• Non ci sono risultati.

First observation and study of the K± → π±π0e+e− decay

N/A
N/A
Protected

Academic year: 2021

Condividi "First observation and study of the K± → π±π0e+e− decay"

Copied!
10
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

First

observation

and

study

of

the

K

±

π

±

π

0

e

+

e

decay

The

NA48/2

Collaboration

J.R. Batley,

G. Kalmus,

C. Lazzeroni

1

,

2

,

D.J. Munday

1

,

M.W. Slater

1

,

S.A. Wotton

1 CavendishLaboratory,UniversityofCambridge,Cambridge,CB30HE,UK3

R. Arcidiacono

4

,

G. Bocquet,

N. Cabibbo

,

A. Ceccucci,

D. Cundy

5

,

V. Falaleev

6

,

M. Fidecaro,

L. Gatignon,

A. Gonidec,

W. Kubischta,

A. Maier,

A. Norton

7

,

M. Patel

8

,

A. Peters

CERN,CH-1211Genève23,Switzerland

S. Balev

,

P.L. Frabetti,

E. Gersabeck

9

,

E. Goudzovski

1

,

2

,

10

,

P. Hristov

11

,

V. Kekelidze,

V. Kozhuharov

12

,

13

,

L. Litov

12

,

D. Madigozhin,

M. Misheva

,

14

,

N. Molokanova,

I. Polenkevich,

Yu. Potrebenikov,

S. Stoynev

15

,

A. Zinchenko

JointInstituteforNuclearResearch,141980Dubna(MO),Russia

E. Monnier

16

,

E. Swallow

,

R. Winston

17 TheEnricoFermiInstitute,TheUniversityofChicago,Chicago,IL60126,USA

P. Rubin

18

,

A. Walker

DepartmentofPhysicsandAstronomy,UniversityofEdinburgh,Edinburgh,EH93JZ,UK

P. Dalpiaz,

C. Damiani,

M. Fiorini,

M. Martini,

F. Petrucci,

M. Savrié,

M. Scarpa,

H. Wahl

DipartimentodiFisicaeScienzedellaTerradell’UniversitàeSezionedell’INFNdiFerrara,I-44122Ferrara,Italy

W. Baldini,

A. Cotta Ramusino,

A. Gianoli

Sezionedell’INFNdiFerrara,I-44122Ferrara,Italy

M. Calvetti,

E. Celeghini,

E. Iacopini,

M. Lenti,

G. Ruggiero

19 DipartimentodiFisicadell’UniversitàeSezionedell’INFNdiFirenze,I-50125SestoFiorentino,Italy

A. Bizzeti

20

,

M. Veltri

21

Sezionedell’INFNdiFirenze,I-50019SestoFiorentino,Italy

M. Behler,

K. Eppard,

M. Hita-Hochgesand,

K. Kleinknecht,

P. Marouelli,

L. Masetti,

U. Moosbrugger,

C. Morales Morales,

B. Renk,

M. Wache,

R. Wanke,

A. Winhart

1 InstitutfürPhysik,UniversitätMainz,D-55099Mainz,Germany22

https://doi.org/10.1016/j.physletb.2018.11.046

0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

D. Coward

23

,

A. Dabrowski

11

,

T. Fonseca Martin,

M. Shieh,

M. Szleper

24

,

M. Velasco,

M.D. Wood

23

DepartmentofPhysicsandAstronomy,NorthwesternUniversity,Evanston,IL60208,USA

G. Anzivino,

E. Imbergamo,

A. Nappi

,

M. Piccini,

M. Raggi

25

,

M. Valdata-Nappi

DipartimentodiFisicadell’UniversitàeSezionedell’INFNdiPerugia,I-06100Perugia,Italy

P. Cenci,

M. Pepe,

M.C. Petrucci

Sezionedell’INFNdiPerugia,I-06100Perugia,Italy

F. Costantini,

N. Doble,

L. Fiorini

26

,

S. Giudici,

G. Pierazzini

,

M. Sozzi,

S. Venditti

DipartimentodiFisicadell’UniversitàeSezionedell’INFNdiPisa,I-56100Pisa,Italy

G. Collazuol

27

,

L. DiLella

28

,

G. Lamanna

28

,

I. Mannelli,

A. Michetti

ScuolaNormaleSuperioreeSezionedell’INFNdiPisa,I-56100Pisa,Italy

C. Cerri,

R. Fantechi

Sezionedell’INFNdiPisa,I-56100Pisa,Italy

B. Bloch-Devaux

,

29

,

C. Cheshkov

30

,

J.B. Chèze,

M. De Beer,

J. Derré,

G. Marel,

E. Mazzucato,

B. Peyaud,

B. Vallage

DSM/IRFU–CEASaclay,F-91191Gif-sur-Yvette,France

M. Holder,

M. Ziolkowski

FachbereichPhysik,UniversitätSiegen,D-57068Siegen,Germany31

S. Bifani

1

,

M. Clemencic

11

,

S. Goy Lopez

32 DipartimentodiFisicadell’UniversitàeSezionedell’INFNdiTorino,I-10125Torino,Italy

C. Biino,

N. Cartiglia,

F. Marchetto

Sezionedell’INFNdiTorino,I-10125Torino,Italy

H. Dibon,

M. Jeitler,

M. Markytan,

I. Mikulec,

G. Neuhofer,

L. Widhalm

ÖsterreichischeAkademiederWissenschaften,InstitutfürHochenergiephysik,A-10560Wien,Austria33

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received11September2018

Receivedinrevisedform23November2018 Accepted26November2018

Availableonline29November2018 Editor:W.-D.Schlatter

TheNA48/2 experimentatCERN reportsthefirstobservationofthe K±→

π

±

π

0e+edecayfroman

exposureof1.7×1011chargedkaondecaysrecordedin2003–2004.Asampleof4919candidateswith 4.9%background contamination allowsthe determination ofthe branchingratioin thefull kinematic region,B R(K±

π

±

π

0e+e)= (4.24±0.14)×10−6.Thestudyofthekinematicspaceshowsevidence

forastructuredependentcontributioninagreementwithpredictionsbasedonchiralperturbationtheory. SeveralP- andCP-violatingasymmetriesarealsoevaluated.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

*

Correspondingauthors.

E-mailaddresses:milena.misheva@cern.ch(M. Misheva),brigitte.bloch-devaux@cern.ch(B. Bloch-Devaux). † Deceased.

1 Nowat:SchoolofPhysicsandAstronomy,UniversityofBirmingham,Birmingham,B152TT,UK. 2 SupportedbyaRoyalSocietyUniversityResearchFellowship(UF100308,UF0758946). 3 FundedbytheUKParticlePhysicsandAstronomyResearchCouncil,grantPPA/G/O/1999/00559. 4 Nowat:UniversitàdegliStudidelPiemonteOrientaleeSezionedell’INFNdiTorino,I-10125Torino,Italy. 5 Nowat:IstitutodiCosmogeofisicadelCNRdiTorino,I-10133Torino,Italy.

(3)

1. Introductionandtheoreticalframework

Kaondecayshaveplayedamajorroleinestablishingthequark mixingflavourstructureoftheStandardModel[1].Radiativekaon decaysareofparticularinterest intestingmodelsdescribing low-energyquantumchromodynamics(QCD)suchasthechiral pertur-bationtheory (ChPT),an effectivefield theoryvalidbelowascale

O

(1GeV).

The radiative decay K±

π

±

π

0e+e, never observedso far,

proceeds through virtual photon exchange followed by internal conversion into an electron-positron pair, i.e. K±

π

±

π

0

γ

π

±

π

0e+e. The virtual

γ

can be produced by two different

mechanisms: Inner Bremsstrahlung (IB)where the

γ

∗ isemitted byoneofthechargedmesonsintheinitial orfinal state,and Di-rectEmission(DE)wherethe

γ

∗isradiatedoffattheweakvertex. Consequently, the differential decayrate consistsof three terms: the dominant long-distance IB contribution, the DE component (electricEandmagnetic Mparts), andtheir interference.The in-terferencetermINTincludesthedifferentcontributions,IB-E,IB-M andE-M.TheIB-MandE-MtermsareP-violatingandcancelupon angularintegrationinthetotalrate.

There are few theoretical publications related to the K±

π

±

π

0e+emode[24] andnoexperimentalobservation.The

au-thorsof[3] predicted,onthebasisoftheNA48/2measurementof

6 Nowat:JointInstituteforNuclearResearch,141980Dubna(MO),Russia. 7 Nowat:DipartimentodiFisicaeScienzedellaTerradell’UniversitàeSezione dell’INFNdiFerrara,I-44122Ferrara,Italy.

8 Nowat:DepartmentofPhysics,ImperialCollege,London,SW72BW,UK. 9 Nowat:SchoolofPhysicsandAstronomy,TheUniversityofManchester, Manch-ester,M139PL,UK.

10 SupportedbyERCStartingGrant336581. 11 Nowat:CERN,CH-1211Genève23,Switzerland.

12 Nowat:FacultyofPhysics,UniversityofSofia“St.Kl.Ohridski”,BG-1164Sofia, Bulgaria,fundedbytheBulgarianNationalScienceFundundercontractDID02-22.

13 Alsoat:LaboratoriNazionalidiFrascati,I-00044Frascati,Italy.

14 Nowat:InstituteofNuclearResearchandNuclearEnergyofBulgarianAcademy ofScience(INRNE-BAS),BG-1784Sofia,Bulgaria.

15 Nowat:FermiNationalAcceleratorLaboratory,Batavia,IL60510,USA. 16 Nowat:CentredePhysiquedesParticulesdeMarseille,IN2P3-CNRS,Université delaMéditerranée,F-13288Marseille,France.

17 Nowat:SchoolofNaturalSciences,UniversityofCalifornia,Merced,CA95343, USA.

18 Nowat:SchoolofPhysics,AstronomyandComputationalSciences,George Ma-sonUniversity,Fairfax,VA22030,USA.

19 Nowat:PhysicsDepartment,UniversityofLancaster,Lancaster,LA14YW,UK. 20 AlsoatDipartimentodiScienzeFisiche,InformaticheeMatematiche,Università diModenaeReggioEmilia,I-41125Modena,Italy.

21 AlsoatIstitutodiFisica,UniversitàdiUrbino,I-61029Urbino,Italy.

22 FundedbytheGermanFederalMinisterforEducationandresearchunder con-tract05HK1UM1/1.

23 Nowat:SLAC,StanfordUniversity,MenloPark,CA94025,USA. 24 Nowat:NationalCenterforNuclearResearch,P-05-400´Swierk,Poland. 25 Nowat:UniversitàdiRoma“LaSapienza”,I-00185Roma,Italy.

26 Nowat:InstitutodeFísicaCorpuscularIFIC,UniversitatdeValència,E-46071 València,Spain.

27 Nowat:DipartimentodiFisicadell’UniversitàeSezionedell’INFNdiPadova, I-35131Padova,Italy.

28 Now at: Dipartimento di Fisica dell’Università e Sezione dell’INFN di Pisa, I-56100Pisa,Italy.

29 Nowat:DipartimentodiFisicadell’UniversitàdiTorino,I-10125Torino,Italy. 30 Nowat:InstitutdePhysiqueNucléairedeLyon,IN2P3-CNRS,UniversitéLyonI, F-69622Villeurbanne,France.

31 Fundedbythe GermanFederalMinisterforResearchandTechnology(BMBF) undercontract056SI74.

32 Nowat:CentrodeInvestigacionesEnergeticasMedioambientalesyTecnologicas, E-28040Madrid,Spain.

33 FundedbytheAustrianMinistryforTrafficandResearchunderthecontractGZ 616.360/2-IVGZ616.363/2-VIII,andbytheFondsfürWissenschaftundForschung FWFNr. P08929-PHY.

themagneticandelectrictermsinvolvedintheK±

π

±

π

0

γ

de-cay [5],thebranchingratiosofIB,DE andINTcomponentsofthe

K±

π

±

π

0e+edecay andposted recently a revised work [6]

where the interference term is re-evaluated using more realistic inputsbasedonadditionalexperimentalresultsandfewer theoret-icalassumptions.

It is worth writing explicitly the various contributions to the squaredamplitudeofthedecay[3]:



spins

|

M

|

2

=

2e 2 q4



3 i=1

|

Fi

|

2Tii

+

2Re 3



i<j

(

FiFj

)

Ti j

⎦ ,

(1)

where FiarecomplexformfactorsandTi j arekinematic

expres-sions(asdefinedin[3])whichdependonthefour-momentaofthe

e+e− systemandthe chargedandneutralpionsinthe kaonrest frame.Forconvenience,onealsowrites:

F1

=

F1I B

+

F1D E

,

F2

=

F2I B

+

F2D E

,

F3

=

F3D E

.

(2)

The form factors F1I B

,

F2I B include a strongphase

δ

02 correspond-ing to the S-waveand isospin 2 state of the dipion system. The complex formfactors F1D E

,

F2D E correspond totheelectricpartof DE and make use of the ChPT counterterms NE(0,1,2) while FD E 3

corresponds to the magnetic part of DE and makes use of the counterterm N(M0).Theseformfactorscarry astrongphase

δ

11 cor-respondingtotheP-waveandisospin1stateofthedipionsystem. Numericalvaluesofthecountertermswereestimated[6] using experimental measurements offormfactors intherelatedmodes

K±

π

±

γ

∗,KS

π

0

γ

∗andK±

π

±

π

0

γ

.

2. Kaonbeamlineanddetector

The NA48/2 experiment atthe CERN SPS was specifically

de-signed for charge asymmetry measurements in the K±

3

π

decaymodes[7].Largesamplesofchargedkaondecayswere col-lected during the2003–2004 data takingperiod.The experiment beamline wasdesignedto deliversimultaneous narrow momen-tumband K+and K−beamsoriginatingfromprimary 400GeV/c protonsextractedfromtheCERNSPSandimpingingonaberyllium target. Secondary unseparated hadron beams with central

mo-menta of60 GeV/c anda momentumbandof

±

3.8%(rms) were

selected andbroughttoa commonbeamaxisby two systemsof dipole magnetswithzerototaldeflection(called“achromats”), fo-cusingquadrupoles,muonssweepersandcollimators.Thefraction of beamkaons decayingin the114 mlong cylindricalevacuated tankwas22%.

The momenta of chargeddecayproducts were measured in a magnetic spectrometer, housed in a tank filled with helium at nearly atmosphericpressure. The spectrometer was composed of pairs of drift chambers (DCH) on each side of a dipole magnet providing a momentum kick



p

=

120 MeV/c to charged parti-cles in the horizontalplane. The momentum resolution achieved was

σ

p

/

p

= (

1

.

02

0

.

044

·

p

)

%(p inGeV/c).

A hodoscope(HOD)consistingoftwo planesofplastic scintil-lators,eachsegmentedinto64strip-shapedcounters,followedthe spectrometer andprovided timemeasurements forcharged parti-cles with a resolution of150 ps. Grouping the counters of each plane ineight subsets, the HOD surface was logically subdivided into16exclusiveregionsproducingfastsignalsusedtotriggerthe detectorreadoutonchargedtracktopologies.

Further downstream was a liquid krypton electromagnetic

calorimeter (LKr), an almost homogeneous ionization chamber with an active volume of 7 m3, segmented transversally into

13248 projective 2

×

2 cm2 cells with no longitudinal segmenta-tion. The energies ofphotons andelectrons were measured with

(4)

resolutions

σ

E

/

E

= (

3

.

2

/

E

9

.

0

/

E

0

.

42

)

%.Thetransverse posi-tionsofisolatedshowersweremeasuredwithaspatialresolution

σ

x

=

σ

y

= (

0

.

42

/

E

0

.

06

)

cm, andtheshower time resolution was2.5ns

/

E (E inGeV).Aniron/scintillatorhadronic calorime-terandmuondetectorswere locatedfurtherdownstream.Neither ofthemwasusedinthepresentanalysis.

A dedicated two-level trigger was used to collect K± decays into three charged tracks with high efficiency: at the first level (L1),eventscontaining chargedtracks were selectedby requiring spaceandtime coincidencesofsignalsinthetwo HODplanesin atleasttwoofthe 16exclusiveregions;atthe secondlevel (L2), afarmofasynchronousmicroprocessorsperformedafasttrack re-constructionandranavertexfindingalgorithm.

Moredetails about thebeam lineand triggerimplementation canbefound in[7].Adetaileddescriptionofthedetectorcan be foundin[8].

3. Dataanalysis 3.1.Measurementmethod

The K±

π

±

π

0e+edecay rateis measured relative to the

normalizationdecay K±

π

±

π

0 collectedconcurrently withthe

same trigger logic. This method does not rely on an absolute kaonfluxmeasurement.Inthesignalsample, the

π

0 isidentified

throughthe

π

0

γ γ

mode

(

π

0

γ γ

)

.Inthenormalizationsample,

the

π

0 is identifiedthroughthe

π

0

D

e+e

γ

Dalitz mode

(

π

D0

)

.

Theratioofpartialrates(andbranchingratios)isobtainedas:

B R

(

K±

π

±

π

0e+e

)/

B R

(

K±

π

±

π

0

)

=

Ns

Nbs Nn

Nbn

·

An

×

ε

n As

×

ε

s

·

(

π

D0

)

(

π

0 γ γ

)

,

(3)

whereNs

,

Nn arethenumbersofsignalandnormalization

candi-dates;Nbs

,

Nbnarethenumbersofbackgroundeventsinthesignal

andnormalizationsamples; Asand

ε

saretheacceptanceandthe

triggerefficiencyforthesignalsample;Anand

ε

narethoseforthe

normalizationsample.

The branching ratio of the normalization mode is B R

(

K±

π

±

π

0

)

= (

20

.

67

±

0

.

08

)

% and the ratio of

π

0 partial rates is

(

π

0

D

)/(

π

γ γ0

)

= (

1

.

188

±

0

.

035

)

% [9]. Acceptances are obtained

from a detailed Monte Carlo (MC) simulation based on GEANT3 [10].The simulationincludesfull detectorgeometryandmaterial description,straymagneticfields,DCHlocalinefficienciesand mis-alignment,LKrlocalinefficiencies,accuratesimulationofthekaon beamlineandvariations oftheabovethroughoutthedata-taking period.

EfficienciesoftheL1andL2triggersaremeasuredfrom down-scaledcontrolsamples,recordedconcurrentlywiththethree-track trigger. The control trigger condition for the L1 efficiency mea-surementrequires atleast one coincidence of signalsin the two planesoftheHOD.ThecontroltriggersamplefortheL2efficiency measurementconsistsofL1triggersrecordedregardlessoftheL2 decision.Thetriggerdecisionisalsoavailableinthesimulationfor comparison.

3.2.Eventreconstructionandselection

ThestandardNA48/2softwarehasbeenusedincludingcharged track,LKrenergyclusterandthree-trackdecayvertex reconstruc-tion [7]. Fully reconstructed K±

π

±

π

+

π

− decays have been usedto monitorthe DCHalignment, the spectrometer field inte-gralandthe mean beampositionat each DCHplane throughout thedatataking.

Signal and normalization candidates are reconstructed from threetracks: twosame-sign tracksandone opposite-chargetrack forming a commonvertex inthe fiducial decayvolume, the ver-tex charge being thereforeqvtx

= ±

1. The vertextime is defined

as the average of the three HOD signal times associated to the tracks. The tracks are required to be in time within 5 ns of the vertextime.Theirimpactpointsarerequiredtobewithinthe ge-ometricalacceptanceofthedriftchambers.Inparticular,thetrack distancetothemonitoredbeampositioninDCH1planeisrequired tobelargerthan12cm.Thetrackmomentaarerequiredtobein therange(2–60)GeV

/

c andtrack-to-trackdistancesatDCH1tobe largerthan2 cmtosuppressphotonconversionstoe+e− pairsin theupstreammaterial.

Configurationswherethethreeconsideredtracks,extrapolated totheHODfrontface,havetheirimpactpointsinasingle trigger region are rejected to avoidL1 inefficiencies of purely geometri-cal origin.Becauseofthedifferentkinematics,thisaffects2.3%of thesignalsampleandhasanegligibleeffectonthenormalization sample.

All vertices considered for further analysisare required to be reconstructedina98mlongfiducialvolume,starting 2m down-streamofthelastcollimatorexit,andwithin3 cmfromthebeam axis.

Photonclustersmatchingthevertextimewithin5 nsare con-sideredasphotoncandidatesiftheirenergyisintherange(3–60) GeV, their position is within the LKrgeometrical acceptanceand their distancetothenearestLKrinactivecell islargerthan2cm. Photon four-momenta are reconstructed assuming they originate fromthethree-trackvertex.Photontrajectoriesarerequiredto in-terceptthe DCH1plane ata radialposition largerthan 11cm to avoidpossibleinteractionswiththeDCHflangeresultingina de-gradedenergymeasurement.

Signal and normalization modes differ in their final state by one photon, whilesatisfyingsimilar kinematicconstraints onthe reconstructed

π

0 and kaon masses, although with different

res-olutions because of different numbers of participating particles.

The mass resolutions (Gaussian rms) obtained from the data

agreewiththose fromsimulationandare foundto be

σ

m

(

π

D0

)



1

.

7 MeV

/

c2

,

σ

m

(

π

±

π

D0

)



4

.

2 MeV

/

c2and

σ

m

(

π

γ γ0

)



2

.

7 MeV

/

c2,

σ

m

(

π

±

π

γ γ ee0

)



6

.

1 MeV

/

c2 for the normalization and signal

modes,respectively.

Very loose requirements are applied to the reconstructed masses, required to be within 15 MeV

/

c2 (45 MeV

/

c2) from the

nominal

π

0 (K±) mass[9], respectively, ensuring a minimal

de-pendence of the selection on momentum or energy calibration effects,aswellasonanyresolutionmismatchesbetweendataand simulation.Acommonconstraint,takingintoaccount the correla-tionbetweenthereconstructed0 andmK massesanddefined

as

|

mπ0

0

.

42

·

mK

+

72

.

3

| <

6

(

all masses in MeV

/

c2

),

(4)

contains more than 99% of the normalization events and about 96.5%ofthesignalevents.

In both modes, the single track with its charge opposite to

qvtxisconsideredtobeanelectron(positron).Theremaininge

/

π

ambiguity forthetwo same-sign tracks isthen solved by testing the two mass hypothesesagainst the full selection. When a par-ticular mass assignment is considered, an extra requirement on thedistanceofanyphoton cluster tothetrackimpactatthe LKr frontface isappliedtoguaranteephoton showerisolation, avoid-ing potential overlap with other showers: the distance between the photon position andthe electron and positron trackimpacts isrequiredtobelargerthan10cmandthedistancebetweenthe photonpositionandthepiontrackimpacttobelargerthan20cm.

(5)

ThisrequirementisenforcedonlyfortrackimpactswithintheLKr geometricalacceptance.

Noupperlimitonthenumberoftracksandclustersisset,all three-trackverticesbeingconsideredandcombinedwithany pho-tonclusterunderthetwopossiblee

/

π

masshypothesesuntilone combinationsatisfieseitherofthefollowingselections (normaliza-tionor signal)below, theeventbeingrejectedotherwise. Ifboth mass combinations are accepted, the one with the tighter con-straintofEq. (4) iskept.

Normalizationselection The

π

0

D candidateisreconstructed froma

pairofelectronandpositrontracksandaphotonoriginatingfrom the three-track vertex. The kaoncandidate is reconstructed from the

π

±

π

0

D system.

Theconsistencyofthefinal statewithakaondecayalongthe beamaxisischeckedfurtherby consideringtheenergy-weighted coordinates ofthe centreof gravity (COG)ofthe particles atthe LKrfront planecomputedfromthephotonpositionandthetrack extrapolations obtained from track parameters measured before the magnet (undeviated trajectories). The radial distance of the COGtothenominalbeampositionisrequiredtobesmallerthan 2 cm.Thepionmomentumisrequiredtobelargerthan10 GeV

/

c

and the total momentum of the system to be in the beam

mo-mentum range (54–66) GeV

/

c. The e+e− massis required to be larger than 10 MeV

/

c2 to ensure good agreement between data

andsimulation.Asampleof16316690candidatessatisfiesthe nor-malizationselectioncriteria.

Signalselection The

π

0

γ γ candidateisreconstructedfromtwo

pho-tonsoriginatingfromthethree-trackvertex.Thekaoncandidateis reconstructedfromthe

π

±

π

0e+esystem. The twophoton

clus-tersarerequiredto beseparatedby morethan10 cm attheLKr front plane to avoid shower overlap. The event COG coordinates arethenobtainedincludingthetwophotonsandthethreecharged tracks,andsubjectedtothesamerequirementasabove.Thetotal momentumofthesystemisrequiredtobe inthebeam momen-tumrange(54–66) GeV

/

c.Thee+e− massisrequiredtobelarger than3 MeV

/

c2.

Twomainsourcesofbackgroundcontribute tothesignal final state: K±

π

±

π

0

γ γ

π

D0 (K3πD)where oneof thephotonsislost

(ormergedwithanotherparticle),andK±

π

±

π

0

D

(

γ

)

(K2πDγ ),

wheretheradiative photonandthe Dalitzdecayphoton mimica

π

0

γ γ

decay. Suppression of the K

3πD background eventsis

achieved by requiring the squaredmass of the

π

+

π

0 systemto

be greaterthan 0.12

(

GeV

/

c2

)

2,exploitingthe largerphase space

availableinthesignalmode.Thiscutalonerejects94%oftheK3πD

simulated eventsand

1% ofthe IB signal. To reject the K2πDγ

background,each ofthetwo possiblemassesmeeγ isrequiredto

bemore than7 MeV

/

c2 away fromthe nominal

π

0 mass

(corre-spondingto about4

σ

ofthe massresolution). Asample of 4919 candidatessatisfiesthesignalselectioncriteria.

3.3. Backgroundevaluation

The background processes contributing to the normalization mode (K2πD) are semi-leptonic decays followed by a Dalitz

de-cay ofthe

π

0: K±

μ

±

νπ

0

D (Kμ3D) and K±

e±

νπ

0 D (Ke3D),

collectivelydenoted Kl3D,wherethe

π

D0 decayiscorrectly

recon-structedbutthelepton(

μ

±

,

e±)iserroneouslyattributedthe

π

+ mass.Theacceptances ofsuchprocesses inthenormalization se-lectionare

O

(10−4)andobtainedfromlargesimulatedsamples.

Foreachbackgroundprocess,thenumberofeventsNbn is

esti-matedrelativetothenumberofobservedeventsinthe normaliza-tionmodeNn usingtheacceptancesinthenormalizationselection

andtheworldaveragebranchingratios[9]:

Kl3D

:

Nbn

/

Nn

= (

AKl3D

/

An

)

·

B R

(

Kl3D

)/

B R

(

K2πD

)

(5)

wherethetriggerefficienciescanceltofirstorderduetothe simi-lartopologies.

The number of backgroundevents in the signal selection Nbs

isestimatedrelativetothenumberofobservedeventsinthe nor-malization selection Nn and is obtained as in Eq. (5), using the

acceptancesinthesignalselection,both

O

(10−6):

K3πD

:

Nbs

/

Nn

=

2

× (

AK3πD

/

An

)

·

B R

(

K3πD

)

×

B R

(

π

0

γ γ

)/

B R

(

K2πD

),

(6)

K2πDγ

:

Nbs

/

Nn

=

AK2πDγ

/

An

.

(7)

Note the factor of two in Eq. (6) due to the two

π

0 mesons in

the K3πD mode.Anorderofmagnitudesmallercontributionfrom Ke3D isalsoconsidered.Inall contributionsbothbackgroundand

normalizationbranchingratiosincludethe

π

0Dalitzdecaypartial

ratewhosevalueanduncertaintycancelintheestimation.

4. Branchingratiomeasurement

Candidatesandbackground Samplesof16

.

3

×

106K

2πD candidates

and 4919 signal candidates have been selected froma subset of a 1

.

7

×

1011kaondecayexposurein2003–2004. Thebackground estimatesfromsimulationamount to(10437

±

119) Kμ3D events

and(6851

±

106) Ke3D events inthe normalizationmode,

corre-sponding to a total relative backgroundcontribution of 0.11%. In the signal mode, they amount to (132

±

8) events from K3πD,

(102

±

19) events from K2πDγ and (7

±

3) from Ke3D, adding

up to arelative backgroundcontribution of(4.9

±

0.4)%.The re-constructed

γ

e+e

(

γ γ

)

and

π

±

π

0

D (

π

±

π

0e+e−) mass

distribu-tionsaredisplayed inFig.1(Fig.2) fortheselectednormalization (signal)candidates.Backgroundandnormalization(signal) simula-tions, scaled tothenumber ofobservedcandidates,show a good agreementwiththedatadistributions.

Acceptances Because the selection acceptance is not uniform acrossthephasespace,itsoverallvaluedependsonthedynamics oftheconsideredprocess.TheacceptanceAn (3.981%)iscomputed

using the simulation of K±

π

±

π

0 accordingto [11] followed

by

π

0

D decayaccordingtothemostrecent“Prague”radiativedecay

calculation[12].

TheMCsamplesforthedifferentK±

π

±

π

0e+esignal

con-tributionsIB,DEandINThavebeengeneratedseparatelyaccording to the theoretical description givenin [3,6]: the DE contribution consistsmainlyofthemagneticMterm,withtheEtermexpected to befifteentimeslower; theINT termincludes onlytheelectric interferenceIB-E,astheotherinterferencetermsIB-MandE-Mdo notcontributetothetotalrateinthelimitoffullangular integra-tion(Section1).Particularcarehasbeentakeninthegenerationof theIB-Etermwhichcontributesconstructivelyordestructively to thedifferentialratedependingonthekinematicspaceregion con-sidered. Thispropertyis illustratedinFig.3-left. Radiativeeffects areimplementedusingthe

PHOTOS

package[13].

Global acceptances are obtained for each of the three main componentsofthesignalprocess:IB

(

0

.

645

±

0

.

001

)

%,M

(

1

.

723

±

0

.

003

)

% and IB-E

(

0

.

288

±

0

.

001

)

%. The signal acceptance As is

then obtained from a weighted average of the single-component acceptances,usingasweights,w,theirrelativecontributionstothe totalratewithrespecttoIBcomputedin[3,6]:

As

=

AIB

+

AM

·

wM

+

AIB-E

·

wIB-E

1

+

wM

+

wIB-E

(6)

Fig. 1. Normalizationcandidates.Left:reconstructedγe+e−mass.Right:reconstructedπ±π0

D mass.Fulldotscorrespondtodatacandidates;stackedhistogramsare,from

bottomtotop,theexpectedKμ3D(green)andKe3D(blue)backgroundsmultipliedbyafactorof50tobevisible.Thenormalizationsimulation(red)includesradiativeeffects

inbothkaonandπ0

Ddecaysthatreproducetheasymmetrictailsofbothdistributions.

Fig. 2. Signalcandidates.Left:reconstructedγ γmass.Right:reconstructedπ±π0e+emass.Fulldotscorrespondtodatacandidates;stackedhistogramsare,frombottom

totop,theexpectedK3πD(green),K2πDγ (lightblue)andKe3D (darkblue)backgroundsandIBsignal(red)estimatedfromsimulation.Allquotederrorsarestatistical.

where wM and wIB-E are equalto 1/71and

1

/

253 respectively.

Theresulting signal acceptanceisobtainedas As

=

0

.

9900 AIB

+

0

.

0139 AM

0

.

0039 AIB-E

= (

0

.

662

±

0

.

001

)

%.

Both normalization and signal acceptances are obtained with respecttothefullmee kinematicrange.

Triggerefficiencies Trigger efficiencies are measured from control data samples for the normalization mode (L1:

(

99

.

75

±

0

.

01

)

%, L2:

(

97

.

66

±

0

.

04

)

%)andcross-checkedagainst thesimulated es-timations (L1:

(

99

.

767

±

0

.

003

)

%, L2:

(

98

.

495

±

0

.

006

)

%) which providealso an accurate description oftheir time variations due tolocalandtemporary inefficienciesoftheHODorDCHs.Dueto thelow statistics ofthe signal candidate sample, it is not possi-bletoobtain thetriggerefficiencies fromthedownscaled control samples. Trigger efficiencies for the signal candidates are there-foreestimatedfromthesimulatedsamples(L1:

(

99

.

729

±

0

.

009

)

%, L2:

(

98

.

604

±

0

.

021

)

%)andnot affectedbyotherwiselarge

statis-tical uncertainties. The full trigger efficiency in each selection is obtainedastheproductofL1andL2efficienciesthatarebasedon differentdetectorsandthereforeuncorrelated.

Systematicuncertainties Thestatisticaluncertaintiesonacceptance andtriggerefficiencyvaluesare accountedaspartofthe system-aticuncertainties.

Thecontrolofthegeometricalacceptancesisevaluatedby con-sideringthreeexclusiveregionsofthedecaylongitudinalposition (showninFig.3-right)withdifferentacceptancesandbackground conditionsforbothsignal andnormalizationchannels. The differ-ence betweenthe statisticalcombination ofthe three B R values

andtheglobalvalueisquotedassystematicuncertainty.

Thecontroloftheacceptancedependencewithtimeandkaon charge is quantified by considering four exclusive B R

(7)

quot-Fig. 3. AcceptancesoftheIB,MandIB-Ecomponentsprojectedalongthemee andthelongitudinal vertexposition Zvertex variables(the Z axisoriginislocated18m

downstreamofthelastcollimatorexit).FortheIB-Ecomponent,theacceptanceisformallyplottedwithanegative(positive)valuewhentheinterferenceisdestructive (constructive).Thearrowscorrespondtothethreeexclusiveregionsconsidered.

ingassystematicuncertaintythedifferencebetweenthestatistical combinationofthefourB R valuesandtheglobalvalue.

An evaluation of the background control level is obtained by tightening the constraintof Eq. (4) to reduce the background to signalcontributionfrom4.9%to3%whiledecreasingthesignal ac-ceptancebyarelativefractionof8%.Thequoteduncertaintycovers alsotheeffectoftheresidualdisagreementbetweendataand sim-ulatedreconstructedmasses.

Trigger efficiencies obtained from simulation are used in the

B R calculation.The difference betweenthe measured and simu-latedefficienciesofthenormalizationcandidatesisconsidered as asystematicuncertainty.

Themodeldependenceofthesignalacceptanceisinvestigated by varying in turn each input (N(M0)

,

N(E0,1,2)) within its theoreti-caluncertaintyestimate.Theresultingvariationsinacceptanceare addedinquadraturetoobtaintheoverall contributionto system-atics.

Accordingtotheauthorsofthe

PHOTOS

package[14],the un-certainty on the photon emission implementation cannot exceed 10%ofthefulleffect(here4

.

9

×

10−2relativeinthesignalmode), which is quoted as systematic uncertainty. In the normalization mode,intheabsenceofanyprescriptionfromtheauthorsofthe “Prague”

π

0

D decayimplementation,10%ofthe0

.

53

×

10−2relative

difference between the

PHOTOS

and“Prague” K2πD acceptances

is conservativelyassigned asa systematicuncertainty andadded quadratically to the signal

PHOTOS

uncertainty. The agreement betweendata andsimulationcan be judgedfrom themee

distri-butionsofFig.4.

Externalerrorsstemfromrelative errorson B R(K±

π

±

π

0)

andon

(

π

0

D

)

/

(

π

γ γ0

)

.

Table1summarizestheconsideredsourcesofuncertainty.

Result Thefinalresultisobtainedas:

B R

(

K±

π

±

π

0e+e

)

= (

4

.

237

±

0

.

063stat

±

0

.

033syst

±

0

.

126ext

)

×

10−6

,

(9)

wherethestatisticalerrorisdominatedbythesignalstatistics,the systematicerrorbytheradiative effectsandtheexternalerrorby the

π

0

D branchingratiouncertainty.

This value can be compared to the predictions from [3,6]:

B R

(

K±

π

±

π

0e+e

)

=

4

.

183

×

10−6 for IB only, B R

(

K±

Table 1

Statistical, systematic and external uncertainties to the K±→

π±π0e+ebranchingratiomeasurement.The uncertainties

re-latedtothemodeldependenceandtoradiativeeffectscanalso beconsideredasexternalerrorsasbeingunrelatedtoourdata.

Source δB R/B R×102 Ns 1.426 Nbs 0.416 Nn 0.025 Nbn negl. Total statistical 1.486 As(MC statistics) 0.171 An(MC statistics) 0.051 ε(L1s×L2s) (MC statistics) 0.023 ε(L1n×L2n) (MC statistics) 0.007

Acceptance geometry control 0.083 Acceptance time variation control 0.064 Background control 0.280 Trigger efficiency (systematics) 0.400

Model dependence 0.285 Radiative effects 0.490 Total systematic 0.777 B R(K2π) 0.387 (π0 D)/(πγ γ0 ) 2.946 Total external 2.971

π

±

π

0e+e

)

=

4

.

229

×

10−6 whenincludingallDEandINTterms.

Theobtainedvalueiscompatiblewithbothpredictionswithinthe experimental errors.However itshouldbenotedthat noneofthe abovepredictionsincludesanyradiativeorisospinbreakingeffects.

5. Kinematicspacestudy

The current data statistics does not allow a precise enough measurementtoquantifythecontributionoftheDEmagneticterm Mtothetotaldecayrate(expectedtobeabout1%).However,the authorsof[3,6] havepointedoutthatthecontributionsofIB, mag-neticM,andinterferenceIB-Etermshavedifferentdistributionsin the Dalitz plot (T∗π ,Eγ )∗ for different ranges ofq2 values, where T∗π , E∗γ and q2 are the charged pion kinetic energy and the vir-tual photon energy in the kaon rest frame, and the e+e− mass squared, respectively. The differences remain relevant even after the analysis selection acceptanceis applied. A method based on

(8)

Fig. 4. Reconstructede+e− massdistributionfor thenormalization(left)andsignal(right)candidateswith thelowercutsof10and3 MeV/c2,respectively.Simulated backgroundandnormalization(signal)contributionsarealsodisplayed.

the population of 3d-boxes in the kinematic space (q2, T

π , E∗γ )

isusedtodeterminetherelativefractionofeachcomponentthat wouldadd upto reproducethedatasample population.Thedata 3d-spaceis first split into N1 slices along q2, then each slice is splitintoN2slicesalong T∗π andthenintoN3E∗γ slices, all with equalpopulations.TheresultisagridofN1

×

N2

×

N3exclusive 3d-boxesofvariablesizebutidenticalpopulation.Thebackground contributionsandthevarioussimulatedsignalcomponentsare dis-tributedaccordingto thedata griddefinition,each resulting ina setof3d-boxes ofunequal population. Toaccount forthe poten-tially different sizes of the simulation samples, scale factors

ρ

M

and

ρ

IB-EaredefinedastheratiosoftheIBtotheMandIBtothe

IB-Esimulatedsamplesizes.

To obtain the fractions (M)/IB and (IB-E)/IB reproducing the data,a

χ

2estimatorisminimized:

χ

2

=

N1×



N2×N3 i=1

(

Ni

Mi

)

2

/(δ

N2i

+ δ

M2i

),

(10)

where Ni

Ni

)

is the data population (error)and Mi

Mi

)

the

expectedpopulation(error)inboxi.Thedenominatorofeachterm isdominatedbythenumberofdataevents

δ

N2

i

=

Ni,thesamein

eachbox.Theexpectednumberofeventsinboxi iscomputedas:

Mi

=

N

× (

NiIB

+

a

·

NMi

+

b

·

NIB-Ei

)

+

N Bkg

i

,

(11)

whereN is aglobalscalefactortoguaranteethat thesumofthe simulated events andbackground contributions is normalized to thetotalnumberofdatacandidates.Attheendofthe minimiza-tion,theobtainedvaluesofa andb canberelatedtotherelative contributions(M)/IBand(IB-E)/IBby:

(

M)/IB

= (

a

± δ

a

)/

ρ

M

,

(IB-E)/IB

= (

b

± δ

b

)/

ρ

IB-E

.

(12)

Themethodhasnosizeabledependenceontheprecisegrid struc-tureaslong asthe granularityensures sensitivity to the popula-tionvariation within theresolution(at least3q2 slicesand5or

6 slices along the two other variables) and large enough statis-tics per box to consider Gaussian errors. The grid configuration 3

×

5

×

6 has been employed and the resultsare obtainedwith a

χ

2 probability of 19% for a value of 98.2/87 degrees of

free-dom anda correlation C

(

a

,

b

)

=

0

.

06.The obtainedvalue (M)/IB =0

.

0114

±

0

.

0043stat isconsistent withthe predictedvalue from

[3], 1

/

71

=

0

.

0141

±

0

.

0014ext, obtained using the experimental

measurementof N(M0).The (IB-E)/IBvalue of

0

.

0014

±

0

.

0036stat

shows that there is no sensitivity to this contribution within the current data statistics and agrees with the value from [6],

1

/

253

= −

0

.

0039

±

0

.

0028ext, obtained using experimental

in-putstoN(E0,1,2)values.Theexternalerrorsonthepredictedvalues stemfromtheuncertaintiesofthemeasurementsusedasinputin theevaluations.

6. Asymmetryinvestigations

Electroweak (or beyond Standard Model) phases change sign underchargeconjugationwhenswitchingfrom K+ to K−,unlike the strongphase

δ

= δ

20

− δ

11 that governsthe final state interac-tionofthepionsystem.Thesephasescanbeinvestigatedthrough asymmetriesbetweenK+andK−partialrates.

ThesimplestCP-violatingasymmetry isthecharge asymmetry betweenK+andK−partialratesintegratedoverthewholephase space:

AC P

=

(

K+

π

+

π

0e+e

)

− (

K

π

π

0e+e

)

(

K+

π

+

π

0e+e

)

+ (

K

π

π

0e+e

)

.

(13)

Thevalueof AC P canberelatedtotheinterferenceIB-Etermand

isproportionaltosin

δ

sin

E,where

E isapossibleCP-violating

phaseappearingintheformfactorsF1D E,F2D Einaddition (subtrac-tion)tothestrongphase

δ

11(Section1).Theasymmetryisobtained from the statistically independent measurements of K+ and K

branching ratios,that takeinto accountthepossible biases intro-ducedbythedetectoracceptances.Thevalues

B R

(

K+

)

= (

4

.

151

±

0

.

078stat

)

×

10−6

,

B R

(

K

)

= (

4

.

394

±

0

.

108stat

)

×

10−6 (14)

leadto AC P

= −

0

.

0284

±

0

.

0155,wheretheerrorisstatisticalonly,

asthesystematicandexternalerrorscancelintheratio.Thisvalue isconsistentwithzeroandistranslatedtoasingle-sidedlimit:

(9)

Other asymmetries are defined in [3] using the so-called Cabibbo-Maksymowicz[15] variables34 to describe the kinematic spaceofthe decayandselecting particularintegration regions of the

φ

angularvariable:

C P

=

2π



0 d



(K+−K) d

φ

d

φ

∗ 2π



0 d



(K++K) d

φ

d

φ

,

where 2π



0 d

φ

π/2



0

π



π/2

+

3



π/2 π

2π



3π/2

d

φ,

(16) AC P˜φ

=

2π



0 d



(K+−K) d

φ

d

˜φ

2π



0 d



(K++K) d

φ

d

φ

,

where 2π



0 d

˜φ ≡

π/2



0

+

π



π/2

3



π/2 π

2π



3π/2

d

φ.

(17)

These asymmetriescan be obtainedby combiningthe branching ratios measured in various parts of the

φ

variable space. Defin-ing sectors of the

φ

space between 0 and 2

π

as

1

(

0

,

π

/

2

)

,

2

(

π

/

2

,

π

)

,

3

(

π

,

3

π

/

2

)

and

4

(

3

π

/

2

,

2

π

)

, and combin-ing them as statistically independent sector sums (

13

=

1

+

3

,

24

=

2

+

4)and(

12

=

1

+

2

,

34

=

3

+

4)one canobtaintheaboveasymmetries.

The

φ

∗ integralhastheinteresting propertyofsubtractingthe contribution of sector sum

24 from the contribution of sector sum

13. The interference termIB-M (Section 1) equally popu-lates sectors

1 and

3 when positive anddepopulates sectors

2 and

4 when negative. The C P∗ asymmetry is then related tothe interferenceIB-Mtermandisproportional tocos

δ

sin

M,

where

M isapossibleCP-violatingphaseappearing intheform

factor F3D E (Section1). The interference IB-M termhas not been generatedinthesimulationasitisnotexpectedtocontribute sig-nificantlytothe totalrate. Howeverithasbeen checkedthatthe wholerangeof the

φ

variableisalways considered inthe accep-tancecalculation,apart fortheregionq2

<

3 (MeV/c2

)

2 excluded fromthesignalselection. TheCPasymmetries definedinEq. (16,

17)aremeasured,althoughtoalimitedprecisiongiventhecurrent datastatistics,as:

C P

=

0

.

0119

±

0

.

0150stat and AC P˜φ

=

0

.

0058

±

0

.

0150stat

.

(18)

Allasymmetriesareconsistentwithzero,single-sidedupperlimits canbesetas

|

C P

| <

3

.

11

×

10−2

,

|

AC P˜φ

| <

2

.

50

×

10−2at 90% CL

.

(19)

34 For K± decays,the variables arethe squaredinvariant dipion and dilepton

masses,theangleoftheπ±(e±)inthedipion(dilepton)restframewithrespect totheflightdirectionofthedipion(dilepton)inthe K± restframe,theangleφ betweenthedipionanddileptonplanesinthekaonrestframe.

Following another prescriptionof [3], a long-distance P-violating

asymmetrydefinedas A(PL)

=

2π



0 d



d

φ

d

φ

∗ 2π



0 d



d

φ

d

φ

=

(

13

)

− (

24

)



(20)

can be obtainedfrom the asymmetry between sector sums

13 and

24 when considering K+ or K− alone, and combined if found consistent. The A(PL) asymmetry isproportional to N(M0) [3] andsin

δ

.Aprecise A(PL) measurementwouldallowacheckofthe signofN(M0)andameasurementofsin

δ

.

Ourdataleadto A(PL)

(

K+

)

=

0

.

0059

±

0

.

0180stat andA(PL)

(

K

)

=

0

.

0166

±

0

.

0237stat, both consistent with zero. The combined

valueis A(PL)

(

K±

)

= −

0

.

0023

±

0

.

0144stat.Theerrorsarestatistical

only as both systematic and external uncertainties cancel in the ratios.Thisvaluecanbetranslatedintoasingle-sidedupperlimit:

|

A(PL)

| <

2

.

07

×

10−2at 90% CL

.

(21) 7. Resultsandconclusion

The data sample recorded by the NA48/2 experiment in

2003–2004 has been analyzed, searching for the unobserved

K±

π

±

π

0e+edecaymode inan exposureof1

.

7

×

1011kaon

decays.Asample of4919decaycandidateswith4.9%background has been identified, resulting in the first observation of this de-cay mode.The branchingratiohasbeenmeasured relativeto the

K±

π

±

π

0 modefollowed byaDalitz decay

π

0

D

e+e

γ

and

found to be

(

4

.

237

±

0

.

063stat

±

0

.

033syst

±

0

.

126ext

)

×

10−6, in

agreementwithpredictionsfromChPT.

Despitethelimitedstatisticsavailable,astudyofthekinematic spaceofthedecayhasbeenperformedtoextract informationon thefractionofmagnetic(M)andinterference(IB-E) contributions with respect to inner bremsstrahlung (IB). The relative contribu-tion,(M)/IB

= (

1

.

14

±

0

.

43stat

)

×

10−2,isfoundconsistentwiththe

theoreticalexpectationof

(

1

.

41

±

0

.

14ext

)

×

10−2.TherelativeIB-E

contribution,(IB-E)/IB

= (−

0

.

14

±

0

.

36stat

)

×

10−2,isalsoin

agree-ment with the prediction of

(

0

.

39

±

0

.

28ext

)

×

10−2 but with

limited significancedue to the lackof data statistics inthe high

mee region.

Several CP-violating asymmetries and a long-distance P-vio-latingasymmetryhavebeenevaluatedandfoundtobe consistent with zero, leading to upper limits

|

AC P

|

<

4

.

8

×

10−2

,

|

C P

|

<

3

.

1

×

10−2

,

|

A˜φ C P

|

<

2

.

5

×

10−2

,

|

A (L) P

|

<

2

.

1

×

10−2at90%CL.

If larger data statistics becomes available (for example at the NA62 experiment),more detailed studies of the kinematic space willallowforanimprovedevaluationoftheDEtermcontribution. A studyofthe P-violatingasymmetrycould bring informationon the signofthe DE magnetictermand onthe strongphase

δ

in-volvedinthefinalstateinteractionofthetwopions.

Acknowledgements

WegratefullyacknowledgetheCERNSPSacceleratorandbeam linestafffortheexcellent performanceofthebeamandthe tech-nical staff of the participating institutes for their efforts in the maintenance andoperation of the detector, anddata processing. We thank M. Koval for making the “Prague” radiative

π

0 Dalitz

(10)

decay code available in the NA48/2 simulation software. Discus-sions with G. D’Ambrosio and O. Catà were most stimulating in clarifyingtheimpactofinterferencetermsonourmeasurement.

References

[1]V.Cirigliano,G.Ecker,H.Neufeld,A.Pich,J.Portolés,Rev.Mod.Phys.84(2012) 399.

[2]H.Pichl,Eur.Phys.J.C20(2001)371.

[3]L.Cappiello,O.Catà,G.D’Ambrosio,D.N.Gao,Eur.Phys.J.C72(2012)1872. [4]S.R.Gevorkyan,M.H.Misheva,Eur.Phys.J.C74(2014)2860.

[5]J.R.Batley,etal.,NA48/2Collaboration,Eur.Phys.J.C68(2010)75.

[6]L.Cappiello,O.Catà,G.D’Ambrosio,Eur.Phys.J.C78(2018)265. [7]J.R.Batley,etal.,NA48/2Collaboration,Eur.Phys.J.C52(2007)875. [8]V.Fanti,etal.,NA48Collaboration,Nucl.Instrum.Methods A574(2007)443. [9]M.Tanabashi,etal.,ParticleDataGroup,Phys.Rev.D98(2018)030001. [10]GEANT3DetectorDescription&SimulationTool,CERNProgramLibraryW5013

(1994).

[11]C.Gatti,Eur.Phys.J.C45(2006)417.

[12]T.Husek,K.Kampf,J.Novotný,Phys.Rev.D92(2015)054027. [13]E.Barberio,Z.W ˛as,Comput.Phys.Commun.79(1994)291. [14]QingjunXu,Z.W ˛as,in:RADCOR2009,PoS071(2009). [15]N.Cabibbo,A.Maksymowicz,Phys.Rev.137(1965)B438.

Riferimenti

Documenti correlati

Infatti, anche se la maggior parte delle mi- sure attivate riguarda il settore trasporto su strada, si risente della mancanza di strumenti per stimare in modo efficiente e rapido

Per informare tutti i cittadini sull’importanza del recu- pero e riciclo degli imballaggi, RICREA ha scelto di far- si aiutare da Capitan Acciaio, il supereroe degli imbal- laggi

The unit of analysis is the consumer level in this study, and more specifically the professional and leisure guests of an international hotel group who provided an evaluation

Protagonisti della conferenza - tavola rotonda “La Fisica della Salute”: Roberto Cirio (Dip. di Fisica, Università di Torino), Piero Fariselli (Dip. Scienze Mediche, UniTo) e

Archimedes' experiment on hydrostatics Roemer's observations of the speed of light Joule's paddle-wheel heat experiments Reynolds's pipe flow experiment.. Mach &amp;

- con cadenza bisettimanale ed entro il mercoledì della settimana precedente la frequenza degli insegnamenti prescelti, prenotare la partecipazione «in presenza» alle lezioni.

Elisabetta completed her first level degree thesis in just three years, fact not so common, and the second level thesis three years later passing more exams than necessary in order

Essendo le esperienze relativamente impegnative e necessitando di periodi di permanenza significativi in laboratorio, per favorire la presenza dei gruppi di