• Non ci sono risultati.

Spaces of matrices of constant rank and uniform vector bundles

N/A
N/A
Protected

Academic year: 2021

Condividi "Spaces of matrices of constant rank and uniform vector bundles"

Copied!
12
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Linear

Algebra

and

its

Applications

www.elsevier.com/locate/laa

Spaces

of

matrices

of

constant

rank

and

uniform

vector

bundles

Ph. Elliaa,∗, P. Menegattib

a DipartimentodiMatematicaeInformatica,35viaMachiavelli,44100Ferrara,

Italy

b

LaboratoiredeMathématiquesetApplications,UMRCNRS6086,Université de Poitiers,Téléport2,Bd.PetM.Curie,FuturoscopeChasseneuilF-86962, France

a r t i c l e i n f o a bs t r a c t

Article history:

Received2August2015 Accepted9June2016 Availableonline11June2016 SubmittedbyR.Brualdi MSC: 15A30 14J60 Keywords: Spacesofmatrices Constantrank Uniform Vectorbundles

Weconsidertheproblemofdeterminingl(r,a),themaximal dimension of a subspace of a× a matrices of rank r. We first review, in the language of vector bundles, the known results.Thenusingknownfactsonuniformbundlesweprove somenewresultsandmakeaconjecture.Finallywedetermine

l(r;a) foreveryr,1≤ r ≤ a,whena≤ 10,showingthatour conjectureholdstrueinthisrange.

©2016ElsevierInc.Allrightsreserved.

0. Introduction

LetA,B bek-vectorspacesofdimensionsa,b (k algebraicallyclosed,ofcharacteristic zero). A sub-vector space M ⊂ L(A,B) is said to be of (constant) rank r if every

f ∈ M,f = 0, has rank r. The question considered in this paper is to determine * Correspondingauthor.

E-mailaddresses:[email protected](Ph. Ellia),[email protected](P. Menegatti).

http://dx.doi.org/10.1016/j.laa.2016.06.019

(2)

l(r,a,b) := max{dim M | M ⊂ L(A,B) has rank r}. This problem has been studied sometime agobyvarious authors [22,20,4,9]and hasbeen recentlyreconsidered, espe-ciallyinits(skew)symmetricversion[17,18,16,5].

Itisknown,atleastsince[20],thattogiveasubspaceM ofconstantrankr,dimension

n+1,isequivalenttogiveanexactsequence:0→ F → a.O(−1)→ b.O → E → 0,ψ onPn, whereF,E arevectorbundlesofranks(a− r),(b− r).Ourstartingpointistoobserve thatthebundle E := Im(ψ),ofrankr, is uniform,ofsplitting type(−1c,0r−c),where c:= c1(E) (Lemma 2).This hadbeen previouslyobserved(butnotreally exploited)in

thecasesof spacesofsymmetric or skew-symmetricmaps [17].This allowsus toapply theknownresults(andconjectures)onuniformbundles.

Thispaperis organizedas follows. Inthefirstsectionwerecallsomebasicfactsand fixthe notations.Then inSection two,we set a= b tofix theideasand wesurvey the known results (at least those we are aware of), giving a quick, uniform (!) treatment in the language of vector bundles. In Section three, using known results on uniform bundles, weobtainanewbound onl(r;a) inthe range(2a+ 2)/3> r > (a+ 2)/2 (as well as some other results, see Theorem 18). By the way we don’t expect this bound tobe sharp.Indeedby“translating”(see Proposition 17)alongstandingconjectureon uniformbundles(Conjecture 1),weconjecturethatl(r;a)= a− r + 1 inthisrange(see

Conjecture 2). Finally, with somead hocarguments, we show inthe last section, that ourconjectureholdstruefora≤ 10 (actuallywedeterminel(r;a) foreveryr,1≤ r ≤ a, whena≤ 10).

1. Generalities

Following [20], to give M ⊂ Hom(A,B), a sub-space of constant rank r, with dim(M )= n+ 1,isequivalenttogiveonPn, anexactsequence:

0 FM a.O(−1)

ψM

b.O EM 0

EM

(1)

where EM = Im(ψM),FM,EM are vectorbundles ofranksr,a− r,b− r (in thesequel wewilldroptheindex M ifnoconfusion canarise).

Indeed the inclusion i : M → Hom(A,B) is an element of Hom(M,A∨⊗ B)  M∨⊗ A∨⊗ B and canbe seenas amorphism ψ : A⊗ O → B ⊗ O(1) on P(M) (here

P(M) isthe projective spaceof lines of M ). Ateverypoint of P(M), ψ has rankr, so theimage,thekernelandthecokernel ofψ arevectorbundles.

Adifferent(butequivalent)descriptiongoesasfollows:wecandefineψ : A⊗O(−1)→ B⊗ O onP(M), byv⊗ λf → λf(v).

(3)

Definition1.Arankr vectorbundle,E,onPn isuniform ifthereexists(a1,...,ar) such thatEL ri=1OL(ai),foreveryline L⊂ Pn ((a1,...,ar) isthesplitting typeofE,it is independentof L).

Thevectorbundle F ishomogeneous ifg∗(F ) F ,foreveryautomorphismofPn. Clearly ahomogeneousbundleisuniform(but theconverseisnottrue).

Thefirstremark is:

Lemma2.Withnotationsasin(1),c1(EM)≥ 0 andEM isauniformbundleofsplitting type (−1c,0b), wherec= c

1(EM),b= r− c.

Proof. Since E is globally generated, c1(E) ≥ 0 (look at EL). Let EL = OL(ai). We have ai ≥ −1,because a.OL(−1) EL. Wehave ai ≤ 0, becauseEL → b.OL.So −1 ≤ ai ≤ 0,∀i. Since c1(E) = −c1(E) the splitting type is as asserted and does not

depend ontheline L. 2

The classificationofrank r≤ n+ 1 uniformbundleson Pn, n≥ 2,is known[21,10,

12,1];ifwedenote byT,Ω thetangentand cotangentbundle onPn,thenwehave: Theorem3.Arankr≤ n+1 uniformvectorbundleonPn,n≥ 2,isoneofthefollowing: r

O(ai), T (a)⊕ k.O(b), Ω(a)⊕ k.O(b) (0≤ k ≤ 1),S2TP2(a).

Wewill usethefollowing result(see [15,8]):

Theorem 4(Evans–Griffith).LetF bea rankr vectorbundleon Pn,then F isa direct sum of linebundlesif andonlyif Hi(F)= 0, for1≤ i≤ r − 1.

ThefirstpartofthefollowingPropositioniswellknown,thesecondmaybeless. Proposition 5.Assumen≥ 1.

(1) If a≥ b+ n the genericmorphisma.OPn → b.OPn(1) issurjective.

(2) If a< b+ n no morphisma.OPn → b.OPn(1) canbe surjective.

Proof. (1)It isenough totreatthe casea= b+ n and,bysemi-continuity, toproduce oneexampleofsurjectivemorphism.Consider

Ψ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ x0 · · · xn 0 · · · 0 0 x0 · · · xn 0 · · · 0 .. . ... 0 · · · 0 x0 · · · xn ⎞ ⎟ ⎟ ⎟ ⎟ ⎠

(eachrowcontainsb− 1 zeroes).Itisclearthatthismatrixhasrankb atanypoint.For amoreconceptual(andcomplicated)proofsee[14],Prop. 1.1.

(4)

(2) If n = 1, the statementis clear. Assumen ≥ 2. If ψ is surjective we have0

K → a.O → b.O(1)→ 0 and K is avector bundle of rankr = a− b < n. Clearly we haveHi

∗(K∨)= 0 for 1≤ i≤ r − 1≤ n− 2.ByEvans–Griffith’stheorem,K splitsasa directsumofline bundles,hencetheexactsequencesplits(n≥ 2) andthisisabsurd.

ThiscanalsobeprovedbyaChernclasscomputation(see[20]). 2 Fromnowonwewill assumeA= B andwritel(r;a) insteadof l(r;a,a).

2. Knownresults

Webeginwithsomegeneralfacts:

Lemma 6. Assume the bundle E corresponding to M ⊂ End(A) of constant rank r,

dim(A)= a, isadirectsum of linebundles.Then dim(M )≤ a− r + 1.

Proof. Let dim(M ) = n+ 1 and assume E = k.O(−1)⊕ (r − k).O. If k = 0, the surjectiona.O(−1) E  r.O, showsthata≥ r + n (see Proposition 5).If k > 0, we have0→ k.O(−1)→ (a− r + k).O → E → 0.Dualizingweget:(a− r + k).O  k.O(1), hence(alwaysbyProposition 5)a− r + k ≥ k + n.Soinany casea− r ≥ n. 2

Lemma7.Forevery r,1≤ r ≤ a,wehavel(r;a)≥ a− r + 1.

Proof. Setn= a− r.On Pn we haveasurjectivemorphism a.O(−1)→ r.O (ψ Proposi-tion 5).Composingwiththeinclusionr.O → r.O⊕(a−r).O,wegetψ : a.O(−1)→ a.O,

ofconstantrank r. 2 Finallyweget:

Proposition8.(1) Wehavel(r;a)≤ max{r + 1,a− r + 1}. (2)If a≥ 2r,then l(r;a)= a− r + 1.

Proof. (1)Assumer + 1≥ a− r + 1.Ifdim(M )= l(r,a)= n+ 1 andifr < n,then[12]

E is adirectsum of line bundles andn ≤ a− r.But then r < n≤ a− r,against our assumption.Sor + 1≥ n+ 1= l(r;a).

Now assumea− r ≥ r.If n> a− r,then n> r and this impliesthatE is adirect sumoflinebundles.Hencen≤ a− r.

(2)Wehavemax{r + 1,a− r + 1}= a− r + 1 ifa≥ 2r.Sol(r;a)≤ a− r + 1 by (1).

Weconcludewith Lemma 7. 2

Remark9.Proposition 8wasfirstproved(byadifferentmethod) byBeasley[4]. Veryfewindecomposablerankr vectorbundleswithr < n areknownonPn(n> 4).

(5)

Lemma 10.Wehave l(t+ 1;2t+ 1)= t+ 2.

Proof. By Proposition 8 we know thatl(t+ 1;2t+ 1) ≤ t+ 2. Soit is enoughto give an example. Set n = t+ 1 and assume first n ≥ 3. If T denotes the Tango bundle, then we have: 0→ T (−2) → (2n− 1).O → T → 0. Dualizing we get 0→ T∨(−1)→ (2n− 1).O(−1) → Ω(1) → 0. Combining with the exact sequence: 0 → Ω(1) → (n+ 1).O⊕(n−2).O → O(1)⊕(n−2).O → 0,wegetamorphism(2n−1).O(−1)→ (2n−1).O, of constantrankn.

Ifn= 2,usingthefactthatT (−2) Ω(1),fromEuler’ssequence,weget3.O(−1)→ 3.O,whoseimageisT (−2). 2

Remark11.Lemma 10wasfirstprovedbyBeasley [4], byadifferentmethod. Finallyontheoppositeside,whenr isbigcompared witha,wehave: Proposition 12.(Sylvester [20]) Wehave:

l(a− 1; a) =

2 if a is even 3 if a is odd

The proofisaChern classescomputation.Thenextcasea= r− 2 is moreinvolved and thereareonlypartialresults:

Proposition 13.(Westwick [24])Wehave 3≤ l(a− 2;a)≤ 5.Moreover:

(1) l(a− 2;a)≤ 4 except ifa≡ 2,10 (mod 12) where itcould bel(a− 2;a)= 5. (2) If a≡ 0 (mod 3),thenl(a− 2;a)= 3.

(3) If a ≡ 1 (mod 3), we have l(2;4) = 3 and l(8;10) = 4 (so a doesn’t determine l(a− 2;a)).

(4) If a ≡ 2 (mod 3), then l(a − 2;a) ≥ 4. Moreover if a ≡ 2 (mod 4), then l(a− 2;a)= 4.

Proof. WedenotebyC(G)= 1+c1h+...+cnhntheChernpolynomialofG (computations aremadeinZ[h]/(hn+1)).WerecallthatifG isavectorbundleofrankr,thenci= 0 if i> r.WehaveC(F )= C(E)(1−h)a.LetC(F )= 1+ s

1h+ s2h2,C(E)= 1+ t1h+ t2h2.

Wegets1= t1− a (coefficientof h);s2= a(a− 1)/2− at1+ t2(coefficientof h2).From

the coefficient of h3 it follows that: t

2 = (a− 1)[3t1− a+ 2]/6. The coefficient of h4

yields after somecomputations: (a+ 1)(a− 2− 2t1) = 0. It follows thatt1 =

(a− 2) 2 and t2 =

(a− 1)(a − 2)

12 if we are on P

n,n ≥ 4. Finally the coefficient of h5 gives

(6)

IfweareonP4,fromt1= (a−2)/2 weseethata iseven.Fromt2= (a−1)(a−2)/12,

weget a2+ 2− 3a≡ 0 (mod 12). Thisimpliesa≡ 1,2,5,10 (mod 12).Since a is even wegeta≡ 2,10 (mod 12).

Ifa= 3m andifweareonP3,then6t

2= (3m− 1)(3t1− 3m+ 2)≡ 0 (mod 6),which

isneversatisfied.Sol(a− 2,a)≤ 3 inthis case.

Theotherstatementsfollow fromtheconstructionofsuitableexamples,see[24]. 2 Remark14.OnP4aranktwovectorbundlewithc

1= 0 hastoverifytheSchwarzenberger

conditionc2(c2+ 1) ≡ 0 (mod 12).If l(a− 2;a)= 5 for somea, then a= 12m+ 2 or

a= 12m+ 10.Inthefirstcasetheconditionyieldsm≡ 0,5,8,9 (mod 12),inthesecond case m ≡ 2,3,6,11 (mod 12). So, as already noticedin [24], the lowest possible value ofa is a= 34.This wouldgivean indecomposableranktwo vector bundlewith Chern classes c1 = 0,c2 = 24. Indeed if we have an exact sequence (1), E and F cannot be

bothadirectsumoflinebundles(because,byTheorem 4,E wouldalsobe adirectsum oflinebundles, whichis impossible).

Finallywehave:

Proposition15. (Westwick[23]) Foreverya,r,l(r;a)≤ 2a− 2r + 1.

As noticedin[17] (Theorem 1.4)this follows directlyfrom aresultof Lazarsfeldon amplevectorbundles.Wewillcome backlateronthisbound.

3. Furtherresultsandaconjecture

Thereareexamples,foreveryn≥ 2,ofuniformbutnon-homogeneous vectorbundles onPnofrank2n[6].Howeveritisalongstandingconjecturethateveryuniformvector bundle of rank r < 2n is homogeneous. Homogeneous vector bundles of rank r < 2n

onPn areclassified[2],sotheconjecturecanbeformulatedasfollows:

Conjecture1.Everyrankr < 2n uniformvectorbundleonPn isadirectsumofbundles chosenamong:S2T

P2(a),∧2TP4(b),TPn(c),ΩPn(d),OPn(e);wherea,b,...,e areintegers.

Theconjectureholdstrueifn≤ 3[10,3].

Beforetogoonwepointoutanobviousbutusefulremark.

Remark16.Clearlyanexactsequence(1)existsifandonlyifthedualsequencetwisted by O(−1) exists. So we may replace E by E∨(−1). If E has splitting type (−1c,0b), E∨(−1) hassplittingtype(0c,−1b).

Proposition 17. (1) Take r,n such that n≤ r < 2n. Assume a− r < n and that every rank r uniformbundleonPnishomogeneous.Thenl(r;a)≤ n,exceptifr = n,a= 2n−1

(7)

(2) AssumeConjecture 1 istrue. Thenl(r;a)= a− r + 1 for r < (2a+ 2)/3, except if r = (a+ 1)/2, inwhichcasel(r;a)= a− r + 2.

Proof. (1) In order to prove the statement it is enough to show that there exists no subspace M ofconstant rankr anddimension n+ 1 underthe assumption a− r < n, n≤ r < 2n (exceptifr = n,a= 2n−1,inwhichcasel(n;2n−1)= n+ 1 byLemma 10). Suchaspacewouldgiveanexactsequence(1)withE uniformofrankr < 2n onPn.If

E isadirectsumoflinebundles,byLemma 6wegetdim(M )= n+ 1≤ a−r+1< n+ 1. HenceE isnotadirectsumofline bundles. Sincethesplitting typeofE is (−1c,0r−c) (Lemma 2), weseethat:E  Ω(1)⊕ k.O ⊕ (r − k − n).O(−1),E  T (−2)⊕ t.O ⊕ (r −

t− n).O(−1), or,ifn= 4,E  (∧2Ω)(2).

Let’s first get rid of this last case. The assumption a− r < n implies a ≤ 9. It is enoughtoshowthatthereisnoexactsequence(1)onP4,withE = (∧2Ω)(2) anda= 9.

From 0→ E → 9.O → E → 0, we get C(E) =C(E)−1. From the Koszul complexwe have0→ E → ∧2V ⊗ O → Ω(2)→ 0. Itfollows thatC(E)=C(Ω(2)).Since rk(E)= 3 and c4(ΩP4(2))= 1,wegetacontradiction.

SowemayassumeE  Ω(1)⊕ k.O ⊕ (r − k − n).O(−1) orE  T (−2)⊕ t.O ⊕ (r − t−

n).O(−1). Bydualizingtheexactsequence (1),wemayassumeE  Ω(1)⊕ k.O ⊕ (r −

k− n).O(−1).Theexactsequence(1)yields:

0→ Ω(1) ⊕ (r − n − k).O(−1) → (a − k).O → E → 0 (2) SinceHi

(Ω)= 0 for2≤ i≤ n− 1,fromtheexactsequence(2)wegetH∗i(E)= 0,for 1≤ i≤ n− 2. Sincerk(E)= a− r < n, it followsfrom Evans–Griffith’s theorem that

E O(ai).Wehaveai≥ 0,∀i,becauseE isglobally generated.Moreoveroneai at leastmustbeequalto 1(otherwiseh1(E∨⊗ E)= 0 andthesequence(2)splits,whichis impossible).Soa1= 1,ai≥ 0,i> 1.Itfollowsthath0(E)≥ (n+1)+(a−r−1)= n+a−r. Ontheother handh0(E)= a− k from(2).

If k < r− n,we see thatoneof theai’s, i> 1,must be > 0. This implies h0(E)≥ 2(n+ 1)+ (a− r − 2)= 2n+ a− r.Soa− k = h0(E)≥ 2n+ a− r.Since a≥ a− k,it follows thata≥ 2n+ a− r and sor≥ 2n,againstourassumption.

We conclude that k = r − n and E = O(1)⊕ (a− r − 1).O. In particular E = Ω(1)⊕ (r − n).O ((2)isEuler’s sequenceplussomeisomorphisms).Weturnnowto the other exactsequence:

0→ F → a.O(−1) → Ω(1) ⊕ (r − n).O → 0 (3) WehaveC(F )= (1− h)a.C(Ω(1))−1.FromtheEulersequence C(Ω(1))−1= 1+ h.It follows that: C(F ) = (1 + h). a i=0 a i (−1)ihi 

(8)

Sincerk(F )= a− r < n,cn(F )= 0.Since a≥ r ≥ n, itfollows that a n = a n− 1 . Thisimpliesa= 2n− 1.

Observethatr≥ n (becausek = r− n≥ 0).Ifr≥ n+ 1,thenrk(F )≤ n− 2,hence

cn−1(F )= 0.Thisimplies: 2n− 1 n− 1 = 2n− 1 n− 2 ,whichisimpossible.

Weconcludethatr = n anda= 2n−1,sowearelookingatl(n;2n−1).ByLemma 10

weknowthatl(n;2n− 1)= n+ 1. Thisproves(1).

(2) Now we apply (1) by setting n := a− r + 1. Clearly n > a− r. The condition

n≤ r < 2n translatesin:(a+ 1)/2≤ r < (2a+ 2)/3.So,underthese assumptions, we getl(r;a)≤ n= a− r + 1,exceptifr = n, a= 2n− 1.Inthis lattercaseweknowthat

l(n;2n− 1)= n+ 1 (Lemma 10).WeconcludewithLemma 7. 2

SinceConjecture 1istrueforr≤ n+ 1 andn= 3,r = 5[3],wemaysummarizeour resultsasfollows:

Theorem18.

(1)If r≤ a/2, thenl(r,a)= a− r + 1.

(2)If a isodd,l(a+12 ;a)= a+12 + 1 (= a− r + 2).

(3)If (2a+2)3 > r≥a

2+ 1, thenl(r;a)≤ r − 1.

(4)If a iseven:l(a2+ 1;a)=a2 (= a− r + 1).

(5)If r≥ (2a+ 2)/3,thenl(r,a)≤ 2(a− r)+ 1.

(6)Wehave l(5;7)= 3 (= a− r + 1). Proof. (1)This isProposition 8.

(2)ThisisLemma 10.

(3)Setn= r− 1.Uniformvectorbundlesofrankr = n+ 1 onPn arehomogeneous. Wehaven≤ r < 2n if r≥ 3 anda− r < n ifr≥ (a/2)+ 1.Ifr≤ 2 andr≥ (a/2)+ 1, thena≤ 2.Hencer = a= 2 andl(2;2)= 1.Sotheassumptions ofProposition 17, (1) arefulfilled.Weconcludethatl(r,a)≤ r − 1.

(4)Followsfrom (3)andLemma 7. (5)ThisisProposition 15.

(6)Sinceuniform vectorbundlesofrank5onP3 arehomogeneous,thisfollowsfrom

Proposition 17(1)andLemma 7. 2

Remark19.Point3ofthetheoremimprovesthepreviousboundofBeasleybutwedon’t expect this bound to be sharp (see Conjecture 2). Points 4 and 6 also are new. The boundof(5)is sofarthebestknownboundinthis range.Itisreachedforsomevalues ofa inthe caser = a− 1 (Proposition 12),butalreadyinthecaser = a− 2 we don’t knowifitissharp.

(9)

Conjecture 2.Let a,r be integers such that (2a+ 2)/3> r > (a/2)+ 1,then l(r;a)=

a− r + 1.

Remark20.ThisconjectureshouldbeeasiertoprovethanConjecture 1,indeedinterms of vector bundles ittranslates as follows: everyrankr < 2n uniformvector bundle, E, fittinginanexactsequence (1)onPn ishomogeneous.

Bythewaytheconditionr < 2n seemsnecessary.Ifn= 2 thiscanbeseenasfollows. Considerthefollowingmatrix(takenfrom[20]):

Ψ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 −x2 0 −x0 0 x2 0 0 −x1 −x0 0 0 0 −x2 −x1 x0 x1 x2 0 0 0 x0 x1 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

It iseasytoseethatΨ hasrankfourat anypointofP2,henceweget:

0→ O(b) → 5.O(−1)→ 5.O → O(c) → 0Ψ

withE = Im(Ψ) arankfouruniformbundle.OnthelineL ofequationx2= 0,Ψ= (f,g),

wheref : 3.OL(−1)→ 2.OLisgivenby

x0 x1 0

0 x0 x1



andwhereg : 2.OL(−1)→ 3.OL

is givenby ⎛ ⎜ ⎝ −x0 0 −x1 −x0 0 −x1 ⎞ ⎟

⎠. Clearlyf issurjective andbycomputing theChernclasses the kernel is OL(−3). Also g is injective of constant rank two, hence the cokernel is OL(2).

It follows that b = −3,c = 2 and the splitting type of E is (−12,02). Now rank

four homogeneous bundles on P2 are classified (Prop. 3, p. 18 of [7]) and are direct

sumofbundles chosenamongO(a),T (b),S2T (c),S3T (d).IfE is homogeneoustheonly possibilityisE(1) T (−1)⊕O(1)⊕O,butinthiscasetheexactsequence0→ O(−2)→ 5.O → E(1)→ 0,wouldsplit,whichisabsurd.WeconcludethatE isnothomogeneous. InfactE isoneofthebundlesfoundbyElencwajg[11].

Remark21.Theresultsof thissectionandthepreviousonedeterminel(r;a) fora≤ 8,

1≤ r ≤ a.Togetacompletelistfora≤ 10,wehavetoshow,accordingtoConjecture 2, thatl(6;9)= l(7;10)= 4.This willbedoneinthenextsection.

4. Somepartialresults

In the following lemma we relax the assumption r < 2n in Proposition 17 when

(10)

Lemma22. Assume wehave an exact sequence(1) onPn,with rk(F )= a− r < n and

c1(E(1))= 1. Thena= 2n− 1 andr = n.

Proof. Ifc1(E(1))= 1,E(1) hassplittingtype(1,0r−1).Itfollowsfrom[13],Prop. IV,2.2,

thatE(1)=O(1)⊕ (r − 1).O orE(1)= T (−1)⊕ (r − n).O.Fromtheexactsequence0

F (1)→ a.O → E(1)→ 0,wegetc1(F (1))=−1.SinceF (1)→ a.O,itfollowsthatF (1)

isuniformofsplittingtype(−1,0a−r−1).Sincerk(F )< n,F (1)=O(−1)⊕(a−r−1).O. This shows thatnecessarily E(1) = T (−1)⊕ (r − n).O.Now from the exactsequence: 0→ T (−1)⊕ (r − n).O → a.O(1)→ E(1)→ 0, wegetC(E(1))= (C(t(−1))−1(1+ h)a, i.e.C(E(1))= (1− h)(1+ h)a. Sincerk(E)< n, wehavec

n(E(1))= 0 and arguingas intheproofofProposition 17,wegeta= 2n− 1,r = n. 2

Remark23.Sinceweknowthatl(n;2n− 1)= n+ 1 (Lemma 10),wemay,fromnowon, assumec1(E(1))≥ 2.

SinceE(1) isglobally generated,taking r− 1 generalsectionsweget:

0→ (r − 1).O → E(1) → IX(b)→ 0 (4) HereX isapure codimensiontwosubscheme, whichis smoothifn≤ 5 and whichis irreducible,reduced,withsingularlocusofcodimension≥ 6,ifn≥ 6.

Lemma 24. Assume n ≥ 3 and rk(F ) < n. If X is arithmetically Cohen–Macaulay (aCM),i.e.if Hi(IX)= 0 for 1≤ i≤ n− 2,then F isadirectsum of linebundles. Proof. From (4) we get Hi

(E) = 0 for 1≤ i ≤ n− 2. BySerre duality H∗i(E∨) = 0, for 2 ≤ i ≤ n− 1. From the exact sequence 0 → E∨ → a.O(1) → F∨ → 0, we get

Hi

∗(F∨)= 0, for1≤ i≤ n− 2.Since F∨ hasrank< n,byEvans–Griffith theorem we concludethatF∨ (hencealsoF )isadirectsumoflinebundles. 2

Proposition 25. Assumethat we have an exact sequence(1) onP4 with rk(F )< 4.Let

(−1c,0r−c) bethesplittingtypeofE.Ifr > 4 andifF isnotadirectsumoflinebundles, thenc,r− c≥ 4;inparticular rk(E)≥ 8.

Proof. Assumec orb:= r− c< 4.Bydualizingtheexactsequence(1)ifnecessary, we mayassumeb< 4.Wehaveanexactsequence(4):

0→ (r − 1).O → E(1) → IX(b)→ 0 whereX ⊂ P4isasmoothsurfaceofdegreed= c

2(E(1)).Ifb< 3,X iseitheracomplete

intersection(1,d) orliesonahyper-quadric. InanycaseX isa.C.M.ByLemma 24,F

isadirectsumoflinebundles.

Assumeb= 3.FromtheclassificationofsmoothsurfacesinP4weknowthatifd≤ 3,

(11)

to asmooth surface,S, ofdegree 9− d by suchacomplete intersection.If S isa.C.M. the sameholds forX.From theclassificationofsmoothsurfaces oflow degreeinP4, if

X isnota.C.M.wehavetwopossibilities:

(i)X isaVeronesesurfaceandS isanellipticquinticscroll, (ii)X isanellipticquinticscrolland S isaVeronesesurface.

(i)IfX = V isaVeronesesurfacethenwehaveanexactsequence: 0→ 3.O → Ω(2) → IV(3)→ 0

ItfollowsthatC(E(1))=C(Ω(2))= 1+ 3h+ 4h2+ 2h3+ h4.SoC(F (1))= (C(E(1))−1 =

1− 3h+ 5h2− 5h3.ItfollowsthatF (andhenceE also)hasrankthree.FromC(E(1))=

(1+ h)a.C(F (1)) andc4(E(1))= 0, weget 0= a(a− 5)(a− 6)(a− 7).So a≤ 7.Since

a= rk(E)+ r,wegetacontradiction.

(ii)IfX = E isanellipticquinticscroll,then wehave: 0→ T (−2) → 5.O → IE(3)→ 0

ItfollowsthatC(E(1))=C(T (−2))−1 andC(F (1))=C(T (−2))= 1−3h+4h2−2h3+h4,

incontradictionwithrk(F )< 4. 2

Lemma 26.Assumewehave anexact sequence(1)onP4 witha− r < 4. Ifr > 4 andif

F is adirectsum ofline bundles,then rk(E)≥ 8.

Proof. If r = 5 we concludewith Theorem 18, (3), (6). If r = 6,then a ≤ 9 andit is enough to show that l(6;9) ≤ 4 i.e. that there is no exact sequence (1) on P4. In the sameway,ifr = 7 itisenoughtoshowthatl(7;10)≤ 4.

Ifr = 6,wemayassumethatthesplittingtypeofE is(−11,05),(−12,04),(−13,03).

BydualizingandbyLemma 22wemaydisregardthefirstcase.Itfollowsthatc1(F )=−7

or−6.Ifr = 7,inasimilarway,wemayassumethatthesplittingtypeofE is(−12,05) or (−13,04).Soc

1(F )=−7 or−8.

LetC(F (1))= (1− f1h)(1− f2h)(1− f3h).WehaveC(E(1))= (1+ h)aC(F (1)).From

c4(E(1))= 0 weget: ψ(a) := a3− a2(4s + 6) + a(12d + 12s + 11)− 12d − 8s − 24t − 6 = 0 where s = −c1(F (1))=  fi, d = c2(F (1))=  i<jfifj, t = −c3(F (1))=  fi. We havefi ≥ 0,∀i and3≤ s≤ 5.

We havetocheck thatthis equalitycan’tbe satisfiedfor a= 9,10.Wehaveψ(9) = 8(42− 28s+ 12d− 37).Ifψ(9)= 0 weget3| s.Itfollowsthats= 3.Sotheconditionis: 4d− t= 14.Ifoneofthefi’siszero,thent= 0 andwegetacontradiction.Sofi> 0,∀i and theonlypossibility is(fi)= (1,1,1),butthen4d− t= 11= 14.

(12)

Fora= 10,wegetψ(10)= 504−288s+ 108d−24t.Iff1= f2= 0,thend= t= 0 and

wegets= 504/288 whichisnotaninteger.Iff1= 0,thent= 0,d= f2f3,s= f2+ f3.

Ifs≥ 4, 504+ 108d= 288s≥ 1152.It followsthatd≥ 6.If d= 6 we havenecessarily

s= 5 andψ(10)= 0.Sos= 3 andd= 2,butalso inthis caseψ(10)= 0.Weconclude thatfi > 0,∀i.So we areleft with (fi) = (1,1,1),(1,1,2),(1,1,3),(1,2,2).In any of thesecasesoneeasily checksthatψ(10)= 0. 2

Corollary 27. We have l(6;9) = l(7;10) = 4.In particular l(r,a) is known for a≤ 10 and1≤ r ≤ a andConjecture 2holds truefora≤ 10.

Proof. We have seenthatl(6;9),l(7;10) ≤ 4, byLemma 7 we have equality. Then all theothervaluesofl(r;a) aregivenbyTheorem 18,Proposition 12and Proposition 13, ifa≤ 10. 2

References

[1]E.Ballico,Uniformvectorbundlesofrk(n+ 1) onPn,TsukubaJ.Math.7(1983)215–226.

[2]E.Ballico,Ph.Ellia,FibréshomogènessurPn,C.R.Math.Acad.Sci.Paris294(1982)403–406.

[3]E. Ballico,Ph. Ellia,Fibrésuniformes derang5 surP3,Bull.Soc.Math.France111 (1)(1983)

59–87.

[4]L.B.Beasley,Spacesofmatricesofequalrank,LinearAlgebraAppl.38(1981)227–237.

[5]A. Boralevi, D. Faenzi, E. Mezzetti, Linear spaces of matrices of constant rank and instanton bundles,Adv.Math.248(2013)895–920.

[6]J.M.Drezet,ExemplesdefibrésuniformesnonhomogènessurPn,C.R.Acad.Sci.Paris,Sér. A

291(1980)125–128.

[7]J.M.Drezet,Fibrésuniformesdetype(0,...,0,−1,...,−1) surP2,J.ReineAngew.Math.325(1981)

1–27.

[8]L.Ein,AnanalogueofMaxNoether’stheorem,DukeMath.J.52(1985).

[9]D.Eisenbud,J.Harris,Vectorspacesofmatricesoflowrank,Adv.Math.70(1988)135–155. [10]G.Elencwajg,Lesfibrésuniformesderang3surP2sonthomogènes,Math.Ann.231(1978)217–227.

[11]G.Elencwajg,Desfibrésuniformesnonhomogènes,Math.Ann.239(1979)185–192.

[12]G.Elencwajg,A.Hirschowitz,M.Schneider,Lesfibrésuniformesderangauplusn surPn(C) sont

ceuxqu’oncroit,in:VectorBundlesandDifferentialEquations,Proc.,Nice,1979,in:Progr.Math., vol. 7,Birkhäuser,1980,pp. 37–63.

[13]Ph.Ellia,Surlesfibrésuniformesderang(n+ 1) surPn,Mém.Soc.Math.Fr.(N.S.)7(1982).

[14]Ph. Ellia,A. Hirschowitz, VoieouestI: générationdecertains fibréssur lesespaces projectifs et application,J.AlgebraicGeom.1(1992)531–547.

[15]G.E.Evans,P.Griffith,Thesyzygyproblem,Ann.ofMath.114(1981)323–333.

[16]M.L.Fania,E.Mezzetti,Vectorspacesofskew-symmetricmatricesofconstantrank,LinearAlgebra Appl.434(2011)2388–2403.

[17]B.Ilic,J.M.Landsberg, Onsymmetricdegeneracyloci,spacesofsymmetricmatricesofconstant rankanddualvarieties,Math.Ann.314(1999)159–174.

[18]L.Manivel,E.Mezzetti,Onlinearspacesofskew-symmetricmatricesofconstantrank,Manuscripta Math.117(2005)319–331.

[19]C.Okonek,M.Schneider,H.Spindler,VectorBundlesonComplexProjectiveSpaces,Progr.Math., vol. 3,Birkhäuser,1980.

[20]J.Sylvester,Onthedimensionofspacesoflineartransformationssatisfyingrankconditions,Linear AlgebraAppl.78(1986)1–10.

[21]A.VandeVen,Onuniformvectorbundles,Math.Ann.195(1972)245–248.

[22]R.Westwick,Spacesoflineartransformationsofequalrank,LinearAlgebraAppl.5(1972)49–64. [23]R.Westwick,Spacesofmatricesoffixedrank,LinearMultilinearAlgebra20(1987)171–174. [24]R.Westwick,Spacesofmatricesoffixedrank,II,LinearAlgebraAppl.235(1996)163–169.

Riferimenti

Documenti correlati

La permanente influenza dei partiti, che rischiava di monopolizzare il servizio radiotelevisivo, condizionò la Corte Costituzionale che, nel Luglio 1976, dichiarò

order to evaluate the effects of CD30/CD30L signalling in CD30L + T cells we studied the expression of gene transcripts of different cytokines by activated SFMCs from 4 control

Moreover, while automated tools for parallel testing have not been used, the possibility of experimenting the whole system in four different locations (University of Genova, Italy;

Da convento a Ministero a Tribunale, è importante che il complesso torni oggi alla città e alla comunità internazionale con attività dedicate alla cultura, all’arte e alla ricerca.

In this paper we study the Brill Noether locus of rank 2, (semi)stable vector bundles with at least two sections and of suitable degrees on a general ν-gonal curve. We classify

In this note we give an easy proof of the existence of generically smooth components of the expected dimension of certain Brill–Noether loci of stable rank 2 vector bundles on a

The proof of Theorem 2 is quite easy using standard vector bundles techniques.. This statement has certainly been (unconsciously) known since a long time but, as far as I know,