• Non ci sono risultati.

A Donor splice mutation and a single-base deletion produce two carboxyl-terminal variants of human serum albumin

N/A
N/A
Protected

Academic year: 2021

Condividi "A Donor splice mutation and a single-base deletion produce two carboxyl-terminal variants of human serum albumin"

Copied!
5
0
0

Testo completo

(1)

A

donor

splice mutation and

a

single-base

deletion

produce

two

carboxyl-terminal variants of human

serum

albumin

(alloalbumins/geneticpolymorphism/frameshiftmutation/exonskipping)

SCOTT WATKINS*, JEANNE MADISON*, EVELYN DAVIS*, YASUSHI SAKAMOTO*, MONICA

GALLIANOt*,

LORENZOMINCHIOTTIt, AND FRANK W. PUTNAM*§

*Departmentof Biology, IndianaUniversity,Bloomington,IN47405;andtDepartmentofBiochemistry,UniversityofPavia,27100Pavia, Italy ContributedbyFrank W. Putnam,April15, 1991

ABSTRACT At least 35 allelic variants of human serum albuminhave been sequenced at theprotein level. Allexcept two COOH-terminal variants, Catania and Venezia, are readily explainable as single-point substitutions. The two chain-termination variants are clustered in certain locations in Italy and are found in numerous unrelated individuals. In order tocorrelate the protein change in these variants with the correspondingDNAmutation,the two variant albumingenes have beencloned, sequenced, and compared to normal albumin genomic DNA. In the Cataniavariant, a single base deletion and subsequent frameshift leads to a shortened and altered COOH terminus. Albumin Venezia is caused by a mutation that alters thefirst consensus nucleotide of the5'donorsplice junction of intron 14 and the 3' end ofexon 14, which is shortenedfrom 68to43 base pairs. Thischangeleads to an exon skipping event resulting in direct splicing of exon 13 to exon 15. The predicted Venezia albuminproduct has a truncated amino acid sequence (580 residues instead of585), and the COOH-terminalsequence is alteredafterGlu-571. The variantCOOH terminus ends with the dibasic sequence Arg-Lys that is apparently removedthroughstepwise cleavage byserum car-boxypeptidaseBtoyieldseveralformsofcirculatingalbumin.

Approximately 35 different human serum albumin (HSA) variants, originally detected on the basis oftheir abnormal electrophoretic mobility, have been sequencedattheprotein level(1-8). Themajorityreflectsingle-point mutations inthe albumin gene. However, two chain-termination variants (designatedCatania andVenezia)occurin certainpopulation groupsin Italy (1-3). In anattempt tocorrelate the protein change with its corresponding DNA lesion, the relevant regions of the genes of these two Italian albumin variants have been cloned, sequenced,and comparedto the normal albumin genomic DNA sequence of Minghetti et al. (9). These variantsarefound only in specific geographic locations inItaly with 105 unrelated subjects carrying theVeneziatrait and 62 unrelated subjects possessing the Catania allele (1) earlierdesignated Ge/Ct(3). Because oftherelative immo-bility of these population groups, it has been possible to identify homozygotes for both ofthevariants;however, only theVeneziahomozygote wasavailablefor this study.

Structural characterization showed that the HSA chain-termination mutant Catania has an altered COOH-terminal sequencein which the normal amino acid residues580-585 (Gln-Ala-Ala-Leu-Gly-Leu)arereplaced by residues 580-582 (Lys-Leu-Pro) (3). Bycomparison,theVenezia serum albu-min alsopossesses a shortenedpolypeptidechain, having578 residues instead ofthenormal585(2).Furthermore,residues 572 to theCOOH terminus arecompletely variant: Pro-Thr-Met-Arg-Ile-Arg-Glu (Fig. 1). In the homozygous Venezia

mutation,80% of theproteinhas the mutantCOOHterminus, while 20%6of the albumin has the same change but has an additional COOH-terminal arginine at position 579. The major form probably results from partial proteolytic degra-dation of the minor form by serum carboxypeptidase B. Minchiotti et al.(2) proposedthatthis extensivemodification wasattributabletothedeletionof exon 14and translationto thefirst terminator codon ofexon 15, whichnormallydoes notcodefor albumin.

MATERIALS AND METHODS

Southern Hybridization. Genomic DNA was isolated from Veneziaand Catania whole blood by a phenol/chloroform procedure(10).Approximately 15

gg

of DNA fromVenezia, Catania, orhuman placentawas digested with HindIIIand ScaI(GIBCO/BRL;BoehringerMannheim) and electropho-resed ina1%agarosegel in1xTris/borate buffer, pH 8.5 (89 mMTris/89 mM boric acid/2 mM EDTA). The DNA frag-ments were blotted to aZeta-Probe nylon membrane (Bio-Rad) using aNaOH transferprocedure (11). The filterwas prehybridized [5x SSPE (750 mMNaCl/50mMNaH2PO4/5 mMEDTA, pH7.4), 5xDenhardt'ssolution, 0.1% SDS,and salmonspermDNAat100,ug/ml] for 2-4 hrat65°C(12).A 1.5-kilobase (kb)SstI-EcoRIfragmentencompassingexons 13-15of HSAwasgelpurified fromasubcloneprovided by AchillesDugaiczyk (University of California, Riverside) us-ing GeneClean (Bio 101, LaJolla, CA). The fragment was labeledusing[a-32P]dCTP and random hexamers (13). After removal ofunincorporated nucleotides with G-50 spin

col-umns (5 Prime -+ 3 Prime, Inc.), 1 x 107counts of labeled probewasaddedto10mlofhybridization solution (5 x SSPE, 5x Denhardt's solution,0.1% SDS, and salmon sperm DNA at

100,ug/ml)

andincubatedovernightat65°C (12). The filter was washed twice with 2x SSPE and 0.1% SDS at room temperaturefor5min,oncewith 1x SSPE and0.1% SDSat 65°C for20min, andfinally with 0.1x SSPE and 0.1%SDS at65°C for20min.Autoradiographywasperformedat-70°C for3-4days.

PCR Amplification, Cloning, and Sequencing. Two PCR primers were synthesized by the DNA synthesisfacility of theIndiana University Institutefor Molecular and Cellular Biology using an Applied Biosystems (Foster City, CA) model 380ADNAsynthesizer (HSAprimer 2, 5' CATGCA-GATGAGAATATTGAGAC 3'; HSA primer4, 5' GCTG-TACCACTCTATTAGATTCT3'). Theseprimerswereused to PCR amplify (14) a 1.95-kb fragment ofthe HSA gene encompassingthesplice junctions ofexons13, 14,and15(9) from both Venezia and Catania. PCRs were performed ac-cordingtothemanufacturer'sinstructions [10mMTris-HCl,

Abbreviation: HSA, humanserumalbumin.

tPresentaddress:InstituteofApplied Biology,UniversityofSassari,

07100Sassari, Italy.

§Towhomreprint requests should be addressed. 5959

Thepublicationcostsofthis article were defrayed in part by page charge payment.Thisarticlemustthereforebehereby marked "advertisement" inaccordance with18U.S.C. §1734 solely to indicate this fact.

(2)

5960 Biochemistry: Watkinsetal.

565 Exon 13 571 572 Exon 14 585

ALB A

--Glu-Tvr-Cvs-Phe-Ala-Glu-Glu-Glv-Lvs-Lys-Leu-Val-Ala-Ala-Ser-Gln-Ala-Ala-Leu-Glv-Leu

Ter

Exon 13 57 1572 Exon 15 580 I --Glu-Tyr-Cvs-Phe-Ala-Glu-Glu-Pro-Thr-Met-Ar-I1le-Aro-Glu-Arg-LysTer

Exon13 571 572 Exon 15 579

VENEZIA II--G1u-Tyr-Cvs-Phe-Ala-Glu-Glu-Pro-Thr-Met-Arg-Ile-ArM-Glu-Arc

Exon 13 571 572 Exon 15 578 III --Glu-Tyr-Cvs-Phe-Ala-Glu-Glu-Pro-Thr-Met-Arg-Ile-Ari-Glu

FIG. 1. Comparison of the amino acidsequences of theCOOH-terminalregion of normal albumin A(AlbA) and the variablemutant termini found in albuminVenezia. Venezia I represents a putative form that has not been detected in circulating serum. VeneziaIIcomprises20% of the circulating albumin and Venezia III makes up the remaining80%o(2). The arrows indicate exonjunctions. Ter refers to a stop codon in the DNAsequence.

pH8.3/50 mMKCl/2mMMgCl2/0.001%gelatin containing 1-2 ,ug of genomic DNA/1 unit of Perfect Match Enhance (Stratagene), and 2.5 units of AmpliTaq DNA Polymerase (Perkin-Elmer/Cetus)]. Using aPerkin-Elmer/Cetus DNA thermal cycler, the reactionswereamplified for30cycles of the following protocol: denaturation for 1 min at 94°C, annealing for2minat50°C, and polymerization for3minat 72°C with a5-sec extension time for each successive poly-merizationstep.ThePCR productswerethenextractedonce with phenol and twice withchloroform/isoamylalcohol,24:1 (vol/vol), and precipitated with0.1 vol of3 MNaOAc(pH 6.0) and 3 volof 100% EtOH.

The amplified DNA from both Venezia and Cataniawas digestedfor 2 hrat37°C with HindIII(BoehringerMannheim) and Sca I (GIBCO/BRL) using buffers supplied by the manufacturers. The reaction mixture was then phenol ex-tracted andprecipitatedasdescribed above. The 1.75-kb Sca 1-HindIlI HSA gene fragment was ligated (GIBCO/BRL) into Sma I/HindIII-digested BluescriptKS+ (Stratagene).

GIBCO/BRL competentcells were usedfor transforma-tionasdirectedby the manufacturer. The transformantswere plated on LB medium with ampicillin,

Mg2",

5-bromo-4-chloro-3-indolyl

f3-D-galactoside,

and isopropyl /8-D-thiogalactosideandgrownovernightat37°C.Whitecolonies were inoculated in2XYT+Amp, andboilingminipreps (15) were used to isolate plasmid DNA. Proper insert size was confirmedbyagaroseelectrophoresis. Approximately4,ugof supercoiled DNAwas denatured and annealed (16) to syn-thetic internal primers followed by double-stranded DNA sequencing using

[35S]dATP

andSequenase2.0asdescribed in the manufacturer's (United States Biochemical)manual.

RESULTS AND DISCUSSION

SouthernAnalysis. Southern hybridizationanalysisof Ca-tania,Venezia,andwild-type humanDNA(placenta)clearly indicates asingle 1.75-kb HindIII-Sca I band in each lane (Fig. 2)whenprobed witha1.5-kbEcoRI-Sst Ifragmentthat iscompletely internal tothe targetfragment. However, the Venezia bandappears tobeslightly smaller, indicatingthat themutationmaybe dueto adeletion. Thecomigrationofthe Catania 1.75-kb HindIII-Sca I fragment with the wild-type DNAfragment (human placenta) suggests that there is no majorrearrangement in Catania genomic DNA.

DNASequenceAnalysis. Toexaminethe DNAlesionsmore closely, 1-,g samples ofVenezia, Catania, andhuman pla-centalDNA werePCR-amplifiedwithHSA-specificprimers, subcloned intopBluescript (Stratagene), andsequenced.

Catania.Sequenceanalysisof sixindependentclonesfrom anindividual heterozygous fortheCataniamutationindicates deletion ofthe cytosine residue atposition 15985 (Fig. 3).

Three of the clones matched the published sequence of normal HSA (9), and the other three clones exhibited the single-base deletion. This deletion leads to a frameshift mutation inexon14,generatinga mutantCOOHterminusas predicted by Galliano et al. (3), who reported the variant protein sequence to be a replacement of residues 580-585 (Gln-Ala-Ala-Leu-Gly-Leu) (Fig. 1) by residues 580-582 (Lys-Leu-Pro).

Venezia. For the homozygous Venezia variant ofHSA, threeindependent clones from the same PCR-amplification event weresequenced intheir entiretyonbothstrandsof the 1.75-kb HindIII-Sca I fragment foratotalof 10.5 kb. The majorchange in Venezia isamutation that involves the last 29nucleotides ofexon 14and thefirstconsensusnucleotide of intron 14 (Fig. 4). This mutation may be due either to deletion of bases 16,000-16,029 (9) andafive-base insertion consisting of 5' AAAAT 3' or tomultiplesmalldeletions in this region. In sequencing these three mutant clones, we found five "isolated" nucleotides that wereidentical tothe human placental DNA clone (wild-type) but different from thepublishedsequenceof the normal HSAgene(9), suggest-ing that several polymorphisms may exist in the general population. The following nucleotide changes were seen:

position

15229,C-- T; 15542,G-) A; 15557, A-+C; 15748,

T -+ G;and 15813, A-- G. All

position

numbersarebased

on Minghetti etal. (9), who also noted a polymorphism at

nucleotide 15229. Thepolymorphismweobservedatposition 15229 inboth the humanplacenta and the VeneziaDNAleads tothe lossofanSstIsite, causingthe HSAgenetobepresent on a single 20.7-kb Sst I fragment instead of on the two

expected 16.3-kb and4.4-kbfragments.Anadditional nucle-otide change (not listed) that wefound in all three mutant

clones proved to be the result of an early PCR error as 2

1.75 kb

FIG.2. Hybridizationofa1.5-kb Sst I-EcoRlprobe

encompass-ingexons 13and14of thegeneencodingHSAto aSouthern blot of

genomicDNAcutwithHindIII-Sca I.Lanes: 1,wild-type(human placenta); 2,Venezia; 3,Catania.

Proc. Natl. Acad. Sci. USA 88

(1991)

(3)

3G A C G T T A A A 5T

5'GC

A C G T u-. ANO . * a-4-m

FIG. 3. Sequence ladder of the Catania HSA variant showing deletion(*)ofthesingle cytosineatposition 15985. [Numbering isaccording

toMinghetti etal. (9).]

evidenced bytwoindependentrepeatexperiments thatgave

results identical tothe publishedDNAsequence for HSA.

The mutant HSA found in Venezia has been shown by protein sequence analysisto resultfrom replacement of the last 14 amino acid residues by 7or 8different amino acids,

leading to a shortened COOH terminus (Fig. 1) (2). This

abnormality could have been accounted for either by genomic deletionofexon 14 orby an aberrant splicingevent during mRNA maturation (2). The splicing of higher eukaryotic pre-mRNAs is believed to require three elements: the 5' donorsplice site, the 3'acceptorsplice site, anda

pyrimidine-richregion justupstreamof the 3' splice site (17). The 5' and 3' splice sites conform to well-established consensus se-quences in which the G-T and A-G dinucleotides,

respec-tively,areuniversallyconserved. Mutationsateither of these sites mayabolishorgreatly reduce normal splicing, activate

cryptic splice sites,orleadtoexonskipping. FromourDNA

sequencing, it is clear that both the donor and theacceptor

splice junctions of intron 13, as well asthe acceptorsplice junction of intron 14,areunmutated and intact,but the donor

splice junction of intron 14 has been altered from the con-sensusG-TtoT-T.Apparently, this splicing mutationcauses exon14tobe skipped, resulting in direct joining ofexon 13

to exon 15(Fig. 5).

It has been proposed that effective splicing requires a5'

splice junction sequence of 5' (C/A)AG/GU(G/A)AGU 3'

(18). Within thisconsensussplice sequence, the Gatintron

* 5, TT Wild-Type A C G T A T Uaw

AC

TA G AA T T AA T T AA _ A

TTc

ATa G TACT = . m

position 1 is obligatory and its mutationcanabolish normal

splicing. A lariat intermediate is formed between this Gand

an invariant A in the pyrimidine-rich region at the branch point. Complementary basepairing of the 5'donor splicesite with nucleotides 4-11 of the U1 small nuclear RNA (5' CUUACCUG 3') is one of the key steps in the splicing mechanism (19, 20). The most frequently formed pairings comprise only 5-7 bases. Asaresult of the mutationaffecting

the 5' donorsplicejunction betweenexon 14and intron 14,

the mutated Venezia pre-mRNA has fewer possible base pairings with the U1 RNA.

ExonSkipping in Donor SpliceMutations. Otherexamples ofmutateddonor splice junctions causingexonskippinghave

beenreported-e.g., Ehlers-Danlos syndrome, in which a

shortenedpro-a2(I) collagenchain is produced (21),onetype

ofp-thalassemia(22), and classicalphenylketonuria (23). In

thatcase,aG-T-- A-Ttransitionatthe 5' donorsplice site

of intron 12 results in deletion ofexon 12, causing direct

splicing ofexon11toexon13. Furthermore, this deletion in

phenylketonuria produces aframeshift mutation that short-ensphenylalanine hydroxylase by 52 amino acids, leadingto

protein instability and complete loss of enzymatic activity (23).

Intheliver of Nagase analbuminemic rats (which do not

produce albumin),a seven base-pairdeletion in thealbumin gene,extending from base 5tobase 11in the 5' donor splice site of intronH-I, leadstotheprecise deletion ofexonH (24).

Venezia A C G T mum= .0oA . A 3 AT CT A A GT A A AA TA

TTn

TTt

T' A

GTA

AT A T T AC AT 30-bpdeletion/ AAA 5-bpinsertion AA I G TA 5,

FIG. 4. Sequenceladder of theVeneziaHSA variant showingthe 30-base deletion and the 5-base insertion (right-hand bracket). The region inbracketson theleft(*)shows the 30-basesequencethatispresentin wild-typeDNA(human placenta) butmissing intheVenezia clones.

cc

cTG

CC

AG

TA

AAG

Gc

51 Ammombibmik .391M= O"NNM qaawww 400mb 4019ft -T T -I

(4)

5962 Biochemistry: Watkins etal.

a

Normal Albumin mRNASplicing Sst I* Sca I Genomic DNA 13 HSA primer 2 Exonskipping intheVenezia mRNA

b

Normal Albumin Venezia VeneziaA-I A 200bp Hind III EcoRI I AG IAG HSA primer 4 13 ~~~~~~~~~~~~~~~~~15 15994 Exon14 Intron14 16041 5'TTAGGCTTATAACATCACATTTAAAAGCATCTCAGIGTAACTATATTTT 3' 30basedeletion 5'TTAGGC---AAAA TTAACTATATTTT3' L i 5base insertion

FIG.5. (a)Schematic representation of analternativesplicing event: the skipping of exon14caused by deletionofthe 5' donor splice junction of exon 14. Theapproximate positionandextentof the deletion is indicated by the square bracket. The obligatory donor and acceptor nucleotides

fornormalalbuminareshownabovetheline on thegenomicDNA map. ThealteredVeneziasplice junction is shown below the line as indicated by the

double

dagger (t). Relevantrestriction sites and locations of the PCR primers are shown onthegenomic map. Thepolymorphic Sst I

siteisindicated bya star(*). Thefigureis drawn toscaleexceptfor the PCR primers. (b) Comparison of the nucleotide sequence of normal albuminwith that of Venezia at aregionnear theexon14/intron14junction. [Numbering is according to Minghetti etal. (9).]

This

produces

a frameshift in the mRNA resulting in a prematureterminationcodon.

Sofarasweknow, theonlypreviouslyreported mutation in the human albumin gene found to cause a splicing error is asingle base substitution changing the universal A-G dinu-cleotidetoG-Gatthe 3' end ofintron6(25). In thatcase,no serum albuminwas produced, andanalbuminemiaresulted from thesplicingdefect.

PutativeEffects ofSerumCarboxypeptidaseB. InVenezia, the DNAsequenceanalysisof exon 15 matches thepublished sequence for normal serum albumin (9). Therefore, when exon 13 is spliced to exon 15 in the Venezia variant, the albumin shouldend in alysineresidue atposition580(Fig.1). However,analysisofahomozygous Veneziaindividual has previously demonstratedthat80% ofthecirculatingalbumin endswithaglutamicacid residueatposition578 while

20%o

of thecirculatingalbumin terminates inanarginineatposition 579 (2). Furthermore, no circulating albumin has been

de-tected

withalysineattheCOOH terminus. We hypothesize that these basicCOOH-terminal amino acid residues(lysine and arginine) are proteolytically degraded by a circulating carboxypeptidaseB(2).

There areseveral knownexamples ofproteolyticremoval of basic

COOH-terminal

residuesbycarboxypeptidaseB-like enzymes: anaphylatoxins C3a, C4a, and C5a (arginine is released) (26, 27);vasoactive peptides derived from fibrin or fibrinogen

(lysine

is released)(28); and the insulin B chain (arginineis released) (29). Part of theactivationmechanism ofproinsulin to its mature form involves an exopeptidase withcarboxypeptidase B-likespecificity.

This

activityleads tothesequentialremoval of COOH-terminal basicaminoacid residues fromthe insulinB chaingeneratingfunctional insulin

(29).

Stability and Conformation of theCOOH-TerminalVariants ofSerum Albumin. Although subjects homozygous for the CataniaandVenezia variants seem tobeasymptomatic,the variants appear todifferinstabilityfromnormalalbuminA. Inheterozygous subjects the point mutants ofalbuminare generallypresentin the sameconcentration asnormal albu-min.However, bothCOOH-terminal variantsarepresentin lower amount than the normal albumin

(30:70%o)

(2). The currentlyavailablecrystalstructuremap(resolution, 4.0

A)

shows residues 579 and 580 to fall in ornear a disordered region (refs. 30and 31;Daniel C. Carter,personal commu-nication). Thedisordered conformation probablyfacilitates stepwise cleavageof the Venezia albuminby carboxypepti-dase B to produce the forms illustrated in Fig. 1. This post-translational modification may affect the binding of physiologicallyimportant

ligands

suchasfattyacidsand also increase therate of catabolism (2).

CONCLUSIONS

Manyexamplesofframeshift mutationsareknown,butfewer confirmed cases ofexonskippinghave been reported. The interpretationof theCataniamutation isessentially straight-forward in that the single base deletion at the DNA level causes a frameshift mutation leading to an altered COOH terminusaspredictedfrom theproteinsequence(3).On the other hand, as hypothesized from the protein data for an individualhomozygousfor the Venezia trait(2),mostof the matureRNAisapparently generated bytheskipping ofexon 14.The current work has confirmed that this exonskipping is dueto anextensivemodification that involves the 3' end of exon 14and the firstconsensusnucleotide ofthe 5' donor splice junctionofintron14. Mutation of theexon14/intron

(5)

14junctioninactivates the selectionof thissplicesiteand,as aconsequence, exon 13 is spliced directly to exon 15. The protein product of the mutated Veneziageneexistsinseveral formsprobablybecause ofstepwiseprocessingof the disor-dered polypeptidetail by carboxypeptidase B.

We areindebted to Dr. AchillesDugaiczyk for providing albumin genomic and cDNA clones and restriction maps and for helpful

advice and criticism. WethankLawrenceWashington forsynthesis

of the DNA primers.This workwassupported in partbygrants(40%o

and60%6)from the Ministero dell' Universitaedella Ricerca Scien-tifica (Rome) (M.G. and L.M.) andaNorth Atlantic Treaty

Orga-nization grant for international collaboration (CRG 910029 to F.W.P.) and by National Institutes of Health Grant DK19221 (to F.W.P.).

1. Galliano, M., Minchiotti, L., Porta, F.,Rossi, A., Ferri,G., Madison, J.,Watkins, S.&Putnam, F. W.(1990) Proc.NatI.

Acad. Sci. USA 87, 8721-8725.

2. Minchiotti, L., Galliano, M., ladarola, P., Meloni, M. L., Ferri,G., Porta, F. &Castellani, A. A.(1989) J. Biol. Chem. 264, 3385-3389.

3. Galliano, M., Minchiotti, L., ladarola, P., Zapponi, M. C.,

Ferri, G. & Castellani, A. A. (1986) J. Biol. Chem. 261, 4283-4287.

4. Arai, K., Madison, J., Shimizu, A. & Putnam, F. W. (1990) Proc. Natl.Acad. Sci. USA87, 497-501.

5. Takahashi, N., Takahashi, Y., Blumberg, B. S. & Putnam, F. W. (1987) Proc. Natl. Acad. Sci. USA 84, 4413-4417. 6. Takahashi, N., Takahashi, Y. & Putnam, F. W. (1987) Proc.

Natl. Acad. Sci. USA 84, 7403-7407.

7. Takahashi, N., Takahashi, Y., Isobe, T., Putnam, F. W., Fujita, M., Satoh, C. & Neel, J. V. (1987) Proc. Natl. Acad. Sci. USA84, 8001-8005.

8. Brennan, S. O., Arai, K., Madison, J., Laurell, C.-B., Gal-liano, M., Watkins, S., Peach, R., Myles, T., George, P. & Putnam, F. W. (1990) Proc. Natl. Acad. Sci. USA 87, 3909-3913.

9. Minghetti, P.P., Ruffner, D. E., Kuang, W.-J., Dennison, 0. E.,Hawkins,J. W.,Beattie, W. G. & Dugaiczyk, A. (1986) J.Biol. Chem.261,6747-6757.

10. Gross-Bellard, M., Oudet, P. & Chambon, P. (1973) Eur. J. Biochem. 36, 32-38.

11. 13,

7207-7221.

12. Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) Molecular Cloning:A Laboratory Manual (Cold Spring Harbor Lab., Cold Spring Harbor, NY).

13. Feinberg, A. P. &Vogelstein, B. (1984) Anal. Biochem. 132, 6-13.

14. Mullis, K. B., Faloona,F.,Scharf, S., Saiki,R.,Horn, G. & Erlich, H. (1986) Cold Spring Harbor Symp. Quant. Biol. 51, 263-273.

15. Holmes, D. S. & Quigley, M. (1981) Anal. Biochem. 114, 193-197.

16. Zagursky, R. J., Baumeister, K., Lomax, N. & Berman, M. L. (1985) GeneAnal. Tech. 2, 89-94.

17. Lewin, B. (1990) Genes IV (Cell,Cambridge, MA), pp. 595-604.

18. Mount,S. M. (1982)Nucleic Acids Res.10, 459-472. 19. Lerner, M. R., Boyle, J. A., Mount, S. M., Wolin, S. L. &

Steitz,J. A. (1980) Nature (London) 283, 220-224.

20. Rogers, J. & Wall, R. (1980) Proc.Natl. Acad. Sci. USA 77, 1877-1879.

21. Weil, D.,Bernard, M.,Combates, N.,Wirtz,M. K.,Hollister, D.W.,Steinmann,B.&Ramirez,F.(1988)J.Biol.Chem. 263, 8561-8564.

22. Treisman, R., Proudfoot, N. J., Shander, M. & Maniatis, T. (1982)Cell 29, 903-911.

23. Marvit, J., DiLella, A.G., Brayton, K., Ledley, F. D., Rob-son, K.J. H. &Woo, S. L. C. (1987) Nucleic Acids Res. 15, 5613-5628.

24. Shalaby, F. & Shafritz, D. A. (1990) Proc. Natl. Acad. Sci. USA 87, 2652-2656.

25. Ruffner, D. E. & Dugaiczyk, A. (1988) Proc. Natl. Acad. Sci. USA85, 2125-2129.

26. Bokisch, V. A. & Muller-Eberhard, H. J. (1970) J. Clin. Invest. 49, 2427-2436.

27. Gorski, J. P., Hugh, T.E. & Muller-Eberhard, H. J. (1979) Proc.Natl. Acad. Sci. USA76,5299-5302.

28. Belew, M.,Gerdin,B.,Lindeberg, G., Porath, J.,Saldeen, T. &Wallin, R.(1980)Biochim.Biophys. Acta 621, 169-178. 29. Kemmler, W., Peterson, J. D. & Steiner, D. F. (1971) J. Biol.

Chem. 246, 6786-6791.

30. Carter, D.C., He, X.-m., Munson, S. H., Twigg, P. D.,

Gernert,K. M.,Broom, M. B. &Miller,T. Y. (1989) Science 244,1195-1198.

Riferimenti

Documenti correlati

Nun kannst du erkennen, wozu ich Dich ermahne (...), vielmehr nicht ich, sondern der Apostel, ja auch nicht nur er, sondern durch ihn Gott selbst: dass Du der Ordnung Gottes

Katzman K., Iraq: Post-Saddam Governance and Security, Congressional Research Service: Report for Congress, 2009.. National Commission on Terrorist Attacks Upon the United States,

CAMBA R., La crisi finanziaria: cause macro, micro e “istituzionali” (1° parte), in Banche e Banchieri, n° 6, 2009.. CAMBA R., La crisi finanziaria: cause macro, micro

Quantitativamente ciò consiste nella determinazione delle sezioni d’urto di tutti i frammenti nucleari prodotti a partire dalla loro iden- tificazione, ovvero dalla misura della

Parmi les cadeaux offerts au bébé, parfois avant même sa naissance, l’un d’entre eux sera l’objet de transformations constantes  puisque le parent le fera évoluer, avec

water from the eastern basin; in dark grey, the extension of the Chaetomorpha linum high density

Interessante, come si può vedere in Figura 4, è che questo pattern sembra essere inverso quando la Behavioural Inhibition -e per estensione il Disturbo di Ansia di Separazione- sono

10mm hollow chitosan tube and 10mm chitosan tube filled with skeletal muscle fibres (a longitudinal piece of pectoralis major muscle introduced inside the tube, “muscle