• Non ci sono risultati.

Progettazione di uno sfintere artificiale extra-uretrale per la gestione dell'incontinenza urinaria

N/A
N/A
Protected

Academic year: 2021

Condividi "Progettazione di uno sfintere artificiale extra-uretrale per la gestione dell'incontinenza urinaria"

Copied!
3
0
0

Testo completo

(1)

FIGURE 1  https://anatomyclass123.com/anatomy-of-urinary-bladder/anatomy-of-urinary-bladder-related-keywords-suggestions-for-urinary-bladder-anatomy/

FIGURE 2  https://www.chirurgiauretrale.it/anatomia-uretra/

FIGURE 3  W. C. de Groat, D. Griffiths, and N. Yoshimura, “Neural control of the lower urinary tract,” Compr. Physiol., vol. 5, no. 1, pp. 327–396, 2015.

FIGURE 4  I. Milsom, K. S. Coyne, S. Nicholson, M. Kvasz, C. I. Chen, and A. J. Wein, “Global prevalence and economic burden of urgency urinary incontinence: A systematic review,” Eur. Urol., vol. 65, no. 1, pp. 79–95, 2014.

FIGURE 5  P. Norton and L. Brubaker, “Urinary incontinence in women,” Lancet, vol. 367, no. 9504, pp. 57–67, 2006.

FIGURE 6  J. Rai and R. Parkinson, “Urinary incontinence in adults,” Surg. (United Kingdom), vol. 32, no. 6, pp. 286–291, 2014 FIGURE 7  a) https://www.urologicalcare.com/urinary-dysfunction/urinary-incontinence-treatment/ b) http://www.jinuf.org.br/vol_08/paginas/ing/I_Artig_Remeex.html http://www.huebner-urologie.at/inkontinenz_m.html http://www.ami.at/en/produkt/a-m-i-atoms-system-2/ c) http://www.urofrance.org/nc/science-et-recherche/base- bibliographique/article/html/evaluation-multicentrique-de-la-bandelette-sous-uretrale-advancesupRsup-dans-le-traitement-d.html d) https://abdominalkey.com/urinary-dysfunction-in-prostate-cancer-male-slings/

e) P. Costa et al., “Surgical treatment of female stress urinary incontinence with a Trans-Obturator-Tape (T.O.T.??) Uratape??: Short term results of a prospective multicentric study,” Eur. Urol., vol. 46, no. 1, pp. 102–107, 2004.

C. A. Walsh, “TVT-secur mini-sling for stress urinary incontinence: A review of outcomes at 12 months,” BJU Int., vol. 108, no. 5, pp. 652–657, 2011.

FIGURE 8  S. M. Biers, S. N. Venn, and T. J. Greenwell, “The past, present and future of augmentation cystoplasty,” BJU Int., vol. 109, no. 9, pp. 1280–1293, 2012.

FIGURE 9  S. Siegel, K. Noblett, J. Mangel, T. Giebling, S. E. Sutherland, and E. T. Bird, “Results of a prospective, randomized , multicenter study evaluating sacral neuromodulation with Interstim therapy compared to standard medical therapy at 6 monts in subjects with mild symptoms of overactive bladder,” Neurourol. Urodyn., vol. 34, no. 3, pp. 224–230, 2015.

FIGURE 11  M. G. B. Aliev, S. P. Darenkov, B. I. Leonov, and D. E. Lazovskiy, “Artificial Bladder Sphincter Implants for Treating Urge Urinary Incontinence,” vol. 46, no. 1, pp. 39–42, 2012.

FIGURE 12  Fukumura et al., “Development of magnetically operated artificial urinary sphincter,” Asaio, 1993.

FIGURE 13  F. Marti, T. Leippold, H. John, N. Blunschi, and B. Müller, “Optimization of the artificial urinary sphincter: modelling and experimental validation.,” Phys. Med. Biol., vol. 51, no. 5, pp. 1361–75, 2006.

FIGURE 14  http://www.gerardhenrymd.com/services/urinary/ams800 FIGURE 15 

(2)

a) D. K. Montague, “Reflections on a New Artificial Urinary Sphincter,” Eur. Urol., vol. 50, no. 3, pp. 421–423, 2006.

http://www.pressure-products.com/wip/safevue.html

b) D. K. Montague, “Reflections on a New Artificial Urinary Sphincter,” Eur. Urol., vol. 50, no. 3, pp. 421–423, 2006.

FIGURE 16  http://www.pelvitec.nl/pelvitec/?menuid=630 FIGURE 18 

a) Phé, V., Rouprêt, M., & Chartier‐Kastler, E. (2013). Newer and novel artificial urinary sphincters (AUS): the development of alternatives to the current AUS device. BJU international, 112(4), E426-E428.

b) https://www.uromedica-inc.com/, available on 22/06/2017.

c) Malaeb, B. S., Elliott, S. P., Lee, J., Anderson, D. W., & Timm, G. W. (2011). Novel artificial urinary sphincter in the canine model: the tape mechanical occlusive device. Urology, 77(1), 211-216. d) Doll, A., Heinrichs, M., Goldschmidtboeing, F., Schrag, H. J., Hopt, U. T., & Woias, P. (2006). A high

performance bidirectional micropump for a novel artificial sphincter system. Sensors and Actuators A: Physical, 130, 445-453.

e) Mueller, B., Deyhle, H., Mushkolaj, S., & Wieland, M. (2009). The challenges in artificial muscle research to treat incontinence. Swiss Med Wkly, 139(41-42), 591-5.

f) E. Versi, D. J. Griffiths, and M. A. Harvey, “A new external urethral occlusive device for female urinary incontinence,” Obstet. Gynecol., vol. 92, no. 2, pp. 286–291, 1998.

FIGURE 20 

a) C. W. Meyrick and P. N. Cutchis, “Development and Testing of a Manually Actuated Hydraulic Sphincter for the Control of Urinary Incontinence,” John Hopkins APL Tech. Dig., vol. 10, no. 1, pp. 66–72, 1989

FIGURE 24 

a) Chonan, S., Jiang, Z. W., Tani, J., Orikasa, S., Tanahashi, Y., Takagi, T., & Tanikawa, J. (1997). Development of an artificial urethral valve using SMA actuators. Smart Materials and Structures, 6(4), 410

b) Hached, S., Saadaoui, Z., Loutochin, O., Garon, A., Corcos, J., & Sawan, M. (2015). Novel, wirelessly controlled, and adaptive artificial urinary sphincter. IEEE/ASME Transactions on Mechatronics, 20(6), 3040-3052.

c) Weiss, F. M., Deyhle, H., Kovacs, G., & Müller, B. (2012, April). Designing micro-and nanostructures for artificial urinary sphincters. In SPIE Smart Structures and Materials+

Nondestructive Evaluation and Health Monitoring (pp. 83400A-83400A). International Society for Optics and Photonics.

d) Hached, S., Trigui, A., Loutochin, O., Garon, A., Corcos, J., & Sawan, M. (2016). Novel

Electromechanic Artificial Urinary Sphincter. IEEE/ASME Transactions on Mechatronics, 21(2), 945-955.

FIGURE 25 

a) Weiss, F. M., Deyhle, H., Kovacs, G., & Müller, B. (2012, April). Designing micro-and nanostructures for artificial urinary sphincters. In SPIE Smart Structures and Materials+

Nondestructive Evaluation and Health Monitoring (pp. 83400A-83400A). International Society for Optics and Photonics.

(3)

B. (2010). The First Teleautomatic Low‐Voltage Prosthesis With Multiple Therapeutic

Applications: A New Version of the German Artificial Sphincter System. Artificial organs, 34(8), 635-641.

c) Lamraoui, H., Bonvilain, A., Robain, G., Combrisson, H., Basrour, S., Moreau-Gaudry, A., & Mozer, P. (2010). Development of a novel artificial urinary sphincter: a versatile automated device. IEEE/ASME Transactions on Mechatronics, 15(6), 916-924.

d) Valerio, M., Jichlinski, P., Dahlem, R., Tozzi, P., & Mundy, A. R. (2013). Experimental evaluation of an electromechanical artificial urinary sphincter in an animal model. BJU international, 112(4), E337-E343.

FIGURE 27  http://www.eastin.eu/en/searches/products/detail/database-rehadat/id-IW_093103.12 FIGURE 28  T. Mazzocchi, “Magnetically Controlled Endourethral Artificial Urinary Sphincter,” BMES, 2016.

Riferimenti

Documenti correlati

Il nodo dell’elezione diretta o meno dei senatori (che sta facendo discutere: fermo l’obiettivo della riduzione del numero dei parlamentari, uno dei progetti - quello più

Con il presente articolo gli AA cercano di tracciare un iter esaustivo relativamente al- la diagnosi della incontinenza urinaria fem- minile. Viene sottolineato come

If a spayed incontinent bitch is presented with a typi- cal history (urinary loss while asleep), and the above mentioned causes for incontinence can be ruled out, it is then most

trimento de muchos lugares comunes historiográficos, se descubre fascinado por las vidas de los santos y de las historias eclesiásticas, los confines hagiográficos del Piamonte

While crys- tallinity determination performed by DSC and FT-IR spectroscopy has underlined an increasing trend for laminate over exposure time due to the higher amount of

Giuseppe Todde - A Life Cycle Assessment (LCA) Approach to Evaluate Energy Intensity and Related Environmental Impact in Dairy Farms. Tesi di Dottorato in Scienze e Biotecnologie

Certo è che lo stabat mater, come pochi altri oggetti della tematologia, vede una stessa postura dolente rimbalzare e tradursi in linguaggi diversi, registra il modificarsi e

The drug loading and drug release studies indi- cated that the NPs ’ surface functionalization improved the loading capacity of DNPs (up to 22%) and provided the sus- tained release