• Non ci sono risultati.

The processing of chimeric and dichotic emotional stimuli by connected and disconnected cerebral hemispheres

N/A
N/A
Protected

Academic year: 2021

Condividi "The processing of chimeric and dichotic emotional stimuli by connected and disconnected cerebral hemispheres"

Copied!
11
0
0

Testo completo

(1)

Luca

Tommasi

aDepartmentofNeuroscienceandImaging,‘G.d’Annunzio’UniversityofChieti-Pescara,Chieti,Italy

bDepartmentofPsychologicalScience,HumanitiesandTerritory,‘G.d’Annunzio’UniversityofChieti-Pescara,Chieti,Italy

cDepartmentofClinicalandExperimentalMedicine,NeuroscienceandCellBiologySection,PolytechnicUniversityofMarche,Ancona,Italy dRegionalEpilepsyCentre,NeurologicalClinic,“OspedaliRiuniti”,Ancona,Italy

h

i

g

h

l

i

g

h

t

s

•Chimericanddichoticstimuliwerepresentedtotwosplit-brainpatients(D.D.V.andA.P.).

•Stimuliconveyedhappy/sadexpressionsandparticipantsjudgedtheiremotioncontent.

•Thetotalsplit-brainpatientD.D.V.neglectsvisualstimuliinthelefthemifield.

•A.P.showsaright-hemisphericdominanceinunimodalanalysis.

•ThevalencehypothesisisconfirmedinbimodalconditionsbyA.P.andthecontrolgroup.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received2June2014

Receivedinrevisedform16June2014 Accepted18June2014

Availableonline24June2014 Keywords: Audio-visualintegration Split-brain Chimericface Dichoticstimulation Hemisphericasymmetry

a

b

s

t

r

a

c

t

Hemisphericasymmetrieshavebeenwidelyexploredinboththevisualandtheauditorydomain,butlittle isknownabouthemisphericasymmetriesinaudio–visualintegration.Wecomparedtheperformanceof apartiallycallosotomizedpatient,atotalsplit-brainpatientandacontrolgroupduringtheevaluation oftheemotionalvalenceofchimericfacesanddichoticsyllables(anemotionalsyllableinoneearand whitenoiseintheotherear)presentedunimodally(onlyfacesoronlysyllables)orbimodally(facesand syllablespresentedsimultaneously).Stimulicouldconveyhappyandsadexpressionsandparticipants wereaskedtoevaluatetheemotionalcontentofeachpresentation,usinga5-pointLikertscale(from verysadtoveryhappy).Inunimodalpresentations,thepartiallycallosotomizedpatient’sjudgments dependedontheemotionalvalenceofthestimuliprocessedbytherighthemisphere,whereasthoseof thetotalsplit-brainpatientshowedtheoppositelateralization;intheseconditions,thecontrolgroup didnotshowasymmetries.Moreover,inbimodalpresentations,resultsprovidedsupportforthevalence hypothesis(i.e.,leftasymmetryforpositiveemotionsandviceversa)inboththecontrolgroupandthe partiallycallosotomizedpatient,whereasthetotalsplit-brainpatientshowedatendencytoevaluatethe emotionalcontentoftherighthemifaceevenwhenaskedtofocusontheacousticmodality.Weconclude thatpartialandtotalhemisphericdisconnectionsrevealoppositepatternsofhemisphericasymmetryin auditory,visualandaudio–visualemotionprocessing.Theseresultsarediscussedinthelightofthe right-hemispherehypothesisandthevalencehypothesis.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Studiesonthecerebrallateralizationofemotionalprocessing

haveshownvariablepatternsofresults,andtheaspectof

hemi-spheric asymmetry in this field still remains controversial [1].

∗ Correspondingauthor.Tel.:+398713554216;fax:+3987135542163. E-mailaddress:giulia.prete@unich.it(G.Prete).

According to the right-hemisphere hypothesis [2–4], a

right-hemisphericdominancewouldunderlieallaspectsofemotional

processing.Ontheotherhand,accordingtothevalence

hypoth-esis [5–7] a right-hemispheric superiority would underlie the

processingofnegativeemotions,whereasaleft-hemispheric

supe-rioritywouldunderlietheprocessingofpositiveemotions.

Hemisphericasymmetriesinperceptionhavebeenexploredby

meansofseveralparadigms.Intheauditorydomain,the

organiza-tionofcerebralauditorypathwaysmakesitpossibletoevaluatethe

http://dx.doi.org/10.1016/j.bbr.2014.06.034 0166-4328/©2014ElsevierB.V.Allrightsreserved.

(2)

contributionofeachhemispherebypresentingdifferentstimuliin

thetwoears(dichoticlistening).Exploitingthisfact,anumberof

studieshaveshownthatthepresentationofanacousticstimulusin

oneearleadstoahigheractivationinthecontralateralhemisphere

(e.g.,rightear/lefthemisphere)ratherthanintheipsilateral

hemi-sphere[8,9].Inparticular,thedichoticlisteningparadigmreveals

arightearadvantage(REA),indicatingaleft-hemispheric

superi-orityinlinguisticprocessing[10,11],whichhasalsobeenshown

inecologicalcontexts[12].TheREAseemstobeattributableto

theinvolvementofthecorpuscallosum(CC)andtheauditory

cor-tex,besidesattentionalfactors(see[13]forareview).Moreover,

dichoticlisteninghasbeenusedtoinvestigatethelateralizationof

emotionalprocessingintheauditoryverbalandnonverbaldomains

[14].For example,Erhanandcolleagues[15] askedparticipants

tocategorize emotional prosody of dichoticallypresented

non-sensesyllablesashavingpositiveornegativeintonation,andthey

foundaleftearadvantage(LEA),eveniftheyunderlinedan

oppo-siteelectrophysiologicalcorrelate,namelyahigheramplitudeof

theN100component in theleftrather than inthe right

hemi-sphere.Theseauthorsproposedthatsuchapatternofevent-related

potentialsreflectsphoneticanalysisbutthatemotionalevaluation

isprocessedintherighthemisphere,thussupportingthe

right-hemispherehypothesis.Ofnote,however,Erhanandcolleagues

pointedoutthattheLEAwasstrongerfornegativethanforpositive

emotions([15],seealso[72]).Ontheotherhand,HerreroandHillix

[16]foundagenerallowerrecognitionscorefornegativethan

pos-itiveemotionalintonationsentences,andasignificantinteraction

betweenthepresentationearandtheemotionalvalenceofstimuli,

withaspecificloweringofscoresforthenegativeemotional

sen-tencespresentedintherightear.Schepmanetal.[17]haverecently

confirmedthispatternofresults,providingfurthersupportforthe

valencehypothesis.

Other controversial results were also obtained in EEG and

neuroimagingstudiesinwhichdifferentparadigmsthandichotic

listeningwereused.Recordingevent-relatedpotentialsandskin

conductance,Meyersand Smith[18] didnotfindasymmetryin

nonverbalaffectivestimuliprocessing.Nevertheless,inafunctional

magneticresonanceimagingstudy,Wildgruberandcolleagues[19]

founda strongeractivationoftherighthemisphereforacoustic

stimuliwithbothpositiveandnegativevalence,thussupporting

theright-hemispherehypothesis.

Cerebral lateralization has also been largely studied in the

domain of visual perception. Specifically, a paradigm used to

investigatecerebralasymmetriesinfaceprocessingisthatofthe

chimericfaces[2],thatarecreatedbyjuxtaposingtheleftandright

halvesof twodistinct faces.Studiesthat madeuseof chimeric

facesshowedthattherighthemisphereismorespecializedforface

processingthanthelefthemisphere[20].Alsointhiscontext,

how-ever,contrastingresultshavebeenobtainedasregardsemotion

processing.Presentingchimericemotionalfaces,Drebingand

col-leagues[21]providedsupportfortheright-hemispherehypothesis

[21].KillgoreandYurgelun-Todd[22],onthebasisofanfMRIstudy,

concludedthat the valence and theright-hemisphere

hypothe-sisarenotmutuallyexclusive,buttheyshouldbeconsideredas

differentpossibilitiestounderstandfacialemotionprocessing.A

similarlyunclearpatternofresultshasbeenachievedbyexploiting

bilateralpresentations oftwoemotionalfacesorunilateral

pre-sentationsofoneface,providingevidenceinsupportforboththe

right-hemispherehypothesis[23,24]andthevalencehypothesis

[25–27].

Withregardtoaudio–visualintegration,animportantquestion

iswhetherthefusionofmultisensoryinputsleadstoa

combina-tionoftheprocessingactivitiesinvolvedbyeachofthetwosensory

modalitiesconsideredinisolation,orwhethertheinformation

pre-sentedinonesensorymodalitypredominatesoverthatpresented

intheothermodality.Ofnote,anumberofstudiesshowedthat

multisensoryintegrationisautomaticandunintentional,although

otherstudiessuggestedadifferentpointofview(see [28]fora

review).Collignonandcolleagues[29]askedparticipantsto

clas-sifyvocalandvisualstimuliaccordingtotheiremotioncontent,

findingthatthecategorizationimprovedwhenvocaland visual

expressionswerecongruentand that,in theincongruent

condi-tions, participantsbased theirevaluationsmainlyon thevisual

component(visualcapture).Ontheotherhand,Petrinietal.[30]

foundtheoppositeresult,withtheacousticinformation

prevail-ingduringtheevaluationofincongruentaudio–visualemotional

stimuli(auditorycapture).Thus,itcouldbeconcludedthatthere

isareciprocalinfluenceduringauditoryandvisualprocessingof

emotionalinformationdependingoncongruence[31],butthe

pri-oritizationofonesensorymodalityovertheotherdoesnotseem

tofollowaclearrulewhenthetwomodalitiesconveyconflicting

contents.

Manystudiesfocusedonthecerebralcorrelatesofaudio–visual

integrationand showed thatdifferent cerebralareas are

impli-catedinthis process:for example,Kreifeltsandcolleagues[32]

foundthatthebehavioralimprovementduringthesimultaneous

presentationofemotionallycongruentbimodalstimulicorrelated

withanincreasedactivationinthebilateralposteriorsuperior

tem-poral gyrus([32]; see also[33], for a review) and in the right

thalamus;otherstudieshighlightedaleft-hemisphericactivation

during bimodal processing, in particular in the middle

tempo-ral gyrus[34,35]and in theposterior superior temporal sulcus

[36]. Jeongand colleagues[37] foundthat emotionally

congru-entaudio–visualpresentationsenhancedtheactivityinauditory

areas,whereasemotionallyincongruentpresentationsenhanced

theactivityinfacerecognitionareas,suchasthefusiformgyrus.

Ethoferandcolleagues[38]haverecentlyshowntheimportance

of the orbitofrontal cortex in themechanism of habituation to

facialexpressionsandprosody,whichhighlights theroleofthis

region as an important component of a system for emotional

processingoffacesandvoicesandasaneuralinterfaceamong

sen-soryareas.Finally,electrophysiologicaldatademonstratedanearly

audio–visualcrosstalkfollowingstimuluspresentation[39,34].

Anothersourceofinformationaboutaudio–visualneural

cor-relatescomesfrom studiesonneurological patients. Hayakawa

andcolleagues[40]showedthatapatientwithamygdalaand

hip-pocampuslesionscouldnotrecognizefearfromfacialexpressions,

butwasabletorecognizethemfromprosodicandverbalstimuli,

whereasapatientwithamoreextendedlesionbeyondthe

amyg-dalacouldnotrecognizefearexpressionsfromprosodicandverbal

stimuli,evenifhewasabletorecognizethemfromfacialstimuli

[40].

Although audio–visual integration has been largely

investi-gated, hemispheric lateralization in this field remains largely

unexplored,even more soin thecase of multisensory analysis

in emotionperception.One ofthepossiblesources ofevidence

consistsinstudyingsplit-brainpatients[41,42],individualswho

have undergone the surgical resection of the corpus callosum

(CC) as an extreme attemptto prevent thespread of epileptic

seizuresbetweenthe two hemispheres[43]. Importantly,

com-parisonsamongtheperformanceofpatientswhohaveundergone

different degrees of hemisphericdisconnection (total or partial

and,inthelattercase,indifferentregionsoftheCC)provideus

withararechancetostudyhemisphericcompetences[44].

Stud-ieswithcallosotomizedpatientsconfirmedtheright-hemispheric

superiorityinfaceprocessing[45],aswellastheleft-hemispheric

superiority(REA)indichoticlistening([46];see[47],forareview).

Howeverthehemisphericsuperiorityinemotionanalysisremains

controversialeven asregardssplit-brainpatients’results:Stone

etal.[48]showedthatbothdisconnectedhemispherescouldmatch

equally well facial expressions to emotion words, but the left

(3)

Fig.1. MidsagittalMRIofpatients.Leftpanel:A.P.’sbrain,showingtheanteriorsectionofthecorpuscallosum,whichsavesthesplenium.Rightpanel:D.D.V.’sbrain,showing thecompleteabsenceofcallosalfibers.

etal.[49],basedontheresultsofasplit-brainpatientwhowas

capabletodiscriminateemotionalfromneutralstimulipresented

inbothLVFandRVF,concludedthatemotionalprocessingcould

takeplaceineitherdisconnectedhemisphere,butonlytheright

hemisphereproducedanautonomicresponsetoemotionalstimuli

[49].Arecentstudyinwhichatotalsplit-brainpatientandan

ante-riorcallosotomizedpatientweretested,providedsupportforthe

righthemispherehypothesisinthecaseofbilateralpresentationof

faceswithahiddenemotionalcontent[24].AsreviewedbyGainotti

[50],theright-hemisphericsuperiorityinsubliminallypresented

emotionalcontentcouldbeexplainedbyasubcorticalasymmetry

inemotiondetection.

Theaimofthepresent studywastoinvestigatehemispheric

asymmetriesinaudio–visualintegrationandthewayinwhich

lat-eralizedvisualandacousticemotionalstimuliareprocessedbythe

twohemispheres. Accordingtopreviousevidenceonemotional

analysisinthevisualandacousticmodalities,onemightexpectthat

eithertheright-hemispherehypothesisorthevalencehypothesis

isapplicablealsototheaudio–visualdomain.

First of all, we expected a moderate hemispheric

asymme-try in emotion evaluation by healthy participants. Second, we

expectedamoreextremehemisphericlateralizationpatternina

totalsplit-brainpatientregardlessofthenatureofstimuli,dueto

thecompleteabsenceofreciprocalcallosalconnectionsbetween

the hemispheres. Finally, we expected that in a patient with

ananteriorcallosalsection,lateralizationwould appear weaker

comparedtothatofthetotalsplit-brainpatient,duetointact

con-nectionsbetweenposteriorcorticalareas,theposteriorpartofthe

CCbeingspared, butstrongercomparedtothatofhealthy

sub-jects,becauseofthecompletesegregationoftheanteriorareas.

However,wecouldnotpredictthedirectionofanylateralization,

becauseofthe mixedresultsavailable intheliterature in both

visualandacousticdomains, andtheabsenceof clearevidence

of cerebral asymmetry in multimodal integrationof emotional

stimuli.

2. Materialsandmethods

2.1. Participants

ApatientwithananteriorsectionoftheCC,apatientwitha

totalsectionoftheCC,and16healthyparticipantstookpartinthe

experiment.

A.P.isa47-year-oldman,whounderwentthesurgicalresection

ofalargeanteriorportionoftheCCtoreducethespreadofepileptic

seizures.Thesurgerywascarriedoutin1993anditleftintactonly

thesplenium(seeFig.1a).A.P.’spostoperativeIQwas87,as

mea-suredbymeansoftheWechsleradultintelligencescale(WAIS),

andhislateralityquotientwas+10,accordingtotheEdinburgh

HandednessInventory[51].

D.D.V.isa48-year-oldman,who,inordertopreventthespread

ofepilepticfoci,underwentthecompleteresectionofthecorpus

callosumthroughdifferentstages,thelastofwhichoccurredin

1994.Thesurgicalresectionleftintacttheanteriorcommissure(see

Fig.1b).D.D.V.’spostoperativeIQwas81,asassessedbytheWAIS,

andhislateralityquotientwas+100,accordingtotheEdinburgh

HandednessInventory[51].

Bothpatientshadnovisualimpairmentsorpsychiatric

symp-toms(furtherdetailsofthepatients’statusareprovidedby[52]).

TheyweretestedattheEpilepsyCenterofthePolytechnic

Univer-sityofMarche(Torrette,Ancona),duringapausebetweenroutine

neurologicalexaminations.

Thecontrolgroupwascomposedof16maleindividuals(age:

M=24.44; SD=1.35). According to self-report, all were

right-handed,hadnormal orcorrected-to-normalvision, andnoneof

themhadneurologicalorpsychiatrichistories.Theseparticipants

weretestedasvolunteersatthePsychobiologyLaboratoryofthe

UniversityofChieti.

Informedconsentwasobtainedfromallparticipantspriorto

thebeginningofthetaskandtheexperimentalprocedureswere

approvedbythelocalethicalcommittee.

2.2. Stimuli

Weusedchimericfacesasvisualstimulianddichotic

presenta-tionsasacousticstimuli.

Facialstimuliwerecreatedfromphotographscontainedinthe

Karolinska directed emotional faces [53], a database of female

andmalefaceswithbothneutralandemotionalexpressions.

Pho-tographsofafemalefaceinahappypose(HA)andinasadpose

(SA)wereselectedandconvertedintogray-scaleimages,

measur-ing5.2◦×6.6◦ofvisualangle(198×252pixel)atadistanceofabout

72cm.Fromtheseimages,hemifacecomponentswerecreated:the

twophotographswerecentrallydividedintotwohalves,inorderto

obtainoneleftsadhemiface,onerightsadhemiface,onelefthappy

hemiface,andonerighthappyhemiface.Chimericfaceswerethus

(4)

Fig.2. Anexampleofchimericface(HA/SA).

ofvisualstimuliwascomposedof4chimericfaces:HAleft

hemi-face/HArighthemiface,HAlefthemiface/SArighthemiface,SAleft

hemiface/HArighthemiface,SAlefthemiface/SArighthemiface.In

ordertoreducethesenseofstrangenesspossiblyduetochimeric

stimuli,thetwohalffaceswereseparatedbyathinwhitestripe

(width:.02◦ofvisualangle;seeFig.2).

Acousticstimuliwerecreatedbyrecordingconsonant–vowel

syllablespronouncedbyafemaleactresswithdifferentemotional

accent.Thesyllable/ba/wasrecordedwithtwodifferentemotional

intonations: happy(HA) and sad (SA). Stimuli were then

han-dledwithGoldWaveSoftwarev5.25(GoldWaveInc.,St.John’s,NL,

Canada).Theyweredigitized(16bit,samplingrate44,100Hz)and

presentedinadichoticparadigm,inwhichtheemotionalsyllable

waspresentedinoneearandwhitenoise(WN)wassimultaneously

presentedintheotherear.Acousticstimulilasted350ms,including

50msoflinearfade-inatthebeginningofeachstimulusand50ms

oflinearfade-outattheendofeachstimulus.Dichoticstimuliwere

deliveredbymeansofheadphones(PhilipsSHP5400):anemotional

syllableandwhitenoisewerepresentedintheoppositeears,with

acommononsetandacommondurationof350ms.Thefinalset

ofacousticpresentationswascomposedof4dichoticstimuli:HA

syllableintheleftear/WNintherightear,WNintheleftear/HA

syllableintherightear,SAsyllableintheleftear/WNintheright

ear,andWNintheleftear/SAsyllableintherightear.Wechoseto

avoidthesimultaneouspresentationofdifferentemotional

sylla-blesinthetwoearsinordertokeepthecomplexityofconflicting

informationbetweenvisualandauditoryinputasmanageableas

possibleforsubsequentstatisticalanalyses.

We presented happyand sad emotionalexpressions, onthe

basisofpreviousstudiesindicating thatthesetwoemotionsare

evaluated ashighly opposite in valence (positive and negative,

respectively),andarethuseasytodifferentiatefromeachother

[54]. We chose to use the 350ms presentation time to allow

patientstoeffectivelyprocessallstimulieveninthecaseofbimodal

(possiblyconflicting)conditions,inwhichthecognitiveloadcould

behigh.Wealsopreferredtousea relativelylongpresentation

timetomakesurethatthebimodalintegrationoccurred,giventhat

some electrophysiological data demonstrated that audio–visual

integrationmaytakeplaceonlyatabout180msafterstimulionset

[39]. Onthe otherhand,there isevidence oflateralized effects

obtainedwithlongpresentationtimeinboththeacoustic(e.g.,[55])

andthevisualdomain(e.g.,[56,57]).

2.3. Procedure

Participantswereadministeredfourdifferentsessionsinwhich

theywereaskedtoevaluatetheemotionalvalenceofstimuli,using

a5-pointLikertscale:from1=verysad,to5=veryhappy(1=very

sad;2=sad;3=neutral;4=happy;5=veryhappy),usingthe

com-puterkeyboard.

Inthefirstsession,onlyacousticstimuliwerepresented.The

4dichoticstimuliwerepresentedinrandomorder5timeseach,

constituting asetof 20acousticstimuli. Awhite screenlasting

500mswasfollowedbythepresentationofacentralfixationcross

for850ms.Afterafirstintervalof500msinwhichonlythecross

wasshown,thedichoticstimuluswaspresentedforadurationof

350ms,sothattheendoftheacousticinputcorrespondedtothe

endofthecrosspresentation.Then,thescreenwentblankuntilthe

responsewasgiven,andthenexttrialstarted(seeFig.3a).

Inthesecondsession,onlyvisualstimuliwerepresented.The

4chimericfaceswerepresentedinrandomorder5timeseach,

constitutingasetof20visualstimuli.Awhitescreenlasting500ms

wasfollowedbythepresentationofablackfixationcrossinthe

centerofthescreenfor500ms.Thestimuluswasthenpresented

inthecenter ofthescreenwithadurationof350ms.Then,the

screenwentblankuntiltheresponsewasgivenbytheparticipant,

andthenexttrialstarted(seeFig.3b).

Inthelasttwosessions,acousticandvisualstimuliwere

pre-sented together.Eachof thesesessions wereconstituted by80

stimuli,includingall16possiblecombinationsofthe4chimeric

facesand the4 dichoticpresentations, each combination being

repeated5timesinarandomorder.Thesetwosessionswere

simi-lartoeachother:awhitescreenwaspresentedfor500ms,followed

bythepresentationofablackfixationcrossinthecenterofthe

screenfor500ms.Thedisappearanceofthecrosscoincidedwith

thesimultaneousonsetofboththechimericfaceinthecenterof

thescreenandthedichoticstimulusintheearphones,bothlasting

350ms.Then,thescreenwentblankuntiltheresponsewasgiven,

andthenexttrialstarted(seeFig.3c).Inthefirstofthesetwo

ses-sions,participantswereaskedtoevaluatetheemotionalvalenceof

thevisualstimuli,ignoringtheacousticinput,whereas,inthelast

session,participantswereaskedtoevaluatetheemotionalvalence

oftheacousticstimuli,ignoringthevisualinput.

Inorder tospecifywhich modalityhadtobeattendedto,at

thebeginningofeachsessioninstructionswerepresentedonthe

computerscreen.Intheinstructionsitwasalsospecifiedthatthe

gazehadtobemaintainedatthecenterofthescreenforallthe

testingtime.Attheendofasession,participantswereallowedto

takeashortbreakbeforestartingthenextone.

Thetwopatientsgavetheirresponsesusingtherighthand.As

regardsthecontrolgroup,halfoftheparticipantsusedtheright

handandtheotherhalfusedthelefthand.Thewholetaskwas

controlledbyE-Primesoftware(PsychologySoftwareTools,Inc.,

Pittsburgh,PA)andlastedabout30min.

3. Results

StatisticalanalyseswerecarriedoutusingthesoftwareStatistica

8.0.550(StatSoft.Inc.,Tulsa,USA).Asregardscontrolgroupscores,

thedifferentconditionsineachofthe4sessionswerecompared

by meansofdifferentanalysis ofvariance (ANOVAs), using the

emotionjudgmentasthedependentvariable.PreliminaryANOVAs

(5)

Fig.3.Schematicrepresentationofatrialinsession1:dichoticstimuli(toppanel,ontheleft);insession2:chimericstimuli(toppanel,ontheright);andinsessions3and 4:bimodalpresentations,withbothdichoticandchimericstimuli(bottompanel).

between-subjectsfactor,butneitherthemaineffectofthis

fac-tornorinteractionsweresignificant.Thus,wecarried outthree

repeatedmeasuresANOVAs(oneforeachunimodalsession and

oneforthetwobimodalsessions).Post-hoccomparisonswere

car-riedoutbymeansofBonferronitestand correctedp-valuesare

reported.

Intheauditorysession,theANOVAwascarriedoutusing

emo-tionaltone(happyandsad)andpresentationear(leftandright)as

within-subjectfactors.Onlythemaineffectofemotionaltonewas

significant(F(1,15)=53.06,p<.001,2=.78),showingthathappy

syllables were evaluated ashappier than sad syllables (happy:

M=3.94±.14;sad:M=2.26±.10).

In the visual session, the ANOVA was carried out using

face as within-subject factor (happy/happy, sad/sad, happy/sad

andsad/happy).Thismaineffectwassignificant(F(3,45)=157.49,

p<.001, 2=.913): post-hoc comparisons showed that the

happy/happyface wasevaluated happier than all of the other

stimuli and that the sad/sad face was evaluated sadder than

all of the other stimuli (p<.001 for all comparisons; HA/HA:

M=4.74±.07;SA/SA:M=1.69±.12;HA/SA:M=2.90±.12;SA/HA:

M=2.72±.14).

Asregardsthetwobimodalsessions,theANOVAwascarried

outusingTargetmodality(visualandacoustic),face(happy/happy,

sad/sad,happy/sad and sad/happy),emotional tone(happy and

sad) and presentation ear (left and right) as within-subject

factors. The main effect of target modality approached

sta-tistical significance (F(1,15)=4.27, p=.056), visual stimuli being

evaluatedslightlymore positively(M=3.16±.07)thanauditory

stimuli (M=3.03±.08). The main effect of face wassignificant

(F(3,45)=36.05, p<.001 2=.71): post-hoc comparisons showed

thatthehappy/happyfacewasevaluatedhappierthanallofthe

other stimuli and that the sad/sad face was evaluated sadder

thanalloftheotherstimuli(p<.001forallcomparisons;HA/HA:

M=3.96±.1; SA/SA:M=2.38±.1; HA/SA:M=3.02±.09;SA/HA:

M=3.02±.08).Themaineffectofemotionaltone(F(1,15)=49.23,

p<.001,2=.77)showedthathappysyllableswereevaluatedas

happierthansadsyllables(HA:M=3.72±.07;SA:M=2.47±.06).

Themaineffectofpresentationearwasnotsignificant(F(1,15)=.55,

p=.47;left:M=3.09±.07;right:M=3.11±.07).

Asregardsthesignificantinteractionbetweentargetmodality

and face (F(3,45)=20.23, p<.001, 2=.57), post-hoc

compar-isons showed that when visual judgments were required, the

happy/happyfacereceivedahigherevaluationandthesad/sadface

receivedalowerevaluationcomparedtoalloftheotherconditions

(p<.001forallcomparisons),whereaswhenauditoryjudgments

wererequired,thehappy/happyfacewasassociatedtohigher

eval-uations than thesad/sadface (p<.001) and thesad/happy face

(p=.044).

Theinteractionbetweentargetmodalityandpresentationear

wassignificant(F(1,15)=6.34,p=.024,2=.30)andpost-hoc

com-parisonsshowedthatvisualjudgmentswerehigherthanauditory

judgments when syllables were presented both to the left ear

(visualmodality:M=3.17±.10;acousticmodality:M=3.00±.11;

p=.04),andtotherightear(visualmodality:M=3.15±.11;

acous-tic modality:M=3.06±.11;p=.002). Moreover,in theacoustic

modality,syllablespresentedtotherightearreceivedhigher

eval-uations than thosepresented tothe leftear (p=.036), whereas

evaluationsdidnotdifferaccordingtoauditorypresentationside

whenthetargetmodalitywasvisual.

Thethree-wayinteractionamongface,emotionaltoneand

pre-sentationear(F(3,45)=3.41, p=.025, 2=.18)wassignificant.To

betterclarifythisinteraction,twodifferentANOVAs were

com-puted,bysplittingthedataaccordingtopresentationearandusing

faceandemotionaltoneaswithin-subjectfactors.Asregardsthe

right-earpresentationcondition,asignificantinteractionbetween

faceandemotional tone(F(3,45)=4.60, p=.007,2=.23)showed

thatwhenthesadsyllablewaspresented,thesad/happyfacewas

judgedashappierthanthehappy/sadface(p=.047).Theinteraction

wasnotsignificantfortheleft-earpresentationcondition.

Inordertoevaluatetheeffectsofbimodalpresentations,mean

scoresobtainedinboththevisualandtheauditoryunimodal

(6)

Fig.4. 95%Confidenceintervalsofthecontrolgroup(lines)andpatientsmeans (A.P.:cross;D.D.V.:triangle)inthefirstsession:4dichoticstimuli.

sessions,usingaseriesofBonferronicorrectedt-tests.In

partic-ular,scoresrecordedinthebimodalsessioninwhichparticipants

wereaskedtojudgetheemotionalvalenceofthevisualstimuli

(session 3) were compared with scores recorded in the visual

session (session 2). The presentation of a happy tone to the

right ear (WN/HA) led to higher evaluations of the sad/happy

chimeric face (t(15)=−3.724, p=.032). In the same way, scores

recordedinthebimodalsessioninwhichparticipantswereasked

to judge the emotional valence of acoustic stimuli (session 4)

werecomparedwiththescoresrecordedintheauditorysession

(session1).Thepresentationof thesad/sadface ledtoa lower

evaluationof allacousticstimuli (HA/WN:t(15)=5.021,p=.002;

WN/HA:t(15)=3.764,p=.030;SA/WN:t(15)=3.68,p=.036;WN/SA:

t(15)=5.51,p<.001),whereasthepresentationofthehappy/happy

faceledtohigherevaluationsofthesadsyllablepresentedtoboth

theleft(SA/WN:t(15)=−4.69,p=.005)andtherightear(WN/SA:

t(15)=−5.397,p=.001).

Inordertocomparetheperformanceofthepatientsandthe

controlgroupineachsession,patients’meanswerecomparedwith

the95%confidenceintervalsofthecontrolgroupscores.

In session 1 (dichotic syllables), A.P.’smean wasabove the

cut-offofthe95%confidenceintervalsintheHA/WNcondition,

whereasD.D.V.’smeanswereaboveofthe95%confidenceintervals

inallconditions(seeFig.4).

Insession2(chimericfaces),A.P.’smeanswereabovethe

cut-offofthe95%confidenceintervalsinHA/HAandHA/SAconditions,

andtheywerebelowinSA/SAandSA/HAconditions.Inthissession,

D.D.V.’smeanswereabovethecut-offofthe95%confidence

inter-valsinHA/HAandSA/HAconditions,andtheywerebelowinSA/SA

andHA/SAconditions(seeFig.5).

Insession3(bimodalpresentationwithvisualevaluation),A.P.’s

meanswereabovethecut-offofthe95%confidenceintervalsin

allconditionsinwhichHA/HA andSA/SAfaceswerepresented,

regardlessof dichoticstimulation, and when HA/SAand SA/HA

faceswerepresentedtogetherwithSA/WNandWN/SAdichotic

stimuli. In this session, D.D.V.’s means were above the cut-off

ofthe95% confidenceintervals whentheHA/HA facewas

pre-sentedtogetherwithWN/HA,SA/WNandWN/SAstimuliandwhen

theSA/HAfacewaspresentedtogetherwithHA/WN,SA/WNand

WN/SAstimuli;theywerebelowthecut-offofthe95%confidence

intervalswhentheHA/HAfacewaspresentedtogetherwiththe

HA/WNdichoticstimulusandinalltheconditionsinwhichSA/SA

andHA/SAfaceswerepresented,regardlessofdichoticstimulation

(seeFig.6).

Fig.5.95%Confidenceintervalsofthecontrolgroup(lines)andpatientsmeans (A.P.:cross;D.D.V.:triangle)inthesecondsession:4chimericfaces.

Insession4(bimodalpresentationwithauditoryevaluation),

A.P.’smeanswereabovethecut-offofthe95%confidence

inter-valswhentheHA/WNdichoticstimuluswaspresentedtogether

withSA/SAandHA/SAfaces,whentheWN/SAdichoticstimulus

waspresentedtogetherwithSA/SAand SA/HAfaces,and in all

conditionsinwhichWN/HAandSA/WNstimuliwerepresented

togetherwithanychimericface.In this session,D.D.V.’s means

wereabovethecut-offofthe95%confidenceintervalswhenthe

HA/WN stimuluswaspresented togetherwiththe HA/HAface,

whentheWN/HAstimuluswaspresentedtogetherwithHA/HA

andSA/HAfaces,whentheSA/WNdichoticstimuluswaspresented

togetherwiththeSA/HAface,andwhentheWN/SAstimuluswas

presentedtogetherwithHA/HA,HA/SAandSA/HAfaces;theywere

below whentheHA/WNstimuluswaspresented togetherwith

bothSA/SAandHA/SAfaces,whentheWN/HAstimuluswas

pre-sentedtogetherwiththeHA/SAface,andwhentheSA/WNstimulus

waspresentedtogetherwiththeSA/SAface(seeFig.7).

4. Discussion

Theperformancesofthetwopatientswereverydifferentfrom

oneanother.Ingeneral,thetotalsplit-brainpatient(D.D.V.)showed

arightwardbias;moreover,hisevaluationsinbimodal

presenta-tionsweremainlybasedonvisualratherthanacousticstimuli,even

whenhewasexplicitlyrequiredtojudgetheauditoryinput.Onthe

otherhand,theresultsofthepartiallycallosotomizedpatient(A.P.)

largelyresembledthoseofthecontrolgroupandhedidnotshow

difficultiesinpayingattentiontoeithervisualoracousticstimuli,

whenrequired.Differentlyfromthecontrolgroup,however,A.P.

showedatrendforaleftwardbiasintheemotionalevaluationof

bothacousticandvisualstimulipresentedinisolation.This

pat-ternofresultsconfirmsaright-hemisphericsuperiorityinemotion

detection,alreadyknowninthevisualdomain(see[24],forsimilar

lateralizationresultsinthesamepatient),andaddsnewevidence

intheauditorydomain.

AsregardstheresultsofD.D.V.,intheauditorysessiontheyseem

tobeinlinewiththevalencehypothesis,giventhatheattributed

ahigherscoretohappysyllablespresentedtotherightthantothe

leftear,andatthesametimeheattributedalowerscoretosad

syllablespresentedtotheleftthantotherightear[5–7].However,

thispatternwasnotevidentintheotherconditions.In

particu-lar,withvisualpresentation,D.D.V.seemedtotallyincapableat

detectingemotionsexpressedbythelefthemiface:hisjudgments

werebasedsolelyontheexpressionoftherighthemiface.Atfirst

(7)

Fig.6.95%Confidenceintervalsofthecontrolgroup(lines)andpatientsmeans(A.P.:cross;D.D.V.:triangle)inthethirdsession,inwhichchimericfacesanddichoticstimuli werepresentedtogetheranditwasaskedtoevaluatethevisualstimuli:16bimodalconditions.

dominance,thatcouldbeascribedeithertoahemispheric

asymme-tryinemotionalfaceprocessingortoaleft-hemisphericdominance

duetotheuseoftherighthandforresponding.However,another

explanationcouldbefoundintheliteratureonsplit-brainpatients.

Infact,severalstudiescarriedoutwithsplit-brainpatientsshowed

–onlyfollowingtotalresection–asortofattentionaldeficitofthe

righthemisphere[58,59,24].Inthepresentstudy,theuseofthesole

righthandinprovidingresponses,makesitdifficulttoconcludeif

D.D.V.showedaspatialneglectorless,however,testingthesame

split-brainpatient(D.D.V.),Hausmannandcolleagues[58]founda

rightwardbiaswhenD.D.V.carriedoutalinebisectiontaskusing

eithertheleftortherighthand;Corballisandcolleagues[59,60]

describedthesamekindofbiasinD.D.V.leadingtheauthorsto

concludethatD.D.V.showsasortofspatialhemineglect.A

cru-cialpointisthattheresultsofD.D.V.areincontrastwiththoseof

otherpatientswithpartial(eitheranteriororposterior)

calloso-tomy,whodonotshowhemineglect.Corballisandcolleagues[59]

proposedthatthespatialneglectofD.D.V.,causedbythecomplete

Fig.7.95%Confidenceintervalsofthecontrolgroup(lines)andpatientsmeans(A.P.:cross;D.D.V.:triangle)inthefourthsession,inwhichchimericfacesanddichotic stimuliwerepresentedtogetheranditwasaskedtoevaluatetheauditorystimuli:16bimodalconditions.

(8)

absenceofcallosalfibers,isduetoafailuretoshiftattentionfrom

therighthemifieldtothelefthemifield,andtheysuggestedthe

possibilitytotestthesamepatientwithouttheuseofthecentral

fixationcross,inordertoavoidtheneedtoshiftattentionfromthe

centertothesideofthescreen.Inthepresentstudythisproblem

wasinsomewaysidestepped,bymeansofshowingchimericfaces

inthecenterofthescreen.Nevertheless,thepresentresultsseem

toconfirmthepresenceofhemineglectinpatientD.D.V.Moreover,

weaddednewdata,testingthepatientwithacousticstimuli:from

thepresentresultswecanconcludethatthespatialneglectofD.D.V.

isnotapplicabletotheauditorydomain,differentlyfrompatients

whosufferfromhemineglectafteraunilateralcerebrallesion[61],

butitseemstobeconfinedtothevisualdomain.Intheauditory

domain,aconsonant-voweldichoticparadigmcarriedoutwith4

split-brainpatients[62]showedthattheREAwasequivalentfor

therightandthelefthandresponding.Overall,theexplanationof

ourresultsasduetotheuseoftherighthandwouldnotbevalid

intheauditorysession,inwhichD.D.V.didnotshowtherightward

bias,evenifheusedtherighthandonly.

Duringthebimodalpresentation,acousticstimuliwere

substan-tiallyignoredbyD.D.V.,whobasedhisresponsesontheright

hemi-face:giventhatD.D.V.couldsuccessfullycarryoutthedichotictask,

hedisregardedacousticstimulionlyinthecaseinwhichtheywere

presentedtogetherwithvisualstimuli.Inotherwords,thedichotic

presentationalonehighlightedthevalidityofthevalence

hypothe-sis,withopposite-valenceemotionsbeingprocessedbetterbythe

twohemispheres,whereasthesimultaneousaudio–visual

presen-tationshowedasupremacyofthevisualstimuliovershadowing

theacousticstimuli(visualcapture).Thiswasofcoursetruewhen

D.D.V.wasrequiredtoevaluatevisualstimuli,but,importantly,also

whenrequiredtoevaluateacousticstimuli.

Thissetofresultsshowsamultifacetedpicture.Whereas

Cor-ballisandcolleagues[59]concludedthattheattentionaldeficitof

D.D.V.isattributabletoadeficitin shiftingattention,anability

involvingthe ventralattentional system,and that it could

dis-appearifD.D.V.canbasehisresponsesonthedorsalattentional

system,ourresultsseemtosupportanotherperspective:themain

deficitofthepatientdoesnotseemtoresideinattentional

shif-ting,butin hisattentionalbiastowardtherightvisualfield. In

fact,chimericfaceswerepresentedcentrally,thusnotrequiring

gazeorientingorattentionalshift,butnonethelessD.D.V.showed

arightwardbias.Moreover,amongtheperceptualmodalitieswe

tested,thevisualmodality,butnottheauditorymodality,revealed

aspatialhemineglect.Inconclusion,theresultsofthetotal

split-brainpatientprovidedsupportforthevalencehypothesisinthe

auditorydomain,showedahemineglectinthevisualdomain,and

revealedastrongvisualcapture,thusconfirmingthehemineglect,

inaudio–visualprocessing.

Theresultsoftheanteriorsplit-brainpatient,A.P.,were

differ-entfromthoseofD.D.V.inallsessions.Indichoticpresentations,

A.P.’sevaluationsseemtosupporttherighthemisphere

hypothe-sis:happyandsadsyllableswereevaluatedashappierandsadder,

respectively,whenpresentedintheleftear(righthemisphere)than

intherightear(lefthemisphere),supportingtheright-hemispheric

dominanceinemotionalprocessingofbothpositiveandnegative

expressions.Theresultsinthevisualmodalityalsoprovidesupport

fortherighthemispherehypothesis:thehappy/sadchimericface

wasevaluatedashappierbyA.P.thanbythecontrolgroup,andthe

sad/happychimericfacewasevaluatedassadderbyA.P.thanby

thecontrolgroup.Thispatternshowsthatinthepartialsplit-brain

patient,theright-hemispheric dominanceforboth positive and

negativeemotionsmightbeevenmoreevidentthaninthecontrol

group.Inaudio–visualpresentations,A.P.didnotshow

difficul-tiesinevaluatingeithervisualoracousticstimuli.However,inthe

bimodalsessioninwhichvisualevaluationswererequired,A.P.’s

resultsdidnotsupporttherighthemispherehypothesis,butthey

seemedtobeinlinewiththevalencehypothesis:theevaluationsof

thechimericfaceswerelowerwhenthesadsyllablewaspresented

totheleftear(righthemisphere)andhigherwhenthehappy

sylla-blewaspresentedtotherightear(lefthemisphere).Inthebimodal

conditioninwhichauditoryevaluationswererequired,theresults

ofA.P. showedthat whentheemotionalsyllables,regardlessof

theirvalence,werepresentedtotheleftear(righthemisphere),

theyledtoagreaterweightofthe(hemi)facialexpressionshown

totheleft(thus,totherighthemisphere),withlowerscoresforthe

chimericsad/happythanhappy/sadface;whentheemotional

syl-lableswerepresentedtotherightear(lefthemisphere),theyledto

agreaterweightofthe(hemi)facialexpressionshowntotheright

(thus,tothelefthemisphere),withlowerscoresforthechimeric

happy/sadthansad/happyface.Theseresultssuggestthatwhen

auditoryevaluationswererequired,thehemispherecontralateral

totheearpresentedwiththesyllablewasmoreactivated,which

ledtoagreatersalienceofthecontralateralhemiface.Toconclude,

theresultsoftheanteriorcallosotomizedpatientprovidesupport

fortherighthemispherehypothesisonlywithunimodal

stimula-tion.ItisimportanttonotethatthedifferencebetweenD.D.V.and

A.P.isthepresenceofthespleniuminA.P.,whohoweverlacksall

theotherportionsoftheCC.Bymeansofdiffusion-weightedtensor

magneticresonanceimagingandprobabilistictractography,Beer

etal.[63]haverecentlyshownthepresenceofdirectconnections

betweenvisualandauditorycorticeswithineachhemisphereand

thatwhitematterprojectionsfrombothvisualandauditoryareas

crosshemispheresintheposteriorportionoftheCC,withauditory

andvisualinformationpassingthroughthesuperiorandinferior

splenium,respectively.Thisanatomicalevidencelendssupportto

theresultthattheperformanceofA.P.wasverysimilartothatof

thecontrolgroup,becauseinbothcasesaudio–visualinformation

maybeexchangedbetweenhemispherestroughthefibersofthe

splenium.However,somedifferenceexistsbetweenA.P.andthe

controlgroup,suggestingthatothercallosalregionsareimplicated

inthistask.

Thecontrolgroupdidnotshowhemisphericasymmetriesin

unimodalpresentations. Asreportedabove, weexpecteda

pat-ternof lateralizationin favor ofeither thevalence or theright

hemispherehypothesis.Theabsenceofevidenceinanydirection

in visualand auditory sessionscould beattributed tothelong

presentationtimeused.Aswespecifiedabove,wechoselonger

pre-sentationtimescomparedtotheclassicalrangeoftachistoscopic

presentation(around150ms)toensurestimulusprocessingbythe

patients.However,asignofhemisphericlateralizationisevident

intheinteractionbetweentargetmodalityandpresentationear:in

fact,whenanauditoryjudgmentwasrequired,syllablespresented

totherightearreceivedhigherevaluationsthansyllablespresented

totheleftear.Thisresultcouldbeinterpretedinthedirectionof

thevalencehypothesis:whentherighthemisphereisactivated

by the presentationof a syllable, auditoryjudgments decrease

possibly because of the right-hemispheric sensitivity for

nega-tiveemotions.Similarly,whenauditoryevaluationswererequired,

thehappy/happyfacewasjudgedashappierthanthesad/happy

face,butnotthanthehappy/sadface.Again,thisresultcould

sug-gestthattherighthemisphereismoresensitivethantheleftin

detectingthesadhemiface.Ontheotherhand,directcomparisons

betweenunimodalandbimodalsessionspointinthesame

direc-tion:thesad/happychimericfacewasjudgedashappierwhenit

waspresentedtogetherwiththehappysyllabletotherightear

(lefthemisphere),whereasnodifferenceswererecordedwhenthe

samesyllablewaspresentedtotheleftear(righthemisphere):in

accordancewiththevalencehypothesis,thehigheractivationof

thelefthemisphere,moreinvolvedinpositiveemotionprocessing,

couldhaveledtojudgethefaceashappier.Theabsenceofother

evidenceinsupportofthevalencehypothesisinhealthy

(9)

explainthepatients’moreasymmetricperformances.In fact,in

theseconditions A.P.based his ratingsontheleftward stimuli.

Probably,inthecaseofunimodalstimulation,afterthebilateral

exchange of perceptual analysis, which can occur through the

intact splenium of the patient, the outputof each hemisphere

couldbeprojectedtowardthefrontalareas(byintrahemispheric

fibers),where theabsenceofanterior interhemispheric

connec-tionspreventsthebalancebetweenhemispheres,leadingtothe

right-hemisphericsuperiorityinemotionalprocessing.This

possi-bilityisinaccordancewiththe‘modifiedvalencehypothesis’(MVH,

[64,65]):theclassicalhemisphericsuperiorityinaspecificvalence

emotionalanalysis(valencehypothesis)woulddependonthe

pre-frontalspecializationinpositiveandnegativeemotionalcontent

byeachhemisphere,whiletheposteriorregionwouldshowthe

right-hemisphericsuperiorityinallemotionalprocessing.Despite

theMVHdidnotreceivegreatconsideration,recentstudies

sup-portitsvalidity.Forexample,Stefanicsetal. [66]haverecently

foundsupportfortheMVH,recordingERPsduringtheprocessingof

unattendedfacialemotions,withearlycomponentssupportingthe

righthemispherehypothesis,andlatelateralizedcomponents

sup-portingthevalencehypothesis.ConsideringthatA.P.’sfrontallobes

weredisconnected,theMVHcouldexplainhisperformance.

How-ever,intheunimodalacousticcondition,theperformanceofD.D.V.

providedsupportforthevalencehypothesis.Fromthispatternof

results,wecansupposethatinthecaseoftotalinterhemispheric

disconnection,eachhemisphereshowsitssuperiorityinaspecific

emotionaldomain.Alsothispatternofresultcouldbeviewedin

accordancewiththeMVH:thecompletecallosalsectioninD.D.V.

doesnotallowanexchangebetweenthehemispheres,thusthe

relativedominanceofeachhemispherecouldemerge.Fromthis

perspective,thefrontalareasofD.D.V.receivea‘specialized’

out-putfromtheposteriorareasinwhichavalence-specificprocessing

wascarriedout.Thereafter,asregardsthetwomainhypotheseson

lateralizedemotionprocessing,wecanspeculatethattheyareboth

true,withtherighthemispherehypothesissupportedinthecase

ofpartialhemisphericconnections(A.P.)andthevalence

hypoth-esissupportedinthecaseofhemisphericindependence(D.D.V.).

Moreover,inbimodalsessions,theincreasedweightofcognitive

load–duetothesimultaneousstimulationsofbothhemispheres–

reducestheright-hemisphericsuperiority,supportinginanycase

thevalencehypothesis, exceptfor theperformanceofthe

split-brainpatient,whichweattributetoanattentionalbiasratherto

anasymmetricemotionalprocessing.Finally,thereistoconsider

thatthemeanageofthecontrolgroupislowerthanthatofthe

patients.However,itiswellknownthatastrongdifferenceexistin

callosalmorphometryconcerningbothsexandage[67].Theeffect

ofsexwascontrolledinthisstudy,testingallmaleparticipants.As

regardstheeffectofage,callosalmorphometricchangesareshown

especiallybeforereachingadulthood[68],whenthecallosalfibers

arenotcompletelymyelinated,butanumberofstudieslackedin

tiveemotion processing arefound in (i)bimodal presentations

inthecontrolgroup(connectedhemispheres),(ii)bimodal

pre-sentationsinA.P.(anteriorlydisconnectedhemispheres),and(iii)

acousticpresentationinD.D.V.(totallydisconnectedhemisphere).

Asregardsbimodalpresentations,wefoundastrongvisualcapture

inthecaseoftotallydisconnectedhemispheres.Importantly,when

visualstimuli werepresented (alone or together withacoustic

stimuli), only the total split-brain patient showed a

predomi-nantroleofthelefthemisphere,probablyduetoanattentional

bias,ratherthananasymmetricemotionalprocessing,whichwas

notpresentinauditoryprocessing.Thedebateonthevalidityof

theright hemisphere/valencehypothesis remains controversial,

butthepresentstudyaddsevidenceinsupportofboth theories

dependingonthetask,andsuggeststhatthevalencehypothesis

ismoreabletoaccountforresultsasthecognitiveloadbecomes

heavier.

Acknowledgments

WethankProfessorGabrielePolonaraforprovidinguswiththe

MRIimagesofthepatients.WealsothankverymuchD.D.V.and

A.P.fortheirwillingnesstocollaborateinthisstudy.

References

[1]DemareeHA,EverhartDE,YoungstromEA,HarrisonDW.Brainlateralizationof emotionalprocessing:historicalrootsandafutureincorporatingdominance. BehavCognNeurosciRev2005;4(1):3–20.

[2]LevyJ,HellerW,BanichMT,BurtonLA.Asymmetryofperceptioninfreeviewing ofchimericfaces.BrainCogn1983;2:404–19.

[3]VanLanckerD.Ragstoriches:ourincreasingappreciationofcognitiveand communicativeabilitiesofthehumanrightcerebralhemisphere.BrainLang 1997;57:1–11.

[4]BorodJC,CiceroBA,OblerLK,WelkowitzJ,ErhanHM,SantschiC,Grunwald IS,AgostiRM,WhalenJR.Righthemisphereemotionalperception:evidence acrossmultiplechannels.Neuropsychology1998;12:446–58.

[5]DavidsonRJ,MednickD,MossE,SaronC,SchafferCE.Ratingsofemotionin facesareinfluencedbythevisualfieldtowhichstimuliarepresented.Brain Cogn1987;6:403–11.

[6]AhernGL,SchwartzGE.Differentiallateralizationforpositivevsnegative emo-tion.Neuropsychologia1979;17:693–8.

[7]Baijal S, Srinivasan N. Emotional and hemispheric asymmetries in shifts of attention: an ERP study. Cogn Emot 2011;25:280–94, http://dx.doi.org/10.1080/02699931.2010.492719.

[8]Brancucci A, Babiloni C, Babiloni F, Galderisi S, Mucci S, Tecchio F, Zappasodi F, Pizzella V, Romani GL, Rossini PM. Inhibition of auditory cortical responses to ipsilateral stimuli during dichotic listening: evi-dence from magnetoencephalography. Eur J Neurosci 2004;19:2329–36, http://dx.doi.org/10.1111/j.1460-9568.2004.03302.x.

[9]Stefanatos GA, Joe WQ, Aguirre GK, Detre JA, Wetmore G. Activation of human auditory cortex during speech perception: effects of monau-ral,binaural,anddichoticpresentation.Neuropshycologia2008;46:301–15, http://dx.doi.org/10.1016/j.neuropsychologia.2007.07.008.

[10]KimuraD.Functionalasymmetryofthebrainindichoticlistening.Cortex 1967;3:163–8.

[11]D’Anselmo A, Reiterer S, Zuccarini F, Tommasi L, Brancucci A. Hemi-spheric asymmetries in bilinguals:tongue similarityaffectslateralization

(10)

ofsecondlanguage.Neuropsychologia2013;51:1187–94,http://dx.doi.org/ 10.1016/j.neuropsychologia.2013.03.016.

[12]Marzoli D, Tommasi L. Side biases in humans (Homo sapiens): three ecological studies on hemispheric asymmetries. Naturwissenschaften 2009;96(9):1099–106.

[13]WesterhausenR,HugdahlK.Thecorpuscallosumindichoticlisteningstudies ofhemisphericasymmetry:areviewofclinicalandexperimentalevidence. NeurosciBiobehavRev2008;32:1044–54.

[14]Gadea M, Espert R, Salvador A, Martí-Bonmatí L. The sad, the angry, and the asymmetrical brain: dichoticlisteningstudies ofnegative affect and depression. Brain Cogn 2011;76:294–9, http://dx.doi.org/10.1016/ j.bandc.2011.03.003.

[15]ErhanH,BorodJC,TenkeCE,BruderGE.Identificationofemotioninadichotic listeningtask:event-relatedbrainpotentialandbehavioralfindings.BrainCogn 1998;37:286–307.

[16]HerreroJV,HillixWA.Hemisphericperformanceindetectingprosody:a com-petitivedichoticlisteningtask.PerceptMotSkills1990;71(2):479–86. [17]SchepmanA,RodwayP,GeddesP.Valence-specificlateralityeffectsinvocal

emotion: Interactions with stimulus type, blockingand sex.Brain Cogn 2012;79:129–37,http://dx.doi.org/10.1016/j.bandc.2012.03.001.

[18]MeyersM,SmithBD.Hemisphericasymmetryandemotion:effectsof nonver-balaffectivestimuli.BiolPsychol1986;22(1):11–22.

[19]Wildgruber D, PihanH, AckermannH,Erb M,Grodd W.Dynamicbrain activationduringprocessingofemotionalintonation:influenceofacoustic parameters,emotionalvalence,andsex.NeuroImage2002;15(4):856–69. [20]VoyerD,VoyerSD,TramonteL.Free-viewinglateralitytasks:amultilevel

meta-analysis. Neuropsychology 2012;26(5):551–67, http://dx.doi.org/10.1037/ a0028631.

[21]Drebing CE, Federman EJ, Edington P, Terzian MA. Affect identification bias demonstrated with individual chimeric faces. Percept Mot Skills 1997;85(3):1099–104.

[22]KillgoreWDS,Yurgelun-ToddDA.Theright-hemisphereandvalence hypothe-ses:couldtheybothberight(andsometimesleft)?SocCognAffectNeurosci 2007;2:240–50,http://dx.doi.org/10.1093/scan/nsm020.

[23]Alves NT,Aznar-CasanovaJA, Fukusima SS.Patternsof brainasymmetry in the perceptionof positive and negative facial expressions. Laterality: AsymmetriesBody,BrainCogn2009;14(3):256–72,http://dx.doi.org/10.1080/ 13576500802362927.

[24]PreteG,D’AscenzoS,LaengB,FabriM,FoschiN,TommasiL.Consciousand unconsciousprocessingoffacialexpressions:evidencefromtwosplit-brain patients. J Neuropsychol 2013, http://dx.doi.org/10.1111/jnp.12034[Epub aheadofprint]PMID:24325712.

[25]JansariA,RodwayP,GoncalvesS.Identifyingfacialemotions:valence spe-cificeffectsandanexplorationoftheeffectsofviewergender.BrainCogn 2011;76:415–23,http://dx.doi.org/10.1016/j.bandc.2011.03.009.

[26]KumarD,SrinivasanN.Emotionperceptionismediatedbyspatialfrequency content.Emotion2011;11:1144–51,http://dx.doi.org/10.1037/a0025453. [27]Prete G, Laeng B, Tommasi T. Lateralized hybrid faces: evidence of a

valence-specific bias in the processing of implicit emotions. Laterality: AsymmetriesBody,BrainCogn2014;19(4):439–54,http://dx.doi.org/10.1080/ 1357650X.2013.862255.

[28]de Gelder B, Bertelson P. Multisensory integration, percep-tion and ecological validity. Trends Cogn Sci 2003;7(10):460–7, http://dx.doi.org/10.1016/j.tics.2003.08.014.

[29]CollignonO,GirardS,GosselinF,RoyS,Saint-AmourD,LassondeM,LeporeF. Audio-visualintegrationofemotionexpression.BrainRes2008;1242:126–35, http://dx.doi.org/10.1016/j.brainres.2008.04.023.

[30]PetriniK,McAleerP,PollickF.Audiovisualintegrationofemotionalsignalsfrom musicimprovisationdoesnotdependontemporalcorrespondence.BrainRes 2010;1323:139–48,http://dx.doi.org/10.1016/j.brainres.2010.02.012. [31]deGelderB,VroomenJ.Theperceptionofemotionsbyearandbyeye.Cogn

Emot2000;14(3):289–311.

[32]KreifeltsB,EthoferT,GroddW,ErbM,WildgruberD.Audiovisualintegrationof emotionalsignalsinvoiceandface:anevent-relatedfMRIstudy.NeuroImage 2007;37:1445–56,http://dx.doi.org/10.1016/j.neuroimage.2007.06.020. [33]CampanellaS,BelinP.Integratingfaceandvoiceinpersonperception.Trends

CognSci2007;11(12):535–43,http://dx.doi.org/10.1016/j.tics.2007.10.001. [34]PourtoisG,deGelderB,VroomenJ,RossionB,CrommelinckM.Thetime-course

ofintermodalbindingbetweenseeingandhearingaffectiveinformation. Neu-roReport2000;11:1329–33.

[35]PourtoisG,deGelderB,BolA,CrommelinckM.Perceptionoffacial expres-sionsandvoicesandoftheircombinationinthehumanbrain.Cortex2005;41: 49–59.

[36]Ethofer T, Pourtois G, Wildgruber D. Investigating audiovisual integra-tion ofemotionalsignals inthe humanbrain. ProgBrain Res2006;156: 345–61.

[37]JeongJW,DiwadkarVA,ChuganiCD,SinsoongsudP,MuzikO,BehenME, ChuganiHT,ChuganiDC.Congruenceofhappyandsademotioninmusicand facesmodifiescorticalaudiovisualactivation.NeuroImage2011;54:2973–82, http://dx.doi.org/10.1016/j.neuroimage.2010.11.017.

[38]EthoferT,BretscherJ,WiethoffS,BischJ,SchlipfS,WildgruberD,KreifeltsB. Functionalresponsesandstructuralconnectionsofcorticalareasforprocessing

facesandvoicesinthesuperiortemporalsulcus.NeuroImage2013;76:45–56, http://dx.doi.org/10.1016/j.neuroimage.2013.02.064.

[39]deGelderB,BöckerKBE,TuomainenJ,HensenM,VroomenJ.Thecombined perceptionofemotionfromvoiceandface:earlyinteractionrevealedbyhuman electricbrainresponses.NeurosciLett1999;260:133–6.

[40]HayakawaY,MimuraM,MurakamiH,KawamuraM.Emotionrecognitionfrom stimuliindifferentsensorymodalitiesinpost-encephaliticpatients. Neuropsy-chiatrDisTreat2010;6:99–105.

[41]Gazzaniga MS. Cerebral specialization and interhemispheric communi-cation. Does the corpus callosum enable the human condition? Brain 2000;123:1293–326.

[42]GazzanigaMS.Forty-fiveyearsofsplit-brainresearchandstillgoingstrong. Nature2005;6:653–9.

[43]SperryRW.Lateralspecializationinthesurgicallyseparatedhemispheres.In: SchmittF,WordenF,editors.Neurosciencesthirdstudyprogram.Cambridge, MA:MITPress;1974.p.1–12.

[44]GazzanigaMS,LeDouxJE.Theintegratedmind.NewYork,NY:PlenumPress; 1978.

[45]LevyJ,TrevarthenC,SperryRW.Perceptionofbilateralchimericfigures fol-lowinghemisphericdeconnexion.Brain1972;95:61–78.

[46]SpringerSP,GazzanigaMS.Dichotictestingofpartialandcompletesplitbrain subjects.Neuropsychologia1974;13:341–6.

[47]Musiek FE, Weihing J. Perspectives on dichotic listening and the cor-pus callosum. Brain Cogn 2011;76:225–32, http://dx.doi.org/10.1016/ j.bandc.2011.03.011.

[48]StoneVE,NisensonL, EliassenJC,GazzanigaMS. Lefthemisphere repre-sentations ofemotional facialexpressions. Neuropsychologia 1996;34(1): 23–9.

[49]LàdavasE,CimattiD,PesceMD,TuozziG.Emotionalevaluationwithand with-outconsciousstimulusidentification:evidencefromasplit-brainpatient.Cogn Emot1993;7(1):95–114.

[50]GainottiG.Unconsciousprocessingofemotionsandtherighthemisphere. Neuropsychologia2012;50(2):205–18.

[51]OldfieldRC.Theassessmentandanalysisofhandedness:TheEdinburgh Inven-tory.Neuropsychologia1971;9:97–114.

[52]Fabri M, Del Pesce M, Paggi A, Polonara G, Bartolini M, Salvolini U, Manzoni T.Contributionof posterior corpuscallosum to the interhemi-spheric transfer of tactile information. Cogn Brain Res 2005;24:73–80, http://dx.doi.org/10.1016/j.cogbrainres.2004.12.003.

[53]LundqvistD,FlyktA,ÖhmanA.TheKarolinskadirectedemotionalfaces(KDEF). Stockholm:DepartmentofNeurosciencesKarolinskaHospital;1998. [54]RutherfordMD,ChatthaHM,KryskoKM.Theuseofaftereffectsinthestudyof

relationshipsamongemotioncategories.JExpPsycholHumPerceptPerform 2008;34(1):27–40,http://dx.doi.org/10.1037/0096-1523.34.1.27.

[55]AngensteinN,BrechmannA.Leftauditorycortex isinvolvedinpairwise comparisonsofthedirectionoffrequencymodulatedtones.FrontNeurosci 2013;7:1–8,http://dx.doi.org/10.3389/fnins.2013.00115.

[56]Coolican J, Eskes GA, McMullen PA, Lecky E. Perceptual biases in processing facial identity and emotion. Brain Cogn 2008;66:176–87, http://dx.doi.org/10.1016/j.bandc.2007.07.001.

[57]ButlerSH,HarveyM.Effectsofagingandexposuredurationonperceptual biasesinchimericfaceprocessing.Cortex2008;44:665–72.

[58]HausmannM,CorballisMC,FabriM.Linebisectioninthesplitbrain. Neuropsy-chology2003;17(4):602–9,http://dx.doi.org/10.1037/0894-4105.17.4.602. [59]CorballisMC,CorballisPM,FabriM,PaggiA,ManzoniT.Nowyouseeit,now

youdon’t:variablehemineglectinacommissurotomizedman.CognBrainRes 2005;25:521–30,http://dx.doi.org/10.1016/j.cogbrainres.2005.08.002. [60]Corballis MC, Corballis PM, Fabri M. Redundancy gain in simple

reac-tion time following partial and complete callosotomy. Neuropsychologia 2004;42(1):71–81,http://dx.doi.org/10.1016/S0028-3932(03)00152-0. [61]PavaniF,HusainM,LádavasE,DriverJ.Auditorydeficitsinvisuospatialneglect

patients.Cortex2004;40(2):347–65.

[62]ClarkeJM,LufkinRB,ZaidelE.Corpuscallosummorphometryanddichotic listeningperformace:individualdifferencesinfunctionalinterhemispheric inhibition?Neuropsychologia1993;31(6):547–57.

[63]BeerAL, Plank T,Greenlee MW. Diffusiontensor imaging shows white mattertracts betweenhumanauditory andvisual cortex.Exp Brain Res 2011;213:299–308,http://dx.doi.org/10.1007/s00221-011-2715-y. [64]DavidsonRJ.Affect,cognition,andhemisphericspecialization.In:IzardCE,

KaganJ,ZajoncR,editors.Emotion,cognition,andbehaviour.NewYork,NY: CambridgeUniversityPress;1984.

[65]BorodJC.Cerebralmechanismunderlyingfacial,prosodicandlexicalemotional expression:areviewofneuropsychologicalstudiesandmethodologicalissues. Neuropsychology1993;7:445–63.

[66]StefanicsG,CsuklyG, KomlósiS,CzoborP,CziglerI. Processingof unat-tendedfacial emotions: a visualmismatchnegativity study.NeuroImage 2012;59(3):3042–9.

[67]DriesenNR,RazN.Theinfluenceofsex,age,andhandednessoncorpuscallosum morphology:ameta-analysis.Psychobiology1995;23(3):240–7.

[68]WitelsonSF,KigarDL.Anatomicaldevelopmentofthecorpuscallosumin humans:areviewwithreferencetosexandcognition.In:MolfeseDL, edi-tor.Brainlateralizationinchildren:developmentalimplications.NewYork: GuilfordPress;1988.p.35–57.

(11)

Figura

Fig. 1. Midsagittal MRI of patients. Left panel: A.P.’s brain, showing the anterior section of the corpus callosum, which saves the splenium
Fig. 2. An example of chimeric face (HA/SA).
Fig. 3. Schematic representation of a trial in session 1: dichotic stimuli (top panel, on the left); in session 2: chimeric stimuli (top panel, on the right); and in sessions 3 and 4: bimodal presentations, with both dichotic and chimeric stimuli (bottom p
Fig. 5. 95% Confidence intervals of the control group (lines) and patients means (A.P.: cross; D.D.V.: triangle) in the second session: 4 chimeric faces.
+2

Riferimenti

Documenti correlati

The work presented in this paper refers to the implementation of a design paradigm for a specific custom-fit product, a prosthesis socket (interface between the residual limb and

I corsi di Storia della città, di Storia dell’urbanistica, ma anche altri cor- si attenti agli elementi di contestualizzazione locale, possono infatti godere di una lunga

4 , indicated that Relax and Facebook conditions had similar EMG Corrugator (and also EMG Zygomatic) in PC session, i.e., they had similar positive emotional valence, although they

On the basis of a statistical comparison, the third phase proved to be the most effective in the differential diagnosis between pleomorphic adenoma and non-pleomorphic adenomas,

2 AERA, Auger Engineering Radio Array; AMIGA, Auger Muon and Infilled Ground Array; APF, aerosol phase function; ARQ, Automatic Repeat Request; BLS, Balloon Launching Station;

Primo anno: ho partecipato ai seminari e alle lezioni previste per il corso di dottorato nelle sedi di Firenze, Pisa e Siena: il corso Metodi e strumenti dell’indagine

Indeed, the large fraction of galaxy in substructures, the absence of a BCG, the deficit of red dwarf galaxies observed in the LFs, the dwarf population dominated by blue