$✉%%❛♥❞♦❧✐✱ ❞❛ ✉♥ ❧❛%♦✱ ♣❡$ ❛♥❞❛$❡ ❛ 2❛❜✐❧✐$❡ "✉❛♥❞♦ ✉♥ ❛♥❡❧❧♦ < ♦ ♥♦♥ < ❈♦❤❡♥✲▼❛❝❛✉❧❛②✱ ❢♦❝❛❧✐③✲ ③❛♥❞♦ ❛♥❝❤❡ 2✉❣❧✐ ❛♥❡❧❧✐ ❧♦❝❛❧✐ ❡ ❞❛❧❧✬❛❧%$♦✱ ♣❡$ ❞❛$❡ ✉♥❛ ✈❡$2✐♦♥❡ ♣✐? ❣❡♥❡$❛❧❡ ❞❡❧ ❚❡♦#❡♠❛ ❞✐ ▼❛❝❛✉❧❛②✳ ✻

(12)

■♥✜♥❡✱ ✐❧ '❡(③♦ ❡❞ ✉❧'✐♠♦ ❈❛♣✐'♦❧♦ 1✐ ♦❝❝✉♣❛ ❞❡❣❧✐ ❛♥❡❧❧✐ ✭♠♦❞✉❧✐✮ ❞✐ ❇✉❝❤1❜❛✉♠ ✈❡(✐ ❡ ♣(♦♣(✐✱ ❛♥❞❛♥❞♦ ❛ ❝♦1'✐'✉✐(❡ ❧❛ ♣❛('❡ ❝❡♥'(❛❧❡ ❞❡❧ '❡1'♦✳ ■♥ ♣(✐♠❛ ❜❛''✉'❛✱ 1✐ ❣❡♥❡(❛❧✐③③❛ ❛✐ ♠♦❞✉❧✐ ❡❞ ❛✐ 1♦''♦♠♦✲ ❞✉❧✐ <✉❛♥'♦ ❢❛''♦ ❛❧ ❈❛♣✐'♦❧♦ ✷✱ 1❡❝♦♥❞♦ ♣❛(❣(❛❢♦✱ ♣❡( ♣♦✐ ❞❡✜♥✐(❡ ✐ ❝♦♥❝❡''✐ ❞✐ 1✐1'❡♠❛ ❞✐ ♣❛(❛♠❡'(✐ (✐❞♦''♦ ❡ ❞✐ A✲1✉❝❝❡11✐♦♥❡ ❞❡❜♦❧❡✱ '(❛♠✐'❡ ✐ <✉❛❧✐ 1✐ ♣✉? ♣❛11❛(❡ ✜♥❛❧♠❡♥'❡ ❛ ❞✐1❝✉'❡(❡ ❞❡❧❧❡ 1'(✉''✉(❡ ❞✐ ❇✉❝❤1❜❛✉♠ ❡ ❞❡❧❧✬✐♥✈❛(✐❛♥'❡ 1✉❞❞❡''♦✱ I(A)✳ ✼

(13)

❈❛♣✐$♦❧♦ ✶

()❡❧✐♠✐♥❛)✐

■ !✐❢❡!✐♠❡♥'✐ ♣!✐♥❝✐♣❛❧✐ ♣❡! ,✉❡.'♦ ❝❛♣✐'♦❧♦ .♦♥♦ ✐ '❡.'✐ ❞✐ ❇♦.❝❤ ❬✸❪ ❡ ❞✐ ▼✳❋✳❆'✐②❛❤✱ ■✳●✳ ▼❛❝❉♦♥❛❧❞ ❬✶❪✳

✶✳✶ ❆♥❡❧❧✐ ❡❞ ■❞❡❛❧✐

❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✶✳ ❯♥ ❛♥❡❧❧♦ ❝♦♠♠✉)❛)✐✈♦ ✉♥✐)❛,✐♦ - ✉♥ ✐♥.✐❡♠❡ A ✐♥ ❝✉✐ .♦♥♦ ❞❡✜♥✐)❡ ❞✉❡ ♦♣❡,❛③✐♦♥✐ ❜✐♥❛,✐❡✱ ❞✬❛❞❞✐③✐♦♥❡ ❡ ♣,♦❞♦)✲ )♦✱ ✐♥❞✐❝❛)❡ ✉.✉❛❧♠❡♥)❡ ❝♦♥ ❵+✬ ❡ ❵·✬✱ )❛❧✐ ❝❤❡✿ ✶✳ ❆ - ✉♥ ❣,✉♣♣♦ ❛❜❡❧✐❛♥♦✱ ✐✳❡✳ ❝♦♠♠✉)❛)✐✈♦✱ ,✐.♣❡))♦ ❛❧❧✬❛❞✲ ❞✐③✐♦♥❡❀ ✽

(14)

✷✳ ❧❛ ♠♦❧&✐♣❧✐❝❛③✐♦♥❡ - ❛..♦❝✐❛&✐✈❛✱ ♦✈✈❡1♦

∀x, y, z ∈ A, (x · y) · z = x · (y · z) ❡❞ ❛♥❝❤❡ ❞✐.&1✐❜✉&✐✈❛ 1✐.♣❡&&♦ ❛❧❧✬❛❞❞✐③✐♦♥❡✱ ♦✈✈❡1♦

∀x, y, z ∈ A, x · (y + z) = x · y + x · z, (y + z) · x = y · x + z · x ✸✳ ✈❛❧❡ ❧❛ ♣1♦♣1✐❡&8 ❝♦♠♠✉&❛&✐✈❛ ♣❡1 ❧❛ ♠♦❧&✐♣❧✐❝❛③✐♦♥❡✱ ♦✈✈❡1♦

∀x, y ∈ A, x · y = y · x

✹✳ ❡.✐.&❡ ❡❞ - ✉♥✐❝♦ ✉♥ ❡❧❡♠❡♥&♦ ❞❡&&♦ ♥❡✉&1♦ ✭❞❡❧❧❛ ♠♦❧&✐♣❧✐✲ ❝❛③✐♦♥❡✮ ♦ ✐❞❡♥&✐❝♦ ✭❞✐ A✮ ❝❤❡ .✐ ✐♥❞✐❝❛ ❝♦♥ 1✱ &❛❧❡ ❝❤❡

∀x ∈ A, x · 1 = 1 · x = x ❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✷✳ ❉✬♦#❛ ✐♥ ♣♦✐ ✉)✐❧✐③③❡#❡♠♦ .❡♠♣❧✐❝❡♠❡♥)❡ ❧❛ ♥♦)❛③✐♦♥❡ xy ♣❡# ✐♥❞✐❝❛#❡ ❧❛ ♠♦❧)✐♣❧✐❝❛③✐♦♥❡ ❞✐ ❞✉❡ 1✉❛❧.✐❛.✐ ❡❧❡✲ ♠❡♥)✐ ❞✐ ✉♥ ❣❡♥❡#✐❝♦ ❛♥❡❧❧♦ A✱ ❛❧ ♣♦.)♦ ❞✐ x · y✳ ❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✸✳ ◆❡❧ ❝♦#.♦ ❞❡❧❧❛ )#❛))❛③✐♦♥❡✱ ♥♦♥ ❡.❝❧✉❞❡#❡♠♦ ❝❤❡ ❧✬❡❧❡♠❡♥)♦ ✐❞❡♥)✐❝♦ 1 ❞❡❧❧✬❛♥❡❧❧♦ A ♣♦..❛ ❡..❡#❡ ✉❣✉❛❧❡ ❛ ③❡#♦❀ ✐♥ )❛❧ ❝❛.♦✱ x = x1 = x0 = 0, ∀x ∈ A ✾

(15)

♣❡" ❝✉✐ &✐ ♦((✐❡♥❡ ❝❤❡ A = {0} ❡ ❞✐"❡♠♦ ❝❤❡ ❧✬❛♥❡❧❧♦ A 0 ❧✬❛♥❡❧❧♦ ♥✉❧❧♦✱ ✐♥❞✐❝❛♥❞♦❧♦ ❛♥❝❤❡✱ ❝♦♥ ✉♥ ❛❜✉&♦ ❞✐ ♥♦(❛③✐♦♥❡✱ &❡♠♣❧✐❝❡♠❡♥(❡ ❝♦♥ 0✳ ❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✹✳ ❉❛ ♦"❛ ✐♥ ♣♦✐✱ ("❛♥♥❡ ✉❧(❡"✐♦"✐ &♣❡❝✐✜❝❛③✐♦♥✐✱ ❝❤✐❛♠❡"❡♠♦ ✉♥ ❛♥❡❧❧♦ ❝♦♠♠✉(❛(✐✈♦ ✉♥✐(❛"✐♦✱ ♦✈✈❡"♦ ✉♥ ❛♥❡❧❧♦ A &♦❞❞✐&❢❛❝❡♥(❡ ❧❛ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✶✱ ❛♥❡❧❧♦✳ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✺✳ ❙✐❛♥♦ A ✉♥ ❛♥❡❧❧♦ ❡❞ S ⊂ A ✉♥ )✉♦ )♦**♦✐♥✲ )✐❡♠❡❀ S . ❞❡**♦ )♦**♦❛♥❡❧❧♦ ❞✐ A )❡ ❡ )♦❧♦ )❡ S . ❝❤✐✉)♦ 1✐)♣❡**♦ ❛❧❧✬❛❞❞✐③✐♦♥❡ ❡❞ ❛❧❧❛ ♠♦❧*✐♣❧✐❝❛③♦♥❡ ❞✐ A ❡ ❧✬❡❧❡♠❡♥*♦ ✐❞❡♥*✐❝♦ ❞✐ A✱ 1✱ ❛♣♣❛1*✐❡♥❡ ❛❞ S✳ ❖✈✈✐❛♠❡♥*❡ A . )♦**♦❛♥❡❧❧♦ ❞✐ )❡ )*❡))♦✳ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✻✳ ❙✐❛♥♦ A✱ B ❞✉❡ ❛♥❡❧❧✐❀ ✉♥ ♦♠♦♠♦1✜)♠♦ ❞✐ ❛♥❡❧❧✐ . ✉♥❛ ❢✉♥③✐♦♥❡ f : A −→ B *❛❧❡ ❝❤❡ ✶✳ f 1✐)♣❡**❛ ❧✬❛❞❞✐③✐♦♥❡✱ ♦✈✈❡1♦ f (x + y) = f (x) + f (y), ∀x, y ∈ A ✷✳ f 1✐)♣❡**❛ ❧❛ ♠♦❧*✐♣❧✐❝❛③✐♦♥❡✱ ♦✈✈❡1♦ f (xy) = f (x)f (y), ∀x, y ∈ A ✶✵

(16)

✸✳ f "✐$♣❡''❛ ❧✬❡❧❡♠❡♥'♦ ♥❡✉'"♦ ❞❡❧❧❛ ♠♦❧'✐♣❧✐❝❛③✐♦♥❡✱ ♦✈✈❡"♦ f (1A) = 1B

❝♦♥ 1A ❧✬❡❧❡♠❡♥'♦ ♥❡✉'"♦ ♠♦❧'✐♣❧✐❝❛'✐✈♦ ❞✐ A✱ 1B 4✉❡❧❧♦ ❞✐ B✳

❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✼✳ ▲❛ ❝♦♠♣♦&✐③✐♦♥❡ ❞✐ ♦♠♦♠♦,✜&♠✐ ,✐♠❛♥❡ ✉♥ ♦♠♦♠♦♠♦,✜&♠♦ ❡ ❧✬✐♥❝❧✉&✐♦♥❡ ❝❛♥♦♥✐❝❛ ✐♥ ✉♥ ❛♥❡❧❧♦ A ❞✐ ✉♥ &✉♦ &♦11♦❛♥❡❧❧♦ S✱ i : S −→ A✱ 3 ✉♥ ♦♠♦♠♦,✜&♠♦ ❞✐ ❛♥❡❧❧✐✳

❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✽✳ ❙✐❛ A ✉♥ ❛♥❡❧❧♦✳ ❯♥ $♦''♦✐♥$✐❡♠❡ I ❞✐ A 7 ✉♥ ✐❞❡❛❧❡ ❞✐ A $❡ ❡ $♦❧♦ $❡ I 7 ✉♥ $♦''♦❣"✉♣♣♦ ❛❞❞✐'✐✈♦ ❞✐ A ❡ ✈❛❧❡

AI ⊆ I ⇐⇒ xy ∈ I, ∀x ∈ A, ∀y ∈ I

❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✾✳ ❙✐❛♥♦ A ✉♥ ❛♥❡❧❧♦✱ I ✉♥ &✉♦ ✐❞❡❛❧❡ ❡ ❝♦♥✲ &✐❞❡,✐❛♠♦ ✐❧ ❣,✉♣♣♦ 8✉♦③✐❡♥1❡ A/I = {x + I : x ∈ A}✳ ❆❧❧♦,❛ A/I ❡,❡❞✐1❛ ❞❛ A ❧✬♦♣❡,❛③✐♦♥❡ ❞✐ ♠♦❧1✐♣❧✐❝❛③✐♦♥❡ ❝♦♥ 1✉11❡ ❧❡ ❜✉♦♥❡ ♣,♦✲ ♣,✐❡1; ❞❡❧❧❛ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✶✱ ❞✐✈❡♥❡♥❞♦ ❞✉♥8✉❡ ✉♥ ❛♥❡❧❧♦✱ ♥❡❧ &❡♥&♦ ❞❡❧❧❛ ♠❡❞❡&✐♠❛ ❉❡✜♥✐③✐♦♥❡✱ ❞❡11♦ ❛♥❡❧❧♦ 8✉♦③✐❡♥1❡✳ ❙✐ ♥♦1✐ ❝❤❡ ❧❛ ♣,♦✐❡③✐♦♥❡ ❝❛♥♦♥✐❝❛ π : A −→ A/I, x 7−→ x + I 3 ❜❛♥❛❧✲ ♠❡♥1❡ &✉,✐❡11✐✈❛ ❡❞ ✉♥ ♦♠♦♠♦,✜&♠♦ ❞✐ ❛♥❡❧❧✐✳ ✶✶

(17)

❉❛"✐ x, y ∈ A✱ ♥❡❧ (❡❣✉✐"♦ ✉(❡,❡♠♦ ❧❛ ♥♦"❛③✐♦♥❡ x ≡ y mod I✱ ✐♥"❡♥❞❡♥❞♦ ❝❤❡ x − y ∈ I✳ ❉✐❛♠♦ ♦,❛ ✉♥ ,✐(✉❧"❛"♦ ❞✐ ♥❛"✉,❛ ❣❡♥❡,❛❧❡✿ !♦♣♦$✐③✐♦♥❡ ✶✳✶✳✶✵✳ ❙✐❛ A ✉♥ ❛♥❡❧❧♦✱ I ✉♥ )✉♦ ✐❞❡❛❧❡ ❡ π : x 7−→ x + I ❧❛ ♣,♦✐❡③✐♦♥❡ ❝❛♥♦♥✐❝❛❀ ❛❧❧♦,❛ ❡)✐)0❡ ✉♥❛ ❝♦,,✐)♣♦♥❞❡♥③❛ ❜✐✲ ✉♥✐✈♦❝❛ 0,❛ ❣❧✐ ✐❞❡❛❧✐ J ❞✐ A 0❛❧✐ ❝❤❡ I ⊆ J ❡ ❣❧✐ ✐❞❡❛❧✐ ¯J ❞✐ A/I✱ ❞❛0❛ ❞❛ J = π−1"¯ J ✳ ❚❛❧❡ ❝♦,,✐)♣♦♥❞❡♥③❛ ♣,❡)❡,✈❛ ❧❡ ✐♥❝❧✉)✐♦♥✐✳ ❖$$❡!✈❛③✐♦♥❡ ✶✳✶✳✶✶✳ ❙✐❛♥♦ A✱ B ❞✉❡ ❛♥❡❧❧✐ ❡ f : A −→ B ✉♥ ♦♠♦♠♦,✜(♠♦ ❞✐ ❛♥❡❧❧✐❀ ❛❧❧♦,❛ ✐❧ ♥✉❝❧❡♦ ❞✐ f✱ ker(f) = f−1(0)✱ 7 ✉♥ ✐❞❡❛❧❡ I ❞✐ A✱ ♠❡♥",❡ ❧✬✐♥(✐❡♠❡ ❞❡❧❧❡ ✐♠♠❛❣✐♥✐ ❞✐ f✱ ℑ(f) = f(A)✱ 7 ✉♥ (♦""♦❛♥❡❧❧♦ C ❞✐ B❀ ✐♥♦❧",❡✱ f ✐♥❞✉❝❡ ✉♥ ✐(♦♠♦,✜(♠♦ ❞✐ ❛♥❡❧❧✐ ✭♦✈✈❡,♦ ✉♥ ♦♠♦♠♦,✜(♠♦ ❜✐✐❡""✐✈♦ ❞✐ ❛♥❡❧❧✐✱ ❧❛ ❝✉✐ ✐♥✈❡,(❛ 7 ❛♥❝♦,❛ ✉♥ ♦♠♦♠♦,✜(♠♦ ❞✐ ❛♥❡❧❧✐✮ ",❛ A/I ❡ C✳ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✶✷✳ ❯♥♦ ③❡,♦ ❞✐✈✐)♦,❡ ✐♥ ✉♥ ❛♥❡❧❧♦ A 9 ✉♥ ❡❧❡✲ ♠❡♥0♦ ❞✐ A ❝❤❡ ❞✐✈✐❞❡ ❧♦ ③❡,♦✱ ♦✈✈❡,♦ 9 ✉♥ x ∈ A 0❛❧❡ ❝❤❡ ❡)✐)0❡ ❛❧♠❡♥♦ ✉♥ y ∈ A, y 6= 0✱ 0❛❧❡ ❝❤❡ xy = 0✳ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✶✸✳ ❯♥ ❛♥❡❧❧♦ A ♣,✐✈♦ ❞✐ ③❡,♦ ❞✐✈✐)♦,✐ ❞✐✈❡,)✐ ❞❛ ③❡,♦ ❡ ❞♦✈❡ 1 6= 0 9 ❞❡00♦ ❞♦♠✐♥✐♦ ❞✐ ✐♥0❡❣,✐0;✳ ✶✷

(18)

❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✶✹✳ ▲✬❛♥❡❧❧♦ ❞✐ ♥✉♠❡+✐ +❡❧❛,✐✈✐✱ Z✱ / ✉♥ ❞♦♠✐♥✐♦ ❞✐ ✐♥,❡❣+✐,1✱ ❝♦34 ❝♦♠❡ ❧✬❛♥❡❧❧♦ ❞❡✐ ♣♦❧✐♥♦♠✐ ✐♥ n✲✐♥❞❡,❡+♠✐♥❛,❡✱ K [X1, ..., Xn]✱ ❝♦♥ K ✉♥ ❝❛♠♣♦✳ ■❧ ❝♦♥❝❡,,♦ ❞✐ ❝❛♠♣♦ / ❝❤✐❛+✐,♦ ❞❛❧❧❡ 3❡❣✉❡♥,✐ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✶✺✳ ❙✐❛ ✉♥ ❛♥❡❧❧♦❀ x ∈ A ) ✉♥✬✉♥✐+, -❡ ❡ -♦❧♦ -❡ ❞✐✈✐❞❡ 1✱ ♦✈✈❡1♦ ❞❡✈❡ ❡-✐-+❡1❡ y ∈ A +❛❧❡ ❝❤❡ xy = 1✳ ❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✶✻✳ ❉❛❧❧❛ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✶✺✱ 3✐ ❞❡❞✉❝❡ 3✉❜✐,♦ ❝❤❡ ❧✬❡❧❡♠❡♥,♦ y ❞✐ A ❛33♦❝✐❛,♦ ❛❧❧✬✉♥✐,1 x / ✉♥✐✈♦❝❛♠❡♥,❡ ❞❡,❡+♠✐✲ ♥❛,♦ ❞❛❧❧✬✉♥✐,1 3,❡33❛ ❡ 3❝+✐✈✐❛♠♦ ❞✉♥<✉❡ y = x−1✳ ▲❡ ✉♥✐,1 ✐♥ A ❢♦+♠❛♥♦ ❡✈✐❞❡♥,❡♠❡♥,❡ ✉♥ ❣+✉♣♣♦ ♠♦❧,✐♣❧✐❝❛,✐✈♦ ❛❜❡❧✐❛♥♦✳ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✶✼✳ ❯♥ ❝❛♠♣♦ ) ✉♥ ❛♥❡❧❧♦ A +❛❧❡ ❝❤❡ 1 6= 0 ❡❞ ♦❣♥✐ -✉♦ ❡❧❡♠❡♥+♦ ♥♦♥ ♥✉❧❧♦ ) ✉♥✬✉♥✐+,✳ ❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✶✽✳ ❖❣♥✐ ❝❛♠♣♦ / ❜❛♥❛❧♠❡♥,❡ ✉♥ ❞♦♠✐♥✐♦ ❞✐ ✐♥,❡❣+✐,1✱ ♠❛ ♥♦♥ ✈✐❝❡✈❡+3❛✱ ❝♦♠❡ ♠♦3,+❛ ❧✬❡3❡♠♣✐♦ ❞❡❧❧✬❛♥❡❧❧♦ Z✳ ❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✶✾✳ ❙✐❛ A ✉♥ ❛♥❡❧❧♦ ❡ x ∈ A❀ ♣❡+ ♦❣♥✐ a ∈ A✱ ✐ ♠✉❧,✐♣❧✐ ax ❞✐ x ❢♦+♠❛♥♦ ✉♥ ✐❞❡❛❧❡ ❞✐ A ❞❡,,♦ ♣+✐♥❝✐♣❛❧❡ ✭✐♥ ♣+❛,✐❝❛✱ ❝♦♥ ❵♣+✐♥❝✐♣❛❧❡✬ 3✐ ✐♥,❡♥❞❡ ❝❤❡ ✉♥ ✐❞❡❛❧❡ / ✜♥✐,❛♠❡♥,❡ ❣❡♥❡+❛,♦ ❞❛ ✶✸

(19)

✉♥ "♦❧♦ ❡❧❡♠❡♥'♦ ❞✐ A✮✱ ❝❤❡ ✐♥❞✐❝❤✐❛♠♦ ❝♦♥ < x > ♦ Ax✳ ❈❛1❛'✲ '❡1✐③③✐❛♠♦ ✉♥✬✉♥✐'5 ❞✐ A✱ ❛""❡1❡♥❞♦ ❝❤❡ x ∈ A 6 ✉♥✬✉♥✐'5 "❡ ❡ "♦❧♦ "❡ < x >= A =< 1 >✳ ❈♦♥ ❧♦ "'❡""♦ ❛❜✉"♦ ❞✐ ♥♦'❛③✐♦♥❡ ✐♥✈♦✲ ❝❛'♦ ♥❡❧❧✬❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✸✱ ✐♥❞✐❝❤❡1❡♠♦ ❧✬✐❞❡❛❧❡ ♥✉❧❧♦ < 0 > "❡♠♣❧✐❝❡♠❡♥'❡ ❝♦♥ 0✳ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✷✵✳ ❙✐❛ A ✉♥ ❛♥❡❧❧♦❀ x ∈ A ) ❞❡++♦ ❡❧❡♠❡♥+♦ ♥✐❧♣♦+❡♥+❡ .❡ ❡ .♦❧♦ .❡ xn = 0 ♣❡/ 0✉❛❧❝❤❡ n ∈ N✳ ❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✷✶✳ ❯♥ ❡❧❡♠❡♥'♦ ❞✐ ✉♥ ❛♥❡❧❧♦ A ❝❤❡ "✐❛ ♥✐❧♣♦✲ '❡♥'❡✱ 1✐"✉❧'❛ ✉♥♦ ③❡1♦ ❞✐✈✐"♦1❡✱ ♠❛ ♥♦♥ ✈✐❝❡✈❡1"❛✳ 1#♦♣♦!✐③✐♦♥❡ ✶✳✶✳✷✷✳ ❙✐❛ A 6= 0 ✉♥ ❛♥❡❧❧♦❀ ❛❧❧♦/❛ .♦♥♦ ❡0✉✐✈❛❧❡♥✲ +✐✿ ✶✳ A ) ✉♥ ❝❛♠♣♦❀ ✷✳ ✐ .♦❧✐ ✐❞❡❛❧✐ ❞✐ A .♦♥♦ 0 ❡ < 1 >❀ ✸✳ ♣❡/ ♦❣♥✐ f : A −→ B ♦♠♦♠♦/✜.♠♦ ❞✐ ❛♥❡❧❧✐✱ ❝♦♥ B ✉♥ ❛♥❡❧❧♦✱ f ) ✐♥✐❡++✐✈♦✳ ■♥'1♦❞✉❝✐❛♠♦ ♦1❛ ❞✉❡ ❝♦♥❝❡''✐ ❢♦♥❞❛♠❡♥'❛❧✐ ♣❡1 ✐❧ "❡❣✉✐'♦ ❞❡❧❧❛ ✶✹

(20)

!❛ ❛③✐♦♥❡✱ ♦✈✈❡!♦ *✉❡❧❧♦ ❞✐ ✐❞❡❛❧❡ ♣!✐♠♦ ❡ *✉❡❧❧♦ ❞✐ ✐❞❡❛❧❡ ♠❛00✐✲ ♠❛❧❡✿ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✷✸✳ ❙✐❛♥♦ A ✉♥ ❛♥❡❧❧♦ ❡❞ I ✉♥ )✉♦ ✐❞❡❛❧❡✳ ❉✐❝✐❛✲ ♠♦ ❝❤❡ I 0 ✉♥ ✐❞❡❛❧❡ ♣2✐♠♦ )❡ ❡ )♦❧♦ )❡ I 6=< 1 > ❡ ✈❛❧❡ xy ∈ I =⇒ x ∈ I ∨ y ∈ I ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✷✹✳ ❙✐❛♥♦ A ✉♥ ❛♥❡❧❧♦ ❡❞ I ✉♥ )✉♦ ✐❞❡❛❧❡✳ ❉✐✲ ❝✐❛♠♦ ❝❤❡ I 0 ✉♥ ✐❞❡❛❧❡ ♠❛))✐♠❛❧❡ )❡ ❡ )♦❧♦ )❡ I 6=< 1 > ❡ ✈❛❧❡ ∀J ⊆ A|I ⊆ J ⊆ A =⇒ I = J ∨ J = A ❝♦♥ J ✉♥ ✐❞❡❛❧❡ ❞✐ A✳ ❉✐❛♠♦ ♦!❛ ❛❧❝✉♥❡ ❝❛!❛ ❡!✐③③❛③✐♦♥✐ ✉ ✐❧✐ ✐♥ ♠❡!✐ ♦ ❛❣❧✐ ✐❞❡❛❧✐ ♣!✐♠✐ ❡ ♠❛00✐♠❛❧✐ ♥❡❧❧❛ 0❡❣✉❡♥ ❡ ❖--❡.✈❛③✐♦♥❡ ✶✳✶✳✷✺✳ ❙✐❛ I ✉♥ ✐❞❡❛❧❡ ❞✐ ✉♥ ❛♥❡❧❧♦ A❀ ❛❧❧♦!❛✿ ✶✳ I : ♣!✐♠♦ 0❡ ❡ 0♦❧♦ 0❡ ✐❧ *✉♦③✐❡♥ ❡ A/I : ✉♥ ❞♦♠✐♥✐♦ ❞✐ ✐♥ ❡❣!✐ ;❀ ✐♥ ♣❛! ✐❝♦❧❛!❡✱ ❧✬✐❞❡❛❧❡ ♥✉❧❧♦ 0 : ♣!✐♠♦ 0❡ ❡ 0♦❧♦ 0❡ A : ✉♥ ❞♦♠✐♥✐♦ ❞✐ ✐♥ ❡❣!✐ ;✳ ✷✳ I : ♠❛00✐♠❛❧❡ 0❡ ❡ 0♦❧♦ 0❡ ✐❧ *✉♦③✐❡♥ ❡ A/I : ✉♥ ❝❛♠♣♦✳ ✶✺

(21)

✸✳ ❙❡ I $ ♠❛''✐♠❛❧❡✱ ❛❧❧♦,❛ $ ❛♥❝❤❡ ♣,✐♠♦✱ ♠❛ ♥♦♥ ✈✐❝❡✈❡,'❛✳ ✹✳ ▲❛ !♦♣♦$✐③✐♦♥❡ ✶✳✶✳✶✵ ❝♦♥4✐♥✉❛ ❛ ✈❛❧❡,❡ ♣❡, ❣❧✐ ✐❞❡❛❧✐ ♣,✐♠✐ ✐♥ ♣❛,4✐❝♦❧❛,❡✳ ❖$$❡!✈❛③✐♦♥❡ ✶✳✶✳✷✻✳ ❙✐❛♥♦ A✱ B ❛♥❡❧❧✐✱ f : A −→ B ✉♥ ♦♠♦♠♦,✲ ✜'♠♦ ❞✐ ❛♥❡❧❧✐✱ I ✉♥ ✐❞❡❛❧❡ ♣,✐♠♦ ❞✐ B ❡ J ✉♥ ✐❞❡❛❧❡ ♠❛''✐♠❛❧❡ ❞✐ B✳ ❆❧❧♦,❛✱ ❞❛❧❧✬❖$$❡!✈❛③✐♦♥❡ ✶✳✶✳✷✺ f−1(I) $ ✉♥ ✐❞❡❛❧❡ ♣,✐♠♦ ❞✐

A✱ ✐♥ <✉❛♥4♦ A/f−1(I) $ ✐'♦♠♦,❢♦ ❛❞ ✉♥ '♦44♦❛♥❡❧❧♦ ❞✐ B/I ❡ ♣❡,❝✐> ♥♦♥ ♣♦''✐❡❞❡ ❞✐✈✐'♦,✐ ❞✐ ③❡,♦ ❞✐✈❡,'✐ ❞❛ ③❡,♦✱ ,✐'✉❧4❛♥❞♦ ❞✉♥<✉❡ ✉♥ ❞♦♠✐♥✐♦ ❞✐ ✐♥4❡❣,✐4@ ✭'✐ ✈❡❞❛ ❧❛ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✶✸✮✳ C❡, ❝✐> ❝❤❡ ,✐❣✉❛,❞❛ f−1(J)✱ ❝❡,4❛♠❡♥4❡ ❡''♦ $ ❞✐ ♥✉♦✈♦ ✉♥ ✐❞❡❛❧❡ ♣,✐♠♦ ❞✐ A ❞❛❧❧✬❖$$❡!✈❛③✐♦♥❡ ✶✳✶✳✷✺ '❡♥③❛ ♣❡,> ❡''❡,❡ ✐♥ ❣❡♥❡,❛❧❡ ✉♥ '✉♦ ✐❞❡❛❧❡ ♠❛''✐♠❛❧❡✱ ❝♦♠❡ ♠♦'4,❛ ✐❧ ❝❛'♦ ✐♥ ❝✉✐ A = Z✱ B = Q✱ J = 0 ❡❞ f $ ❧✬✐♥❝❧✉'✐♦♥❡ ❝❛♥♦♥✐❝❛ ❞✐ A ✐♥ B✳ ❈♦♠❡ ❣✐@ ❛♥4✐❝✐♣❛4♦✱ ✐ ❝♦♥❝❡44✐ ❞✐ ✐❞❡❛❧✐ ♠❛''✐♠❛❧❡ ❡ ♣,✐♠♦ '♦♥♦ ❢♦♥❞❛♠❡♥4❛❧✐ ♣❡, ❧♦ '4✉❞✐♦ ❞❡❧❧✬❛❧❣❡❜,❛ ❝♦♠♠✉4❛4✐✈❛❀ ✐ '❡❣✉❡♥4✐ ❚❡♦!❡♠❛ ❡ '✉♦✐ ❈♦!♦❧❧❛!✐ ❢♦,♥✐'❝♦♥♦ ,✐'✉❧4❛4✐ ✐♥ ♠❡,✐4♦ ❛❧❧✬❡'✐'4❡♥✲ ③❛ ❞✐ ✐❞❡❛❧✐ ♠❛''✐♠❛❧✐ ❡ <✉✐♥❞✐✱ ❞❛❧❧✬❖$$❡!✈❛③✐♦♥❡ ✶✳✶✳✷✺✱ ♣,✐♠✐ ✐♥ ✉♥ ❛♥❡❧❧♦ A✳ ✶✻

(22)

❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✷✼✳ ❯♥ ✐♥#✐❡♠❡ S ♥♦♥ ✈✉♦)♦ * ❞❡))♦ ♣❛.③✐❛❧♠❡♥)❡ ♦.❞✐♥❛)♦ #❡ ❡ #♦❧♦ #❡ ✈✐ ❡#✐#)❡ ✉♥❛ .❡❧❛③✐♦♥❡ ≤ )❛❧❡ ❝❤❡✿ ✶✳ ≤ * .✐✢❡##✐✈❛✱ ✷✳ ≤ * ).❛♥#✐)✐✈❛ ❡ ✸✳ ≤ * ❛♥)✐#✐♠♠❡).✐❝❛✳ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✷✽✳ ❯♥ #♦))♦✐♥#✐❡♠❡ T ❞✐ ✉♥ ✐♥#✐❡♠❡ S * ✉♥❛ ❝❛)❡♥❛ ❞✐ S #❡ ❡ #♦❧♦ #❡ T * )♦)❛❧♠❡♥)❡ ♦.❞✐♥❛)♦✳ ▲❡♠♠❛ ✶✳✶✳✷✾ ✭❞✐ ❩♦3♥✮✳ ❙✐❛ S ✉♥ ✐♥#✐❡♠❡ ♥♦♥ ✈✉♦)♦ ❡ ♣❛.③✐❛❧✲ ♠❡♥)❡ ♦.❞✐♥❛)♦✳ ❆❧❧♦.❛✱ #❡ ♣❡. ♦❣♥✐ T ⊆ S ❝❛)❡♥❛ ❞✐ S ❡#✐#)❡ x ∈ S )❛❧❡ ❝❤❡ t ≤ x ♣❡. ♦❣♥✐ t ∈ T ✱ S ♣♦##✐❡❞❡ ✉♥ ❡❧❡♠❡♥)♦ ♠❛##✐♠❛❧❡✳ ❚!❛♠✐%❡ ✐❧ ▲❡♠♠❛ ✶✳✶✳✷✾ (✐ ❞✐♠♦(%!❛ ✐❧ (❡❣✉❡♥%❡ ❚❡♦3❡♠❛ ✶✳✶✳✸✵✳ >❡. ♦❣♥✐ ❛♥❡❧❧♦ A✱ ❡#✐#)❡ #❡♠♣.❡ ❛❧♠❡♥♦ ✉♥ ✐❞❡❛❧❡ ♠❛##✐♠❛❧❡✳ ❈♦3♦❧❧❛3✐♦ ✶✳✶✳✸✶✳ ❙✐❛ I 6=< 1 > ✉♥ ✐❞❡❛❧❡ ❞✐ ✉♥ ❛♥❡❧❧♦ A❀ ❛❧❧♦.❛ ❡#✐#)❡ #❡♠♣.❡ ✉♥ ✐❞❡❛❧❡ ♠❛##✐♠❛❧❡ ❞✐ A✱ J✱ )❛❧❡ ❝❤❡ I ⊆ J✳ ✶✼

(23)

❈♦"♦❧❧❛"✐♦ ✶✳✶✳✸✷✳ ❙✐❛ A ✉♥ ❛♥❡❧❧♦❀ ❛❧❧♦)❛ ♣❡) ♦❣♥✐ x ∈ A ,❛❧❡ ❝❤❡ x ♥♦♥ / ✉♥✬✉♥✐,1 ❞✐ A✱ ❡4✐4,❡ ✉♥ ✐❞❡❛❧❡ ♠❛44✐♠❛❧❡ J ❞✐ A ,❛❧❡ ❝❤❡ x ∈ J✳ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✸✸✳ ❯♥ ❛♥❡❧❧♦ A ,❛❧❡ ❝❤❡ 4♦❞❞✐4✜ ❧❛ ❝♦♥❞✐③✐♦♥❡ ❞✐ 4,❛③✐♦♥❛)✐❡,1 ♣❡) ❧❡ ❝❛,❡♥❡ ❞✐4❝❡♥❞❡♥,✐ ❞✐ 4✉♦✐ ✐❞❡❛❧✐✱ ♦✈✈❡)♦ ,❛❧❡ ❝❤❡ ∀ I1 ⊇ I2 ⊇ ... ⊇ In ⊇ In+1 ⊇ ..., ∃m ∈ N|Ii = Im, ∀i ≥ m / ❞❡,,♦ ❆),✐♥✐❛♥♦✳ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✸✹✳ ❯♥ ❛♥❡❧❧♦ A ✐♥ ❝✉✐ ♦❣♥✐ ✐❞❡❛❧❡ 4✐❛ ✜♥✐,❛♠❡♥,❡ ❣❡♥❡)❛,♦ / ❞❡,,♦ ◆♦❡,❤❡)✐❛♥♦✳ 0"♦♣♦2✐③✐♦♥❡ ✶✳✶✳✸✺✳ ❙✐❛ A ✉♥ ❛♥❡❧❧♦✳ ❆❧❧♦)❛ 4♦♥♦ ❡=✉✐✈❛❧❡♥,✐✿ ✶✳ A / ◆♦❡,❤❡)✐❛♥♦✳ ✷✳ ❱❛❧❡ ❧❛ ❝♦♥❞✐③✐♦♥❡ ❞✐ 4,❛③✐♦♥❛)✐❡,1 ♣❡) ❧❡ ❝❛,❡♥❡ ❛4❝❡♥❞❡♥,✐ ❞✐ ✐❞❡❛❧✐ ❞✐ A ✭❝✳❝✳❛✳✮✱ ♦✈✈❡)♦ ∀ I1 ⊆ I2 ⊆ ... ⊆ In ⊆ In+1 ⊆ ..., ∃m ∈ N|Ii = Im, ∀i ≥ m ✶✽

(24)

❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✸✻✳ ❙✐❛ A ✉♥ ❛♥❡❧❧♦✳ ❙❡ A ) ♥♦❡*❤❡,✐❛♥♦✱ ❛❧❧♦,❛ ❞❛❧ ▲❡♠♠❛ ✶✳✶✳✷✾ /✐ ♦**✐❡♥❡ ❝❤❡ ❧✬✐♥/✐❡♠❡ ❞❡❣❧✐ ✐❞❡❛❧✐ ❞✐ A ❞✐✈❡,/✐ ❞❛ < 1 > ❛♠♠❡**❡ ✉♥ ❡❧❡♠❡♥*♦ ♠❛//✐♠❛❧❡✳ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✸✼✳ ❯♥ ❛♥❡❧❧♦ A ❝♦♥ ❡'❛((❛♠❡♥(❡ ✉♥ ✐❞❡❛❧❡ ♠❛'✲ '✐♠❛❧❡ m . ❞❡((♦ ❛♥❡❧❧♦ ❧♦❝❛❧❡ ❡❞ ✐❧ /✉♦③✐❡♥(❡ K = A/m . ❞❡((♦ ❝❛♠♣♦ 2❡'✐❞✉♦ ❞✐ A✳ 5#♦♣♦!✐③✐♦♥❡ ✶✳✶✳✸✽✳ ❙✐❛ A ✉♥ ❛♥❡❧❧♦❀ ❛❧❧♦2❛✿ ✶✳ '❡ m . ✉♥ ✐❞❡❛❧❡ ❞✐ A ❞✐✈❡2'♦ ❞❛ < 1 > ❡ (❛❧❡ ❝❤❡ ♣❡2 ♦❣♥✐ x ∈ A \ m x . ✉♥✬✉♥✐(< ❞✐ A✱ ❛❧❧♦2❛ A . ✉♥ ❛♥❡❧❧♦ ❧♦❝❛❧❡ ❡❞ ✐❧ '✉♦ ✐❞❡❛❧❡ ♠❛''✐♠❛❧❡ . ♣2♦♣2✐♦ m❀ ✷✳ '❡ m . ✉♥ ✐❞❡❛❧❡ ♠❛''✐♠❛❧❡ ❞✐ A (❛❧❡ ❝❤❡✱ ♣❡2 ♦❣♥✐ x ∈ m✱ 1+x . ✉♥✬✉♥✐(< ❞✐ A ✭✐✳❡✳ (✉((✐ ❣❧✐ ❡❧❡♠❡♥(✐ ❞✐ 1 + m '♦♥♦ ✉♥✬✉♥✐(< ❞✐ A✮✱ ❛❧❧♦2❛ A . ✉♥ ❛♥❡❧❧♦ ❧♦❝❛❧❡ ❡❞ ✐❧ '✉♦ ✐❞❡❛❧❡ ♠❛''✐♠❛❧❡ 2✐'✉❧(❛ ❡''❡2❡ ♣2♦♣2✐♦ m✳ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✸✾✳ ❯♥ ❛♥❡❧❧♦ A ❝♦♥ ✉♥ ♥✉♠❡2♦ ✜♥✐(♦ ❞✐ ✐❞❡❛❧✐ ♠❛''✐♠❛❧✐ . ❞❡((♦ '❡♠✐✲❧♦❝❛❧❡✳ ❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✹✵✳ ❋❛❝❝✐❛♠♦ ❛❧❝✉♥✐ ❡/❡♠♣✐✳ ✶✾

(25)

✶✳ ❙✐❛ K ✉♥ ❝❛♠♣♦✱ A = K [X1, ..., Xn] ❧✬❛♥❡❧❧♦ ❞❡✐ ♣♦❧✐♥♦♠✐ ✐♥ n✲✐♥❞❡1❡2♠✐♥❛1❡ ❡ f ∈ A ✉♥ ♣♦❧✐♥♦♠✐♦ ✐22✐❞✉❝✐❜✐❧❡✱ ♦✈✈❡2♦ ✉♥ ♣♦❧✐♥♦♠✐♦ ♥♦♥ ❞❡❝♦♠♣♦♥✐❜✐❧❡ 5✉ K❀ ❛❧❧♦2❛✱ ❞❛1♦ ❝❤❡ A 8 ❛ ❢❛11♦2✐③③❛③✐♦♥❡ ✉♥✐❝❛✱ ❧✬✐❞❡❛❧❡ ♣2✐♥❝✐♣❛❧❡ < f > ✭5✐ ✈❡❞❛ ❧✬❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✶✾✮ 8 ♣2✐♠♦✳ ✷✳ ❙✐❛ A = Z❀ ♦❣♥✐ ✐❞❡❛❧❡ ❞✐ Z 8 ♣2✐♥❝✐♣❛❧❡✱ ❝✐♦8 ❞❡❧❧❛ ❢♦2♠❛ < x >✱ ❝♦♥ x ✉♥ ✐♥1❡2♦ ♣♦5✐1✐✈♦ ✭❡✈❡♥1✉❛❧♠❡♥1❡ ❛♥❝❤❡ 0✮✳ ■♥ ♣❛21✐❝♦❧❛2❡✱ < x > 8 ✉♥ ✐❞❡❛❧❡ ♣2✐♠♦ 5❡ ❡ 5♦❧♦ 5❡ x = 0∨x = p✱ p ✉♥ ♥✉♠❡2♦ ♣2✐♠♦ ❡ ♦❣♥✐ ✐❞❡❛❧❡ ❞❡❧ 1✐♣♦ < p > 8 ♠❛55✐♠❛❧❡ ✐♥ Z ❡ Z/ < p > 8 ✉♥ ❝❛♠♣♦ ✭✈❡❞✐ ❧✬❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✷✺✮ ❞✐ ❡5❛11❛♠❡♥1❡ p ❡❧❡♠❡♥1✐✳ ❚✉11♦ ❝✐A ✈❛❧❡ ❛♥❝❤❡ ♣❡2 ❧✬❛♥❡❧❧♦ K [X] ❞❡✐ ♣♦❧✐♥♦♠✐ ❛❞ ✉♥✬✐♥✲ ❞❡1❡2♠✐♥❛1❛✱ ♠❛ ♥♦♥ ♣❡2 K [X1, ..., Xn] ❝♦♥ n > 1❀ ✉♥ ❝♦♥✲ 12♦❡5❡♠♣✐♦ 8 ❞❛1♦ ❞❛❧❧✬✐❞❡❛❧❡ ❞❡✐ ♣♦❧✐♥♦♠✐ ✐❧ ❝✉✐ 1❡2♠✐♥❡ ♥♦1♦ 8 0✿ ❡55♦ 8 ✉♥ ✐❞❡❛❧❡ ♠❛55✐♠❛❧❡ ❞✐ K [X1, ..., Xn]✱ ♣❡2❝❤C 8 ✐❧ ♥✉❝❧❡♦ ❞❡❧❧✬♦♠♦♠♦2✜5♠♦ 5✉2✐❡11✐✈♦ ❞✐ ❛♥❡❧❧✐ K [X1, ..., Xn] −→ K, f 7−→ f(0) ❡ ✈❛❧❣♦♥♦ ❧✬❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✶✶ ❡ ❧✬❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✷✺✱ ♠❛ ♥♦♥ 8 ❝❡21❛♠❡♥1❡ ♣2✐♥❝✐♣❛❧❡✱ ♣❡2❝❤C 8 ❣❡♥❡2❛1♦ ❞❛ ✷✵

(26)

❛❧♠❡♥♦ n ♣♦❧✐♥♦♠✐✳ ❙✉ ♠♦❞❡❧❧♦ ❞✐ Z✱ - ♥❛.✉/❛❧❡ ❞❛/❡ ❧❛ 0❡❣✉❡♥.❡ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✹✶✳ ❯♥ ❞♦♠✐♥✐♦ ❛❞ ✐❞❡❛❧✐ ♣*✐♥❝✐♣❛❧✐ , ✉♥ ❞♦♠✐♥✐♦ ❞✐ ✐♥.❡❣*✐.0 .❛❧❡ ❝❤❡ ♦❣♥✐ 2✉♦ ✐❞❡❛❧❡ , ♣*✐♥❝✐♣❛❧❡✳ ❖++❡,✈❛③✐♦♥❡ ✶✳✶✳✹✷✳ ■♥ ✉♥ ❞♦♠✐♥✐♦ ❛❞ ✐❞❡❛❧✐ ♣/✐♥❝✐♣❛❧✐✱ ♦❣♥✐ ✐❞❡❛✲ ❧❡ ♣/✐♠♦ ❞✐✈❡/0♦ ❞❛ 0 - ♠❛00✐♠❛❧❡✳ ❙✐ ✈❡❞❛ ❧✬❖++❡,✈❛③✐♦♥❡ ✶✳✶✳✹✵ ♣❡/ ❞❡❣❧✐ ❡0❡♠♣✐✳ 7❛00✐❛♠♦ ♦/❛ ❛ ❞❛/❡ ✐ ❝♦♥❝❡..✐ ❞✐ ♥✐❧/❛❞✐❝❛❧❡ ❡ /❛❞✐❝❛❧❡ ❞✐ ❏❛❝♦❜✲ 0♦♥✳ 1,♦♣♦+✐③✐♦♥❡ ✶✳✶✳✹✸✳ ❙✐❛ A ✉♥ ❛♥❡❧❧♦✳ ▲✬✐♥2✐❡♠❡ ℜ ❞✐ .✉..✐ ❣❧✐ ❡❧❡♠❡♥.✐ ♥✐❧♣♦.❡♥.✐ ❞✐ A , ✉♥ ✐❞❡❛❧❡ ❞✐ A❀ ✐♥♦❧.*❡✱ ✐❧ 9✉♦③✐❡♥.❡ A/ℜ ♥♦♥ ♣♦22✐❡❞❡ ❡❧❡♠❡♥.✐ ♥✐❧♣♦.❡♥.✐ ♥♦♥ ♥✉❧❧✐✳ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✹✹✳ ▲✬✐❞❡❛❧❡ ℜ , ❞❡..♦ ♥✐❧*❛❞✐❝❛❧❡ ❞✐ A✳ ❯♥❛ ❝❛/❛..❡/✐③③❛③✐♦♥❡ ❞❡❧ ♥✐❧/❛❞✐❝❛❧❡ - ❞❛.❛ ❞❛❧❧❛ 0❡❣✉❡♥.❡ 1,♦♣♦+✐③✐♦♥❡ ✶✳✶✳✹✺✳ ❙✐❛ A ✉♥ ❛♥❡❧❧♦✳ ❆❧❧♦*❛ ✐❧ 2✉♦ ♥✐❧*❛❞✐❝❛❧❡ ℜ , ❧✬✐♥.❡*2❡③✐♦♥❡ ❞✐ .✉..✐ ❣❧✐ ✐❞❡❛❧✐ ♣*✐♠✐ ❞✐ A✳ ✷✶

(27)

❙✉ "✉❡$%❛ ❧✐♥❡❛✱ ❞✐❛♠♦ ❧❛ ❉❡✜♥✐③✐♦♥❡ ❞✐ .❛❞✐❝❛❧❡ ❞✐ ❏❛❝♦❜$♦♥✿ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✹✻✳ ❉❛"♦ A ✉♥ ❛♥❡❧❧♦✱ ✐❧ *✉♦ ✐❞❡❛❧❡ ,❛❞✐❝❛❧❡ ❞✐ ❏❛❝♦❜*♦♥ 0 ❧✬✐♥"❡,*❡③✐♦♥❡ ❞✐ "✉""✐ ❣❧✐ ✐❞❡❛❧✐ ♠❛**✐♠❛❧✐ ❞✐ A ❡ ❧♦ ✐♥❞✐❝❤✐❛♠♦ ❝♦♥ ¯ℜ✳ ❊❞ ✉♥❛ ❝❛.❛%%❡.✐③③❛③✐♦♥❡ ❞❡❧ .❛❞✐❝❛❧❡ ❞✐ ❏❛❝♦❜$♦♥ 5 ❞❛%❛ ❞❛❧❧❛ $❡❣✉❡♥%❡ +,♦♣♦.✐③✐♦♥❡ ✶✳✶✳✹✼✳ ❙✐❛ A ✉♥ ❛♥❡❧❧♦ ❡ x ∈ A❀ ❛❧❧♦,❛ x ∈ ¯ℜ *❡ ❡ *♦❧♦ *❡ 1 − xy 0 ✉♥✬✉♥✐"9 ❞✐ A ♣❡, ♦❣♥✐ y ∈ A✳ ■ $❡❣✉❡♥%✐ ❚❡♦,❡♠❛ ❡ ❈♦,♦❧❧❛,✐ $♦♥♦ ✐♠♣♦.%❛♥%✐ ♣❡. ✐❧ $❡❣✉✐%♦✿ ❚❡♦,❡♠❛ ✶✳✶✳✹✽ ✭❚❡♦,❡♠❛ ❞❡❧❧✬✐♥9❡,.❡③✐♦♥❡ ❞✐ ❑,✉❧❧✮✳ ❙✐❛♥♦ A ✉♥ ❛♥❡❧❧♦ ◆♦❡"❤❡,✐❛♥♦✱ I ✉♥ *✉♦ ✐❞❡❛❧❡✳ ❆❧❧♦,❛ *♦♥♦ ❡=✉✐✈❛❧❡♥"✐✿ ✶✳ ❧✬✐♥"❡,*❡③✐♦♥❡ ❞❡❣❧✐ ✐❞❡❛❧✐ I0, I, I2, I3, ..., In, ... 0 ✉❣✉❛❧❡ ❛ 0❀ ✷✳ ♥❡**✉♥ ❡❧❡♠❡♥"♦ ❞❡❧❧❛ ❢♦,♠❛ 1 + a✱ ❝♦♥ a ∈ I✱ 0 ✉♥♦ ③❡,♦✲ ❞✐✈✐*♦,❡ ✐♥ A✳ ❈♦,♦❧❧❛,✐♦ ✶✳✶✳✹✾✳ ❙❡ ¯ℜ 0 ❧✬✐❞❡❛❧❡ ❞✐ ❏❛❝♦❜*♦♥ ❞✐ ✉♥ ❛♥❡❧❧♦ ◆♦❡"❤❡✲ ,✐❛♥♦✱ ❛❧❧♦,❛ \ n≥0 ¯ ℜn = 0 ✷✷

(28)

❈♦"♦❧❧❛"✐♦ ✶✳✶✳✺✵✳ ❙❡ I " ✉♥ ✐❞❡❛❧❡ ♣*♦♣*✐♦ ❞✐ ✉♥ ❞♦♠✐♥✐♦ ❞✐ ✐♥-❡❣*✐-/ ◆♦❡-❤❡*✐❛♥♦✱ ❛❧❧♦*❛ \ n≥0 ¯ ℜn = 0 ❖++❡"✈❛③✐♦♥❡ ✶✳✶✳✺✶✳ ❙✐❛♥♦ A ✉♥ ❛♥❡❧❧♦ ❡❞ I, J ⊆ A ❞✉❡ ✐❞❡❛❧✐✳ *♦++✐❛♠♦ ❝♦♥+✐❞❡.❛.❡ /.❡ ♦♣❡.❛③✐♦♥✐ /.❛ ✐❞❡❛❧✐✱ ♦✈✈❡.♦ ❧❛ +♦♠♠❛ +✱ ✐❧ ♣.♦❞♦//♦ · ❡ ❧✬✐♥/❡.+❡③✐♦♥❡ ∩✱ ♦//❡♥❡♥❞♦ ✐ +❡❣✉❡♥/✐ /.❡ ✐❞❡❛❧✐ ❞✐ A I + J = {x + y|x ∈ I, y ∈ J} I · J =< {xy|x ∈ I, y ∈ J} >=    X f inita xiyi|xi ∈ I, yi ∈ J    I ∩ J = {x|x ∈ I ∧ x ∈ J} ■♥ ♣❛./✐❝♦❧❛.❡✱ I + J 7 ✐❧ ♣✐8 ♣✐❝❝♦❧♦ ✐❞❡❛❧❡ ❝❤❡ ❝♦♥/✐❡♥❡ +✐❛ I ❝❤❡ J✳ ❚✉//❡ ❡ /.❡ ❧❡ ♦♣❡.❛③✐♦♥✐ ♣♦++♦♥♦ ❡++❡.❡ ❣❡♥❡.❛❧✐③③❛/❡ ❛ ❢❛♠✐❣❧✐❡ ❞✐ ✐❞❡❛❧✐ ❞✐ A ❝♦♠❡ +❡❣✉❡✿ ✶✳ ❞❛/❛ {Ii}i∈Γ ✉♥❛ ❢❛♠✐❣❧✐❛ >✉❛❧✉♥>✉❡ ❞✐ ✐❞❡❛❧✐ ❞✐ A✱ +✐ ♦//✐❡♥❡ ❧✬✐❞❡❛❧❡ X i∈Γ Ii = ( X i∈Γ xi|xi ∈ Ii,∀i ∈ Γ ∧ xi = 0,∀i ∈ Γ − Λ, |Λ| ∈ N ) ❝❤❡ 7 ❞✐ ♥✉♦✈♦ ✐❧ ♣✐8 ♣✐❝❝♦❧♦ ✐❞❡❛❧❡ ❞✐ A ❝❤❡ ❝♦♥/✐❡♥❡ /✉//✐ ❣❧✐ Ii✳ ✷✸

(29)

✷✳ ❉❛$❛ {Ii}i∈Γ ✉♥❛ ❢❛♠✐❣❧✐❛ ✜♥✐$❛ -✉❛❧✉♥-✉❡ ❞✐ ✐❞❡❛❧✐ ❞✐ A✱ 1✐ ♦$$✐❡♥❡ ❧✬✐❞❡❛❧❡ Y i∈Γ Ii =< ( Y i∈Γ xi|xi ∈ Ii,∀i ∈ Γ ) > ■♥ ♣❛6$✐❝♦❧❛6❡✱ ♣❡6 ♦❣♥✐ n > 0✱ 1✐ ♣✉8 ❛❧$6❡19 ❞❡✜♥✐6❡ ❧❛ ♣♦$❡♥✲ ③❛ ❞❡❧❧✬✐❞❡❛❧❡ I ❞✐ A ❝♦♠❡ ❧✬✐❞❡❛❧❡ In ❞✐ A ❣❡♥❡6❛$♦ ❞❛ $✉$$✐ ✐ ♣6♦❞♦$$✐ x1x2· · · xn $❛❧✐ ❝❤❡ xi ∈ I ♣❡6 ♦❣♥✐ i❀ ❝♦♥✈❡♥③✐♦♥❛❧✲ ♠❡♥$❡✱ I0 =< 1 > ✸✳ ❉❛$❛ {Ii}i∈Γ ✉♥❛ ❢❛♠✐❣❧✐❛ -✉❛❧✉♥-✉❡ ❞✐ ✐❞❡❛❧✐ ❞✐ A✱ 1✐ ♦$$✐❡♥❡ ❧✬✐❞❡❛❧❡ \ i∈Γ Ii = {x|x ∈ Ii,∀i ∈ Γ} ▲❡ $6❡ ♦♣❡6❛③✐♦♥✐ ❝♦♥1✐❞❡6❛$❡ ✜♥♦6❛ 1♦♥♦ $✉$$❡ ❛11♦❝✐❛$✐✈❡ ❡ ❝♦♠✲ ♠✉$❛$✐✈❡ ❡❞ ✐♥♦❧$6❡ ✈❛❧❣♦♥♦✿ ✶✳ ❧❛ ♣6♦♣6✐❡$C ❞✐1$6✐❜✉$✐✈❛ $6❛ 1♦♠♠❛ ❡ ♣6♦❞♦$$♦✱ ♦✈✈❡6♦ I · (J + Z) = I · J + I · Z ♣❡6 ♦❣♥✐ I, J, Z ✐❞❡❛❧✐ ❞✐ A✱ ✷✳ ❧❛ ▲❡❣❣❡ ♠♦❞✉❧❛)❡ $6❛ 1♦♠♠❛ ❡❞ ✐♥$❡61❡③✐♦♥❡✱ ♦✈✈❡6♦ I ∩ (J + Z) = I ∩ J + I ∩ Z ✷✹

(30)

♣❡" ♦❣♥✐ I, J, Z ✐❞❡❛❧✐ ❞✐ A *❛❧✐ ❝❤❡ I ⊇ J ♦ I ⊇ Z✳ ■♥✜♥❡✱ 1✐ ♥♦*✐ ❝❤❡ I ∪ J ♥♦♥ 2 ✐♥ ❣❡♥❡"❛❧❡ ✉♥ ✐❞❡❛❧❡ ❞✐ A✳ ❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✺✷✳ ❙✐❛ A = Z✱ I =< x > ❡ J =< y >❀ ❛❧❧♦"❛ "✐1✉❧*❛ ❝❤❡ I +J 2 ❧✬✐❞❡❛❧❡ ❞✐ A ❣❡♥❡"❛*♦ ❞❛❧ ♠❛11✐♠♦ ❝♦♠✉♥❡ ❞✐✈✐1♦"❡ *"❛ x ❡❞ y✱ I ∩J 2 ❧✬✐❞❡❛❧❡ ❞✐ A ❣❡♥❡"❛*♦ ❞❛❧ ♠✐♥✐♠♦ ❝♦♠✉♥❡ ♠✉❧*✐♣❧♦ *"❛ x ❡❞ y ❡❞ I · J 2 ❧✬✐❞❡❛❧❡ ❞✐ A ❣❡♥❡"❛*♦ ❞❛❧ ♣"♦❞♦**♦ xy✳ ■♥ *❛❧ ❝❛1♦✱ 1✐ ❤❛ I · J = I ∩ J 1❡ ❡ 1♦❧♦ 1❡ x ❡❞ y 1♦♥♦ ❝♦♣"✐♠✐✳ ■♥♦❧*"❡✱ 1❡♠♣"❡ ✐♥ Z✱ ✈❛❧❡ ❧❛ ▲❡❣❣❡ ♠♦❞✉❧❛#❡ ❢"❛ ❧❡ ♦♣❡"❛③✐♦♥✐ *"❛ ✐❞❡❛❧✐ ∩ ❡ +✱ ♠❛ 1❡♥③❛ ❛❧❝✉♥ ✈✐♥❝♦❧♦ *"❛ ❣❧✐ ✐❞❡❛❧✐ ✐♥*❡"❡11❛*✐✳ ❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✺✸✳ ❙✐❛ A = K[X1, ..., Xn]❡❞ I =< X1, ..., Xn > ✐❧ 1✉♦ ✐❞❡❛❧❡ ✜♥✐*❛♠❡♥*❡ ❣❡♥❡"❛*♦ ❞❛ X1, ..., Xn❀ ❛❧❧♦"❛✱ ❡✈✐❞❡♥*❡✲ ♠❡♥*❡ Im 2 ❧✬✐♥1✐❡♠❡ ❞✐ *✉**✐ ✐ ♣♦❧✐♥♦♠✐ ✐♥ n✲✐♥❞❡*❡"♠✐♥❛*❡ *❛❧✐ ❝❤❡ ✐ ❧♦"♦ *❡"♠✐♥✐ ♥♦♥ 1✐❛♥♦ ❞✐ ❣"❛❞♦ ♠✐♥♦"❡ ❞✐ m✳ ❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✺✹✳ ❙✐❛ A ✉♥ ❛♥❡❧❧♦ ❡❞ I✱ J ❞✉❡ 1✉♦✐ ✐❞❡❛❧✐✳ ■♥ ❣❡♥❡"❛❧❡✱ ✈❛❧❡ ❝❤❡ (I + J)· (I ∩ J) = I · (I ∩ J) + J · (I ∩ J) ⊆ I · J ✷✺

(31)

■♥ ♣❛$%✐❝♦❧❛$❡✱ ,❡ A = Z ,✐ ❤❛ (I + J)· (I ∩ J) = I · J ❚✉%%❛✈✐❛✱ ❡,,❡♥❞♦ ❜❛♥❛❧♠❡♥%❡ I · J ⊆ I ∩ J✱ ♣❡$ ♦❣♥✐ ❛♥❡❧❧♦ A ,✐ ♣✉5 ,❝$✐✈❡$❡ I + J =< 1 >=⇒ I ∩ J = I · J ❡ 6✉❡,%♦ ♣♦$%❛ ♥❛%✉$❛❧♠❡♥%❡ ❛❧❧❛ ,❡❣✉❡♥%❡ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✺✺✳ ❉✉❡ ✐❞❡❛❧✐✱ I ❡ J✱ ❞✐ ✉♥ ❛♥❡❧❧♦ A *♦♥♦ ❞❡++✐ ❝♦♣.✐♠✐ ✭♦ ❝♦♠❛**✐♠❛❧✐✮ *❡ ❡ *♦❧♦ *❡ I + J =< 1 >⇐⇒ ∃x ∈ I, ∃y ∈ J|x + y = 1 ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✺✻✳ ❙✐❛♥♦ A1, ..., An ❛♥❡❧❧✐✳ ■❧ ❧♦.♦ ♣.♦❞♦++♦ ❞✐.❡+✲ +♦ 6 ❧✬❛♥❡❧❧♦ ✭❝♦♠♠✉+❛+✐✈♦✱ ✉♥✐+❛.✐♦✮ A = n Y i=1 Ai = {(x1, ..., xn)|xi ∈ Ai,∀i = 1, ..., n} ❝♦♥ ❧❡ ♦♣❡.❛③✐♦♥✐ ❞✐ *♦♠♠❛ ❡ ♣.♦❞♦++♦ ❞❡✜♥✐+❡✱ ❛ ♣❛.+✐.❡ ❞❛ ;✉❡❧❧❡ ❞❡❣❧✐ Ai✱ ❝♦♠♣♦♥❡♥+❡ ♣❡. ❝♦♠♣♦♥❡♥+❡✳ ❖,,❡-✈❛③✐♦♥❡ ✶✳✶✳✺✼✳ ❙✐❛ A ❧✬❛♥❡❧❧♦ ❞❡%❡$♠✐♥❛%♦ ❞❛❧ ♣$♦❞♦%%♦ ❞✐✲ $❡%%♦ ❞❡❣❧✐ ❛♥❡❧❧✐ A1, ..., An✳ ▲✬❡❧❡♠❡♥%♦ ✐❞❡♥%✐❝♦ ❞✐ A < ♦✈✈✐❛♠❡♥%❡ ✷✻

(32)

1A = (1A1, ..., 1An)✳ ❉❡✜♥✐❛♠♦ ✐♥♦❧*+❡ ❧✬❛♣♣❧✐❝❛③✐♦♥❡ ♣+♦✐❡③✐♦♥❡ ❞✐ A 1✉❧ ❢❛**♦+❡ Ai ❝♦♠❡ pi : A −→ Ai, pi(x) = xi✱ ❧❛ 5✉❛❧❡ 6 ✉♥ ♦♠♦♠♦+✜1♠♦ ❞✐ ❛♥❡❧❧✐ ✭1✐ ✈❡❞❛ ❧❛ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✻✮✳ *+♦♣♦-✐③✐♦♥❡ ✶✳✶✳✺✽✳ ❙✐❛♥♦ A ✉♥ ❛♥❡❧❧♦✱ I1, ..., In ❞❡✐ *✉♦✐ ✐❞❡❛✲ ❧✐ ❡ ❝♦♥*✐❞❡-✐❛♠♦ ❧✬❛♣♣❧✐❝❛③✐♦♥❡ φ : A −→ Qn i=1(A/Ii), φ(x) = (x + I1, ..., x + In)✱ ❝❤❡ 3 ✉♥ ♦♠♦♠♦-✜*♠♦ ❞✐ ❛♥❡❧❧✐❀ ❛❧❧♦-❛ ✶✳ *❡ ♣❡- ♦❣♥✐ i 6= j Ii ❡❞ Ij *♦♥♦ ❝♦♠♣-✐♠✐✱ *✐ ❤❛ Qni=1Ii = Tn i=1Ii✳ ✷✳ φ 3 *✉-✐❡::✐✈❛ *❡ ❡ *♦❧♦ *❡ Ii ❡❞ Ij *♦♥♦ ❝♦♣-✐♠✐ ♣❡- ♦❣♥✐ i 6= j✳ ✸✳ φ 3 ✐♥✐❡::✐✈❛ *❡ ❡ *♦❧♦ *❡ Tn i=1Ii = 0✳ ❆♥❞✐❛♠♦ ♦+❛ ❛ ❞❡❧✐♥❡❛+❡ ✐ ❝♦♥❝❡**✐ ❞✐ ✐❞❡❛❧❡ ❛♥♥✉❧❧❛*♦+❡ ❡ +❛❞✐✲ ❝❛❧❡✱ ❢♦♥❞❛♠❡♥*❛❧✐ ♣❡+ ✐❧ ♣+♦1✐❡❣✉♦ ❞❡❧❧❛ *+❛**❛③✐♦♥❡✳ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✺✾✳ ❙✐❛♥♦ A ✉♥ ❛♥❡❧❧♦ ❡❞ I✱ J ❞✉❡ *✉♦✐ ✐❞❡❛❧✐✳ ■❧ >✉♦③✐❡♥:❡ ❞✐ ✐❞❡❛❧✐ ❞✐ I ❡ J 3 ❧✬✐❞❡❛❧❡ (I : J) = {x ∈ A|xJ ⊆ I} ✷✼

(33)

■♥ ♣❛$%✐❝♦❧❛$❡✱ ✐❧ ,✉♦③✐❡♥%❡ ❞✐ ✐❞❡❛❧✐ (0 : J) ❞✐ 0 ❡ J 0 ❞❡%%♦ ❧✬❛♥♥✉❧✲ ❧❛%♦$❡ ❞✐ J ❡ 3✐ ✐♥❞✐❝❛ ❛♥❝❤❡ ❝♦♥ ❆♥♥A(J) = {x ∈ A|xJ = 0} ◆❡❧ 3❡❣✉✐%♦ ✉3❡$❡♠♦ ✐♥❞✐❝❛$❡✱ ,✉❛♥❞♦ ♥♦♥ ❝✐ 3✐❛♥♦ ❛♠❜✐❣✉✐%9✱ ❆♥♥A(J) 3❡♠♣❧✐❝❡♠❡♥%❡ ❝♦♥ ❆♥♥ (J)✳ ❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✻✵✳ ■♥ ❣❡♥❡%❛❧❡✱ )✐ ♣✉- ❞❡✜♥✐%❡ ❢♦%♠❛❧♠❡♥3❡ ❧✬✐♥✲ )✐❡♠❡ (I : J) ❛♥❝❤❡ 8✉❛♥❞♦ I ❡ J )♦♥♦ )♦❧♦ )♦33♦✐♥)✐❡♠✐ ❞❡❧❧✬❛♥❡❧❧♦ A✳ ■♥ 3❛❧ ❝❛)♦✱ ♦✈✈✐❛♠❡♥3❡ (I : J) ♥♦♥ ; ♥❡❝❡))❛%✐❛♠❡♥3❡ ✉♥ ✐❞❡❛❧❡✳ ❙❡❣✉❡♥❞♦ ❧❛ ♥♦3❛③✐♦♥❡ ❞❡❧❧❛ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✺✾✱ ❧✬✐♥)✐❡♠❡ ❞✐ 3✉33✐ ❣❧✐ ③❡%♦ ❞✐✈✐)♦%✐ ❞✐ ✉♥ ❛♥❡❧❧♦ A ; D = [ x6=0 ❆♥♥ (< x >) ■♥♦❧3%❡ )❡ J ; ✉♥ ✐❞❡❛❧❡ ♣%✐♥❝✐♣❛❧❡ ❞✐ A✱ ❛❧❧♦%❛ )❝%✐✈❡%❡♠♦ ❝❤❡ ✐❧ 8✉♦③✐❡♥3❡ ❞✐ ✐❞❡❛❧✐ 3%❛ I ❡ J ; (I : x) ❡ ♥♦♥ (I :< x >)✳ ❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✻✶✳ ❙✐❛ A = Z✱ I =< x > ❡ J =< y >✱ ❝♦♥ x = Y p primo pµp, y = Y p primo pνp ❧❡ ❞❡❝♦♠♣♦)✐③✐♦♥✐ ✐♥ ❢❛33♦%✐ ♣%✐♠✐ ❞❡✐ ♥✉♠❡%✐ x ❡❞ y✳ ❆❧❧♦%❛ (I : J) = (x : y) =< q > ✷✽

(34)

❞♦✈❡ q = Y p primo pγp, γ p = max (µp− νp, 0) = µp− min (µp, νp) ◗✉✐♥❞✐ q = x (x,y)✱ ❝♦♥ (x, y) ✐❧ ♠❛--✐♠♦ ❝♦♠✉♥❡ ❞✐✈✐-♦.❡ /.❛ x ❡❞ y✳ ❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✻✷✳ ❙✐❛ A ✉♥ ❛♥❡❧❧♦✳ ❱❛❧❣♦♥♦ ❧❡ -❡❣✉❡♥/✐ ♣.♦✲ ♣.✐❡/6 -✉✐ 7✉♦③✐❡♥/✐ ❞✐ ✐❞❡❛❧✐✿ ✶✳ I ⊆ (I : J)✱ ♣❡. ♦❣♥✐ I✱ J ✐❞❡❛❧✐ ❞✐ A✳ ✷✳ (I : J) · J ⊆ I✱ ♣❡. ♦❣♥✐ I✱ J ✐❞❡❛❧✐ ❞✐ A✳

✸✳ ((I : J) : Z) = (I : Z · J) = ((I : Z) : J)✱ ♣❡. ♦❣♥✐ I✱ J✱ Z ✐❞❡❛❧✐ ❞✐ A✳ ✹✳ "Ti∈ΓIi : J = Ti∈Γ(Ii : J)✱ ♣❡. ♦❣♥✐ ❢❛♠✐❣❧✐❛ {Ii}i∈Γ ❞✐ ✐❞❡❛❧✐ ❞✐ A ❡ ♣❡. ♦❣♥✐ J ✐❞❡❛❧❡ ❞✐ A✳ ✺✳ "I : Pi∈ΓJi = Ti∈Γ(I : Ji)✱ ♣❡. ♦❣♥✐ I ✐❞❡❛❧❡ ❞✐ A ❡ ♣❡. ♦❣♥✐ ❢❛♠✐❣❧✐❛ {Ji}i∈Γ ❞✐ ✐❞❡❛❧✐ ❞✐ A✳ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✻✸✳ ❙✐❛ A ✉♥ ❛♥❡❧❧♦ ❡❞ I ✉♥ )✉♦ ✐❞❡❛❧❡✳ ■❧ ,❛❞✐❝❛❧❡ ❞✐ I . ✐❧ )♦//♦✐♥)✐❡♠❡ ❞✐ A r (I) = {x ∈ A|xn ∈ I, ♣❡. 7✉❛❧❝❤❡ n > 0} ✷✾

(35)

❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✻✹✳ ■❧ "❛❞✐❝❛❧❡ r (I) ❞✐ ✉♥ ✐❞❡❛❧❡ I ❞✐ ✉♥ ❛♥❡❧❧♦ A + ❛ ,✉❛ ✈♦❧.❛ ✉♥ ✐❞❡❛❧❡ ❞✐ A❀ ✐♥❢❛..✐✱ ♣"❡,♦ π ❧✬♦♠♦♠♦"✜,♠♦ ❞✐ ❛♥❡❧❧✐ ✐♥."♦❞♦..♦ ♥❡❧❧✬❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✾✱ ,✐ ♣✉6 ,❝"✐✈❡"❡ r (I) = π−1"ℜA/I  ✳ ▼❛ "✐❝♦"❞❛♥❞♦ ❝❤❡ ✈❛❧❣♦♥♦ ❧❡ /#♦♣♦!✐③✐♦♥✐ ✶✳✶✳✶✵ ❡ ✶✳✶✳✹✸✱ ❝❡".❛♠❡♥.❡ ✐❧ "❛❞✐❝❛❧❡ ❞✐ I + ✉♥ ✐❞❡❛❧❡ ❞✐ A✳ /#♦♣♦!✐③✐♦♥❡ ✶✳✶✳✻✺✳ ❙✐❛ A ✉♥ ❛♥❡❧❧♦✳ ❱❛❧❣♦♥♦ ❧❡ ,❡❣✉❡♥.✐ ♣"♦✲ ♣"✐❡.> ,✉✐ "❛❞✐❝❛❧✐✿

✶✳ r (I) ⊇ I✱ ♣❡" ♦❣♥✐ I ✐❞❡❛❧❡ ❞✐ A✳

✷✳ r (r (I)) = r (I)✱ ♣❡" ♦❣♥✐ I ✐❞❡❛❧❡ ❞✐ A✳

✸✳ r (I · J) = r (I ∩ J) = r (I) ∩ r (I)✱ ♣❡" ♦❣♥✐ I✱ J ✐❞❡❛❧✐ ❞✐ A✳ ✹✳ r (I) =< 1 > ,❡ ❡ ,♦❧♦ ,❡ I =< 1 >

✺✳ r (I + J) = r (r (I) + r (J))✱ ♣❡" ♦❣♥✐ I✱ J ✐❞❡❛❧✐ ❞✐ A✳

✻✳ ❙❡ I + ✉♥ ✐❞❡❛❧❡ ♣"✐♠♦ ❞✐ A✱ ❛❧❧♦"❛ r (In) = I ♣❡" ♦❣♥✐ n > 0✳

/#♦♣♦!✐③✐♦♥❡ ✶✳✶✳✻✻✳ ■❧ "❛❞✐❝❛❧❡ ❞✐ ✉♥ ✐❞❡❛❧❡ I ❞✐ ✉♥ ❛♥❡❧❧♦ A + ✉❣✉❛❧❡ ❛❧❧✬✐♥.❡"/❡③✐♦♥❡ ❞✐ .✉..✐ ❣❧✐ ✐❞❡❛❧✐ ♣"✐♠✐ ❞✐ A ❝❤❡ ❝♦♥.❡♥❣❛♥♦ I /.❡//♦✳

(36)

❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✻✼✳ ▲❛ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✻✸ ♣✉$ ❡&&❡'❡ ❣❡♥❡'❛✲ ❧✐③③❛.❛ ❛❞ ✉♥ &♦..♦✐♥&✐❡♠❡ 2✉❛❧✉♥2✉❡ E ❞✐ ✉♥ ❛♥❡❧❧♦ A✳ ▲✬✐♥&✐❡♠❡ ❝♦&6 ♦..❡♥✉.♦✱ r (E)✱ 8 ✉♥ &♦..♦✐♥&✐❡♠❡ ❞✐ A ♠❛ ✐♥ ❣❡♥❡'❛❧❡ ♥♦♥ 8 ✉♥ &✉♦ ✐❞❡❛❧❡ ❡❞ 8 ❞❡..♦ '❛❞✐❝❛❧❡ ❞✐ E✳ ■♥ ♣❛'.✐❝♦❧❛'❡✱ ♣❡' r (E) ✈❛❧❡ ❝❤❡ r [ α∈Γ Eα ! = [ α∈Γ r (Eα), ∀Eα ⊆ A ▲❡ "❡❣✉❡♥&✐ ❞✉❡ !♦♣♦$✐③✐♦♥✐ ❝❛+❛&&❡+✐③③❛♥♦ ❧✬✐❞❡❛❧❡ +❛❞✐❝❛❧❡ ❞✐ ✉♥ ✐❞❡❛❧❡ ❞✐ ✉♥ ❛♥❡❧❧♦ 0✉❛❧✉♥0✉❡ ❡ ❞✐"❝❡♥❞♦♥♦ ❞✐+❡&&❛♠❡♥&❡ ❞❛❧❧❛ !♦♣♦$✐③✐♦♥❡ ✶✳✶✳✻✺✳ !♦♣♦$✐③✐♦♥❡ ✶✳✶✳✻✽✳ ❙✐❛ D ❧✬✐♥&✐❡♠❡ ❞✐ *✉**✐ ❣❧✐ ③❡.♦ ❞✐✈✐&♦.✐ ❞✐ ✉♥ ❛♥❡❧❧♦ A✳ ❆❧❧♦.❛ D = [ x6=0 r (❆♥♥ (< x >)) !♦♣♦$✐③✐♦♥❡ ✶✳✶✳✻✾✳ ❙✐❛♥♦ I✱ J ❞✉❡ ✐❞❡❛❧✐ ❞✐ ✉♥ ❛♥❡❧❧♦ A *❛❧✐ ❝❤❡ ✐ ❧♦.♦ .❛❞✐❝❛❧✐ r (I)✱ r (J) &✐❛♥♦ ❝♦♣.✐♠✐✳ ❆❧❧♦.❛ I ❡ J &♦♥♦ ❝♦♣.✐♠✐✳

❖$$❡!✈❛③✐♦♥❡ ✶✳✶✳✼✵✳ ❙✐❛ A = Z✱ I =< x > ❡ "✐❛♥♦ pi, i =

(37)

1, ..., r✱ ✐ ❢❛$$♦&✐ ♣&✐♠✐ ❞✐ x❀ ❛❧❧♦&❛ r (I) =< p1· · · pr >= r \ i=1 < pi > !♦♣♦$✐③✐♦♥❡ ✶✳✶✳✼✶✳ ■♥ ✉♥ ❛♥❡❧❧♦ ◆♦❡(❤❡*✐❛♥♦ A ♦❣♥✐ ✐❞❡❛❧❡ I ❝♦♥(✐❡♥❡ ✉♥❛ ♣♦(❡♥③❛ ❞❡❧ 1✉♦ *❛❞✐❝❛❧❡ r(I)✳ ❉✐♠♦1(*❛③✐♦♥❡✳ ❙✐❛ I ✉♥ ✐❞❡❛❧❡ ❞✐ A✳ ❊22❡♥❞♦ ✐❧ &❛❞✐❝❛❧❡ ❞✐ I ✉♥ ✐❞❡❛❧❡ ❞✐ A ❡❞ ❡22❡♥❞♦ A ◆♦❡$❤❡&✐❛♥♦✱ r (I) 6 ✜♥✐$❛♠❡♥$❡ ❣❡♥❡&❛$♦❀ 2✐❛♥♦ x1, ..., xm ✐ ❣❡♥❡&❛$♦&✐ ❞✐ r (I)✳ ❆❧❧♦&❛✱ ♣❡& ♦❣♥✐ i ∈ {1, ..., m}✱

❡2✐2$❡ ❛❧♠❡♥♦ ✉♥ ni ∈ N $❛❧❡ ❝❤❡ xnii ∈ I ❡ ❞✉♥:✉❡✱ ♣♦♥❡♥❞♦ n =

maxini✱ 2✐ ♦$$✐❡♥❡ 2✉❜✐$♦ ❝❤❡ r (I)n ⊆ I✱ ❝✐♦6 ❧✬❛22❡&$♦✳

=❛22✐❛♠♦ ♦&❛ ❛ ❞❛&❡ ❧❡ ❉❡✜♥✐③✐♦♥✐ ❡ ♣&♦♣&✐❡$> ❞❡❧❧❡ ❡2$❡♥2✐♦♥✐ ❡ ❝♦♥$&❛③✐♦♥✐ ❞✐ ✐❞❡❛❧✐ ❞✐ ✉♥ ❛♥❡❧❧♦✳

❖$$❡!✈❛③✐♦♥❡ ✶✳✶✳✼✷✳ ❙✐❛♥♦ A✱ B ❛♥❡❧❧✐ ❡ f : A −→ B ✉♥ ♦♠♦✲ ♠♦&✜2♠♦ ❞✐ ❛♥❡❧❧✐✳ ❙❡ I 6 ✉♥ ✐❞❡❧❡ ❞✐ A✱ ✐❧ 2♦$$♦✐♥2✐❡♠❡ f (I) ❞✐ B ♥♦♥ 6 ♥❡❝❡22❛&✐❛♠❡♥$❡ ✉♥ ✐❞❡❛❧❡ ❞✐ B✱ ❝♦♠❡ ♠♦2$&❛ ❧✬❡2❡♠♣✐♦ ❞♦✈❡ 2✐❛ A = Z✱ B = Q✱ f ❧✬✐♥❝❧✉2✐♦♥❡ ❝❛♥♦♥✐❝❛ ❡❞ I 6= 0 ✉♥ :✉❛❧✉♥:✉❡ ✐❞❡❛❧❡ ❞✐ Z✳ ❉✬❛❧$&♦ ❝❛♥$♦ 2❡ J 6 ✉♥ ✐❞❡❛❧❡ ❞✐ B✱ ❛❧❧♦&❛ ❧❛ 2✉❛ ❝♦♥✲ $&♦✐♠♠❛❣✐♥❡ ✐♥ A✱ f−1(J)✱ 6 2❡♠♣&❡ ✉♥ ✐❞❡❛❧❡ ❞✐ A✳ ❊❝❝♦ ❝❤❡ 2✐

❞❛♥♥♦ ✐♥ ♠❛♥✐❡&❛ ♥❛✉&❛❧❡ ❧❡ 2❡❣✉❡♥$✐ ❉❡✜♥✐③✐♦♥✐✳

(38)

❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✼✸✳ ❙✐❛♥♦ A✱ B ❛♥❡❧❧✐✱ I ✉♥ ✐❞❡❛❧❡ ❞✐ A ❡❞ f : A −→ B ✉♥ ♦♠♦♠♦+✜-♠♦ ❞✐ ❛♥❡❧❧✐✳ ❈❤✐❛♠✐❛♠♦ ❡-1❡♥-✐♦♥❡ ❞✐ I ❡ ❧♦ ✐♥❞✐❝❤✐❛♠♦ ❝♦♥ Ie✱ ❧✬✐❞❡❛❧❡ ❞✐ B ❣❡♥❡+❛1♦ ❞❛ f (I)✱ ♦✈✈❡+♦ Ie =< f (I) >= B · f (I) =    X f inita yif (xi)|xi ∈ I, yi ∈ B    ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✼✹✳ ❙✐❛♥♦ A✱ B ❛♥❡❧❧✐✱ J ✉♥ ✐❞❡❛❧❡ ❞✐ B ❡ f : A −→ B ✉♥ ♦♠♦♠♦+✜-♠♦ ❞✐ ❛♥❡❧❧✐✳ ❈❤✐❛♠✐❛♠♦ ❝♦♥1+❛③✐♦♥❡ ❞✐ J ❡ ❧♦ ✐♥❞✐❝❤✐❛♠♦ ❝♦♥ Jc✱ ❧✬✐❞❡❛❧❡ ❞✐ A f−1(J) ❖--❡.✈❛③✐♦♥❡ ✶✳✶✳✼✺✳ ❈♦♥#✐❞❡'✐❛♠♦ A✱ B ❛♥❡❧❧✐ ❡ f : A −→ B ✉♥ ♦♠♦♠♦'✜#♠♦ ❞✐ ❛♥❡❧❧✐❀ ♣'❡#♦ I ✉♥ ✐❞❡❛❧❡ ♣'✐♠♦ ❞✐ A✱ ✐♥ ❣❡♥❡'❛❧❡ Ie ♥♦♥ 1 ✉♥ ✐❞❡❛❧❡ ♣'✐♠♦ ❞✐ B✱ ✐♥❢❛33✐ ❜❛#3❛ ♣'❡♥❞❡'❡ f : Z −→ Q ❡ < x >6= 0 ✉♥ 5✉❛❧✉♥5❡ ✐❞❡❛❧❡ ❞✐ Z✱ ♣❡' ❝✉✐ < x >e= Q ♥♦♥ 1 ✉♥ ✐❞❡❛❧❡ ♣'✐♠♦ ❞✐ Q✳ ▼❛ #❡ J 1 ✉♥ ✐❞❡❛❧❡ ♣'✐♠♦ ❞✐ B✱ ❛❧❧♦'❛ Jc 1 ❝❡'3❛♠❡♥3❡ ✉♥ ✐❞❡❛❧❡ ♣'✐♠♦ ❞✐ A ❞❛❧❧✬❖--❡.✈❛③✐♦♥❡ ✶✳✶✳✷✻✳ ❖--❡.✈❛③✐♦♥❡ ✶✳✶✳✼✻✳ ❈♦♥#✐❞❡'✐❛♠♦ ❛♥❝♦'❛ f : A −→ B ✉♥ ♦♠♦♠♦'✜#♠♦ ❞✐ ❛♥❡❧❧✐✳ :♦##✐❛♠♦ #❡♠♣'❡ ❢❛33♦'✐③③❛'❡ f ❝♦♠❡ #❡❣✉❡✿ A→ f(A)p → Bj ❝♦♥ p #✉'✐❡33✐✈❛ ❡ j ✐♥✐❡33✐✈❛ ✭✐♥ ♣'❛3✐❝❛✱ p 1 ❧❛ '❡#3'✐③✐♦♥❡ ❞✐ f ❛❞ ✸✸

(39)

f (A) ✉❧ ❝♦❞♦♠✐♥✐♦ ❡ j * ❧✬✐♥❝❧✉ ✐♦♥❡ ❞✐ f(A) ✐♥ B✮✳ ❖/❛✱ ❞❛❧✲ ❧✬❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✶✶ ❡ ❞❛❧❧❛ ,#♦♣♦!✐③✐♦♥❡ ✶✳✶✳✶✵✱ ❝❡/3❛♠❡♥3❡ p ❞❡3❡/♠✐♥❛ ✉♥❛ ❝♦// ✐♣♦♥❞❡♥③❛ ❜✐✉♥✐✈♦❝❛ 3/❛ ✐❞❡❛❧✐ ❞✐ f(A) ❡❞ ✐❞❡❛❧✐ ❞✐ A 3❛❧✐ ❝❤❡ ❝♦♥3❡♥❣❛♥♦ ker (f) ❡❞ ❛❞ ✐❞❡❛❧✐ ♣/✐♠✐ ❝♦//✐ ♣♦♥✲ ❞♦♥♦ ✐❞❡❛❧✐ ♣/✐♠✐✳ :❡/;✱ ♣❡/ <✉❡❧ ❝❤❡ ❝♦♥❝❡/♥❡ j ❧❛ ✐3✉❛③✐♦♥❡ ♥♦♥ * ❝♦ = ❡♠♣❧✐❝❡✱ ❝♦♠❡ ♠♦ 3/❛ ✐❧ ❡❣✉❡♥3❡ ❡ ❡♠♣✐♦ ❞✐ 3❡♦/✐❛ ❛❧❣❡❜/✐❝❛ ❞❡✐ ♥✉♠❡/✐✿ ✐❛ ❧✬❛♣♣❧✐❝❛③✐♦♥❡ Z −→ Z[i]✱ ❝♦♥ i = √−1✳ :/❡ ♦ ✉♥ ✐❞❡❛❧❡ ♣/✐♠♦ < x > ❞✐ Z✱ ♥♦♥ * ❞❡33♦ ❝❤❡ ❧❛ ✉❛ ❡ 3❡♥③✐♦♥❡ ✐♥ Z[i] ✐❛ ✉♥ ✐❞❡❛✲ ❧❡ ♣/✐♠♦❀ ✐♥❢❛33✐✱ Z[i] * ✉♥ ❞♦♠✐♥✐♦ ❛❞ ✐❞❡❛❧✐ ♣/✐♥❝✐♣❛❧✐ ✭ ✐ ✈❡❞❛ ❧❛ ❉❡✜♥✐③✐♦♥❡ ✶✳✶✳✹✶✮✱ ♣❡/❝❤B ✈❛❧❡ ✐♥ ❡ ♦ ❧✬❛❧❣♦/✐3♠♦ ❞❡❧❧❛ ❞✐✈✐ ✐♦♥❡ ❡✉❝❧✐❞❡❛ ❡ ✈❛❧❡ <✉❛♥3♦ ❡❣✉❡✿ ✶✳ < 2 >e=< 1 + i >2✱ ❝✐♦* ❧✬❡ 3❡♥③✐♦♥❡ ❞❡❧❧✬✐❞❡❛❧❡ < 2 > ✐♥ Z[i] * ✐❧ <✉❛❞/❛3♦ ❞✐ ✉♥ ✐❞❡❛❧❡ ♣/✐♠♦ ❞✐ Z[i]✳ ✷✳ ❙❡ x ∈ Z ♣/✐♠♦ * 3❛❧❡ ❝❤❡ x ≡ 1 mod 4✱ ❛❧❧♦/❛ < x >e * ✐❧ ♣/♦❞♦33♦ ❞✐ ❞✉❡ ❞✐ 3✐♥3✐ ✐❞❡❛❧✐ ♣/✐♠✐ ❞✐ Z[i]✱ ♣❡/ ❡ ❡♠♣✐♦ < 5 >e=< 2 + i >· < 2 − i > ✸✹

(40)

✸✳ ❙❡ x ∈ Z ♣%✐♠♦ ) *❛❧❡ ❝❤❡ x ≡ 3 mod 4✱ ❛❧❧♦%❛ < x >e ) ✉♥ ✐❞❡❛❧❡ ♣%✐♠♦ ❞✐ Z[i]✳ ❉✐ 4✉❡5*❡ *%❡ ♣♦55✐❜✐❧✐*7✱ ❧❛ 5❡❝♦♥❞❛ ♥♦♥ ) ❜❛♥❛❧❡✱ ♣❡%❝❤8 )✱ ❛ *✉**✐ ❣❧✐ ❡✛❡**✐✱ ❡4✉✐✈❛❧❡♥*❡ ❛❞ ✉♥ ❚❡♦#❡♠❛ ❞✐ ❋❡#♠❛)✱ ✐♥ ♣❛%*✐❝♦❧❛%❡ 4✉❡❧❧♦ ❝❤❡ ❛✛❡%♠❛ ❝❤❡ 5❡ x ) ✉♥ ♥✉♠❡%♦ ♣%✐♠♦ *❛❧❡ ❝❤❡ x ≡ 1 mod 4✱ ❛❧❧♦%❛ ❡55♦ ♣✉< ❡55❡%❡ ❡5♣%❡55♦ ✐♥ ♠♦❞♦ ✉♥✐❝♦ ❝♦♠❡ 5♦♠♠❛ ❞✐ ❞✉❡ 4✉❛❞%❛*✐ ❞✐ ♥✉♠❡%✐ ✐♥*❡%✐✱ ♣❡% ❡5❡♠♣✐♦ 5 = 22+12 ♦ 97 = 92+42 ❈♦♠❡ 5✐ ✐♥*✉✐5❝❡ ❞❛❧❧✬❖++❡#✈❛③✐♦♥❡ ✶✳✶✳✼✻✱ ❧♦ 5*✉❞✐♦ ❞❡❧ ❝♦♠✲ ♣♦%*❛♠❡♥*♦ ❞❡❣❧✐ ✐❞❡❛❧✐ ♣%✐♠✐ ❞✐ ✉♥ ❛♥❡❧❧♦ A ❡5*❡5✐ ❛❧ ❝♦❞♦♠✐♥✐♦ B ❞✐ ✉♥ ♦♠♦♠♦%✜5♠♦ ❞✐ ❛♥❡❧❧✐ ) ✉♥ ♣%♦❜❧❡♠❛ ❝♦♠♣❧✐❝❛*♦ ❡ ❝❡♥*%❛❧❡ ♥❡❧❧❛ *♦❡%✐❛ ❛❧❣❡❜%✐❝❛ ❞❡✐ ♥✉♠❡%✐✳ ❈♦♥*✐♥✉✐❛♠♦ ❞❛♥❞♦ ❛❧❝✉♥❡ ♣%♦✲ ♣%✐❡*7 ❢♦♥❞❛♠❡♥*❛❧✐ ❞❡❧❧❡ ❡5*❡♥③✐♦♥✐ ❡ ❝♦♥*%❛③✐♦♥✐ ❞✐ ✐❞❡❛❧✐✱ *%❛♠✐*❡ ❧❡ 5❡❣✉❡♥*✐ 3#♦♣♦+✐③✐♦♥❡ ✶✳✶✳✼✼✳ ❙✐❛ f : A −→ B ✉♥ ♦♠♦♠♦'✜)♠♦ ❞✐ ❛♥❡❧❧✐✱ I ✉♥ ✐❞❡❛❧❡ ❞❡❧❧✬❛♥❡❧❧♦ A ❡ J ✉♥ ✐❞❡❛❧❡ ❞❡❧❧✬❛♥❡❧❧♦ B✳ ❆❧❧♦'❛ ✈❛❧❡ ❝❤❡ ✶✳ I ⊆ Iec ❡ J ⊃ Jce ✷✳ Jc = Jcec ❡ Ie = Iece ✸✺

(41)

✸✳ ❙❡ C $ ❧✬✐♥)✐❡♠❡ ❞❡❣❧✐ ✐❞❡❛❧✐ ❝♦♥01❛00✐ ❞✐ A ❡ E $ ❧✬✐♥)✐❡♠❡ ❞❡❣❧✐ ✐❞❡❛❧✐ ❡)0❡)✐ ❞✐ B✱ ❛❧❧♦1❛ C = {I ⊆ A tc Iec = I} ❡ E = {J ⊆ B tc Jce = J}✳ ■♥♦❧01❡✱ ❧✬❛♣♣❧✐❝❛③✐♦♥❡ C −→ E✱ I 7−→ Ie $ ❜✐✐❡00✐✈❛ ❝♦♥ ✐♥✈❡1)❛ J 7−→ Jc✳ ❖!!❡#✈❛③✐♦♥❡ ✶✳✶✳✼✽✳ ❙❡ I1✱ I2 #♦♥♦ ✐❞❡❛❧✐ ❞✐ ✉♥ ❛♥❡❧❧♦ A ❡ J1✱ J2 #♦♥♦ ✐❞❡❛❧✐ ❞✐ ✉♥ ❛♥❡❧❧♦ B ❡ f : A −→ B + ✉♥ ♦♠♦♠♦-✜#♠♦ ❞✐ ❛♥❡❧❧✐✱ ❛❧❧♦-❛ ❧❡ ❡#/❡♥③✐♦♥✐ ❡ ❧❡ ❝♦♥/-❛③✐♦♥✐ ❣♦❞♦♥♦ ❞❡❧❧❡ ♣-♦♣-✐❡/4 ✶✳ (I1 + I2)e = I1e + I2e✳ ✷✳ (J1 + J2)c ⊃ J1c + J2c✳ ✸✳ (I1 ∩ I2)e ⊆ I1e∩ I2e✳ ✹✳ (J1 ∩ J2)c = J1c ∩ J2c✳ ✺✳ (I1 · I2)e = I1e · I2e✳ ✻✳ (J1 · J2)c ⊃ J1c · J2c✳ ✼✳ (I1 : I2)e ⊆ (I1e : I2e)✳ ✽✳ (J1 : J2)c ⊆ (J1c : J2c)✳ ✾✳ r (I)e ⊆ r (Ie)✱ ♣❡- ♦❣♥✐ I ✐❞❡❛❧❡ ❞✐ A✳ ✸✻

Riferimenti

Documenti correlati

Numerical findings regarding the Cu/Nb case study indicate that the point defect removal capability of individual Cu and Nb layers terminated by interfaces behav- ing as neutral

Because noradrenergic denervation should have caused a loss of NET and reduced NE level at α2-adrenoceptors, the actual effect of an aDBH-induced lesion on DA output elicited

L’archelingua cui siamo ostinatamente affezionati impone in realtà qui due cautele: la prima è quella sulla effettiva numerazione dei regimi, in costanza di un testo

The association between proges- teron receptor status and nestin expression showed that 64% of PR- cases were nestin pos- itive (P=0.037). No association between

The transverse momentum, pT, spectra of charged particles in the pseudorapidity range |η| &lt; 1 are measured in several ranges of collision centrality for xenon-xenon (XeXe)

Per lo stesso parametro analit.ico, contenuti contraddistinti da dffi- rente lettera minuscola sono statisticamente dffirenti tra loro.. Conseguentemente, si è ri-

In particular, the left party is most likely to be elected in the second period when the level of redistribution in the ¯rst period is so low that only the rich invest, and

But in these cases there is always a nebular emission component in the rest posi- tion, which is associated with the SN ejecta itself (see Fig. Interacting SNe with no asymmetry in