• Non ci sono risultati.

Experimental and statistical protocol for the effective validation of chromatographic analytical methods

N/A
N/A
Protected

Academic year: 2021

Condividi "Experimental and statistical protocol for the effective validation of chromatographic analytical methods"

Copied!
8
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

MethodsX

journal homepage:www.elsevier.com/locate/mex

Method

Article

Experimental

and

statistical

protocol

for

the

effective

validation

of

chromatographic

analytical

methods

Eugenio

Alladio

a,b,1

,

Eleonora

Amante

a,b,1,∗

,

Cristina

Bozzolino

a

,

Fabrizio

Seganti

b

,

Alberto

Salomone

a,b

,

Marco

Vincenti

a,b

,

Brigitte

Desharnais

c

a Dipartimento di Chimica, Università degli Studi di Torino, Turin, Italy

b Centro Regionale Antidoping e di Tossicologia “A. Bertinaria”, Orbassano (Turin), Italy c Laboratoire de sciences judiciaires et de médecine légale, Montreal, Quebec, Canada

abstract

Thevalidationofanalyticalmethodsisofcrucialimportanceinseveralfieldsofapplication.Anewprotocolfor the validation ofchromatographic methodshasbeen proposed.The overallprotocolisdescribed inaparallel paper, where thecase ofamulti-targetedgas chromatography– massspectrometry(GC–MS) methodfor the determination ofandrogensinhumanurineis in-depthdiscussed. Thepurpose ofthispaperisto reportthe details about the GC–MS separation and detection of the target analytes, and to provide the mathematical formulasneededtoperformthevalidationoftheprincipalparameters.Briefly,thevalidation protocolforesees therepetitionofthreecalibrationcurvesinthreedifferentdays,providingatotalamountofninereplicates.Such astructureddesignallowstousethesameexperimentsto

performarigorouscalibrationstudy,bytheevaluationofheteroscedasticity,comparisonofseveralweightsand linear/quadraticcalibrationcurves.

determine severalparameters whicharetraditionally computed fromdedicatedexperiments,namely intra-andinter-dayaccuracyandprecision,limitofdetection,specificity,selectivity,ionabundancerepeatability,and carryover.

Finally,fewfurtherexperimentsarenecessarytoevaluatetheretentiontimerepeatability,matrixeffectand extractionrecovery.

© 2020 Published by Elsevier B.V. ThisisanopenaccessarticleundertheCCBY-NC-NDlicense. (http://creativecommons.org/licenses/by-nc-nd/4.0/ )

DOI of original article: 10.1016/j.talanta.2020.120867

Corresponding author at: Dipartimento di Chimica, Università degli Studi di Torino, Turin, Italy.

E-mail address: eleonora.amante@unito.it (E. Amante). 1 The authors equally contributed to this work.

https://doi.org/10.1016/j.mex.2020.100919

2215-0161/© 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )

(2)

article info

Method name: Effective validation protocol for chromatography mass spectrometry analytical methods

Keywords: Chromatographic method, Validation protocol, Multiresidual analysis, GC-MS

Article history: Received 9 April 2020; Accepted 6 May 2020; Available online 16 May 2020

SpecificationsTable

Subject area: Chemistry

More specific subject area: Analytical Chemistry

Method name: Effective validation protocol for chromatography – mass spectrometry analytical methods

Name and reference of original method: Not applicable Resource availability: Not applicable

Methoddetails

This paper accompanies the paper entitled “Effective validation of chromatographic analytical methods: the illustrative case of androgenic steroids ” [1], whichpresentsa new,systematic validation protocolforchromatographicanalyticalmethods.Ascasestudy,thefullyvalidationofamultiresidual GC–MS method for the detectionof androgens is human urine is discussed. The details relatedto theseparationandacquisitionmethodsarereportedinthispaper;specifically,theoventemperature program ofthe gaschromatographis reportedin Fig.1, together withthetypical total ioncurrent (TIC) profile of a real urine sample. Moreover, details about the mass spectrometer (MS) detection of the18 target compounds (i.e. retention time,quantifier and monitoredions) plus the molecular weightaftertrimethylsilylderivationareinTable1.

Fig. 1. Temperature program of the GC oven (blue line) and typical chromatographic profile (orange line). Coded target analytes are: (1) 5 β-androstan-3,17–dione, (2) A, (3) Etio, (4) 5 α-adiol, (5) 5 β-adiol, (6)DHEA, (7) 5-androsten-3,17-diol, (8) E, (9) 4,6- androstadien-3,17–dione, (10) DHT, (11) 4-androsten-3,17–dione, (12) 6-testosterone, (13) testosterone + testosterone-D3, (14) 7 α-hydroxytestosterone, (IS) 17-methyl-testosterone, (15) 7 β-OH-DHEA, (16) Formestane, (17) 4-hydroxytestosterone, (18) 16 α- hydroxyandrosten-3,17–dione (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

(3)

Table 1

List of the analytes included in Mix I and Mix II, with the relative CAS number and the internal standard used for their quantitation. The concentrations at the different calibration levels are also reported.

Target analyte CAS number Internal standard

Mix I 5β-androstan-13,17-dione 1229–12–5 Testosterone-D 3

5α-androstane-3α,17β-diol (5 α-adiol) 1852–53–5 Testosterone-D 3 5β-androstane-3α,17β-diol (5 β-adiol) 1851–23–6 Testosterone-D 3

dehydroepiandrosterone (DHEA) 53–43–0 Testosterone-D 3

5-androsten-3,17-diol 512–17–5 Testosterone-D 3

epitestosterone (E) 481–30–1 Testosterone-D 3

4,6-androstadien-3,17–dione (6-D) 633–34–1 Testosterone-D 3 dihydrotestosterone (DHT) 521–18–6 Testosterone-D 3 4-androsten-3,17-dione 63–05–8 Testosterone-D 3 6-testosterone 2484–30–2 Testosterone-D 3 testosterone (T) 58–22–0 Testosterone-D 3 7α-hydroxytestosterone 62–83–9 Testosterone-D 3

7β–hydroxy-dehydroepiandrosterone (7 β-OH-DHEA) 24 87–4 8–1 Testosterone-D 3

formestane 566–48–3 Testosterone-D 3

4-hydroxytestosterone 2141–17–5 Testosterone-D 3

16α-hydroxyandrosten-3,17-dione 63–02–5 Testosterone-D 3

Mix II androsterone (Andro) 53–41–8 17 α-methyl-testosterone

etiocholanolone (Etio) 53–42–9 17 α-methyl-testosterone

Calibration level 1 2 3 4 5 6

Mix I (ng/mL) 2 5 10 25 50 125

Mix II (ng/mL) 100 200 500 10 0 0 1500 2250

Furthermore,thevalidationprotocolisdescribedintheExperimental DesignSection, andall the parameters(homoscedasticityevaluation,linearitytestssuchasANOVA,Mandel’stestandLackofFit, limit ofdetection, intra-andinter-dayaccuracyandprecision,matrixeffect,extractionrecovery)are defined,togetherwiththeequationsfortheircomputations.

Experimentaldesign,materials,andmethods Analytical method

Samples pre-treatment

Thesamplepreparationinvolvedthefortificationof6mLofurinewithtestosterone-D3 and17

α

-methyltestosterone atthefinal concentration of25ng/mL and125 ng/mL,respectively.The pHwas then adjusted to a value between6.8and 7.4by adding2 mLphosphate buffer 0.1M anddrop(s) of NaOH 1 M, if necessary. A volume of

β

-glucuronidase solution corresponding to 83 units was added and then the mixture was incubated at 58 °C for 1 h After cooling at room temperature, 2mLcarbonatebuffer0.1Mwasaddedtotheaqueoussolution,togetherwithdrop(s)ofNaOH1M, untilthefinalpH=9wasreached.Then,liquid-liquidextraction(LLE)wasperformedwith10mLof TBME;thesampleswereshakeninamulti-mixerfor10min,centrifugedat6.24gfor5minandthe organicsupernatantwastransferredintoaglasstube.Theextracts weresubsequentlydriedundera nitrogen flowat 70°C.After addition of50 μLderivatizing solution(MSTFA/NH4I/dithioerythritol – 1000:2:4 v/w/w),the reactionwasallowed to proceed at70°C for30min. Theresulting solutions were transferred intoconical vialsanda 1μL aliquotwasinjected by autosamplerinto theGC–MS workinginthesplitlessmode.Mix IandII haddistinct calibrationranges(Table 1),selectedonthe basisoftheexpectedphysiologicalconcentrations,asreportedinliterature[2,3].

GC–MS separation and detection

The GC–MS method optimization wasthe subject of another study [3]. The GCseparation was performedusing anAgilent6890 Ninstrument(AgilentTechnologies, Milan,Italy)equippedwitha J&W ScientificHP-1, 17m x0.2mm (i.d.) x0.11 mm (f.t.)capillarycolumn. Helium wasemployed asthe carriergasat aconstant pressure of18.5psi.The temperatureprogram ofthe GCoven was

(4)

setasfollows: initialtemperatureequal to120 °C,thena 70°C/minheatingratewasapplied until thetemperatureof177 °Cwasreached. Subsequently,the temperaturewasraised to236°C witha 5°C/mingradient.Afinalheatingrateof30°C/minallowedtorisethetemperatureof315°C,which washoldfor3 min.The GCinjector andtransferlinewere maintained at280°C.The temperature programisreportedinFig.1(blueline).

ThetrimethylsilylderivativesoftheanalyteswereionizedandfragmentedinEIat70eVusingan Agilent5975 inertmass-selective detector(AgilentTechnologies,Milan,Italy). TheMS wasoperated intheselectedionmonitoringmodeandthreediagnosticionsforeachanalyteweremonitoredwith dwelltimesof20–50ms.Thedetailsabouttheretentiontimesandthemonitoredionsarereported inTables1andS2oftheparallelpaper[1]InFig.1(orangelineandArabicnumbers)isreportedthe typicalTotalioncurrent(TIC)profileofaspikedurinesample.

Validation protocol

Thevalidationprotocolisin-depthdescribedintheparallelpaper[1].Briefly,ninereplicatesofthe calibrationcurveareanalyzedinthreedifferentdays(threereplicates/die).Thispeculiarexperimental design allowed the simultaneous evaluation of several parameters, which are typically evaluated performing dedicated experiments,resulting in expensiveandtimewasting protocols. Among these, a particular focus was put on the study of the calibration curve, with tests of homoscedasticity, quadraticity, ANOVA,Lack of Fit andgoodness of the back calculation. The calibration curveswere alsousedfortheevaluationofthelimitofdetection(LOD,byHubauxandVos’approach)and intra-andinter-dayaccuracyandprecision.Furthermore,ionabundancerepeatability,selectivity,specificity andcarryoverwere studiedemployingthesameexperiments.Lastly,fewfurtherexperimentswere performedtodeterminematrixeffectandextractionrecovery.

Theprincipalequationsemployedarereportedbelow. Nomenclature

Inthisarticle,thecalibrationlevelsareindicatedas 1,2,…i,….k andthereplicatesas 1,2,…j,….l and thetotalnumberofsamplesanalyzedis k x l = n .

Computation of the calibration model

Test for heteroscedasticity. Thehomoscedasticitywastestedtwice,e.g.usingapartialF-Testintegrated in the R routine (Eq. (1)) developed by Desharnais et al. [4] and the Levene equation (Eq. (2)) [5]. In the first case, the presence of heteroscedasticity was investigated using a unilateral F-test for the calculation of the probability that the variance of measurements at the upper limit of quantification(ULOQ)wasequaltoorsmallerthanthevarianceofmeasurementsatthelowerlimits ofquantification(LLOQ).TheRstudiofunctionusedforthecomputationis

v

ar.test



M easurement s LLOQ, M easurement s ULOQ, alternati

v

e =“less”



(1) Unlike the unilateral F-test described above, the Levene test wasapplied on all the calibration levels.It isarobust alternativetotheF-test andwasusedto confirmtheresultsobtainedwiththe calibrationroutine.TheequationofLevenetestisthefollowing:

W =

(

n − k

)

(

k − 1

)

× k i=1l



¯Zi− ¯Z



2 k i=1lj=1



Z i j− ¯Zi



2 (2) With Z i j=



y i j− ¯yi



kisthenumberofcalibrationlevels tested, ¯Ziis the averageofallthe Zij ofa calibrationleveland

¯Z is theaverage ofall theZij,in theoriginal version ofthe test,ortheir median, fromthe

Brown-Forsythe modification, which is more robust towards heavy-tailed distributions [6]. The RStudio function levene.test wasusedtoperformthecalculations(intheBrown-Forsytheversion).

(5)

TheWstatisticscanbecomparedtoanFdistributionwith{(k-1),(n-k)}degreesoffreedom.Ifthe p-valueissmallerthan the

α

levelofsignificancechosen(in ourcase,0.05),then thevariancesare considered assignificantly different,i.e.thedataare heteroscedastic.If p >

α

,thedataisconsistent withanequalityofvariances.

Partial F-test for the quadratic term

The Partial F-test is a hypothesis test which relies on comparing the sum of squares of the regressiontothemeansquareofresiduals(Eq.(3)):

Fexp=

S S reg



,Q− SS reg,L SSres,Q

n−3



(3)

WhereSSreg,QandSSreg,Larethesumofsquaresoftheregressioninthequadraticandlinearmodels,

respectively(Eq.(4)).SSresisthesumofmeansquaresinresiduals(Eq.(5)).

S S reg= k  i=1 w i× l×



ˆ y i− ¯yi j



2 (4) S S res= k  i=1 l  j=1 w i×



y i j− yi



2 (5) Thep-valueassociatedwith F expcanbefoundusingtheRStudiocommand 1-pf(F calc,1,(n-3)). A p <

0.05denotesasignificantimprovementinthemodelfitbroughtbytheuseofaquadraticmodel. Analysis of Variance - Lack of Fit (ANOVA-LoF) to verify the goodness of the calibration model TheANOVA-LoFhypothesistestisusedtoevaluatethefitofdata-pointswiththefinalcalibration model.Thenull-hypothesisisthatthereisnolackoffitandtheFiscomputedasfollows(Eq.(6)):

FLoF= SSLoF DoFLoF SSPure DoFPure = k i =1 l j=1 wi ×

(

yi yi

)

2 k−q k i =1 l j=1 wi ×

(

yi j −yi

)

2 n−k (6) It is important tounderline that thistest is very sensitive to experimental design,in particular thenumberofreplicatesand/orthenumberofcalibrationlevels.Hence,ifaccuracyandprecisionare withinthelimitsofacceptability,itispossibletoignoretheoutcomeofthistest.

Limit of detection (LOD)

The limitofdetectionisthelowerconcentration detectablewiththespecifiedanalyticalmethod. It can be evaluate using several different approaches; here, we propose the Hubaux and Vos’ computation[7].

Theapproachreliesonfivehypotheses: 1.Thestandardsareindependent

2.Thecontentsofthestandardsareaccuratelyknown 3.Theobservedsignalshaveagaussiandistribution

4.Alinearregressionmodelisadequateforthedataathand 5.Thevarianceoftheerrorisconstant(i.e.homoscedasticdata).

Assuming that the first three prerequisites are met,it is necessary to focus on numbers 4 and 5, whichare notnecessarily respected.When linearity isnot respected,it ispossible toreduce the calibrationrangeexcludingtheuppercalibrationlevels,inordertoexcludethequadraticity.

Ifthehomoscedasticityisnotrespected, theweightsneedtobeintroduced intotheHubauxand Vosequation(Eqs.(7)–(11):

X LOD= t (0.05,n−2)× syˆ0 (7)

Where t istheStudent’stest,valueat0.05confidencelimitandn-2 degreesoffreedom,andsy0

isequalto s yˆ0=S y/x

1+k 1 i=1l × wi +

(

− ¯xw

)

2 k i=1l × wi

(

x i− ¯xw

)

2 (8)

(6)

Sy/x andxware,respectively: S y/x=

k i=1lj=1w i×



y i− yi j



2 n − 2 (9) ¯xw= k i=1lj=1w ix i k i=1lj=1w i (10) And,finally, Y c=b X c+a (11)

a istheinterceptofthecalibrationcurveand b theslopeofthecalibrationcurve.

Once the concentration of analyte constituting the LOD is mathematically obtained, an experimental verificationis needed. Itconsists inthefortification of blankmatrixatthe computed XLOD andthemeasurementoftheSignal-to-Noise,whichhastobehigherthan3.

Accuracy

The accuracy is a measure of the closeness ofa measured value to the actual value. The three replicatesmeasured ineach validationdayallowthecomputationoftheintra-dayaccuracy,andthe 12-daystimeframeoftheoverallvalidationprocedureallowstheevaluationoftheinter-dayaccuracy. The two computationsare performedemployingtheR routine developed by Desharnaisetal.[4,8] followingthe operatingschemepresented here[1].The method’saccuracy isexpressedin termsof bias%,whichitismeasuredasfollows:

bia s %=

1 x real ¯xexp

× 100 (12)

Where x realisthespikedconcentrationand ¯xexp istheexperimentalresult.

Precision

Theprecisionisthereproducibilityofameasurement,i.e.describeshowclosearethereplicates. Itisexpressedascoefficientofvarianceandcomputedasfollows:

C V %= J

j=1

(

xexp − ¯x

)

2

J−1

¯x × 100 (13)

Where J isthenumberofreplicates, x expistheexperimentalresultofthej-replicate and ¯xisthe

meanresult.

Matrix effect (ME)

ToevaluatetheME,bi-distilled waterandsyntheticurine arespiked,aftertheextractionstep,at thedesiredconcentration(typically,threeconcentration levelsaretested, i.e.low,middleandhigh). TheMEisprovidedbytheratioofthemeansofthereplicates(minimumofthree):

M E % =



A S/ A IS



w



A S/ A IS



u × 100 (14)

WhereASandAIS aretheareaofthestandardandtheinternalstandard,respectively; w indicates

(7)

Extraction recovery (ER)

The ERisevaluated comparingthe resultsobtainedspikingthestandardsandinternalstandards before and after the extraction procedure. The number of replicates and the concentration levels usuallytestedarethesamereportedintheMEdescription.Theformulaisthefollowing:

E R %=



A S/ A IS



be f ore



A S/ A IS



a f ter × 100 (15)

Where ASandAIS are definedasabove, before and after are thesamplesspikedbeforeandafter

theextraction,respectively.Again,valuesbetween85%and115%areconsideredacceptable. Method relevance

The traditionalvalidationprotocolsforanalyticalmethodsusededicatedexperimentsto evaluate each validation parameter, resulting in a large set of experiments to be completed and prolonged execution times.To easethe whole process, itis frequently observedin scientific publications that thevalidationexperimentsarecut withdetriment totheirstatisticalsignificance.Inparticular,most ofthepublishedvalidationproceduresshowweakandunsubstantialselectionofthecalibrationcurve parameters,withregardtoheteroscedasticity,weighting,range,andlinearity.

Theproposedprotocolisbasedonan ad hoc designofexperimentswhichallowstousethesame set ofexperiments(e.g.,threereplicates ofthecalibration curvein threedifferentdays) toproduce rigorous evaluation of the most important validation parameters. Core of the present validation procedure isthecomputationofareliablecalibrationmodelwithsolid statisticalfoundation, which is mandatory whenever the achievementof accurate quantitation represents the main objective of the analysis. Limits of detection and quantitation, range, accuracy, and precision parameters are computed thereafter, using the same data with different statistical processing. Thus, the present approach combines the advantage of reducing the numberof experiments needed to complete an analytical method validationwiththe useof arobust statistical apparatus,which compares a wide setofstatisticaltestsandprovidesthemostappropriate mathematicaladjustmentstothecomputed parameters.

Funding

This researchwasfundedby theItalian “Ministerodell’Istruzione,dell’Università edellaRicerca” withinaPRIN2017callforbids(ResearchProjectsofRelevantNationalInterest—grant2017Y2PAB8)

DeclarationofCompetingInterest

The authors declare that they have no known competing financial interests or personal relationshipsthatcouldhaveappearedtoinfluencetheworkreportedinthispaper.

References

[1] E. Alladio, E. Amante, C. Bozzolino, F. Seganti, A. Salomone, M. Vincenti, B. Desharnais, Effective validation of chromatographic analytical methods: the illustrative case of androgenic steroids, Talanta 215 (2020) 120867, doi: 10.1016/ j.talanta.2020.120867 .

[2] P. Van Renterghem, P. Van Eenoo, H. Geyer, W. Schänzer, F.T. Delbeke, Reference ranges for urinary concentrations and ratios of endogenous steroids, which can be used as markers for steroid misuse, in a Caucasian population of athletes, Steroids 75 (2010) 154–163, doi: 10.1016/j.steroids.20 09.11.0 08 .

[3] E. Amante, E. Alladio, A. Salomone, M. Vincenti, F. Marini, G. Alleva, S. De Luca, F. Porpiglia, Correlation between chronological and physiological age of males from their multivariate urinary endogenous steroid profile and prostatic carcinoma-induced deviation, Steroids 139 (2018) 10–17, doi: 10.1016/j.steroids.2018.09.007 .

[4] B. Desharnais, F. Camirand-Lemyre, P. Mireault, C.D. Skinner, Procedure for the selection and validation of a calibration model II-theoretical basis, J. Anal. Toxicol. 41 (2017) 269–276, doi: 10.1093/jat/bkx002 .

(8)

[5] Levene, Robust tests for equality of variances, in: I. Olkin, H. Hotelling (Eds.), Contributions to Probability and Statistics; Essays in Honor of Harold Hotelling., Stanford University Press, 1960, pp. 278–292 .

[6] M.B. Brown , A.B. Forsythe , Robust tests for the equality of variances, J. Am. Stat. Assoc. 69 (1974) 364–367 .

[7] A. Hubaux, G. Vos, Decision and Detection limits for linear Calibration Curves, Anal. Chem. 42 (1970) 849–855, doi: 10.1021/ ac60290a013 .

[8] B. Desharnais, F. Camirand-lemyre, P. Mireault, C.D. Skinner, Procedure for the selection and validation of a calibration model I — description and application, J. Anal. Toxicol. 41 (2017) 261–268, doi: 10.1093/jat/bkx001 .

Riferimenti

Documenti correlati

circuits, sensorimotor integration and plasticity in human motor cortical projections

Pertanto, la remissione può essere assimilata alla donazione (diretta od indiretta) unicamente ove sia sorretta da un intento liberale e dunque, qualora l’intento del

Furthermore, the analysis of the decision process allows reconstructing the role of different elements, object and actors in shaping the trajectory of the planned change..

The following subsections give details (including strategies to minimize the current leakage) on magnetometers for in-plane (IP) field sensing (X- and Y-axis devices), on

La Deputazione, in vista di cosiffatte osservazioni, dispose che a cura del Direttore della detta Scuola si cominciasse a provvedere per lo acquisto degli

Leggo di filosofi, teologi, psicologi alla ricerca della “verità” e così pure ci sono frasi correnti come ad esempio “la verità rende liberi” e persone che affermano di

Our baseline Planck 2015 astrophysical model, derived from a joint analysis of the Planck, WMAP, and 408 MHz observations, includes the following components: (1) CMB; (2)

Successivamente è stato possibile ricavare la matrice O/D per ognuna delle intersezioni considerate, premettendo che questa non rappresenta la matrice definitiva,