• Non ci sono risultati.

Search for Three-Jet Resonances in pp Collisions at root s=7 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for Three-Jet Resonances in pp Collisions at root s=7 TeV"

Copied!
15
0
0

Testo completo

(1)

Search for Three-Jet Resonances in pp Collisions at

p

ffiffiffi

s

¼ 7 TeV

S. Chatrchyan et al.*

(CMS Collaboration)

(Received 16 July 2011; published 29 August 2011)

A search for three-jet hadronic resonance production in pp collisions at a center-of-mass energy of 7 TeV has been conducted by the CMS Collaboration at the LHC, using a data sample corresponding to an integrated luminosity of 35 pb1. Events with high jet multiplicity and a large scalar sum of jet transverse momenta are analyzed using a signature-based approach. The number of expected standard model background events is found to be in good agreement with the observed events. Limits on the cross section times branching ratio are set in a model of gluino pair production with an R-parity-violating decay to three quarks, and the data rule out such particles within the mass range of 200 to 280 GeV=c2.

DOI:10.1103/PhysRevLett.107.101801 PACS numbers: 13.85.Rm, 12.60.Jv, 13.87.Ce

Searches for new physics in multijet final states, although experimentally challenging at hadron colliders, are sensitive to many extensions of the standard model (SM). For example, variations of technicolor models, re-sulting in heavy colored fermions that transform as octets under SUð3Þc, have been proposed in a variety of forms [1–4]. Other models incorporate R-parity-violating (RPV) decays of supersymmetric gluinos (g) to three-quark final~ states, where the gluino represents a colored adjoint Majorana fermion [5–7]. In all cases, these high-mass resonances can be pair-produced, yielding a six-jet final state pp! ~g ~g þX, where ~g ! 3 jets. Recent results from the Tevatron provide limits on gluino RPV decays for masses below 144 GeV=c2 [8].

This Letter presents the first results of a dedicated search for three-jet hadronic resonances in multijet events in pp collisions. The results are based on a data sample of proton-proton collisions at pffiffiffis¼ 7 TeV, corresponding to an integrated luminosity of 35:1  1:4 pb1 [9], col-lected with the Compact Muon Solenoid (CMS) detector [10] at the large hadron collider (LHC) in the running period from March through November 2010. Events with at least six jets, each with high transverse momentum (pT),

are selected and investigated for evidence of three-jet resonances consistent with strongly coupled supersymmet-ric particle decays. The event selection criteria are opti-mized in the context of the gluino model mentioned above. However, the generic features of the selection criteria provide a robust signature-based method that can be ap-plied to many extensions of the SM.

The CMS detector is a multipurpose apparatus, de-scribed in detail in Ref. [10]. Here, we briefly describe

the subdetectors most relevant to this analysis. The high-resolution silicon pixel and strip tracker provides charged tracking coverage for jj < 2:4, where  ¼  ln½tanð=2Þ is the pseudorapidity and  is the polar angle measured with respect to the counterclockwise pro-ton beam direction. Immersed in the 3.8 T magnetic field of the superconducting solenoid, the tracker provides trans-verse momentum resolution of approximately 1.5% for charged particles with pT  100 GeV=c. Energy deposits of the jets are measured using electromagnetic (ECAL) and hadronic (HCAL) calorimeters. The ECAL has a barrel part and two endcaps, is composed of finely segmented crystals, and has an energy resolution of better than 0.5% for unconverted photons with transverse energies above 100 GeV. The ECAL barrel covers the pseudorapidity range jj < 1:4 with a granularity of    ¼ 0:0174  0:0174, where  is the azimuthal angle, and the endcaps cover 1:4 < jj < 3:0 with a granularity that decreases to 0:05  0:05 for jj  3:0. A preshower de-tector consisting of two planes of silicon sensors inter-leaved with a total of three radiation lengths of lead is located in front of the ECAL endcaps. The HCAL extends up tojj  5:0 and its central and endcap regions consist of brass or scintillator sampling calorimeters that cover jj < 3:0 with a granularity of    ¼ 0:087  0:087 for central rapidities. The energy of charged pions and other quasistable hadrons is measured with the calo-rimeters (ECAL and HCAL combined) with a resolution of E=E  100%=pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiE½GeV 5%.

Events are recorded using a two-tier trigger system. Objects satisfying the requirements at the first level (L1) are passed to the high level trigger (HLT) where the total recorded rate is limited to about 350 Hz. Triggers based on the sum of all transverse energy from jets (HT),

reconstructed with only calorimeter information, are used to select recorded events. For the L1 trigger, the HT

thresh-old is 50 GeV. The corresponding threshthresh-old for the HLT varies between 100 and 150 GeV, depending on the run period.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

The CMS particle-flow algorithm [11] uses calorimeter information and combines it with reconstructed tracks to identify individual particles such as photons, leptons, and both neutral and charged hadrons within the jets. The energy of photons is directly obtained from the calibrated ECAL measurement. The energy of electrons is deter-mined from a combination of the track momentum at the main interaction vertex, the corresponding ECAL cluster energy, and the energy sum of all bremsstrahlung photons attached to the track. The energy of muons is obtained from the corresponding track momentum. The energy of charged hadrons is determined from a combination of the track momentum and the corresponding ECAL and HCAL en-ergy, corrected for zero-suppression effects, and calibrated for the nonlinear response of the calorimeters. Finally, the energy of neutral hadrons is obtained from the correspond-ing calibrated ECAL and HCAL energy. The particle-flow objects serve as input for jet reconstruction, performed using the anti-kT algorithm [12] with a distance parameter of 0.5 in - space. The jet energy resolution amounts typically to 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV, to be compared to about 40%, 12%, and 5% obtained when the calorimeters alone are used for jet clustering.

Jet energy scale corrections [13] derived from Monte Carlo (MC) simulation are applied to account for the nonlinear and nonuniform response of the calorimeters. The jet momenta are first corrected to account for the presence of additional proton-proton interactions. Next, an exclusive sample of azimuthally back-to-back jets is used to derive a relative correction of up to 8% to remove the pseudorapidity dependence of the jet momentum re-sponse. Finally, the absolute scale of the jet momentum response is set by applying a factor determined from an exclusive sample of a well-measured photon azimuthally back-to-back with a single hadronic jet. Additionally in data, a small residual correction factor of about 1% is included to correct for differences in jet response between data and simulation. The combined corrections are on the order of 5%–10%, and their corresponding uncertainties range from 3% to 5%, depending on the measured jet’s pseudorapidity and energy. Jet quality criteria [14] are applied to remove misidentified jets arising primarily from calorimeter noise. For both data and simulated signal events, more than 99.8% of all selected jets satisfy these criteria.

Pair-produced gluinos are used to model the signal. Gluino production and decay are simulated using the

PYTHIA [15] MC program (v6.420), where each gluino

decays to three jets through the udsquark RPV coupling. This coupling is set such that the branching ratio B of the gluino to three light jets is 100%. The mass of the gluino is varied between 200 and 500 GeV=c2in 50 GeV=c2steps.

The leading-order cross section fromPYTHIAis 325 pb for

a gluino mass of 200 GeV=c2, falling to  1 pb for a

gluino mass of 500 GeV=c2. For the generation of this

signal all superpartners except the gluino are taken to be decoupled [7], the natural width of the gluino resonance is taken to be much smaller than the resolution of the detec-tor, and no intermediate particles are produced in the gluino decay. The next-to-leading-order (NLO) correction factors (K factors), with values ranging from 1.7 to 2.2, are calculated using the PROSPINO [16] program and are ap-plied to the leading-order cross sections, with uncertainties on the theoretical cross section that range from 15.5 to 17.1%. Simulation of the CMS detector is performed using

GEANT4[17].

Events recorded with the HT trigger are required offline to have a good reconstructed primary event vertex [18]. Pair-produced three-jet resonances naturally yield events with high jet multiplicity and large transverse energy. Thus we require events to contain at least six jets, and that the total scalar sum of the pT of those jets is larger than 425 GeV=c. The latter requirement also ensures that the trigger is fully efficient for these events. Jets are required to have pT> 45 GeV=c and jj < 3:0, which also minimizes

the effects from multiple proton-proton interactions. To reconstruct the gluinos, the six highest-pT jets are

combined into all possible unique triplet combinations, resulting in 20 combinations of jet triplets. For signal events, each of the pair-produced gluinos corresponds to one of these 20 jet triplets, even in the case where all six jets come solely from the decay of these particles, leaving the 18 uncorrelated jet triplets as combinatorial back-ground. Thus, the overall background arises not only from SM events, described by quantum chromodynamics (QCD), but also from spurious jet triplet combinations in signal events themselves. We impose additional require-ments on each triplet to increase the signal sensitivity, while retaining as many signal triplets as possible. The invariant mass of background triplets is found to scale with the respective scalar sum of jet pT, while for signal triplets

the mass is constant. To reduce background, we therefore require each jet triplet to satisfy the following relation:

Mjjj<X3

i¼1

jpTji ; (1)

where Mjjj is the triplet invariant mass,P3

i¼1jpTji is the

scalar sum of jet pT in the triplet (triplet scalar pT), and  is an offset adjusted to optimize signal sensitivity. Figure1

shows the simulated triplet invariant mass versus the triplet scalar pT for a gluino mass of 250 GeV=c2, and the insert

displays the invariant mass distribution before and after the requirement. For each event, all 20 triplet combinations are included. The value of  is determined by maximizing the ratio of the number of signal triplets to the sum of the number of signal plus background triplets in a 1 standard deviation () window around the center of the gluino mass peak. A common value of  ¼ 130 GeV=c2is taken for all gluino masses considered, which gives an efficiency in

(3)

signal events for triplets of 1 to 5%, and a background triplet selection efficiency of less than 0.05%.

Even after the final selection, background remains from both QCD multijet events and uncorrelated triplets in gluino signal events. The latter only contribute minimally, and the shape of their distribution is found to be consistent with that of the dominant background, from QCD multijet events. These QCD multijet events arise from hard two-particle interactions combined with initial- and final-state radiation in the form of gluon jets. Although the cross section falls with increasing jet multiplicity (Njet), the underlying kinematic distributions are essentially the same among these events. Thus, we use a rescaled mass distribution of triplets in events with Njet ¼ 4, where the signal contributions are minimal, to estimate the shape of the background. Specifically, we select events in data with Njet¼ 4 that satisfy all other selection criteria, form jet triplets, and require each to pass Eq. (1). The Mjjjvalues of

these triplets are multiplied by the ratio of the average triplet scalar pT in data for events with Njet 6 to the events with Njet¼ 4, to account for expected minor kine-matic differences between the two samples. The resulting Mjjjdistribution is then fit to an exponential function of the form: eP0þP1Mjjj, where P

0and P1are free parameters. The

slope P1of the exponential function in the Njet 6 sample is constrained to be equal to that found for the scaled Njet¼ 4 fit within its uncertainties. This is verified in QCD simulation, and as a cross-check in data, we apply this procedure to predict the shape of the Mjjjdistribution

for an Njet¼ 5 sample, where the QCD multijet back-ground is also expected to dominate, and find good agree-ment. To verify that the choice of the background model does not bias the derived limit, the exponential function is tested on an Njet 6 sample, defined by the standard

selection criteria without the requirement of Eq. (1) im-posed. The parameterization is found to be in agreement with the data in the fitted region, with the slope of the fit consistent with those of the Njet¼ 4 and Njet¼ 5 samples. To estimate the number of signal events expected after all selection criteria are applied, the sum of a Gaussian function that represents the signal and the exponential function that models the background is fitted to the simu-lated Mjjj distribution for each gluino mass. The fit is performed in the range 170 < Mjjj< 800 GeV=c2. The

width of the Gaussian function modeling the signal varies according to the detector resolution, and gluinos of mass from 200 to 500 GeV=c2correspond to widths from 10 to 25 GeV=c2. The integral of the Gaussian component pro-vides the estimate for the expected number of signal trip-lets produced, and the value of this integral, divided by the number of signal events generated, determines the signal acceptance for each gluino mass. The signal acceptance is parameterized using a second-degree polynomial as a func-tion of gluino mass, and the acceptance ranges from 0.4% to 5% as the gluino mass increases from 200 to 500 GeV=c2.

The systematic uncertainty on the signal acceptance is evaluated in the following way. An uncertainty related to the jet energy scale [13] is evaluated by varying the jet energy scale correction within its uncertainties, then recal-culating the acceptance for different gluino mass values. The largest difference with respect to the nominal accep-tance is taken as the systematic uncertainty and ranges from 7% to 16%. To address the sensitivity of the analysis to amount of initial- and final-state radiation in the signal simulation, samples with a varied amount of initial- and final-state radiation are generated and analyzed for each mass. The assigned systematic uncertainty for this effect is taken as the largest difference with respect to the nominal acceptance and is between 2% and 4% for all masses. To determine the effects of additional proton-proton interac-tions on the signal acceptance, signal samples are gener-ated with the number of interactions per bunch crossing in the simulation set to the average of their distribution in the data. Applying the acceptance calculation on this sample leads to differences of 1% to 6%, which are taken as uncertainties. These contributions, combined with those from the luminosity measurement (4%) and choice of parton distribution function set (4%), give a total system-atic uncertainty on the signal yield between 10% and 19%, depending on the value of the gluino mass. Other effects, such as additional background parameterizations and var-iations of the fit range, are also tested and found to be negligible.

Figure2shows the three-jet invariant mass distribution for the Njet 6 sample with all selection criteria applied, and the exponential fit superimposed. The simulated signal distribution for a gluino mass of 250 GeV=c2, normalized to the integrated luminosity of the data sample, is also

(GeV/c) T Jet Triplet Scalar p

200 400 600 800 1000 1200 1400 ) 2 (GeV/c jjj M 0 200 400 600 800 1000 1200 10 2 10 3 10 = 7 TeV s CMS Simulation Gluino Model 2 250 GeV/c 20 Triplet Combinations ) 2 (GeV/c jjj M 0 200 400 600 800 2 Entries / 10 GeV/c 1 10 2 10 3 10 All Triplets Selected Triplets All Triplets Selected Triplets All Triplets Selected Triplets

FIG. 1 (color online). Simulated triplet jet invariant mass Mjjj versus the triplet scalar pTof all 20 triplets, for a gluino mass of 250 GeV=c2. The red dashed line represents where Mjjj¼ 3

i¼1jpTji 130 GeV=c2, and all triplets falling to the right of it pass the requirement of Eq. (1). In the insert, the invariant mass distribution for the same gluino mass is shown both before and after Eq. (1) is imposed.

(4)

shown. Because agreement is observed between the data and expected QCD background, a limit-setting procedure is performed.

Upper limits are placed on the cross section S for the production of three-jet resonances in the Njet  6 sample using a Bayesian approach. The background model pa-rameters and their corresponding uncertainties are taken from the fit of the exponential function to the Njet 6 distribution, constrained by the Njet¼ 4 sample, with all selection criteria applied. The uncertainties on the two parameters that describe the background shape, namely, the exponential slope and normalization, are included as Gaussian priors. The central value is set to the best fit value and the width to 1 standard deviation. The range is truncated at3. In addition to the background parameters, priors are included for the acceptance and integrated luminosity. The integrated luminosity, acceptance, signal width, and the two parameters of the exponential background distri-bution are all treated as nuisance parameters. The like-lihood is combined with the prior and nuisance parameters, and then marginalized to give the posterior density for S.

Integrating the posterior density to 0.95 of the total gives the 95% confidence level (C.L.) limit for S. Marginalization and integration of the posterior density are performed with a Markov chain MC integration tech-nique usingROOSTATS[19].

To determine the expected limits, a large set of pseu-doexperiments (PEs) is generated using the background-only model. For every PE, each of the two parameters associated with the exponential is varied by generating a random number distributed according to a Gaussian proba-bility distribution function centered at the central value, with a width corresponding to the associated uncertainty. The total number of events in a given PE is extracted

according to the Poisson distribution with mean value equal to the number of events predicted by the exponential function in the fitted range. The same upper limit calcu-lation performed on data is repeated for each PE at each mass, and the median of the upper limit distribution for all PEs is the expected limit.

The observed and expected 95% C.L. upper limits on the gluino pair production cross section times branching ratio as a function of gluino mass are presented in Fig. 3and Table I. The corresponding 95% C.L. lower limit on the gluino mass is set by finding the mass value at which the 95% C.L. limit line crosses that of the NLO gluino cross section. We thus exclude at the 95% C.L. gluino masses in the range 200 to 280 GeV=c2, with an expected lower limit of 270 GeV=c2. The most significant excess occurs for a mass around 390 GeV=c2, corresponding to a significance of 1.9 standard deviations, when the so-called look-elsewhere effect [20] is taken into account.

In summary, a search for three-jet hadronic resonance production in pp collisions at a center-of-mass energy of 7 TeV has been conducted by the CMS Collaboration, using a data sample corresponding to 35 pb1. Events having the properties of high jet multiplicity and large scalar sum of jet pT, which are expected signatures of high-mass hadronic resonances, are analyzed for the pres-ence of signal events with a signature-based approach. The number of expected SM background events is found to be in good agreement with the observed events. The produc-tion of gluinos decaying through the udsRPV coupling is excluded for masses between 200 and 280 GeV=c2at 95% C.L. The reach of the search using the 2011 CMS dataset will be sensitive to a higher mass range, and these current

) 2 (GeV/c jjj M 0 100 200 300 400 500 600 700 800 2

Number of Entries / 10 GeV/c

1 10 2 10 6 Jets) ≥ Data (

Exponential Fit Function Gluino Model 2 250 GeV/c = 7 TeV s , -1 CMS 35.1 pb 2 = 130 GeV/c ∆ Offset

FIG. 2 (color online). Three-jet invariant mass distribution of triplets passing all selection criteria for the Njet 6 data sample. An exponential function representing the background shape, constrained from the Njet¼ 4 distribution, and the expectation for a 250 GeV=c2gluino signal are also shown.

200 250 300 350 400 450 500 10 2 10 ] 2 [GeV/c jjj M B (pb) 95 % C L Lim it CMS L dt = 35.1 pb-1 = 7 TeV s Observed Expected 1 2 (Gluino) NLO

FIG. 3 (color online). Observed and expected 95% C.L. upper limits on the cross section for gluino pair production through RPV decays, where the branching ratio B of the gluino to three jets is 100%. Also shown are the 1 and 2 bands on the expected limit, as well as the theoretical NLO cross section for gluino production. The most significant excess of 1.9 standard deviations occurs at a mass of about 390 GeV=c2.

(5)

results are complementary to recent results from the Tevatron, which rule out gluino masses below 144 GeV=c2[8]. These limits are the first from a dedicated

search of this kind in pp collisions.

The authors would like to thank Michael Park and Yue Zhao for providing theoretical calculations. We wish to congratulate our colleagues in the CERN accelerator de-partments for the excellent performance of the LHC ma-chine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei);

TUBITAK and TAEK (Turkey); STFC (United

Kingdom); DOE and NSF (USA).

[1] E. Farhi and L. Susskind,Phys. Rev. D20, 3404 (1979). [2] W. J. Marciano,Phys. Rev. D21, 2425 (1980).

[3] P. H. Frampton and S. L. Glashow, Phys. Rev. Lett. 58, 2168 (1987).

[4] P. Frampton and S. L. Glashow, Phys. Lett. B 190, 157 (1987).

[5] R. Chivukula, M. Golden, and E. Simmons,Phys. Lett. B 257, 403 (1991).

[6] R. Chivukula, M. Golden, and E. Simmons,Nucl. Phys. B363, 83 (1991).

[7] R. Essig, Ph.D. thesis, Rutgers University, 2008.

[8] T. Aaltonen et al. (CDF Collaboration) Phys. Rev. Lett. 107, 042001 (2011).

[9] CMS Collaboration (CMS), Report No. CMS-DPS-2011-002, 2011.

[10] S. Chatrchyan et al. (CMS Collaboration), JINST 3, S08004 (2008).

[11] CMS Collaboration (CMS), CMS Physics Analysis Summary CMS-PAS-PFT-10-001, 2010.

[12] M. Cacciari, G. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.

[13] CMS Collaboration (CMS), CMS Physics Analysis Summary CMS-PAS-JME-10-010, 2010.

[14] CMS Collaboration (CMS), CMS Physics Analysis Summary CMS-PAS-JME-10-001, 2010.

[15] T. Sjo¨strand, S. Mrenna, and P. Skands,J. High Energy Phys. 05 (2006) 026.

[16] W. Beenakker, R. Hopker, and M. Spira, arXiv:hep-ph/ 9611232.

[17] S. Agostinelli et al., GEANT4, Nucl. Instrum. Methods Phys. Res., Sect. A506, 250 (2003).

[18] CMS Collaboration (CMS), Report No. CMS-PAS-TRK-10-005, 2010.

[19] L. Moneta, K. Belasco, K. Cranmer, A. Lazzaro, D. Pi-paro, G. Schott, W. Verkerke, and M. Wolf, Proc. Sci., ACAT2010 057.

[20] L. Lyons, Ann. Appl. Statistics2, 887 (2008). TABLE I. Observed and expected 95% C.L. upper limits on the cross section times branching ratio for the pair production of gluinos with masses (Mjjj) ranging from 200 to 500 GeV=c2. Mjjj (GeV=c2) Observed (pb) Expected (pb) Mjjj (GeV=c2) Observed (pb) Expected (pb)

200 383 387 360 82 40 210 273 287 370 83 36 220 214 219 380 80 33 230 200 178 390 73 29 240 184 146 400 62 26 250 132 120 410 48 24 260 88 106 420 34 23 270 72 96 430 24 21 280 73 84 440 17 19 290 79 76 450 13 17 300 86 67 460 12 16 310 89 62 470 12 15 320 87 56 480 13 14 330 82 51 490 14 13 340 80 48 500 14 12 350 82 45 PRL107, 101801 (2011) P H Y S I C A L R E V I E W L E T T E R S 2 SEPTEMBER 2011

(6)

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2 C. Fabjan,2M. Friedl,2R. Fru¨hwirth,2V. M. Ghete,2J. Hammer,2,bS. Ha¨nsel,2M. Hoch,2N. Ho¨rmann,2J. Hrubec,2 M. Jeitler,2W. Kiesenhofer,2M. Krammer,2D. Liko,2I. Mikulec,2M. Pernicka,2B. Rahbaran,2H. Rohringer,2

R. Scho¨fbeck,2J. Strauss,2A. Taurok,2F. Teischinger,2P. Wagner,2W. Waltenberger,2G. Walzel,2E. Widl,2 C.-E. Wulz,2V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3S. Bansal,4L. Benucci,4E. A. De Wolf,4X. Janssen,4

T. Maes,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4H. Van Haevermaet,4 P. Van Mechelen,4N. Van Remortel,4F. Blekman,5S. Blyweert,5J. D’Hondt,5O. Devroede,5R. Gonzalez Suarez,5

A. Kalogeropoulos,5M. Maes,5W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5O. Charaf,6 B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6G. H. Hammad,6T. Hreus,6P. E. Marage,6A. Raval,6

L. Thomas,6C. Vander Velde,6P. Vanlaer,6V. Adler,7A. Cimmino,7S. Costantini,7M. Grunewald,7B. Klein,7 J. Lellouch,7A. Marinov,7J. Mccartin,7D. Ryckbosch,7F. Thyssen,7M. Tytgat,7L. Vanelderen,7P. Verwilligen,7

S. Walsh,7N. Zaganidis,7S. Basegmez,8G. Bruno,8J. Caudron,8L. Ceard,8E. Cortina Gil,8

J. De Favereau De Jeneret,8C. Delaere,8D. Favart,8A. Giammanco,8G. Gre´goire,8J. Hollar,8V. Lemaitre,8J. Liao,8 O. Militaru,8C. Nuttens,8S. Ovyn,8D. Pagano,8A. Pin,8K. Piotrzkowski,8N. Schul,8N. Beliy,9T. Caebergs,9 E. Daubie,9G. A. Alves,10L. Brito,10D. De Jesus Damiao,10M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11 W. Carvalho,11E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11L. Mundim,11H. Nogima,11 V. Oguri,11W. L. Prado Da Silva,11A. Santoro,11S. M. Silva Do Amaral,11A. Sznajder,11C. A. Bernardes,12,c F. A. Dias,12T. Dos Anjos Costa,12,cT.R. Fernandez Perez Tomei,12E. M. Gregores,12,cC. Lagana,12F. Marinho,12

P. G. Mercadante,12,cS. F. Novaes,12Sandra S. Padula,12N. Darmenov,13,bV. Genchev,13,bP. Iaydjiev,13,b S. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13V. Tcholakov,13R. Trayanov,13A. Dimitrov,14 R. Hadjiiska,14A. Karadzhinova,14V. Kozhuharov,14L. Litov,14M. Mateev,14B. Pavlov,14P. Petkov,14J. G. Bian,15

G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15J. Tao,15J. Wang,15J. Wang,15 X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15Z. Zhang,15Y. Ban,16S. Guo,16Y. Guo,16W. Li,16Y. Mao,16

S. J. Qian,16H. Teng,16B. Zhu,16W. Zou,16A. Cabrera,17B. Gomez Moreno,17A. A. Ocampo Rios,17 A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18K. Lelas,18R. Plestina,18,dD. Polic,18 I. Puljak,18Z. Antunovic,19M. Dzelalija,19V. Brigljevic,20S. Duric,20K. Kadija,20S. Morovic,20A. Attikis,21 M. Galanti,21J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,e

A. Ellithi Kamel,23S. Khalil,23,fM. A. Mahmoud,23,gA. Hektor,24M. Kadastik,24M. Mu¨ntel,24M. Raidal,24 L. Rebane,24A. Tiko,24V. Azzolini,25P. Eerola,25G. Fedi,25S. Czellar,26J. Ha¨rko¨nen,26A. Heikkinen,26 V. Karima¨ki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26

P. Luukka,26T. Ma¨enpa¨a¨,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26L. Wendland,26 K. Banzuzi,27A. Karjalainen,27A. Korpela,27T. Tuuva,27D. Sillou,28M. Besancon,29S. Choudhury,29 M. Dejardin,29D. Denegri,29B. Fabbro,29J. L. Faure,29F. Ferri,29S. Ganjour,29F. X. Gentit,29A. Givernaud,29

P. Gras,29G. Hamel de Monchenault,29P. Jarry,29E. Locci,29J. Malcles,29M. Marionneau,29L. Millischer,29 J. Rander,29A. Rosowsky,29I. Shreyber,29M. Titov,29P. Verrecchia,29S. Baffioni,30F. Beaudette,30L. Benhabib,30 L. Bianchini,30M. Bluj,30,hC. Broutin,30P. Busson,30C. Charlot,30T. Dahms,30L. Dobrzynski,30S. Elgammal,30 R. Granier de Cassagnac,30M. Haguenauer,30P. Mine´,30C. Mironov,30C. Ochando,30P. Paganini,30D. Sabes,30

R. Salerno,30Y. Sirois,30C. Thiebaux,30B. Wyslouch,30,iA. Zabi,30J.-L. Agram,31,jJ. Andrea,31D. Bloch,31 D. Bodin,31J.-M. Brom,31M. Cardaci,31E. C. Chabert,31C. Collard,31E. Conte,31,jF. Drouhin,31,jC. Ferro,31 J.-C. Fontaine,31,jD. Gele´,31U. Goerlach,31S. Greder,31P. Juillot,31M. Karim,31,jA.-C. Le Bihan,31Y. Mikami,31

P. Van Hove,31F. Fassi,32D. Mercier,32C. Baty,33S. Beauceron,33N. Beaupere,33M. Bedjidian,33O. Bondu,33 G. Boudoul,33D. Boumediene,33H. Brun,33J. Chasserat,33R. Chierici,33D. Contardo,33P. Depasse,33 H. El Mamouni,33J. Fay,33S. Gascon,33B. Ille,33T. Kurca,33T. Le Grand,33M. Lethuillier,33L. Mirabito,33 S. Perries,33V. Sordini,33S. Tosi,33Y. Tschudi,33P. Verdier,33D. Lomidze,34G. Anagnostou,35S. Beranek,35 M. Edelhoff,35L. Feld,35N. Heracleous,35O. Hindrichs,35R. Jussen,35K. Klein,35J. Merz,35N. Mohr,35 A. Ostapchuk,35A. Perieanu,35F. Raupach,35J. Sammet,35S. Schael,35D. Sprenger,35H. Weber,35M. Weber,35

B. Wittmer,35M. Ata,36E. Dietz-Laursonn,36M. Erdmann,36T. Hebbeker,36C. Heidemann,36A. Hinzmann,36 K. Hoepfner,36T. Klimkovich,36D. Klingebiel,36P. Kreuzer,36D. Lanske,36,aJ. Lingemann,36C. Magass,36

(7)

J. Steggemann,36D. Teyssier,36M. Bontenackels,37M. Davids,37M. Duda,37G. Flu¨gge,37H. Geenen,37M. Giffels,37 W. Haj Ahmad,37D. Heydhausen,37F. Hoehle,37B. Kargoll,37T. Kress,37Y. Kuessel,37A. Linn,37A. Nowack,37

L. Perchalla,37O. Pooth,37J. Rennefeld,37P. Sauerland,37A. Stahl,37D. Tornier,37M. H. Zoeller,37 M. Aldaya Martin,38W. Behrenhoff,38U. Behrens,38M. Bergholz,38,kA. Bethani,38K. Borras,38A. Cakir,38 A. Campbell,38E. Castro,38D. Dammann,38G. Eckerlin,38D. Eckstein,38A. Flossdorf,38G. Flucke,38A. Geiser,38

J. Hauk,38H. Jung,38,bM. Kasemann,38I. Katkov,38,lP. Katsas,38C. Kleinwort,38H. Kluge,38A. Knutsson,38 M. Kra¨mer,38D. Kru¨cker,38E. Kuznetsova,38W. Lange,38W. Lohmann,38,kR. Mankel,38M. Marienfeld,38 I.-A. Melzer-Pellmann,38A. B. Meyer,38J. Mnich,38A. Mussgiller,38J. Olzem,38A. Petrukhin,38D. Pitzl,38 A. Raspereza,38M. Rosin,38R. Schmidt,38,kT. Schoerner-Sadenius,38N. Sen,38A. Spiridonov,38M. Stein,38 J. Tomaszewska,38R. Walsh,38C. Wissing,38C. Autermann,39V. Blobel,39S. Bobrovskyi,39J. Draeger,39 H. Enderle,39U. Gebbert,39M. Go¨rner,39T. Hermanns,39K. Kaschube,39G. Kaussen,39H. Kirschenmann,39 R. Klanner,39J. Lange,39B. Mura,39S. Naumann-Emme,39F. Nowak,39N. Pietsch,39C. Sander,39H. Schettler,39 P. Schleper,39E. Schlieckau,39M. Schro¨der,39T. Schum,39H. Stadie,39G. Steinbru¨ck,39J. Thomsen,39C. Barth,40

J. Bauer,40J. Berger,40V. Buege,40T. Chwalek,40W. De Boer,40A. Dierlamm,40G. Dirkes,40M. Feindt,40 J. Gruschke,40C. Hackstein,40F. Hartmann,40M. Heinrich,40H. Held,40K. H. Hoffmann,40S. Honc,40 J. R. Komaragiri,40T. Kuhr,40D. Martschei,40S. Mueller,40Th. Mu¨ller,40M. Niegel,40O. Oberst,40A. Oehler,40 J. Ott,40T. Peiffer,40G. Quast,40K. Rabbertz,40F. Ratnikov,40N. Ratnikova,40M. Renz,40C. Saout,40A. Scheurer,40 P. Schieferdecker,40F.-P. Schilling,40G. Schott,40H. J. Simonis,40F. M. Stober,40D. Troendle,40J. Wagner-Kuhr,40 T. Weiler,40M. Zeise,40V. Zhukov,40,lE. B. Ziebarth,40G. Daskalakis,41T. Geralis,41S. Kesisoglou,41A. Kyriakis,41

D. Loukas,41I. Manolakos,41A. Markou,41C. Markou,41C. Mavrommatis,41E. Ntomari,41E. Petrakou,41 L. Gouskos,42T. J. Mertzimekis,42A. Panagiotou,42N. Saoulidou,42E. Stiliaris,42I. Evangelou,43C. Foudas,43 P. Kokkas,43N. Manthos,43I. Papadopoulos,43V. Patras,43F. A. Triantis,43A. Aranyi,44G. Bencze,44L. Boldizsar,44

C. Hajdu,44,bP. Hidas,44D. Horvath,44,mA. Kapusi,44K. Krajczar,44,nF. Sikler,44,bG. I. Veres,44,n

G. Vesztergombi,44,nN. Beni,45J. Molnar,45J. Palinkas,45Z. Szillasi,45V. Veszpremi,45P. Raics,46Z. L. Trocsanyi,46 B. Ujvari,46S. B. Beri,47V. Bhatnagar,47N. Dhingra,47R. Gupta,47M. Jindal,47M. Kaur,47J. M. Kohli,47 M. Z. Mehta,47N. Nishu,47L. K. Saini,47A. Sharma,47A. P. Singh,47J. Singh,47S. P. Singh,47S. Ahuja,48 B. C. Choudhary,48P. Gupta,48S. Jain,48A. Kumar,48A. Kumar,48M. Naimuddin,48K. Ranjan,48R. K. Shivpuri,48 S. Banerjee,49S. Bhattacharya,49S. Dutta,49B. Gomber,49S. Jain,49R. Khurana,49S. Sarkar,49R. K. Choudhury,50

D. Dutta,50S. Kailas,50V. Kumar,50P. Mehta,50A. K. Mohanty,50,bL. M. Pant,50P. Shukla,50T. Aziz,51 M. Guchait,51,oA. Gurtu,51M. Maity,51,pD. Majumder,51G. Majumder,51K. Mazumdar,51G. B. Mohanty,51

A. Saha,51K. Sudhakar,51N. Wickramage,51S. Banerjee,52S. Dugad,52N. K. Mondal,52H. Arfaei,53 H. Bakhshiansohi,53,qS. M. Etesami,53A. Fahim,53,qM. Hashemi,53H. Hesari,53A. Jafari,53,qM. Khakzad,53

A. Mohammadi,53,rM. Mohammadi Najafabadi,53S. Paktinat Mehdiabadi,53B. Safarzadeh,53M. Zeinali,53,s M. Abbrescia,54a,54bL. Barbone,54a,54bC. Calabria,54a,54bA. Colaleo,54aD. Creanza,54a,54cN. De Filippis,54a,54c,b

M. De Palma,54a,54bL. Fiore,54aG. Iaselli,54a,54cL. Lusito,54a,54bG. Maggi,54a,54cM. Maggi,54aN. Manna,54a,54b B. Marangelli,54a,54bS. My,54a,54cS. Nuzzo,54a,54bN. Pacifico,54a,54bG. A. Pierro,54aA. Pompili,54a,54b G. Pugliese,54a,54cF. Romano,54a,54cG. Roselli,54a,54bG. Selvaggi,54a,54bL. Silvestris,54aR. Trentadue,54a S. Tupputi,54a,54bG. Zito,54aG. Abbiendi,55aA. C. Benvenuti,55aD. Bonacorsi,55aS. Braibant-Giacomelli,55a,55b

L. Brigliadori,55aP. Capiluppi,55a,55bA. Castro,55a,55bF. R. Cavallo,55aM. Cuffiani,55a,55bG. M. Dallavalle,55a F. Fabbri,55aA. Fanfani,55a,55bD. Fasanella,55aP. Giacomelli,55aM. Giunta,55aC. Grandi,55aS. Marcellini,55a

G. Masetti,55bM. Meneghelli,55a,55bA. Montanari,55aF. L. Navarria,55a,55bF. Odorici,55aA. Perrotta,55a F. Primavera,55aA. M. Rossi,55a,55bT. Rovelli,55a,55bG. Siroli,55a,55bR. Travaglini,55a,55bS. Albergo,56a,56b G. Cappello,56a,56bM. Chiorboli,56a,56b,bS. Costa,56a,56bR. Potenza,56a,56bA. Tricomi,56a,56bC. Tuve,56a,56b G. Barbagli,57aV. Ciulli,57a,57bC. Civinini,57aR. D’Alessandro,57a,57bE. Focardi,57a,57bS. Frosali,57a,57bE. Gallo,57a

S. Gonzi,57a,57bP. Lenzi,57a,57bM. Meschini,57aS. Paoletti,57aG. Sguazzoni,57aA. Tropiano,57a,bL. Benussi,58 S. Bianco,58S. Colafranceschi,58,tF. Fabbri,58D. Piccolo,58P. Fabbricatore,59R. Musenich,59A. Benaglia,60a,60b

F. De Guio,60a,60b,bL. Di Matteo,60a,60bS. Gennai,60a,bA. Ghezzi,60a,60bS. Malvezzi,60aA. Martelli,60a,60b A. Massironi,60a,60bD. Menasce,60aL. Moroni,60aM. Paganoni,60a,60bD. Pedrini,60aS. Ragazzi,60a,60bN. Redaelli,60a

S. Sala,60aT. Tabarelli de Fatis,60a,60bS. Buontempo,61aC. A. Carrillo Montoya,61a,bN. Cavallo,61a,u A. De Cosa,61a,61bF. Fabozzi,61a,uA. O. M. Iorio,61a,bL. Lista,61aM. Merola,61a,61bP. Paolucci,61aP. Azzi,62a N. Bacchetta,62aP. Bellan,62a,62bD. Bisello,62a,62bA. Branca,62aR. Carlin,62a,62bP. Checchia,62aT. Dorigo,62a

(8)

U. Dosselli,62aF. Fanzago,62aF. Gasparini,62a,62bU. Gasparini,62a,62bA. Gozzelino,62aS. Lacaprara,62a I. Lazzizzera,62a,62cM. Margoni,62a,62bM. Mazzucato,62aA. T. Meneguzzo,62a,62bM. Nespolo,62a,bL. Perrozzi,62a,b

N. Pozzobon,62a,62bP. Ronchese,62a,62bF. Simonetto,62a,62bE. Torassa,62aM. Tosi,62a,62bS. Vanini,62a,62b P. Zotto,62a,62bG. Zumerle,62a,62bP. Baesso,63a,63bU. Berzano,63aS. P. Ratti,63a,63bC. Riccardi,63a,63bP. Torre,63a,63b

P. Vitulo,63a,63bC. Viviani,63a,63bM. Biasini,64a,64bG. M. Bilei,64aB. Caponeri,64a,64bL. Fano`,64a,64b P. Lariccia,64a,64bA. Lucaroni,64a,64b,bG. Mantovani,64a,64bM. Menichelli,64aA. Nappi,64a,64bF. Romeo,64a,64b

A. Santocchia,64a,64bS. Taroni,64a,64b,bM. Valdata,64a,64bP. Azzurri,65a,65cG. Bagliesi,65aJ. Bernardini,65a,65b T. Boccali,65a,bG. Broccolo,65a,65cR. Castaldi,65aR. T. D’Agnolo,65a,65cR. Dell’Orso,65aF. Fiori,65a,65bL. Foa`,65a,65c

A. Giassi,65aA. Kraan,65aF. Ligabue,65a,65cT. Lomtadze,65aL. Martini,65a,vA. Messineo,65a,65bF. Palla,65a F. Palmonari,65aG. Segneri,65aA. T. Serban,65aP. Spagnolo,65aR. Tenchini,65aG. Tonelli,65a,65b,bA. Venturi,65a,b P. G. Verdini,65aL. Barone,66a,66bF. Cavallari,66aD. Del Re,66a,66bE. Di Marco,66a,66bM. Diemoz,66aD. Franci,66a,66b

M. Grassi,66a,bE. Longo,66a,66bP. Meridiani,66aS. Nourbakhsh,66aG. Organtini,66a,66bF. Pandolfi,66a,66b,b R. Paramatti,66aS. Rahatlou,66a,66bC. Rovelli,66a,bN. Amapane,67a,67bR. Arcidiacono,67a,67cS. Argiro,67a,67b M. Arneodo,67a,67cC. Biino,67aC. Botta,67a,67b,bN. Cartiglia,67aR. Castello,67a,67bM. Costa,67a,67bN. Demaria,67a

A. Graziano,67a,67b,bC. Mariotti,67aM. Marone,67a,67bS. Maselli,67aE. Migliore,67a,67bG. Mila,67a,67b V. Monaco,67a,67bM. Musich,67aM. M. Obertino,67a,67cN. Pastrone,67aM. Pelliccioni,67a,67bA. Potenza,67a,67b

A. Romero,67a,67bM. Ruspa,67a,67cR. Sacchi,67a,67bV. Sola,67a,67bA. Solano,67a,67bA. Staiano,67a A. Vilela Pereira,67aS. Belforte,68aF. Cossutti,68aG. Della Ricca,68a,68bB. Gobbo,68aD. Montanino,68a,68b A. Penzo,68aS. G. Heo,69S. K. Nam,69S. Chang,70J. Chung,70D. H. Kim,70G. N. Kim,70J. E. Kim,70D. J. Kong,70

H. Park,70S. R. Ro,70D. C. Son,70T. Son,70Zero Kim,71J. Y. Kim,71S. Song,71S. Choi,72B. Hong,72M. Jo,72 H. Kim,72J. H. Kim,72T. J. Kim,72K. S. Lee,72D. H. Moon,72S. K. Park,72K. S. Sim,72M. Choi,73S. Kang,73 H. Kim,73C. Park,73I. C. Park,73S. Park,73G. Ryu,73Y. Choi,74Y. K. Choi,74J. Goh,74M. S. Kim,74B. Lee,74 J. Lee,74S. Lee,74H. Seo,74I. Yu,74M. J. Bilinskas,75I. Grigelionis,75M. Janulis,75D. Martisiute,75P. Petrov,75

M. Polujanskas,75T. Sabonis,75H. Castilla-Valdez,76E. De La Cruz-Burelo,76I. Heredia-de La Cruz,76 R. Lopez-Fernandez,76R. Magan˜a Villalba,76A. Sa´nchez-Herna´ndez,76L. M. Villasenor-Cendejas,76 S. Carrillo Moreno,77F. Vazquez Valencia,77H. A. Salazar Ibarguen,78E. Casimiro Linares,79A. Morelos Pineda,79

M. A. Reyes-Santos,79D. Krofcheck,80J. Tam,80P. H. Butler,81R. Doesburg,81H. Silverwood,81M. Ahmad,82 I. Ahmed,82M. I. Asghar,82H. R. Hoorani,82S. Khalid,82W. A. Khan,82T. Khurshid,82S. Qazi,82M. A. Shah,82

G. Brona,83M. Cwiok,83W. Dominik,83K. Doroba,83A. Kalinowski,83M. Konecki,83J. Krolikowski,83 T. Frueboes,84R. Gokieli,84M. Go´rski,84M. Kazana,84K. Nawrocki,84K. Romanowska-Rybinska,84M. Szleper,84

G. Wrochna,84P. Zalewski,84N. Almeida,85P. Bargassa,85A. David,85P. Faccioli,85P. G. Ferreira Parracho,85 M. Gallinaro,85,bP. Musella,85A. Nayak,85J. Pela,85,bP. Q. Ribeiro,85J. Seixas,85J. Varela,85S. Afanasiev,86 P. Bunin,86I. Golutvin,86V. Karjavin,86V. Konoplyanikov,86G. Kozlov,86A. Lanev,86P. Moisenz,86V. Palichik,86 V. Perelygin,86M. Savina,86S. Shmatov,86V. Smirnov,86A. Volodko,86A. Zarubin,86V. Golovtsov,87Y. Ivanov,87

V. Kim,87P. Levchenko,87V. Murzin,87V. Oreshkin,87I. Smirnov,87V. Sulimov,87L. Uvarov,87S. Vavilov,87 A. Vorobyev,87An. Vorobyev,87Yu. Andreev,88A. Dermenev,88S. Gninenko,88N. Golubev,88M. Kirsanov,88

N. Krasnikov,88V. Matveev,88A. Pashenkov,88A. Toropin,88S. Troitsky,88V. Epshteyn,89V. Gavrilov,89 V. Kaftanov,89,aM. Kossov,89,bA. Krokhotin,89N. Lychkovskaya,89V. Popov,89G. Safronov,89S. Semenov,89

V. Stolin,89E. Vlasov,89A. Zhokin,89A. Belyaev,90E. Boos,90M. Dubinin,90,wL. Dudko,90A. Ershov,90 A. Gribushin,90O. Kodolova,90I. Lokhtin,90A. Markina,90S. Obraztsov,90M. Perfilov,90S. Petrushanko,90

L. Sarycheva,90V. Savrin,90A. Snigirev,90V. Andreev,91M. Azarkin,91I. Dremin,91M. Kirakosyan,91 A. Leonidov,91S. V. Rusakov,91A. Vinogradov,91I. Azhgirey,92I. Bayshev,92S. Bitioukov,92V. Grishin,92,b

V. Kachanov,92D. Konstantinov,92A. Korablev,92V. Krychkine,92V. Petrov,92R. Ryutin,92A. Sobol,92 L. Tourtchanovitch,92S. Troshin,92N. Tyurin,92A. Uzunian,92A. Volkov,92P. Adzic,93,xM. Djordjevic,93 D. Krpic,93,xJ. Milosevic,93M. Aguilar-Benitez,94J. Alcaraz Maestre,94P. Arce,94C. Battilana,94E. Calvo,94

M. Cepeda,94M. Cerrada,94M. Chamizo Llatas,94N. Colino,94B. De La Cruz,94A. Delgado Peris,94 C. Diez Pardos,94D. Domı´nguez Va´zquez,94C. Fernandez Bedoya,94J. P. Ferna´ndez Ramos,94A. Ferrando,94 J. Flix,94M. C. Fouz,94P. Garcia-Abia,94O. Gonzalez Lopez,94S. Goy Lopez,94J. M. Hernandez,94M. I. Josa,94

G. Merino,94J. Puerta Pelayo,94I. Redondo,94L. Romero,94J. Santaolalla,94M. S. Soares,94C. Willmott,94 C. Albajar,95G. Codispoti,95J. F. de Troco´niz,95J. Cuevas,96J. Fernandez Menendez,96S. Folgueras,96 I. Gonzalez Caballero,96L. Lloret Iglesias,96J. M. Vizan Garcia,96J. A. Brochero Cifuentes,97I. J. Cabrillo,97

(9)

A. Calderon,97S. H. Chuang,97J. Duarte Campderros,97M. Felcini,97,yM. Fernandez,97G. Gomez,97 J. Gonzalez Sanchez,97C. Jorda,97P. Lobelle Pardo,97A. Lopez Virto,97J. Marco,97R. Marco,97

C. Martinez Rivero,97F. Matorras,97F. J. Munoz Sanchez,97J. Piedra Gomez,97,zT. Rodrigo,97 A. Y. Rodrı´guez-Marrero,97A. Ruiz-Jimeno,97L. Scodellaro,97M. Sobron Sanudo,97I. Vila,97 R. Vilar Cortabitarte,97D. Abbaneo,98E. Auffray,98G. Auzinger,98P. Baillon,98A. H. Ball,98D. Barney,98 A. J. Bell,98,aaD. Benedetti,98C. Bernet,98,dW. Bialas,98P. Bloch,98A. Bocci,98S. Bolognesi,98M. Bona,98 H. Breuker,98K. Bunkowski,98T. Camporesi,98G. Cerminara,98T. Christiansen,98J. A. Coarasa Perez,98B. Cure´,98 D. D’Enterria,98A. De Roeck,98S. Di Guida,98N. Dupont-Sagorin,98A. Elliott-Peisert,98B. Frisch,98W. Funk,98 A. Gaddi,98G. Georgiou,98H. Gerwig,98D. Gigi,98K. Gill,98D. Giordano,98F. Glege,98R. Gomez-Reino Garrido,98 M. Gouzevitch,98P. Govoni,98S. Gowdy,98L. Guiducci,98M. Hansen,98C. Hartl,98J. Harvey,98J. Hegeman,98 B. Hegner,98H. F. Hoffmann,98A. Honma,98V. Innocente,98P. Janot,98K. Kaadze,98E. Karavakis,98P. Lecoq,98 C. Lourenc¸o,98T. Ma¨ki,98M. Malberti,98L. Malgeri,98M. Mannelli,98L. Masetti,98A. Maurisset,98F. Meijers,98 S. Mersi,98E. Meschi,98R. Moser,98M. U. Mozer,98M. Mulders,98E. Nesvold,98,bM. Nguyen,98T. Orimoto,98 L. Orsini,98E. Palencia Cortezon,98E. Perez,98A. Petrilli,98A. Pfeiffer,98M. Pierini,98M. Pimia¨,98D. Piparo,98 G. Polese,98A. Racz,98W. Reece,98J. Rodrigues Antunes,98G. Rolandi,98,bbT. Rommerskirchen,98M. Rovere,98

H. Sakulin,98C. Scha¨fer,98C. Schwick,98I. Segoni,98A. Sharma,98P. Siegrist,98P. Silva,98M. Simon,98 P. Sphicas,98,ccM. Spiropulu,98,wM. Stoye,98P. Tropea,98A. Tsirou,98P. Vichoudis,98M. Voutilainen,98 W. D. Zeuner,98W. Bertl,99K. Deiters,99W. Erdmann,99K. Gabathuler,99R. Horisberger,99Q. Ingram,99 H. C. Kaestli,99S. Ko¨nig,99D. Kotlinski,99U. Langenegger,99F. Meier,99D. Renker,99T. Rohe,99J. Sibille,99,dd

A. Starodumov,99,eeL. Ba¨ni,100P. Bortignon,100L. Caminada,100,ffB. Casal,100N. Chanon,100Z. Chen,100 S. Cittolin,100G. Dissertori,100M. Dittmar,100J. Eugster,100K. Freudenreich,100C. Grab,100W. Hintz,100

P. Lecomte,100W. Lustermann,100C. Marchica,100,ffP. Martinez Ruiz del Arbol,100P. Milenovic,100,gg F. Moortgat,100C. Na¨geli,100,ffP. Nef,100F. Nessi-Tedaldi,100L. Pape,100F. Pauss,100T. Punz,100A. Rizzi,100

F. J. Ronga,100M. Rossini,100L. Sala,100A. K. Sanchez,100M.-C. Sawley,100B. Stieger,100L. Tauscher,100,a A. Thea,100K. Theofilatos,100D. Treille,100C. Urscheler,100R. Wallny,100M. Weber,100L. Wehrli,100J. Weng,100 E. Aguilo,101C. Amsler,101V. Chiochia,101S. De Visscher,101C. Favaro,101M. Ivova Rikova,101B. Millan Mejias,101

P. Otiougova,101P. Robmann,101A. Schmidt,101H. Snoek,101Y. H. Chang,102K. H. Chen,102C. M. Kuo,102 S. W. Li,102W. Lin,102Z. K. Liu,102Y. J. Lu,102D. Mekterovic,102R. Volpe,102J. H. Wu,102S. S. Yu,102 P. Bartalini,103P. Chang,103Y. H. Chang,103Y. W. Chang,103Y. Chao,103K. F. Chen,103W.-S. Hou,103Y. Hsiung,103

K. Y. Kao,103Y. J. Lei,103R.-S. Lu,103J. G. Shiu,103Y. M. Tzeng,103X. Wan,103M. Wang,103A. Adiguzel,104 M. N. Bakirci,104,hhS. Cerci,104,iiC. Dozen,104I. Dumanoglu,104E. Eskut,104S. Girgis,104G. Gokbulut,104I. Hos,104 E. E. Kangal,104A. Kayis Topaksu,104G. Onengut,104K. Ozdemir,104S. Ozturk,104,jjA. Polatoz,104K. Sogut,104,kk

D. Sunar Cerci,104,iiB. Tali,104,iiH. Topakli,104,hhD. Uzun,104L. N. Vergili,104M. Vergili,104I. V. Akin,105 T. Aliev,105B. Bilin,105S. Bilmis,105M. Deniz,105H. Gamsizkan,105A. M. Guler,105K. Ocalan,105A. Ozpineci,105

M. Serin,105R. Sever,105U. E. Surat,105M. Yalvac,105E. Yildirim,105M. Zeyrek,105M. Deliomeroglu,106 D. Demir,106,llE. Gu¨lmez,106B. Isildak,106M. Kaya,106,mmO. Kaya,106,mmM. O¨ zbek,106S. Ozkorucuklu,106,nn

N. Sonmez,106,ooL. Levchuk,107F. Bostock,108J. J. Brooke,108T. L. Cheng,108E. Clement,108D. Cussans,108 R. Frazier,108J. Goldstein,108M. Grimes,108D. Hartley,108G. P. Heath,108H. F. Heath,108L. Kreczko,108 S. Metson,108D. M. Newbold,108,ppK. Nirunpong,108A. Poll,108S. Senkin,108V. J. Smith,108L. Basso,109,qq K. W. Bell,109A. Belyaev,109,qqC. Brew,109R. M. Brown,109B. Camanzi,109D. J. A. Cockerill,109J. A. Coughlan,109

K. Harder,109S. Harper,109J. Jackson,109B. W. Kennedy,109E. Olaiya,109D. Petyt,109B. C. Radburn-Smith,109 C. H. Shepherd-Themistocleous,109I. R. Tomalin,109W. J. Womersley,109S. D. Worm,109R. Bainbridge,110 G. Ball,110J. Ballin,110R. Beuselinck,110O. Buchmuller,110D. Colling,110N. Cripps,110M. Cutajar,110G. Davies,110

M. Della Negra,110W. Ferguson,110J. Fulcher,110D. Futyan,110A. Gilbert,110A. Guneratne Bryer,110G. Hall,110 Z. Hatherell,110J. Hays,110G. Iles,110M. Jarvis,110G. Karapostoli,110L. Lyons,110B. C. MacEvoy,110 A.-M. Magnan,110J. Marrouche,110B. Mathias,110R. Nandi,110J. Nash,110A. Nikitenko,110,eeA. Papageorgiou,110

M. Pesaresi,110K. Petridis,110M. Pioppi,110,rrD. M. Raymond,110S. Rogerson,110N. Rompotis,110A. Rose,110 M. J. Ryan,110C. Seez,110P. Sharp,110A. Sparrow,110A. Tapper,110S. Tourneur,110M. Vazquez Acosta,110 T. Virdee,110S. Wakefield,110N. Wardle,110D. Wardrope,110T. Whyntie,110M. Barrett,111M. Chadwick,111 J. E. Cole,111P. R. Hobson,111A. Khan,111P. Kyberd,111D. Leslie,111W. Martin,111I. D. Reid,111L. Teodorescu,111

K. Hatakeyama,112H. Liu,112C. Henderson,113T. Bose,114E. Carrera Jarrin,114C. Fantasia,114A. Heister,114

(10)

J. St. John,114P. Lawson,114D. Lazic,114J. Rohlf,114D. Sperka,114L. Sulak,114A. Avetisyan,115S. Bhattacharya,115 J. P. Chou,115D. Cutts,115A. Ferapontov,115U. Heintz,115S. Jabeen,115G. Kukartsev,115G. Landsberg,115M. Luk,115

M. Narain,115D. Nguyen,115M. Segala,115T. Sinthuprasith,115T. Speer,115K. V. Tsang,115R. Breedon,116 G. Breto,116M. Calderon De La Barca Sanchez,116S. Chauhan,116M. Chertok,116J. Conway,116P. T. Cox,116

J. Dolen,116R. Erbacher,116E. Friis,116W. Ko,116A. Kopecky,116R. Lander,116H. Liu,116S. Maruyama,116 T. Miceli,116M. Nikolic,116D. Pellett,116J. Robles,116B. Rutherford,116S. Salur,116T. Schwarz,116M. Searle,116

J. Smith,116M. Squires,116M. Tripathi,116R. Vasquez Sierra,116C. Veelken,116V. Andreev,117K. Arisaka,117 D. Cline,117R. Cousins,117A. Deisher,117J. Duris,117S. Erhan,117C. Farrell,117J. Hauser,117M. Ignatenko,117

C. Jarvis,117C. Plager,117G. Rakness,117P. Schlein,117,aJ. Tucker,117V. Valuev,117J. Babb,118A. Chandra,118 R. Clare,118J. Ellison,118J. W. Gary,118F. Giordano,118G. Hanson,118G. Y. Jeng,118S. C. Kao,118F. Liu,118

H. Liu,118O. R. Long,118A. Luthra,118H. Nguyen,118S. Paramesvaran,118B. C. Shen,118,aR. Stringer,118 J. Sturdy,118S. Sumowidagdo,118R. Wilken,118S. Wimpenny,118W. Andrews,119J. G. Branson,119G. B. Cerati,119

D. Evans,119F. Golf,119A. Holzner,119R. Kelley,119M. Lebourgeois,119J. Letts,119B. Mangano,119S. Padhi,119 C. Palmer,119G. Petrucciani,119H. Pi,119M. Pieri,119R. Ranieri,119M. Sani,119V. Sharma,119S. Simon,119 E. Sudano,119M. Tadel,119Y. Tu,119A. Vartak,119S. Wasserbaech,119,ssF. Wu¨rthwein,119A. Yagil,119J. Yoo,119

D. Barge,120R. Bellan,120C. Campagnari,120M. D’Alfonso,120T. Danielson,120K. Flowers,120P. Geffert,120 J. Incandela,120C. Justus,120P. Kalavase,120S. A. Koay,120D. Kovalskyi,120V. Krutelyov,120S. Lowette,120 N. Mccoll,120V. Pavlunin,120F. Rebassoo,120J. Ribnik,120J. Richman,120R. Rossin,120D. Stuart,120W. To,120 J. R. Vlimant,120A. Apresyan,121A. Bornheim,121J. Bunn,121Y. Chen,121M. Gataullin,121Y. Ma,121A. Mott,121 H. B. Newman,121C. Rogan,121K. Shin,121V. Timciuc,121P. Traczyk,121J. Veverka,121R. Wilkinson,121Y. Yang,121

R. Y. Zhu,121B. Akgun,122R. Carroll,122T. Ferguson,122Y. Iiyama,122D. W. Jang,122S. Y. Jun,122Y. F. Liu,122 M. Paulini,122J. Russ,122H. Vogel,122I. Vorobiev,122J. P. Cumalat,123M. E. Dinardo,123B. R. Drell,123 C. J. Edelmaier,123W. T. Ford,123A. Gaz,123B. Heyburn,123E. Luiggi Lopez,123U. Nauenberg,123J. G. Smith,123

K. Stenson,123K. A. Ulmer,123S. R. Wagner,123S. L. Zang,123L. Agostino,124J. Alexander,124A. Chatterjee,124 N. Eggert,124L. K. Gibbons,124B. Heltsley,124K. Henriksson,124W. Hopkins,124A. Khukhunaishvili,124B. Kreis,124 Y. Liu,124G. Nicolas Kaufman,124J. R. Patterson,124D. Puigh,124A. Ryd,124M. Saelim,124E. Salvati,124X. Shi,124 W. Sun,124W. D. Teo,124J. Thom,124J. Thompson,124J. Vaughan,124Y. Weng,124L. Winstrom,124P. Wittich,124 A. Biselli,125G. Cirino,125D. Winn,125S. Abdullin,126M. Albrow,126J. Anderson,126G. Apollinari,126M. Atac,126 J. A. Bakken,126L. A. T. Bauerdick,126A. Beretvas,126J. Berryhill,126P. C. Bhat,126I. Bloch,126F. Borcherding,126 K. Burkett,126J. N. Butler,126V. Chetluru,126H. W. K. Cheung,126F. Chlebana,126S. Cihangir,126W. Cooper,126

D. P. Eartly,126V. D. Elvira,126S. Esen,126I. Fisk,126J. Freeman,126Y. Gao,126E. Gottschalk,126D. Green,126 K. Gunthoti,126O. Gutsche,126J. Hanlon,126R. M. Harris,126J. Hirschauer,126B. Hooberman,126H. Jensen,126

M. Johnson,126U. Joshi,126R. Khatiwada,126B. Klima,126K. Kousouris,126S. Kunori,126S. Kwan,126 C. Leonidopoulos,126P. Limon,126D. Lincoln,126R. Lipton,126J. Lykken,126K. Maeshima,126J. M. Marraffino,126

D. Mason,126P. McBride,126T. Miao,126K. Mishra,126S. Mrenna,126Y. Musienko,126,ttC. Newman-Holmes,126 V. O’Dell,126J. Pivarski,126R. Pordes,126O. Prokofyev,126E. Sexton-Kennedy,126S. Sharma,126W. J. Spalding,126

L. Spiegel,126P. Tan,126L. Taylor,126S. Tkaczyk,126L. Uplegger,126E. W. Vaandering,126R. Vidal,126 J. Whitmore,126W. Wu,126F. Yang,126F. Yumiceva,126J. C. Yun,126D. Acosta,127P. Avery,127D. Bourilkov,127 M. Chen,127S. Das,127M. De Gruttola,127G. P. Di Giovanni,127D. Dobur,127A. Drozdetskiy,127R. D. Field,127 M. Fisher,127Y. Fu,127I. K. Furic,127J. Gartner,127J. Hugon,127B. Kim,127J. Konigsberg,127A. Korytov,127 A. Kropivnitskaya,127T. Kypreos,127J. F. Low,127K. Matchev,127G. Mitselmakher,127L. Muniz,127C. Prescott,127 R. Remington,127A. Rinkevicius,127M. Schmitt,127B. Scurlock,127P. Sellers,127N. Skhirtladze,127M. Snowball,127

D. Wang,127J. Yelton,127M. Zakaria,127V. Gaultney,128L. M. Lebolo,128S. Linn,128P. Markowitz,128 G. Martinez,128J. L. Rodriguez,128T. Adams,129A. Askew,129J. Bochenek,129J. Chen,129B. Diamond,129 S. V. Gleyzer,129J. Haas,129S. Hagopian,129V. Hagopian,129M. Jenkins,129K. F. Johnson,129H. Prosper,129

L. Quertenmont,129S. Sekmen,129V. Veeraraghavan,129M. M. Baarmand,130B. Dorney,130S. Guragain,130 M. Hohlmann,130H. Kalakhety,130I. Vodopiyanov,130M. R. Adams,131I. M. Anghel,131L. Apanasevich,131 Y. Bai,131V. E. Bazterra,131R. R. Betts,131J. Callner,131R. Cavanaugh,131C. Dragoiu,131L. Gauthier,131 C. E. Gerber,131D. J. Hofman,131S. Khalatyan,131G. J. Kunde,131F. Lacroix,131M. Malek,131C. O’Brien,131

C. Silkworth,131C. Silvestre,131A. Smoron,131D. Strom,131N. Varelas,131U. Akgun,132E. A. Albayrak,132 B. Bilki,132W. Clarida,132F. Duru,132C. K. Lae,132E. McCliment,132J.-P. Merlo,132H. Mermerkaya,132,uu

(11)

A. Mestvirishvili,132A. Moeller,132J. Nachtman,132C. R. Newsom,132E. Norbeck,132J. Olson,132Y. Onel,132 F. Ozok,132S. Sen,132J. Wetzel,132T. Yetkin,132K. Yi,132B. A. Barnett,133B. Blumenfeld,133A. Bonato,133

C. Eskew,133D. Fehling,133G. Giurgiu,133A. V. Gritsan,133Z. J. Guo,133G. Hu,133P. Maksimovic,133 S. Rappoccio,133M. Swartz,133N. V. Tran,133A. Whitbeck,133P. Baringer,134A. Bean,134G. Benelli,134 O. Grachov,134R. P. Kenny Iii,134M. Murray,134D. Noonan,134S. Sanders,134J. S. Wood,134V. Zhukova,134

A. f. Barfuss,135T. Bolton,135I. Chakaberia,135A. Ivanov,135S. Khalil,135M. Makouski,135Y. Maravin,135 S. Shrestha,135I. Svintradze,135Z. Wan,135J. Gronberg,136D. Lange,136D. Wright,136A. Baden,137 M. Boutemeur,137S. C. Eno,137D. Ferencek,137J. A. Gomez,137N. J. Hadley,137R. G. Kellogg,137M. Kirn,137

Y. Lu,137A. C. Mignerey,137K. Rossato,137P. Rumerio,137F. Santanastasio,137A. Skuja,137J. Temple,137 M. B. Tonjes,137S. C. Tonwar,137E. Twedt,137B. Alver,138G. Bauer,138J. Bendavid,138W. Busza,138E. Butz,138

I. A. Cali,138M. Chan,138V. Dutta,138P. Everaerts,138G. Gomez Ceballos,138M. Goncharov,138K. A. Hahn,138 P. Harris,138Y. Kim,138M. Klute,138Y.-J. Lee,138W. Li,138C. Loizides,138P. D. Luckey,138T. Ma,138S. Nahn,138

C. Paus,138D. Ralph,138C. Roland,138G. Roland,138M. Rudolph,138G. S. F. Stephans,138F. Sto¨ckli,138 K. Sumorok,138K. Sung,138D. Velicanu,138E. A. Wenger,138R. Wolf,138S. Xie,138M. Yang,138Y. Yilmaz,138 A. S. Yoon,138M. Zanetti,138S. I. Cooper,139P. Cushman,139B. Dahmes,139A. De Benedetti,139P. R. Dudero,139 G. Franzoni,139A. Gude,139J. Haupt,139K. Klapoetke,139Y. Kubota,139J. Mans,139N. Pastika,139V. Rekovic,139 R. Rusack,139M. Sasseville,139A. Singovsky,139N. Tambe,139L. M. Cremaldi,140R. Godang,140R. Kroeger,140 L. Perera,140R. Rahmat,140D. A. Sanders,140D. Summers,140K. Bloom,141S. Bose,141J. Butt,141D. R. Claes,141

A. Dominguez,141M. Eads,141P. Jindal,141J. Keller,141T. Kelly,141I. Kravchenko,141J. Lazo-Flores,141 H. Malbouisson,141S. Malik,141G. R. Snow,141U. Baur,142A. Godshalk,142I. Iashvili,142S. Jain,142 A. Kharchilava,142A. Kumar,142S. P. Shipkowski,142K. Smith,142G. Alverson,143E. Barberis,143D. Baumgartel,143 O. Boeriu,143M. Chasco,143S. Reucroft,143J. Swain,143D. Trocino,143D. Wood,143J. Zhang,143A. Anastassov,144 A. Kubik,144N. Odell,144R. A. Ofierzynski,144B. Pollack,144A. Pozdnyakov,144M. Schmitt,144S. Stoynev,144

M. Velasco,144S. Won,144L. Antonelli,145D. Berry,145A. Brinkerhoff,145M. Hildreth,145C. Jessop,145 D. J. Karmgard,145J. Kolb,145T. Kolberg,145K. Lannon,145W. Luo,145S. Lynch,145N. Marinelli,145D. M. Morse,145 T. Pearson,145R. Ruchti,145J. Slaunwhite,145N. Valls,145M. Wayne,145J. Ziegler,145B. Bylsma,146L. S. Durkin,146 J. Gu,146C. Hill,146P. Killewald,146K. Kotov,146T. Y. Ling,146M. Rodenburg,146C. Vuosalo,146G. Williams,146

N. Adam,147E. Berry,147P. Elmer,147D. Gerbaudo,147V. Halyo,147P. Hebda,147A. Hunt,147E. Laird,147 D. Lopes Pegna,147D. Marlow,147T. Medvedeva,147M. Mooney,147J. Olsen,147P. Piroue´,147X. Quan,147B. Safdi,147 H. Saka,147D. Stickland,147C. Tully,147J. S. Werner,147A. Zuranski,147J. G. Acosta,148X. T. Huang,148A. Lopez,148

H. Mendez,148S. Oliveros,148J. E. Ramirez Vargas,148A. Zatserklyaniy,148E. Alagoz,149V. E. Barnes,149 G. Bolla,149L. Borrello,149D. Bortoletto,149M. De Mattia,149A. Everett,149A. F. Garfinkel,149L. Gutay,149Z. Hu,149

M. Jones,149O. Koybasi,149M. Kress,149A. T. Laasanen,149N. Leonardo,149C. Liu,149V. Maroussov,149 P. Merkel,149D. H. Miller,149N. Neumeister,149I. Shipsey,149D. Silvers,149A. Svyatkovskiy,149H. D. Yoo,149 J. Zablocki,149Y. Zheng,149N. Parashar,150A. Adair,151C. Boulahouache,151K. M. Ecklund,151F. J. M. Geurts,151 B. P. Padley,151R. Redjimi,151J. Roberts,151J. Zabel,151B. Betchart,152A. Bodek,152Y. S. Chung,152R. Covarelli,152 P. de Barbaro,152R. Demina,152Y. Eshaq,152H. Flacher,152A. Garcia-Bellido,152P. Goldenzweig,152Y. Gotra,152

J. Han,152A. Harel,152D. C. Miner,152D. Orbaker,152G. Petrillo,152W. Sakumoto,152D. Vishnevskiy,152 M. Zielinski,152A. Bhatti,153R. Ciesielski,153L. Demortier,153K. Goulianos,153G. Lungu,153S. Malik,153 C. Mesropian,153O. Atramentov,154A. Barker,154D. Duggan,154Y. Gershtein,154R. Gray,154E. Halkiadakis,154

D. Hidas,154D. Hits,154A. Lath,154S. Panwalkar,154R. Patel,154A. Richards,154K. Rose,154S. Schnetzer,154 S. Somalwar,154R. Stone,154S. Thomas,154G. Cerizza,155M. Hollingsworth,155S. Spanier,155Z. C. Yang,155

A. York,155R. Eusebi,156W. Flanagan,156J. Gilmore,156A. Gurrola,156T. Kamon,156V. Khotilovich,156 R. Montalvo,156I. Osipenkov,156Y. Pakhotin,156A. Safonov,156S. Sengupta,156I. Suarez,156A. Tatarinov,156 D. Toback,156M. Weinberger,156N. Akchurin,157C. Bardak,157J. Damgov,157C. Jeong,157K. Kovitanggoon,157

S. W. Lee,157T. Libeiro,157P. Mane,157Y. Roh,157A. Sill,157I. Volobouev,157R. Wigmans,157E. Yazgan,157 E. Appelt,158E. Brownson,158D. Engh,158C. Florez,158W. Gabella,158M. Issah,158W. Johns,158P. Kurt,158 C. Maguire,158A. Melo,158P. Sheldon,158B. Snook,158S. Tuo,158J. Velkovska,158M. W. Arenton,159M. Balazs,159

S. Boutle,159B. Cox,159B. Francis,159J. Goodell,159R. Hirosky,159A. Ledovskoy,159C. Lin,159C. Neu,159 R. Yohay,159S. Gollapinni,160R. Harr,160P. E. Karchin,160C. Kottachchi Kankanamge Don,160P. Lamichhane,160

M. Mattson,160C. Milste`ne,160A. Sakharov,160M. Anderson,161M. Bachtis,161D. Belknap,161J. N. Bellinger,161

(12)

D. Carlsmith,161S. Dasu,161J. Efron,161L. Gray,161K. S. Grogg,161M. Grothe,161R. Hall-Wilton,161 M. Herndon,161A. Herve´,161P. Klabbers,161J. Klukas,161A. Lanaro,161C. Lazaridis,161 J. Leonard,161R. Loveless,161A. Mohapatra,161I. Ojalvo,161D. Reeder,161I. Ross,161A. Savin,161

W. H. Smith,161J. Swanson,161and M. Weinberg161

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2

Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

28Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France 29DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

30Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

31Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

32

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 33Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

34Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 35RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

36RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 37RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

38Deutsches Elektronen-Synchrotron, Hamburg, Germany 39University of Hamburg, Hamburg, Germany 40Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 41Institute of Nuclear Physics ‘‘Demokritos’’, Aghia Paraskevi, Greece

42University of Athens, Athens, Greece 43University of Ioa´nnina, Ioa´nnina, Greece

44KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 45Institute of Nuclear Research ATOMKI, Debrecen, Hungary

46University of Debrecen, Debrecen, Hungary 47Panjab University, Chandigarh, India

48

University of Delhi, Delhi, India 49Saha Institute of Nuclear Physics, Kolkata, India

(13)

51Tata Institute of Fundamental Research - EHEP, Mumbai, India 52Tata Institute of Fundamental Research - HECR, Mumbai, India 53Institute for Research and Fundamental Sciences (IPM), Tehran, Iran

54aINFN Sezione di Bari, Bari, Italy 54bUniversita` di Bari, Bari, Italy 54cPolitecnico di Bari, Bari, Italy 55aINFN Sezione di Bologna, Bologna, Italy

55bUniversita` di Bologna, Bologna, Italy 56a

INFN Sezione di Catania, Catania, Italy 56bUniversita` di Catania, Catania, Italy 57aINFN Sezione di Firenze, Firenze, Italy

57bUniversita` di Firenze, Firenze, Italy

58INFN Laboratori Nazionali di Frascati, Frascati, Italy 59INFN Sezione di Genova, Genova, Italy 60aINFN Sezione di Milano-Bicocca, Milano, Italy

60bUniversita` di Milano-Bicocca, Milano, Italy 61aINFN Sezione di Napoli, Napoli, Italy 61bUniversita` di Napoli ‘‘Federico II’’, Napoli, Italy

62aINFN Sezione di Padova, Padova, Italy 62bUniversita` di Padova, Padova, Italy 62cUniversita` di Trento (Trento), Padova, Italy

63aINFN Sezione di Pavia, Pavia, Italy 63bUniversita` di Pavia, Pavia, Italy 64aINFN Sezione di Perugia, Perugia, Italy

64b

Universita` di Perugia, Perugia, Italy 65aINFN Sezione di Pisa, Pisa, Italy

65bUniversita` di Pisa, Pisa, Italy 65cScuola Normale Superiore di Pisa, Pisa, Italy

66aINFN Sezione di Roma, Roma, Italy 66bUniversita` di Roma ‘‘La Sapienza’’, Roma, Italy

67aINFN Sezione di Torino, Torino, Italy 67bUniversita` di Torino, Torino, Italy

67cUniversita` del Piemonte Orientale (Novara), Torino, Italy 68aINFN Sezione di Trieste, Trieste, Italy

68bUniversita` di Trieste, Trieste, Italy 69Kangwon National University, Chunchon, Korea

70Kyungpook National University, Daegu, Korea

71Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 72Korea University, Seoul, Korea

73University of Seoul, Seoul, Korea 74Sungkyunkwan University, Suwon, Korea

75Vilnius University, Vilnius, Lithuania

76Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 77Universidad Iberoamericana, Mexico City, Mexico

78Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 79Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

80University of Auckland, Auckland, New Zealand 81

University of Canterbury, Christchurch, New Zealand

82National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 83Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

84Soltan Institute for Nuclear Studies, Warsaw, Poland

85Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 86Joint Institute for Nuclear Research, Dubna, Russia

87Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia 88Institute for Nuclear Research, Moscow, Russia

89Institute for Theoretical and Experimental Physics, Moscow, Russia 90

Moscow State University, Moscow, Russia 91P.N. Lebedev Physical Institute, Moscow, Russia

92State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 93University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

94Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain

(14)

95Universidad Auto´noma de Madrid, Madrid, Spain 96Universidad de Oviedo, Oviedo, Spain

97Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 98CERN, European Organization for Nuclear Research, Geneva, Switzerland

99Paul Scherrer Institut, Villigen, Switzerland

100Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 101Universita¨t Zu¨rich, Zurich, Switzerland

102National Central University, Chung-Li, Taiwan 103

National Taiwan University (NTU), Taipei, Taiwan 104Cukurova University, Adana, Turkey

105Middle East Technical University, Physics Department, Ankara, Turkey 106Bogazici University, Istanbul, Turkey

107National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 108University of Bristol, Bristol, United Kingdom

109Rutherford Appleton Laboratory, Didcot, United Kingdom 110Imperial College, London, United Kingdom 111Brunel University, Uxbridge, United Kingdom

112Baylor University, Waco, Texas 76706, USA

113The University of Alabama, Tuscaloosa, Alabama 35487, USA 114Boston University, Boston, Massachusetts 02215, USA 115Brown University, Providence, Rhode Island 02912, USA 116University of California, Davis, Davis, California 95616, USA 117University of California, Los Angeles, Los Angeles, California 90095, USA

118University of California, Riverside, Riverside, California 92521, USA 119

University of California, San Diego, La Jolla, California 92093, USA 120University of California, Santa Barbara, Santa Barbara, California 93106, USA

121California Institute of Technology, Pasadena, California 91125, USA 122Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 123University of Colorado at Boulder, Boulder, Colorado 80309, USA

124Cornell University, Ithaca, New York 14853, USA 125Fairfield University, Fairfield, Connecticut 06824, USA 126Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

127University of Florida, Gainesville, Florida 32611, USA 128Florida International University, Miami, Florida 33199, USA

129Florida State University, Tallahassee, Florida 32306, USA 130Florida Institute of Technology, Melbourne, Florida 32901, USA 131University of Illinois at Chicago (UIC), Chicago, Illinois 60607, USA

132The University of Iowa, Iowa City, Iowa 52242, USA 133Johns Hopkins University, Baltimore, Maryland 21218, USA

134The University of Kansas, Lawrence, Kansas 66045, USA 135Kansas State University, Manhattan, Kansas 66506, USA

136Lawrence Livermore National Laboratory, Livermore, California 94720, USA 137University of Maryland, College Park, Maryland 20742, USA 138Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

139University of Minnesota, Minneapolis, Minnesota 55455, USA 140University of Mississippi, University, Mississippi 38677, USA 141University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA 142

State University of New York at Buffalo, Buffalo, New York 14260, USA 143Northeastern University, Boston, Massachusetts 02115, USA

144Northwestern University, Evanston, Illinois 60208, USA 145University of Notre Dame, Notre Dame, Indiana 46556, USA

146The Ohio State University, Columbus, Ohio 43210, USA 147Princeton University, Princeton, New Jersey 08544, USA 148University of Puerto Rico, Mayaguez, Puerto Rico 00680 149Purdue University, West Lafayette, Indiana 47907, USA 150Purdue University Calumet, Hammond, Indiana 46323, USA

151

Rice University, Houston, Texas 77251, USA 152University of Rochester, Rochester, New York 14627, USA 153The Rockefeller University, New York, New York 10021, USA

154Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA 155University of Tennessee, Knoxville, Tennessee 37996, USA

(15)

156Texas A&M University, College Station, Texas 77843, USA 157Texas Tech University, Lubbock, Texas 79409, USA 158Vanderbilt University, Nashville, Tennessee 37235, USA 159University of Virginia, Charlottesville, Virginia 22901, USA

160Wayne State University, Detroit, Michigan 48202, USA 161University of Wisconsin, Madison, Wisconsin 53706, USA

aDeceased.

bAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. cAlso at Universidade Federal do ABC, Santo Andre, Brazil.

dAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. eAlso at Suez Canal University, Suez, Egypt.

fAlso at British University, Cairo, Egypt. gAlso at Fayoum University, El-Fayoum, Egypt. h

Also at Soltan Institute for Nuclear Studies, Warsaw, Poland.

i

Also at Massachusetts Institute of Technology, Cambridge, MA, USA.

jAlso at Universite´ de Haute-Alsace, Mulhouse, France.

kAlso at Brandenburg University of Technology, Cottbus, Germany. lAlso at Moscow State University, Moscow, Russia.

mAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. nAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

oAlso at Tata Institute of Fundamental Research - HECR, Mumbai, India. pAlso at University of Visva-Bharati, Santiniketan, India.

qAlso at Sharif University of Technology, Tehran, Iran. rAlso at Shiraz University, Shiraz, Iran.

sAlso at Isfahan University of Technology, Isfahan, Iran. tAlso at Facolta` Ingegneria Universita` di Roma, Roma, Italy. uAlso at Universita` della Basilicata, Potenza, Italy.

vAlso at Universita` degli studi di Siena, Siena, Italy.

wAlso at California Institute of Technology, Pasadena, CA, USA. x

Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia.

yAlso at University of California, Los Angeles, Los Angeles, CA, USA. zAlso at University of Florida, Gainesville, FL, USA.

aaAlso at Universite´ de Gene`ve, Geneva, Switzerland. bbAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy. ccAlso at University of Athens, Athens, Greece.

ddAlso at The University of Kansas, Lawrence, KS, USA.

eeAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. ffAlso at Paul Scherrer Institut, Villigen, Switzerland.

ggAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. hhAlso at Gaziosmanpasa University, Tokat, Turkey.

iiAlso at Adiyaman University, Adiyaman, Turkey. jjAlso at The University of Iowa, Iowa City, IA, USA. kkAlso at Mersin University, Mersin, Turkey.

ll

Also at Izmir Institute of Technology, Izmir, Turkey.

mmAlso at Kafkas University, Kars, Turkey.

nnAlso at Suleyman Demirel University, Isparta, Turkey. ooAlso at Ege University, Izmir, Turkey.

ppAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom.

qqAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. rrAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

ssAlso at Utah Valley University, Orem, UT, USA. ttAlso at Institute for Nuclear Research, Moscow, Russia. uuAlso at Erzincan University, Erzincan, Turkey.

Riferimenti

Documenti correlati

Lo scopo di questo lavoro è la descrizione del modello di riabilitazione multispecialistica sviluppato ed implementato presso l’AORN Santobono Pausilipon, composto da un team

Arca Beato Bartolomeo Cappella Nievo Cappella Monza Cappella Barbarano Cappella maggiore, Sesso Cappella Thiene Cappella Valmarana (sotto- coro) Altare

Nella funzione di Marketing e Vendite abbiamo infatti individuato alcuni progetti già ampiamente presenti che sfruttano i Big Data, quali quelli di Direct Marketing,

si guardò intorno, non capiva donde veniva un canto così strano; ma a forza di ascoltare, gli parve che fosse l’erba, avvizzita e consumata, a dire senza parole ma lamentosamente

“promuove una fruizione ragionata, che scaturisce dall‟applicazione delle operazioni cognitive e dall‟attribuzione del valore di mezzi di costruzione della

1ES 1959 +650 during the 9.5 yr period. The X-ray flares were sometimes not accompanied with an increasing activity in the γ -ray part of the spectrum and vice versa. In some cases,

(2014) and Planck Collaboration XXXIX (2016) who noted that the sub-mm flux densities of proto-cluster candidates measured by Planck are about 2 to 3 times larger than the