• Non ci sono risultati.

Analyzing recurrent events when the history of previous episodes is unknown or not taken into account: proceed with caution

N/A
N/A
Protected

Academic year: 2021

Condividi "Analyzing recurrent events when the history of previous episodes is unknown or not taken into account: proceed with caution"

Copied!
8
0
0

Testo completo

(1)

GacSanit.2017;31(3):227–234

Original

article

Analyzing

recurrent

events

when

the

history

of

previous

episodes

is

unknown

or

not

taken

into

account:

proceed

with

caution

Albert

Navarro

a,∗

,

Georgina

Casanovas

a

,

Sergio

Alvarado

b,c

,

David

Mori ˜na

a,d

aGRAAL-UnitatdeBioestadística,FacultatdeMedicina,UniversitatAutònomadeBarcelona,Bellaterra,Barcelona,Spain bProgramadeSaludAmbiental,EscueladeSaludPública,FacultaddeMedicina,UniversidaddeChile,Chile

cFacultaddeCienciasdelaSalud,UniversidaddeTarapacá,Arica,Chile

dUnitofInfectionsandCancer(UNIC),CancerEpidemiologyResearchProgram(CERP),CatalanInstituteofOncology(ICO)-IDIBELL,Barcelona,Spain

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received23June2016 Accepted8September2016 Availableonline15November2016 Keywords: Recurrence Cohortstudies Riskassessment Survivalanalysis Bias

a

b

s

t

r

a

c

t

Objective:Researchersinpublichealthareofteninterestedinexaminingtheeffectofseveralexposures

ontheincidenceofarecurrentevent.Theaimofthepresentstudyistoassesshowwellthe

common-baselinehazardmodelsperformtoestimatetheeffectofmultipleexposuresonthehazardofpresenting

anepisodeofarecurrentevent,inpresenceofeventdependenceandwhenthehistoryofprior-episodes

isunknownorisnottakenintoaccount.

Methods:Throughacomprehensivesimulationstudy,usingspecific-baselinehazardmodelsasthe

refer-ence,weevaluatetheperformanceofcommon-baselinehazardmodelsbymeansofseveralcriteria:bias,

meansquarederror,coverage,confidenceintervalsmeanlengthandcompliancewiththeassumptionof

proportionalhazards.

Results:Resultsindicatethatthebiasworsenaseventdependenceincreases,leadingtoaconsiderable

overestimationoftheexposureeffect;coveragelevelsandcompliancewiththeproportionalhazards

assumptionareloworextremelylow,worseningwithincreasingeventdependence,effectstobe

esti-mated,andsamplesizes.

Conclusions: Common-baselinehazardmodelscannotberecommendedwhenweanalyserecurrent

eventsinthepresenceofeventdependence.Itisimportanttohaveaccesstothehistoryofprior-episodes

persubject,itcanpermittoobtainbetterestimationsoftheeffectsoftheexposures

©2016SESPAS.PublishedbyElsevierEspa ˜na,S.L.U.ThisisanopenaccessarticleundertheCC

BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Análisis

de

eventos

recurrentes

cuando

la

historia

de

episodios

previos

es

desconocida

o

no

se

tiene

en

cuenta:

proceder

con

cautela

Palabrasclave: Recurrencia Estudiosdecohortes Medicióndelriesgo Análisisdesupervivencia Sesgo

r

e

s

u

m

e

n

Objetivo:Amenudolosinvestigadoresensaludpúblicaestáninteresadosenexaminarelefectodevarias

exposicionesenlaincidenciadeuneventorecurrente.Elobjetivodeesteestudioesevaluarel

fun-cionamientodelosmodelosderiesgobasalcomúnalestimarelefectodemúltiplesexposicionessobre

elriesgodepresentarunepisodiodeuneventorecurrente,cuandoexistedependenciadeleventoylos

antecedentesdelosepisodiosporsujetosondesconocidosobiennosetienenencuenta.

Métodos:Medianteunestudioexhaustivodesimulación,utilizandomodelosderiesgobasalespecífico

comoreferencia,seevalúaelrendimientodelosmodelosderiesgobasalcomúnatravésdediversos

cri-terios:sesgo,errorcuadráticomedio,cobertura,longituddelosintervalosdeconfianzaycompatibilidad

conelsupuestoderiesgosproporcionales.

Resultados:Elsesgoempeoraamedidaqueaumentaladependenciadelevento,llevandoauna

sobreesti-maciónconsiderabledelefectodelaexposición;losnivelesdecoberturayelcumplimientodelsupuesto

deriesgosproporcionalessonbajosomuybajos,loqueempeoraconelaumentodeladependenciadel

evento,elefectoaestimaryeltama ˜nomuestral.

Conclusiones:Elusodemodelosderiesgobasalcomúnnopuederecomendarsecuandoanalizamos

even-tosrecurrentesenpresenciadedependenciadelevento.Esimportanteteneraccesoalosantecedentes

deepisodiospreviosporsujeto,yaqueellopuedepermitirobtenermejoresestimacionesdelosefectos

delasexposiciones.

©2016SESPAS.PublicadoporElsevierEspa ˜na,S.L.U.Esteesunart´ıculoOpenAccessbajolalicencia

CCBY-NC-ND(http://creativecommons.org/licenses/by-nc-nd/4.0/).

∗ Correspondingauthor.

E-mailaddress:albert.navarro@uab.cat(A.Navarro).

Introduction

Theoutcomeofinterestinabiomedicalorepidemiologicalstudy is often an event that can occurmore than once in a subject. http://dx.doi.org/10.1016/j.gaceta.2016.09.004

0213-9111/©2016SESPAS.PublishedbyElsevierEspa ˜na,S.L.U.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense( http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

228 A.Navarroetal./GacSanit.2017;31(3):227–234 Therefore, identifyinga statisticalmethodsuitable for studying

recurrenteventsisofgreatinteresttothefield.

From a statistical point of view, recurrent event analysis presentstwomajorchallenges.Thefirstisindividualheterogeneity, i.e.theunmeasuredeffectsproducedbybetween-subject variabil-ity,presumablyduetounobservedexposures.Forinstance,imagine thatastudymeasuringthenumberofrespiratorycrisesisnot ask-ingforsmokingstatus.Itislikelythatsmokerswillhaveadifferent patternfromnon-smokers,resultinginheterogeneityacrossthe subjectsthatcan’tbeattributedtoanyknownfactorassmoking statuswasnotrecorded.Thisissueisusuallytackledusingfrailty models,whichincorporaterandomeffecttermstoaccountforthis “extra”variability.Thesecondproblemiswithin-subject correla-tionsattributabletoasinglesubjectsufferingmultipleepisodesof theevent.Thesecorrelationsareespeciallyproblematicin situa-tionscomplicatedbyeventdependence,inotherwords,whenthe riskofhavinganewepisodedependsonthenumberofprevious episodes.Thisisthecaseofthenumberofsickleavessufferedby workers:Ahistoryofsickleavesincreasestheriskofasubsequent episode.Reisetal.1quantifiedtheextentofthisincrease.Ifwefailto

accountforeventdependence,ourresultingestimatorswillbe inef-ficientandpotentiallybiased.AsdiscussedinBox-Steffensmeier etal.,2common-baselinehazardmodelsaveragetheeffectsacross

alleventsnottakingstrataintoaccount,beingthisaveragesbiased in a predictabledirection. In cohort studies, event dependence canbecontrolledbyusingsurvivalmodelswithspecific-baseline hazardsforeachepisodethatthesubjectfaces.3

AmorimandCai4provideanexcellentreviewofapproachesto

recurrenteventanalysis.Thearticledescribestheapplicable sta-tisticalmethodsforepidemiological studiesof recurrentevents, workingoffoftheassumptionthatresearchershaveaccesstoall oftheinformationrequiredbyeachmodel.Inpractice,however, muchofthisdataistypicallyunavailable.Specific-baselinehazard modelsassumethattheexactnumberofpreviousepisodessuffered byeachsubjectisknown,butinrealityitistypicallyimpracticalto obtainanexhaustivehistoryforeachpatient.Thisleavesuswithout amethodtodirectlyaddresseventdependence.Theusualpractice insuchcasesistofitmodelswithacommon-baselinehazard.

The aim of the present study is to assess how well these common-baselinehazardmodelsperformwhentheyareusedto estimatetheeffectof multipleexposures onthehazardof pre-sentinganepisodeofarecurrenteventwhentheprevioushistory isnottakenintoaccount.

Methods Simulations Example

We illustrate this work by reproducing a study from the literature5toanalyzelong-termsicknessabsence(SA)frequencyin

acohortofDutchworkers.Wewillusethesamebaselinehazardas intheDutchstudy,0.0021perworker-week.Thebetween-episodes hazardratios(HR)donotcorrespondexactlytothoseofany spe-cificstudy,althoughReisetal.1providevaluesforawiderangeof

SA-relateddiagnoses.SAisacommonly-usedoutcomein occupa-tionalhealthstudiesbecauseitisconsideredamajoreconomicand publichealthissue,6–8resultinginagrowinginterestin

identify-ingthebestmethodtoquantitativelyandefficientlyanalyzethis phenomenon.5,9–13

Generationofpopulations

Sixdifferentpopulationsof250000workers,eachwith20years of history, weregenerated using thesurvsim14,15 package in R

2.15.3(RFoundation forStatisticalComputing,Vienna,Austria).

Table1

Characteristicsofthesimulatedpopulations.

Baselinehazard HR i Worker-days Worker-weeks Population1 ˇ01=8.109 0.000301 0.002106 1 None ˇ02=7.927 0.000361 0.002526 1.20 ˇ03=7.745 0.000433 0.003030 1.44 Population2 ˇ01=8.109 0.000301 0.002106 1 Gamma (1,0.1) ˇ02=7.927 0.000361 0.002526 1.20 ˇ03=7.745 0.000433 0.003030 1.44 Population3 ˇ01=8.109 0.000301 0.002106 1 None ˇ02=7.703 0.000451 0.003160 1.50 ˇ03=7.298 0.000677 0.004738 2.25 Population4 ˇ01=8.109 0.000301 0.002106 1 Gamma (1,0.1) ˇ02=7.703 0.000451 0.003160 1.50 ˇ03=7.298 0.000677 0.004738 2.25 Population5 ˇ01=8.109 0.000301 0.002106 1 None ˇ02=7.193 0.000752 0.005263 2.50 ˇ03=6.276 0.001881 0.013166 6.25 Population6 ˇ01=8.109 0.000301 0.002106 1 Gamma (1,0.1) ˇ02=7.193 0.000752 0.005263 2.50 ˇ03=6.276 0.001881 0.013166 6.25

ˇ03referstoˇ0forthethirdandsubsequentepisodes.

HR:hazardratio.

Foreachsubjecti,thehazardofthenextepisodekwassimulated throughanexponentialdistribution:

hik(t) =i·e(−ˇ0k+ˇ1X1+ˇ2X2+ˇ3X3) (1)

whereh0k(t) =e−ˇ0k,i.e.thebaselinehazardforsubjectsexposed

toepisodek.ThemaximumnumberofSAepisodesthataworker maysufferwasnotfixed,althoughthebaselinehazardwas con-sideredconstantwhenk≥3.X1,X2,andX3arethethreecovariates

thatrepresenttheexposure,withXi∼Bernoulli(0.5).ˇ1,ˇ2,andˇ3

aretheparametersofthethreecovariatesthatrepresenttheeffect, setindependentlyoftheepisodektowhichtheworkerisexposed, as:ˇ1=0.25,ˇ2=0.5,andˇ3=0.75inordertorepresenteffects

ofdifferentmagnitudes.iisarandomeffect.

Eventdependence

Event dependencewasaddressedby usingvariousvalues of h0k(t),specifyingdifferentˇ0k.Table1presentsthespecifications forthegeneratedpopulationsintermsofthebaselinehazardsby SAepisodeandrandomeffectsused.Table1alsopresentstheHR resultingfromthecomparisonofthebaselinehazardwiththatof thefirstepisode,whichgivesustheeventdependenceforthe phe-nomenon.Notethatforpopulations1and2,theHR=1.20and1.44, respectively,forthesecondSAepisode,aswellasforthethirdand subsequentSAepisodeswithrespecttothefirst.Thismeansthat betweenthesecondandthirdSAepisodes,thebaselinehazardwas alsoincreasedbyafactorof1.20.TheHR=1.50betweenepisodes twoandthreeforpopulations3and4,and2.50forpopulations 5and6.Wechosetosimulatephenomenawithincreasingevent dependence,giventhatReisetal.1demonstratedthatthehazard

alwaysincreasesinthepresenceofpreviousSA. Individualheterogeneity

Individual heterogeneity was addressed by introducing i,

therandom effect. This effectwas held constant over the var-ious episodesfor a given subject but varied between subjects.

(3)

A.Navarroetal./GacSanit.2017;31(3):227–234 229 Specifically, we established: a) absence of any random effect

(i=1),whichleadstoaperfectlyspecifiedpopulationoncethe

subjectcovariatesareset,andb)individualheterogeneity,where i∼Gammawithmean=1andvariance=0.1.

Table1showsthesimulatedpopulations. Cohortdesign

Althoughthepopulationswith20yearsofhistorywere gener-ated,aprocedurewassubsequentlyappliedtolimittheeffective follow-upperiodsto1,3,and5years,withsomesubjectshaving sufferedapriorepisodebeforethefollow-upperiodbegan.

Thiswasachievedasfollows.

Weselectedthesubjectswhowereeitherpresentat15years offollow-uporincorporatedafterthatdate.Follow-uptimewas thenre-scaled,settingt=0at15yearsforsubjectsalreadypresent inthepopulationandt=0atthebeginningofthefollow-upperiod forthoseincorporatedlater.Thepurposeofthisprocedurewasto obtainacohortinwhichsomesubjectshadaworkhistoryprior tothe15-yearpointthatincludedpreviousepisodes,whichwere treatedasunknown.Thefigureof15yearswaschosenasa rep-resentativelengthofworkhistoryfortypicalcorporateemployee. Usingthissubpopulation,wethengeneratedthethreesub-bases correspondingtodifferentstudyend-points:at16years(1yearof effectivefollow-up,fromthe15thto16thyear),at18years(three yearsoffollow-up),andat20years(fiveyearsoffollow-up). Sampleselectionandmodelfitting

Foreachofsub-base,B=500randomsamplesweredrawnwith sizesn1=500, n2=1000,andn3=3000,and for eachselected

subject,theepisodeswithintheeffectivefollow-upperiodwere recorded.Finally,themodelswerefittedtoeachofthesesamples. Models

Allofthemodelsconsideredarenon-parametricandare exten-sionsoftheCoxproportionalhazardsmodel.16,17Forallworkers,

weusetherealpreviousepisodeswhenfittingspecific-baseline models,andwecompletelyignoretheminthecommon-baseline models.

Modelsfornon-individualheterogeneitycontext

1)Specific-baselinehazardapproach:Prentice-Williams-Peterson (PWP)

Forstudiesofrecurrentphenomenainvolvingevent depend-encebutnotindividualheterogeneity,PWPisthesurvivalmodel ofreference.18PWPaddresseseventdependencebystratifying

accordingtonumberofpreviousepisodes,therebyassigninga specific-baselinehazardtoeachpotentialepisode.Whenthe i-thsubjectisatriskofthek-thepisode,thehazardfunctionis definedas:

hik(t) =h0k(t) eXiˇ (2)

whereXiˇrepresentthevectorsofcovariatesandtheregression

coefficients.

2)Common-baselinehazardapproach:Andersen-Gill(AG) AG19 isbased oncountingprocessesand assumesthatthe

baselinehazardiscommonacrossallepisodes,independentof thenumberofpreviousepisodes.Ithasthefollowinghazard function:

hi(t) =h0(t) eXiˇ (3)

whereh0(t) =e−ˇ0 andisthereforethesameforallepisodes,

k.AGtreatsdifferentepisodeswithinagivensubjectasthough theywereindependent,subsequentlyobtainingarobust “sand-wich”estimatorofthevariance.20

Modelsforindividualheterogeneitycontext

1)Specific-baseline hazardapproach: Conditional FrailtyModel (CFM)

Whenindividualheterogeneitycomesintoplay,thereference modelbecomesCFM.21Thismodeladdressesindividual

hetero-geneitybyassumingalatentmultiplicativeeffectonthehazard function:

hik(t) =Uih0k(t) eXiˇ (4)

Uiisanindividualrandomeffectwhichisassumedtohaveunit

meanandfinitevariance,whichisestimatedfromthedata.22

SinceUiisamultiplicativeeffect,wecanthinkthisfrailtyasa

representationofthecumulativeeffectofoneormoreomitted covariates.22,23Themostcommonly-adoptedfrailtyterms24–26

areE [Ui] =1andV [Ui] =.

2)Common-baselinehazardapproach:SharedFrailtyModel(SFM) Amongotherapplications,SFM27–29maybeusedinthe

con-textofrecurrentevents,wherewithin-subjectepisodessharea frailtytermthatisindependentofthoseforotherindividuals. Itshazardfunctionis:

hi(t) =Uih0(t) eXiˇ (5)

wherethebaselinehazardisindependentoftheepisodekto whichthesubjectisexposed.UiisparameterizedasinCFM.

Modelassessmentcriteria

Thecriteriausedtoevaluatemodelperformancewere:1) per-centage bias: ı=



ˆ ˇ−ˇ ˇ



×100, where ˇ is the truevalue for

estimateofinterest, ˆˇ = B



j=1 ˆ ˇj

B,whereBisthenumberof

simula-tionsperformed;2)percentagemeansquarederror(MSE):MSE= ( ˆˇj−ˇ)

2

+V



ˇˆj



ˇ ×100, forj=1,...,B,where ˆˇjistheestimate ofinterestwithineachofthej=1,...,BsimulationsandV



ˇˆj



is thevarianceoftheestimateofinterestwithineach simulation; 3)coverage:percentageoftimesthatthe95%confidenceinterval

ˆ ˇj±z1−˛/2SE



ˆ ˇj



includesˇ,forj=1,...,B,whereSE



ˇˆj



isthe standarderroroftheestimateofinterestwithineachsimulation; 4)confidenceintervalsaveragelength;5)proportionalhazards: Percentageoftimesthattheassumptionofproportionalhazards cannotberejected,forj=1,...,B,accordingtothetestproposedby GrambschandTherneau.30

All models were fitted using the coxph function from the survival31packageinR.

Results

Theresultspresentedherereferonlytothe5-yearfollow-up cohorts.Resultsforthecohortswith1and3yearsoffollow-upare availableassupplementarydataonline,butarenotdetailedhere, asthefindingswerequitesimilar.

Regardingthesituationswithno-individualheterogeneity,we canseethattheaveragebiasinthecommon-baselinehazard mod-elsis11−16%forpopulationwithloweventdependence,risingto 42−51%forthosewithhigheventdependence(Table2).Ingeneral, thebiasdoesnotchangemarkedlyintermsoftheeffectassociated withˇ,samplesize,orheterogeneityofthepopulation.Higher sam-plesizemeanslowerMSEand,forcommon-baselinemodels,MSE increaseswiththeexposureeffect(Table3).Intermsofcoverage, Table4showsthatAGonlyachievesperformancesapproaching95%

(4)

230 A. Navarro et al. / Gac Sanit. 2017; 31(3) :227–234 Table2

Percentageofbias(95%confidenceinterval).

n=500 n=1000 n=3000

Population Model Biasˇ1 Biasˇ2 Biasˇ3 Biasˇ1 Biasˇ2 Biasˇ3 Biasˇ1 Biasˇ2 Biasˇ3

1 PWP -3.5(-6.6,-0.4) -5.6(-7.2,-4) -3.6(-4.6,-2.5) -2.2(-4.3,0) -6.2(-7.2,-5.1) -4.4(-5.2,-3.6) -3.1(-4.4,-1.8) -6.2(-6.8,-5.6) -4.2(-4.6,-3.7) 1 AG 14.5(11,18) 12.3(10.5,14.1) 14.9(13.7,16.1) 16.4(13.9,18.9) 11.8(10.6,13) 14.3(13.4,15.1) 15.8(14.4,17.3) 11.7(11.1,12.4) 14.3(13.9,14.8) 2 CFM -7.3(-10.4,-4.1) -9.2(-10.9,-7.6) -6.7(-7.9,-5.6) -8.8(-11,-6.7) -9.1(-10.2,-8) -8.1(-8.9,-7.4) -8.7(-10,-7.4) -8.3(-9,-7.7) -7.8(-8.2,-7.3) 2 SFM 13.5(9.8,17.1) 10.7(8.7,12.6) 14.2(12.9,15.5) 11.3(8.8,13.8) 11.1(9.9,12.4) 12.7(11.8,13.5) 12.2(10.7,13.7) 12.1(11.3,12.8) 13(12.6,13.5) 3 PWP -9.9(-12.7,-7.1) -4.2(-5.6,-2.7) -5.3(-6.4,-4.2) -8.7(-10.7,-6.7) -5.5(-6.5,-4.5) -5.3(-6,-4.6) -9.1(-10.2,-7.9) -5.2(-5.8,-4.6) -4.2(-4.6,-3.8) 3 AG 15.9(12.3,19.5) 25.2(23.4,27.1) 24.8(23.5,26.1) 17.7(15.3,20.2) 23.9(22.6,25.2) 24.5(23.6,25.4) 17.3(15.8,18.9) 23.8(23,24.5) 26.1(25.7,26.6) 4 CFM -2.3(-5.3,0.7) -5.9(-7.5,-4.3) -8.2(-9.2,-7.2) -3.3(-5.3,-1.3) -6.1(-7.1,-5) -7.7(-8.4,-6.9) -3.5(-4.6,-2.3) -6.1(-6.8,-5.5) -7.8(-8.2,-7.3) 4 SFM 28.5(24.7,32.2) 24.5(22.6,26.5) 22.2(21,23.4) 27.3(24.6,29.9) 23.7(22.4,25.1) 22.7(21.7,23.7) 27.1(25.5,28.6) 23.2(22.4,24.1) 22.3(21.8,22.8) 5 PWP -2.4(-5,0.2) -4.1(-5.4,-2.8) -3(-3.9,-2.1) -2.2(-4.1,-0.4) -4.4(-5.3,-3.4) -3.4(-4,-2.7) -1.3(-2.3,-0.2) -3.4(-4,-2.8) -3.3(-3.7,-2.9) 5 AG 50.8(46,55.6) 43.9(41.6,46.3) 48(46.4,49.5) 51.7(48.4,55) 42.7(41.1,44.4) 46.9(45.7,48.1) 51.5(49.6,53.4) 44.7(43.7,45.6) 46.7(46.1,47.3) 6 CFM -7.6(-10.6,-4.6) -2.6(-4.1,-1.1) -3.3(-4.3,-2.3) -6.4(-8.5,-4.3) -2.6(-3.6,-1.6) -3(-3.7,-2.3) -6.8(-8,-5.6) -2.1(-2.7,-1.5) -3.8(-4.2,-3.4) 6 SFM 45.8(40.4,51.1) 53.7(51,56.4) 53.5(51.7,55.4) 50.1(46.5,53.8) 53.8(51.9,55.7) 53.7(52.5,54.9) 47.4(45.4,49.5) 54.3(53.3,55.4) 53(52.3,53.7) Table3

Percentagemeansquarederror(95%confidenceinterval).

n=500 n=1000 n=3000

Population Model MSEˇ1 MSEˇ2 MSEˇ3 MSEˇ1 MSEˇ2 MSEˇ3 MSEˇ1 MSEˇ2 MSEˇ3

1 PWP 6.1(2.7,18.7) 3.4(1.5,9.7) 2.4(1.1,7.2) 3(1.4,9.3) 1.7(0.8,5.1) 1.3(0.6,3.9) 1(0.5,3.3) 0.7(0.3,2.2) 0.5(0.2,1.5) 1 AG 8.3(3.6,24.2) 4.9(1.8,15.9) 4.4(1.3,14.8) 4.6(1.8,14.2) 2.6(0.9,7.8) 3(0.7,9) 1.9(0.6,6.6) 1.3(0.3,3.8) 2(0.4,4.9) 2 CFM 6.3(2.7,20.1) 3.7(1.5,12) 2.8(1.1,10.1) 3.1(1.4,9.9) 1.9(0.7,6.7) 1.6(0.6,5) 1.2(0.5,4) 0.9(0.2,3) 0.8(0.2,2.8) 2 SFM 7.8(2.8,29.2) 4.6(1.4,18.1) 4.2(1,14.8) 3.8(1.4,14.5) 2.3(0.7,8.5) 2.5(0.5,7.8) 1.6(0.5,5.3) 1.3(0.2,4) 1.7(0.2,4.5) 3 PWP 5.4(2.4,14.6) 2.9(1.2,9.7) 2.4(0.9,7.5) 2.8(1.2,8.1) 1.5(0.6,4.7) 1.2(0.5,3.7) 1(0.4,3.2) 0.6(0.2,1.8) 0.5(0.2,1.4) 3 AG 9.2(4,27) 7.6(2,26) 7.7(1.5,23.2) 4.9(2,15.6) 5(1.1,15.7) 6(0.9,15.5) 2.2(0.7,7.1) 3.6(0.6,8.7) 5.6(2.1,10.6) 4 CFM 5.4(2.3,18) 3.1(1.2,10) 2.4(0.9,7.4) 2.5(1.2,8.2) 1.5(0.6,4.7) 1.5(0.5,4.8) 0.9(0.4,3) 0.7(0.2,2.3) 0.8(0.2,2.3) 4 SFM 9.2(2.5,33.3) 6.8(1.3,26.4) 6.1(0.9,20.3) 5.4(1.3,22.3) 4.7(0.7,16.9) 5.3(0.6,18) 3(0.4,10.4) 3.3(0.3,8.9) 4.1(1.1,8.6) 5 PWP 4.4(1.8,13.4) 2.3(0.9,6.7) 1.7(0.7,4.8) 2.2(1,6.7) 1.2(0.5,4) 0.9(0.4,2.8) 0.7(0.3,2) 0.4(0.2,1.4) 0.4(0.1,1.1) 5 AG 20.9(6.7,72.3) 16.7(3.5,52.1) 21.8(3.5,49.4) 13.7(3.4,43.6) 12.6(2,33.9) 19(4.5,41.8) 8.9(1.4,22.5) 11.2(3,22.5) 17.1(8.6,26.7) 6 CFM 5(1.9,18.6) 2.5(1,8.2) 1.8(0.7,6.6) 2.5(0.9,7.6) 1.2(0.5,4.5) 1(0.4,3.3) 0.9(0.3,3.4) 0.4(0.2,1.6) 0.4(0.1,1.3) 6 SFM 17(2.5,72) 20.5(1.4,64.5) 25.9(1.8,70.1) 11.9(1.3,47.5) 17.4(1.3,45.3) 23.5(6.5,49.3) 7.4(0.6,22.9) 15.7(5,29.3) 21.7(10.9,36)

(5)

A. Navarro et al. / Gac Sanit. 2017; 31(3) :227–234 231 Table4

Coverage:percentageoftimesthatthetrueparametervalueisincludedinthe95%confidenceinterval.

n=500 n=1000 n=3000

Population Model Coverageˇ1 Coverageˇ2 Coverageˇ3 Coverageˇ1 Coverageˇ2 Coverageˇ3 Coverageˇ1 Coverageˇ2 Coverageˇ3

1 PWP 95.4(93.4,97.2) 93.6(91.4,95.6) 95(93,96.8) 94.8(92.8,96.6) 93.6(91.4,95.6) 91.6(89,94) 94.8(92.8,96.6) 86.4(83.4,89.4) 86.4(83.4,89.4) 1 AG 94.8(92.8,96.6) 89.8(87,92.4) 81.6(78.2,85) 90(87.2,92.6) 87.8(84.8,90.6) 70(66,74) 82.6(79.2,85.8) 70(66,74) 28.2(24.2,32.2) 2 CFM 94.4(92.4,96.4) 90.2(87.6,92.8) 91(88.4,93.4) 92.2(89.8,94.4) 90.2(87.6,92.8) 85.2(82,88.2) 89(86.2,91.6) 78.6(75,82.2) 67.4(63.2,71.4) 2 SFM 93.2(91,95.4) 90(87.2,92.6) 81.8(78.4,85.2) 93.6(91.4,95.6) 89.6(86.8,92.2) 75(71.2,78.8) 87(84,89.8) 69.2(65.2,73.2) 32.4(28.4,36.6) 3 PWP 94.4(92.4,96.4) 94(91.8,96) 89.8(87,92.4) 93(90.6,95.2) 91.4(88.8,93.8) 89(86.2,91.6) 89.4(86.6,92) 86.8(83.8,89.6) 85.4(82.2,88.4) 3 AG 93.8(91.6,95.8) 78.2(74.6,81.8) 58(53.6,62.4) 91(88.4,93.4) 65(60.8,69.2) 30.6(26.6,34.6) 80.8(77.2,84.2) 20(16.6,23.6) 0.4(0,1) 4 CFM 93(90.6,95.2) 91.2(88.6,93.6) 89(86.2,91.6) 96(94.2,97.6) 91.4(88.8,93.8) 81.2(77.8,84.6) 94.8(92.8,96.6) 86(82.8,89) 63.6(59.4,67.8) 4 SFM 91.8(89.4,94.2) 81.2(77.8,84.6) 69.2(65.2,73.2) 86.4(83.4,89.4) 67(62.8,71) 42.8(38.4,47.2) 67.4(63.2,71.4) 26.6(22.8,30.6) 2.8(1.4,4.4) 5 PWP 92.8(90.4,95) 94.8(92.8,96.6) 95.2(93.2,97) 93.4(91.2,95.4) 93.4(91.2,95.4) 92.6(90.2,94.8) 95.8(94,97.4) 90(87.2,92.6) 86.2(83.2,89.2) 5 AG 85.4(82.2,88.4) 62(57.8,66.2) 21.6(18,25.2) 72(68,75.8) 37.6(33.4,41.8) 4.6(2.8,6.6) 33.6(29.4,37.8) 1.6(0.6,2.8) 0(0,0) 6 CFM 92(89.6,94.2) 93.8(91.6,95.8) 92.8(90.4,95) 93.4(91.2,95.4) 94(91.8,96) 92.2(89.8,94.4) 92.4(90,94.6) 92.6(90.2,94.8) 86.2(83.2,89.2) 6 SFM 89.8(87,92.4) 55.2(50.8,59.6) 25.2(21.4,29) 81.4(78,84.8) 30(26,34) 2.2(1,3.6) 57(52.6,61.4) 0.4(0,1) 0(0,0) Table5

Percentageoftimesthattheassumptionofproportionalhazardsisnotrejected(95%confidenceinterval).

n=500 n=1000 n=3000 Population Model PHˇ1 PHˇ2 PHˇ3 PHˇ1 PHˇ2 PHˇ3 PHˇ1 PHˇ2 PHˇ3 1 PWP 94.2(92,96.2) 95.2(93.2,97) 95.8(94,97.4) 95.4(93.4,97.2) 93(90.6,95.2) 95.2(93.2,97) 94.2(92,96.2) 91.8(89.4,94.2) 90.2(87.6,92.8) 1 AG 90.6(88,93) 89.2(86.4,91.8) 90.4(87.8,93) 91.4(88.8,93.8) 88.8(86,91.4) 88.8(86,91.4) 89.4(86.6,92) 83.2(79.8,86.4) 82(78.6,85.4) 2 CFM 91.4(88.8,93.8) 95.6(93.8,97.4) 90(87.2,92.6) 92.6(90.2,94.8) 93.2(91,95.4) 91.8(89.4,94.2) 89.4(86.6,92) 91.4(88.8,93.8) 85(81.8,88) 2 SFM 87.2(84.2,90) 90.2(87.6,92.8) 89(86.2,91.6) 87.6(84.6,90.4) 87(84,89.8) 89(86.2,91.6) 90.4(87.8,93) 86(82.8,89) 81.2(77.8,84.6) 3 PWP 94.4(92.4,96.4) 94.2(92,96.2) 92.6(90.2,94.8) 92.8(90.4,95) 93.2(91,95.4) 94.4(92.4,96.4) 93.4(91.2,95.4) 92.2(89.8,94.4) 88(85,90.8) 3 AG 84.6(81.4,87.6) 82.4(79,85.6) 82.6(79.2,85.8) 80.6(77,84) 80.8(77.2,84.2) 74.6(70.8,78.4) 80.4(76.8,83.8) 73(69,76.8) 60.4(56,64.6) 4 CFM 92.4(90,94.6) 93(90.6,95.2) 91(88.4,93.4) 92.4(90,94.6) 92.2(89.8,94.4) 89(86.2,91.6) 89.6(86.8,92.2) 90.8(88.2,93.2) 87.6(84.6,90.4) 4 SFM 84.2(81,87.4) 81.4(78,84.8) 81.2(77.8,84.6) 82.8(79.4,86) 81.6(78.2,85) 78.6(75,82.2) 79(75.4,82.6) 76.8(73,80.4) 64.2(60,68.4) 5 PWP 94.4(92.4,96.4) 93.8(91.6,95.8) 92.2(89.8,94.4) 95.2(93.2,97) 93(90.6,95.2) 93.2(91,95.4) 96.2(94.4,97.8) 91.8(89.4,94.2) 88.8(86,91.4) 5 AG 51.2(46.8,55.6) 50.8(46.4,55.2) 46.2(41.8,50.6) 47.4(43,51.8) 44.6(40.2,49) 34(29.8,38.2) 28.4(24.4,32.4) 29.4(25.4,33.4) 9.2(6.8,11.8) 6 CFM 91.2(88.6,93.6) 93(90.6,95.2) 93.4(91.2,95.4) 92.2(89.8,94.4) 89(86.2,91.6) 92.4(90,94.6) 91.2(88.6,93.6) 90.4(87.8,93) 90.6(88,93) 6 SFM 55.4(51,59.8) 49.8(45.4,54.2) 34(29.8,38.2) 52.6(48.2,57) 42.6(38.2,47) 17.4(14.2,20.8) 31.4(27.4,35.6) 19.2(15.8,22.8) 1.2(0.4,2.2)

(6)

232 A.Navarroetal./GacSanit.2017;31(3):227–234 Table6

Confidenceintervalsmeanlength.

n=500 n=1000 n=3000

Population Model Lengthˇ1 Lengthˇ2 Lengthˇ3 Lengthˇ1 Lengthˇ2 Lengthˇ3 Lengthˇ1 Lengthˇ2 Lengthˇ3

1 PWP 0.339 0.349 0.367 0.241 0.247 0.259 0.139 0.142 0.149 1 AG 0.385 0.392 0.403 0.273 0.277 0.285 0.157 0.160 0.164 2 CFM 0.346 0.355 0.372 0.244 0.250 0.261 0.140 0.144 0.150 2 SFM 0.400 0.403 0.409 0.282 0.284 0.288 0.161 0.162 0.165 3 PWP 0.313 0.323 0.337 0.221 0.229 0.239 0.127 0.131 0.138 3 AG 0.404 0.410 0.418 0.285 0.290 0.295 0.164 0.167 0.171 4 CFM 0.328 0.335 0.348 0.233 0.238 0.247 0.135 0.138 0.143 4 SFM 0.438 0.437 0.436 0.309 0.308 0.308 0.178 0.178 0.177 5 PWP 0.284 0.289 0.305 0.201 0.205 0.214 0.116 0.118 0.124 5 AG 0.519 0.518 0.521 0.367 0.367 0.368 0.212 0.212 0.213 6 CFM 0.317 0.322 0.331 0.224 0.228 0.234 0.130 0.132 0.135 6 SFM 0.617 0.603 0.586 0.432 0.424 0.411 0.248 0.243 0.237

forpopulationswithsmallormoderateeventdependence (popu-lations1and3)andforˇ1=0.25.Fortheotherscenarios,coverage

fallsnotably,worseningwithincreasingeventdependence,effect toestimate,and samplesize. Forexample, inpopulation5,the 95%CIincludedthetrueparametervalueforˇ3inamere0-4.6%of

sampleswhenn=1000orn=3000.AsshowninTable5,AG demon-stratedoveralllowcompliancewiththeassumptionofproportional hazards,worsening withincreasingeventdependence,effectto estimate,andsamplesize.Compliancereachedlevelsapproaching 90%onlyinpopulation1,fallingdramaticallyforpopulation5.

Resultsforheterogeneouspopulationspresentanalmost iden-ticalpattern.Slightdifferencesareobservedregardingthe95%CI: SFMCI95%wasgenerallybroader(Table6),translatingintoaslight riseincoveragelevel(Table4).

Thespecific-baselinehazardapproachesshowedmuchbetter results than the common-baseline approaches, both in homo-geneous and heterogeneous contexts. For populations free of heterogeneity,thepercentageofbiasremainedbelow10%andwas generallynegative,i.e.slightlyunderestimatingtheeffectand cov-eragelevelswerearound85−95%.Overall,morethan90%ofthe simulatedsamplescompliedwiththeassumptionofproportional hazards.Inpresenceofindividualheterogeneity,whenthereislow eventdependence,thebiasslightlyfallswiththeincreaseofthe effecttoestimateandsamplesize.

Discussion

Statisticalanalysisofrecurrentoutcomeswithevent depend-enceisnottrivial,asitrequiresmethodsthatcanaccountforthis dependencetoobtainefficientandunbiasedestimates.Although includingthenumber ofpreviousepisodesasatime-dependent covariatewould addresstheproblem,10episode-specific hazard

functionsaremorecoherentwiththenatureofrecurrentevents. Inanycase,todeployeitheralternative,itisnecessarytoknow howmanypreviousepisodeseachsubjecthashad,whichisoften impossible. As a result, some epidemiologists often recur to a common-baselinehazardfunctionthatisindependentofprevious episodes.Thepresent paperassesses how wellthese common-baselinehazardmodelsperform,incomparisontosomeofthemost commonspecific-baselinehazardmodels,whenappliedto situ-ationscomplicatedbyeventdependenceandwhentheprevious episodesarenottakenintoaccount.

It is worth noting that the results obtained here may be indicative of thebehavior of phenomena with“positive” event dependence(riskofpresentinganewepisodeincreasesinfunction ofthenumberofpreviousepisodes),notwheneventdependence is“negative”(whichinouropinionismuchlesscommoninthe studyofpublichealthphenomena).Similarly,themagnitudeofthe

bias,coveragelevels,etc.,dependsonotherspecificaspectsofeach study,astheintensityoftheeventdependence,samplesize,etc.

Itisimportanttohighlightthattherewerealmostnodifferences betweenthepattern ofbehavior ofcommon-baseline approach versusspecific-baselineapproach,inheterogeneousor homoge-nouspopulationsintermsofbias,coverage,orcompliancewith theproportionalhazardsassumption.

Theperformance of thecommon-baseline approaches wors-enedaseventdependence increased,producing lowercoverage and increasingly overestimating the effect. Subjects in the previously-exposedgrouphadmoreeventoccurrencesand there-foremore recurrentepisodes,and theysufferedtheseepisodes earlierthansubjectsinthenon-exposedgroup.Thus,theexposed subjectsarrivedatahigherbaselinehazardsoonerandingreater numbers.Thismeansthatifspecific-baselinehazardsarenotused, theincreasedbaselinehazardwouldbelargelyattributabletothe exposedgroup.

Astheeffecttobeestimatedincreases,performanceofmodels withcommon-baselinehazardworsens.Theexplanationissimilar totheoneabove:thelargertheeffect,thegreaterthedifferencein riskbetweensubjectsinexposedandnon-exposedgroups;hence, thenumbersandrecurrenceratesamongexposedsubjectsbecome progressivelygreatercomparedtothoseoftheunexposedsubjects. Thus,asinthecaseofeventdependence,thebaselinehazardeffect isdisproportionallyattributabletoexposure.

Forthesemodels,coverageisaffectedbysamplesize, worsen-ingassamplesizeincreases.Clearlythisisaspuriousrelationship; whatreallyhappensisthatlargersamplesizesprovidegreater pre-cision,butsincetheestimatesobtainedarebiased,greaterprecision meanspoorercoverage.32

Asexpected,PWPwasclearlysuperiortoAGinsituations com-plicatedbyeventdependence.Evenso,coverageandcompliance withtheproportionalhazardsassumptionremainedunacceptably lowinthefaceofsignificanteventdependenceandlargeeffectsto beestimated.Note,however,thatourresultsshowthatPWP over-alltendstoslightlyunderestimatethevalueof␤.Thisisprobably becausetheupperstrata,representingsubjectswithgreater num-bersofrecurrences,concentratemembersoftheexposedgroup. Furtherstudiestoinvestigatethebeststrategytouseintheupper stratawouldbehelpful.Inordertokeepallepisodesinthe analy-sis,wepooledallepisodesbeyondthesecondrecurrence.Itwould beinterestingtoseewhether“truncating”thenumberofepisodes or,alternatively,notgroupingthemtogetheratall,wouldimprove performance.Thefirstoptionhasthedisadvantageofeliminating someepisodes,whereasthesecondproducesstratawithveryfew subjectsandconsequentlyunstableestimates.27Alltheabove

com-mentsarealsovalidforCFM.Ontheotherhand,Torá-Rocamora etal.13showthatfittingtheCFMwhendealingwithverylarge

(7)

A.Navarroetal./GacSanit.2017;31(3):227–234 233 alternativecouldbetheconditionalfrailtyPoissonmodelwhich

producessimilarresultsbutdecreasesthetimesubstantially.We shouldalsomentionthattheapproachespresentedinthispaper arenottheonlyonesthatcouldbeusedfortheanalysisof recur-rentevents.Alternativesincludemultilevelmixedeffectssurvival parametricmodels33,flexibleparametric34ormultistatemodels.35

Insummary,informationaboutpreviousepisodesis fundamen-talforsoundanalysisofrecurrentevents,buttherequireddata is not always available. Allthe common-baseline hazard mod-elsthatweevaluatedperformedalmostequallypoorly,making itimpossibletorecommendoneoveranother.Theoneexception inwhichacommon-baselinehazardmodelmaybeareasonable optionforevent-dependentanalysisisasituationinwhichthelevel ofeventdependenceisvery lowandtheeffecttobeestimated issmall.Althoughthisestimatewouldstillbesomewhatbiased, coverageandcompliancewiththeproportionalhazards assump-tionmightbewithintherealmofacceptability.Inothersituations, thesemodelsareclearlyinappropriate,producinglowcoverage, loworextremelylowcompliancewiththeproportionalhazards assumption,andblatantoverestimationoftheeffectofexposure. Inpractice,themagnitudeofthisproblemmayevenbegreater.Reis etal.1showedthateventdependenceforSAisoftenhigherthan

thefiguresusedinoursimulations,meaningthatthe common-baselinehazardsmodelswould performevenmore poorly.The authorsshowed,forexample,thattheHRforthesecondandthird episodesofsickleaveduetomentalandbehavioraldisorderswere 9.52and20.26,respectively,withrespecttothefirstepisode.

Fromthis paperwe mayderivetwo mainconclusions: first, availabilityofthehistoryofpreviousepisodespersubjectisvery importantandtherefore,anefforttothispurposeshouldbemade inthefieldwork;second,ifwedon’thavethis information,itis importanttofindvalidalternativestotackleanalysesofthistype. Oneoptionthatweconsiderworthinvestigatingisimputingthe numberofpreviousepisodes,which wouldallowfortheuseof modelswithspecific-hazardfunctions.

Whatisknownaboutthetopic?

One of the main challenges in recurrent event analy-sis is accounting for within-subject correlations. Failure to properlyaddressthesecorrelationscancreateserious prob-lems,especiallyin thepresence of event dependence; that is,when theriskof havinganew episodedepends onthe number of previous episodes suffered by the subject. The specific-baselinehazardmodelcanbeusedtoaddressevent dependenceandobtainefficientestimators.However,usinga specific-baselinehazardmodelrequiresknowingthenumber ofpreviousepisodesexperiencedbyeachsubject;inpractice, thesedatais oftenunavailable. Under this situation, many researcherschoosetousecommon-baselinehazardmodels toanalysethiskindofdata.

Whatdoesthisstudyaddtotheliterature?

Thisstudyprovidesaquantificationofthemagnitudeof theconsequencesofusingcommon-baselinehazardmodels whenthereiseventdependence,inseveralscenariosbasedon arealisticexample.Inthiscontext,acommon-baselinehazard modelisnotappropriate,asthemodelproducesinefficient andbiased estimations.Thetrueparameter valuedoesnot fallwithintheconfidenceintervalatanacceptablefrequency, andcompliancewiththeassumptionofproportionalhazards isunacceptablylow.

Editorincharge

María-VictoriaZunzunegui. Transparencydeclaration

Thecorrespondingauthoronbehalfoftheotherauthors guar-antee the accuracy, transparency and honesty of the data and informationcontainedinthestudy,thatnorelevantinformation hasbeenomittedandthatalldiscrepanciesbetweenauthorshave beenadequatelyresolvedanddescribed.

Authorshipcontributions

Allauthors contributedto theconception and design of the work,thedesignofthesimulations,theanalysisand interpreta-tionofthedata,thewritingofthepaperanditscriticalreviewwith importantintellectualcontributions,andtotheapprovalofthefinal versionforitspublications.

Funding None.

Conflictsofinterests None.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.gaceta.2016.09.004.

References

1.ReisRJ,UtzetM,LaRoccaPF,etal.Previoussickleavesaspredictorofsubsequent ones.IntArchOccupEnvironHealth.2011;84:491–9.

2.Box-SteffensmeierJM,DeBoefS,JoyceKA.Eventdependenceand hetero-geneityindurationmodels:theconditionalfrailtymodel.PolitAnal.2006;15: 237–56.

3.KellyPJ,LimLL.Survivalanalysisforrecurrenteventdata:anapplicationto childhoodinfectiousdiseases.StatMed.2000;19:13–33.

4.AmorimLDAF,CaiJ.Modellingrecurrentevents:atutorialforanalysisin epi-demiology.IntJEpidemiol.2015;44:324–33.

5.KoopmansPC,RoelenCA,GroothoffJW.Parametrichazardratemodelsfor long-termsicknessabsence.IntArchOccupEnvironHealth.2009;82:575–82. 6.Whitaker SC.The management of sickness absence. OccupEnviron Med.

2001;58:420–4.

7.MoncadaS,NavarroA,Cortes I,etal.Sicknessleave,administrative cate-goryandgender:resultsfromthe“CasaGran”project.ScandJPublicHealth. 2002;30:26–33.

8.GimenoD,BenavidesFG,BenachJ,etal.Distributionofsicknessabsenceinthe EuropeanUnioncountries.OccupEnvironMed.2004;61:867–9.

9.CallasPW,PastidesH,HosmerDW.Empiricalcomparisonsofproportional hazards,Poisson,andlogisticregressionmodelingofoccupationalcohortdata. AmJIndMed.1998;33:33–47.

10.Christensen KB, Andersen PK, Smith-Hansen L, et al. Analyzing sickness absencewithstatisticalmodelsforsurvivaldata.ScandJWorkEnvironHealth. 2007;33:233–9.

11.NavarroA,ReisRJ,MartinM.Somealternativesinthestatisticalanalysisof sicknessabsence.AmJIndMed.2009;52:811–6.

12.NavarroA,Mori ˜naD,ReisR,etal.Hazardfunctionstodescribepatternsofnew andrecurrentsickleaveepisodesfordifferentdiagnoses.ScandJWorkEnviron Health.2012;38:447–55.

13.Torá-RocamoraI,GimenoD,DelclosG,etal.Heterogeneityandevent depend-enceintheanalysisofsicknessabsence.BMCMedResMethodol.2013;13:114. 14.Mori ˜naD,NavarroA.Survsim:simulationofsimpleandcomplexsurvivaldata.

2013.Rpackage.

15.Mori ˜naD,NavarroA.TheRpackagesurvsimforthesimulationofsimpleand complexsurvivaldata.JStatSoftw.2014;59:1–20.

16.CoxDR.Regressionmodelsandlifetable.JRStatSoc.1972;B34:187–220. 17.CoxDR.Partiallikelihood.Biometrika.1975;62:269–76.

18.PrenticeR,WilliamsB,PetersonA.Ontheregressionanalysisofmultivariate failuretimedata.Biometrika.1981;68:373–9.

(8)

234 A.Navarroetal./GacSanit.2017;31(3):227–234 19.AndersenPK,GillRD.Cox’sregressionmodelcountingprocess:alargesample

study.AnnStat.1982;10:1100–20.

20.Wei LJ, Lin DY, Weissfeld L. Regression analysis of multivariate incom-pletefailuretimedatabymodelingmarginaldistribution.JAmStatAssoc. 1989;84:1065–73.

21.Box-SteffensmeierJM,DeBoefS.Repeatedeventssurvivalmodels:the condi-tionalfrailtymodel.StatMed.2006;25:3518–33.

22.GutierrezRG.Parametricfrailtyandsharedfrailtysurvivalmodels.StataJ. 2002;2:22–44.

23.O’QuigleyJ,StareJ.Proportionalhazardsmodelswithfrailtiesandrandom effects.StatMed.2002;21:3219–33.

24.RondeauV,CommengesD,JolyP.Maximumpenalizedlikelihoodestimationin agamma-frailtymodel.LifetimeDataAnal.2003;9:139–53.

25.Balakrishnan N, Peng Y. Generalized gamma frailty model. Stat Med. 2006;25:2797–816.

26.GovindarajuluUS,LinH,LunettaKL,etal.Frailtymodels:applicationsto biomed-icalandgeneticstudies.StatMed.2011;30:2754–64.

27.TherneauTM,GrambschPM.Modelingsurvivaldata:extendingtheCoxmodel. NewYork:Springer;2000.

28.DuchateauL,JanssenP,KezicI,etal.Evolutionofrecurrentasthmaeventrate overtimeinfrailtymodels.ApplStat.2003;52:355–63.

29.DuchateauL,JanssenP.Thefrailtymodel.NewYork:SpringerVerlag;2008. 30.GrambschPM,TherneauTM.Proportionalhazardstestsanddiagnosticsbased

onweightedresiduals.Biometrika.1994;81:515–26.

31.TherneauT.ApackageforsurvivalanalysisinS.2013.Rpackage.

32.VillegasR,JuliàO,Oca ˜naJ.Empiricalstudyofcorrelatedsurvivaltimesfor recur-renteventswithproportionalhazardsmarginsandtheeffectofcorrelationand censoring.BMCMedResMethodol.2013;13:95.

33.CrowtherMJ,LookMP,RileyRD.Multilevelmixedeffectsparametric sur-vivalmodelsusingadaptiveGauss-Hermitequadraturewithapplicationto recurrent eventsand individual participant data meta-analysis. StatMed. 2014;33:3844–58.

34.Royston P, Parmar MKB. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Stat Med. 2002;21:2175–97.

35.AalenOO,BorganO,FekjaerH.Covariateadjustmentofeventhistoriesestimated fromMarkovchains:theadditiveapproach.Biometrics.2001;57:993–1001.

Riferimenti

Documenti correlati

To begin with, it explicitly refers to the peremptory status of individual rights in its Article 50 § 1, concerning the “obligations not affected by

Specifically, the superficial-habit model has the counterfactual implications that the real exchange rate appreciates and that consumption falls following an expansionary

The Greek Islands are generally subdivided into two groups, according to the location: the Ionian Islands (including Kerkira, Cephalonia, Lefkas, Zakinthos,

Nell’ultima parte sono riportati in dettaglio i workshop effettuati sulla linea di assemblaggio Gallardo in ottica del miglioramento continuo: ottimizzazione delle aree di

View of the crystal packing of: (A) BE_I and (B) BE_IV (S enantiomer in green, R enantiomer in pink). For sake of clarity, only the set of coordinates having the highest

Basically, Internet Tomography is an innovative technique which probes the network by measuring the end-to-end traffic behaviour to reconstruct the network internal

system of adiponectin (ADN), an insulin-sensitizing and anti- inflammatory adipokine, in tissues known to be the target of chronic diseases associated to obesity

As exposed by the above results, a different pattern in zooplankton species composition and their respective regulator factors would apply to these Chiloé Island lakes in comparison