• Non ci sono risultati.

Cholinergic and dopaminergic effects on prediction error and uncertainty responses during sensory associative learning

N/A
N/A
Protected

Academic year: 2021

Condividi "Cholinergic and dopaminergic effects on prediction error and uncertainty responses during sensory associative learning"

Copied!
18
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

NeuroImage

journalhomepage:www.elsevier.com/locate/neuroimage

Cholinergic

and

dopaminergic

effects

on

prediction

error

and

uncertainty

responses

during

sensory

associative

learning

Sandra

Iglesias

a,∗

,

Lars

Kasper

a,b

,

Samuel

J.

Harrison

a

,

Robert

Manka

c

,

Christoph

Mathys

a,d

,

Klaas

E.

Stephan

a,e

a Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & Swiss Federal Institute of Technology (ETH Zurich), Wilfriedstr. 6, 8032 Zurich, Switzerland

b Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Switzerland c Department of Cardiology, University Hospital Zurich, Switzerland

d Interacting Minds Centre, Aarhus University, Aarhus, Denmark e Max Planck Institute for Metabolism Research, Cologne, Germany

a

r

t

i

c

l

e

i

n

f

o

Keywords: Acetylcholine Dopamine Biperiden Amisulpride Basal forebrain Ventral tegmental area Substantia nigra Neuromodulation fMRI

Hierarchical Gaussian Filter

a

b

s

t

r

a

c

t

Navigatingthe physicalworldrequireslearningprobabilistic associationsbetweensensoryeventsandtheir changeintime(volatility).Bayesianaccountsofthislearningprocessrestonhierarchicalpredictionerrors(PEs) thatareweightedbyestimatesofuncertainty(oritsinverse,precision).InapreviousfMRIstudywefoundthat low-levelprecision-weightedPEsaboutvisualoutcomes(thatupdatebeliefsaboutassociations)activatedthe pu-tativedopaminergicmidbrain;bycontrast,precision-weightedPEsaboutcue-outcomeassociations(thatupdate beliefsaboutvolatility)activatedthecholinergicbasalforebrain.Thesefindingssuggestedselectivedopaminergic andcholinergicinfluencesonprecision-weightedPEsatdifferenthierarchicallevels.

Here,wetestedthishypothesis,repeatingourfMRIstudyunderpharmacologicalmanipulationsinhealthy par-ticipants.Specifically,weperformedtwopharmacologicalfMRIstudieswithabetween-subjectdouble-blind placebo-controlleddesign:study1usedantagonistsofdopaminergic(amisulpride)andmuscarinic(biperiden) receptors,study2usedenhancingdrugsofdopaminergic(levodopa)andcholinergic(galantamine)modulation. Pooled acrossallpharmacologicalconditionsof study1andstudy2,respectively,wefoundthatlow-level precision-weightedPEsactivatedthemidbrainandhigh-levelprecision-weightedPEsthebasalforebrainasin ourpreviousstudy.However,wefoundpharmacologicaleffectsonbrainactivityassociatedwiththese com-putationalquantitiesonlywhensplittingtheprecision-weightedPEsintotheirPEandprecisioncomponents: inabrainstemregionputativelycontainingcholinergic(pedunculopontineandlaterodorsaltegmental)nuclei, biperiden(comparedtoplacebo)enhancedlow-levelPEresponsesandattenuatedhigh-levelPEactivity,while amisulpridereducedhigh-levelPEresponses.Additionally,intheputativedopaminergicmidbrain,galantamine comparedtoplaceboenhancedlow-levelPEresponses(inabody-weightdependentmanner)andamisulpride enhancedhigh-levelprecisionactivity.Taskbehaviourwasnotaffectedbyanyofthedrugs.

Theseresultsdonotsupportourhypothesisofaclear-cutdichotomybetweendifferenthierarchicalinference levelsandneurotransmittersystems,butsuggestamorecomplexinteractionbetweentheseneuromodulatory systemsandhierarchicalBayesianquantities.However,ourpresentresultsmayhavebeenaffectedbyconfounds inherenttopharmacologicalfMRI.Wediscusstheseconfoundsandoutlineimprovedexperimentaltestsforthe future.

1. Introduction

Navigatingcomplexphysicalenvironmentsrequiresarepresentation ofprobabilisticassociationsbetweeneventsintheworld.Apopular no-tionincontemporarycomputationalandcognitiveneuroscienceisthat

Correspondingauthor.

E-mailaddress:iglesias@biomed.ee.ethz.ch(S.Iglesias).

thebrainmastersthischallengebyconstructingandcontinuously updat-inganinternalmodeloftheenvironment(technicallyspeaking,a gen-erativemodelofitssensoryinputs;Dayanetal.,1995;Friston,2005). Thisgenerativemodelthenservestoinferthehiddencausesofcurrent sensationsandpredictfuturesensations.

https://doi.org/10.1016/j.neuroimage.2020.117590

Received6June2020;Receivedinrevisedform20October2020;Accepted19November2020 Availableonline4December2020

(2)

This general “Bayesianbrain” notion is reflected byseveral con-crete concepts, such as predictive coding (Rao and Ballard, 1999; Friston, 2005) or hierarchical filtering (Mathyset al., 2011). In ac-cordancewithlong-standingneuroanatomicalfindings(Fellemanand VanEssen,1991;Hilgetagetal.,2000),theseconceptsassumethatthe brain’smodelhasahierarchicalstructure,providingabasisfor hierar-chicalBayesianinference.Putsimply,thekeyideaisthateachlevelof thehierarchyholdsabelieforpredictionaboutthelevelbelowthatis updatedbyascendingpredictionerrors(PEs).

One established experimental paradigm toprobe hierarchical in-ference is probabilisticassociative learning undervolatility. This in-volvescue-outcomepairswhoseassociationstrengthschangeovertime (Behrensetal.,2007;Iglesiasetal.,2013;Diaconescuetal.,2017).In thissetting,thebrainneedstocomputetwodifferenttypesofPEsfor up-datinghierarchicallycoupledbeliefs:alow-levelPEabouttheoutcome andahigh-levelPEabouttheprobabilityofthatoutcome.Importantly, thesePEsareweightedbyestimates ofuncertainty(orprecision,the inverseofuncertainty)thatmodulatethemagnitudeofbeliefupdates (Mathysetal.,2011;Mathysetal.,2014).

Wehavepreviouslyestablishedanassociativesensorylearningtask undervolatilitywhichistailoredtoanalysisbyahierarchicalBayesian model(Iglesiaset al.,2013).Afunctionalmagnetic resonance imag-ing(fMRI) studyof this task in healthyvolunteers suggested a pos-sible link between different precision-weighted PEs and activity in distinct neuromodulatory regions. In brief, we found that low-level precision-weightedPEsaboutsensoryoutcome(𝜀2)activated the

pu-tativedopaminergicmidbrain,whereashigh-levelprecision-weighted PEsabouttheoutcome’sprobability(𝜀3)werereflectedbyactivityin

thecholinergicbasalforebrain,ormoreprecisely,inits septal subre-gion(areaCh1-2;Zaborszkyetal.,2008).Asubsequentstudyusinga similarcomputationalmodelreplicatedtheseeffectsforsociallearning, withlow-levelPEsactivatingtheputativedopaminergicmidbrainand high-levelPEsactivatingthebasalforebrain(Diaconescuetal.,2017).

Thepossibility thatactivityof twodistinct neuromodulatory sys-temscouldbe probedbya singleneuroimagingparadigm is intrigu-ing,giventheneedforcomputationalassaysofneuromodulationthat couldguidedifferentialdiagnosisandtreatmentpredictionin psychi-atry(Stephanetal.,2006;Stephanetal.,2015).However,theblood oxygenleveldependent(BOLD)signaloffMRImayrepresentamixture ofdifferent neurophysiologicalprocesses,andboththemidbrainand basalforebraincontainavarietyofdifferentneurons(seeIglesiasetal., 2013fordiscussion).Itisthusnecessarytoverifytowhatdegreeour previousfindingstrulyreflectdopaminergicandcholinergicresponses. Furthermore,adirectcomparisonbetweenlow-levelPEsandhigh-level PEsinordertotestfordifferentialactivationswithinthenucleiisnot possiblewithinthecurrentanalysisframework,astheseregressorslive ondifferentscales;standardising(e.g.z-scoring)theseregressorswould change their interpretation and result in additional complex effects (Lebretonetal.,2019).Therefore,thisstudyattemptstoaddressthe questionofaninvolvementofdopaminein low-levelPEsand acetyl-cholineinhigh-levelPEsbyusing pharmacologicalmanipulationsof dopaminergicandcholinergicreceptorsinhealthyvolunteers.

Here,wepresenttheresultsfromtwopharmacologicalfMRIstudy inhealthyvolunteers(N=81participantsineachstudy;after exclu-sion,N=75(study1)andN=69(study2)).Thesestudiesemployed selective dopaminergicandcholinergicantagonists (study1: amisul-prideandbiperiden) anddopaminergic andcholinergicpotentiating drugs(study2:levodopaandgalantamine),usingthesame computa-tionalmodelingframework asin our previous study(Iglesias et al., 2013).ThebehaviouralandfMRIdatafromoneof thethreegroups instudy1(theplacebogroup)havepreviouslybeenpublishedaspart ofIglesiasetal.(2013).Herewereportdifferentialeffectsof amisul-pride/biperidenvs.placeboandlevodopa/galantaminevs.placeboon thebehaviouralandfMRIdata,aswellasanalyseswhereweaveraged acrossallthreepharmacologicalconditionswithineachstudy.

Basedonourpreviousfindings(Iglesiasetal.,2013),ourgeneral hypothesiswasthattheprecision-weightedoutcomePE(𝜀2)specifically

reflectsdopaminergicprocessesinthemidbrainandthatthe precision-weightedprobabilityPE(𝜀3)isspecificallyrelatedtocholinergic

pro-cessesinthebasalforebrain.

This generalhypothesisallowsfortwomorespecificandtestable predictions.Beforewedescribetheseindetail,itisworthpointingout that testing dopaminergicandcholinergic mechanismswith systemi-callyactiveantagonistsiscomplicatedbytheexistenceoftwo oppos-ingpharmacologicaleffects:ontheonehand,antagonistscanblock in-hibitory autoreceptors(locatedonsomataandaxon terminals), lead-ingtodisinhibition(CraggandGreenfield,1997).Ontheotherhand, antagonists inhibitpostsynapticreceptors; these couldbe located on neuronsinremoteprojectionsites(wheretheyareactivatedby synap-ticorvolumetransmission;Zolietal.,1999;Craggetal.,2001)oron nearbyinterneurons(wheretheyareactivatedbyparacrinereleaseof transmitters;Zolietal.,1999).Thisdualmodeofactioncanmake in-terpretationsofpharmacologicalstudieswithsystemicapplication dif-ficult.Forexample,for amisulpride,itis assumedthatlowandhigh doseshaveoppositeneteffects,withinhibitionofautoreceptors domi-natingatlowdosesandinhibitionofpostsynapticreceptorsprevailing athighdoses(Schoemakeretal.,1997;Rosenzweigetal.,2002). Sim-ilarly,thesystemicapplicationofpharmacologicalsubstanceslike lev-odopaandgalantamine,whichincreasetheavailabilityofthe respec-tiveneurotransmitter,doesnotallow forstraightforwardconclusions aboutwhichofthemechanismsmentionedabovemightdominate. Fi-nally,intheabsenceofplasmalevelmeasurementsandinorderto(at leastpartially)accountforindividualdifferencesinpharmacokinetics, weincludedbodyweightasacovariateinoursecond-levelfMRI anal-yses.Thiswasmotivatedbythefactthatbodyweightisonefactorof individualvariabilityinpharmacokinetics,forexample,becauseitcan influenceadrug’svolumeofdistribution(withlargerbodyweight typ-icallyassociatedwithlargervolumeof distribution)and,foragiven dose,plasmaconcentrationdecreaseswiththevolumeofdistribution.

Withthesecaveatsinmind,afirstpredictionconcernsactivityin theneuromodulatorynucleithemselves.Specifically,acorollaryofour generalhypothesisis thatonewouldexpecttosee thatthemidbrain activationby 𝜀2 andthebasalforebrainactivationby𝜀3 arealtered

specificallybydopaminergicandcholinergicsubstances,respectively. Thiscorrespondstothefollowinginteractioneffects:

(i) Theeffectof𝜀2onmidbrainactivityshouldbealteredsignificantly

morestronglybyamisulpridecomparedtobiperidenandplacebo, andbylevodopa,comparedtogalantamineandplacebo.1

(ii) Theeffectof𝜀3onbasalforebrainactivityshouldbealtered

signifi-cantlymorestronglyunderbiperidencomparedtoamisulprideand placebo,andundergalantaminecomparedtolevodopaandplacebo. Notably,eitheroftheseeffectscouldbeexertedby𝜀2 or𝜀3intoto

(ascompoundquantities)orcouldresultfromoneofthecomponents (i.e.,thePEortheprecision-weight).

Asecond(andequivalent)predictionconcernsremotetargetareasof dopaminergicandcholinergicprojections.Giventhewidespread distri-butionofcholinergicand,toalesserdegree,dopaminergicprojections totherestofthebrain,itismoredifficulttospecifyexanteinwhich re-gionsoneexpectspossiblealterationsofPE-relatedactivityby dopamin-ergicandcholinergicdrugs(seeDiscussion).Wethereforetestedthis predictioninaspatiallylessinformedmannerusingwhole-brain analy-ses.

Inbrief,ouranalysesexaminingprecision-weightedPEsintotoand theirseparatecomponents,respectively,didnotprovideclear-cut evi-denceforanunambiguousone-to-onerelationbetweenquantitiesfrom

1Onewouldliketoaddthehypothesis“significantlymoreinthemidbrain

thaninthebasalforebrain”.Testingthistypeofregion-by-conditioninteraction, however,isprohibitedinfMRIasthescalingofBOLDsignalcandifferacross regionsduetodifferencesinneurovascularcoupling.

(3)

ourhierarchicalBayesianmodelanddistinctneuromodulatorysystems, aswehadhopedtofind.Thereareseveralreasons– inadditiontothis relationbeingtrulyabsent,ofcourse– thatcouldexplainourresults.We discussthesepossibilitiesindetail,outliningfuturetestsbasedonthe existingdata.Moregenerally,weusethecurrentexample,toshowcase thecomplexitiesandambiguitiesinherenttopharmacologicalfMRI.

2. Methods

2.1. Subjects

Eighty-onehealthymalevolunteers(meanage±standarddeviation, SD;study1:22±2.4years;study2:22±3.0)participatedineachof thetwoplacebo-controlleddouble-blindpharmacologicalstudieswith abetween-subjectdesign.Withineachstudyvolunteerswererandomly assignedtooneofthreepharmacologicalconditionssuchthateach phar-macologicalconditioncontainedtwenty-sevenvolunteers.Toexclude variationsof hormonal effectson the BOLDsignal (Goldstein et al., 2005),weonlyrecruitedmaleparticipants.Volunteerswereall right-handed,non-smokers,withoutanypsychiatricorneurologicaldisorders intheirpastmedicalhistory,andwerenottakinganymedicationatthe time.Additionally,before includingvolunteers inthestudy,an elec-trocardiogram(ECG)wasrecordedandevaluatedbyaboard-certified cardiologist(R.M.)toexclude thepresenceof potentially arrhythmo-geniccardiacpredispositionsthatcouldhaveposedrisksfor pharma-cologicaltreatment.Notably,thesestudieswereacquiredconsecutively andseparatelyfromeachother.Whiletheinclusionandexclusion cri-teria wereidentical in both studies, participantswere not explicitly matchedbetweenstudies,andnoanalysesbetweenstudieswere per-formed.Participantswerenotexplicitlymatchedacrossdrugconditions either.However,ournarrowinclusionandexclusioncriteriaprevented differencesinmostrelevantvariablesexceptage.Agewasnot signif-icantlydifferent betweendrug groupsin eitherof thestudies(study 1:F(2,72) =0.467,p=0.629,BF10=0.164;study2:F(2,66) =0.194, p=0.824,BF10=0.141).

Ethicsapprovalwasobtainedbythelocallyresponsibleauthorities (KantonaleEthikkommission,KEK2011-0101/3).Allparticipantsgave writteninformedconsentbeforeparticipatinginthestudy.

Priortodataanalysis,eachsubject’sbehaviouraldata(seebelow) wereexaminedforinvalidresponses.Twobehaviouralmeasureswere examinedforeachsubject:trial-wisereactiontimes (RT)andpercent correctresponses(%CR).%CRmeasureswereadjustedtoaccountfor theprobabilisticnatureofthetask,thatis,theywereexpressedin rela-tiontothemaximum%CRthatanagentwithperfectknowledgeofthe probabilistictaskstructurecouldachieve(i.e.74%).Invalidtrialswere definedbythelackofanyresponse(missedresponses)orbyexcessively longreactiontimes(lateresponses;>1500msaftercuepresentation,i.e. atstartoftargetpresentation).Participantswithmorethan15%invalid trialsorlessthan65%CRwereexcludedfromfurtheranalyses.These criterialedtotheexclusionoffiveparticipantsinstudy1(twofromthe amisulpridegroupandthreefromthebiperidengroup)andsix partici-pantsinstudy2(threefromthelevodopagroup,twofromtheplacebo group,andonefromthegalantaminegroup).Furthermore,wehadto excludeoneparticipantperstudyduetoclaustrophobia(biperidenand galantaminegroup,respectively)andfromstudy2twoparticipantsdue tolargemovementartefacts(morethan40additionalregressors censor-ingscanswith≥1mm(translation)or≥1º (rotation)scan-to-scanhead movement;bothfromthegalantaminegroup),oneduetonausea (lev-odopagroup),oneduetodrop-outsinthemidbrainregioninthefMRI data(galantaminegroup),andoneduetoproblemswithmodel-fitting ofthewinningmodel(galantaminegroup).Asaconsequence,thefinal dataanalysisincluded75participants(22±2.3years)instudy1(25 participantsintheamisulpridecondition,23inthebiperiden,and27in theplacebocondition)and69participants(22±3.1years)instudy2 (22participantsinthelevodopacondition,22inthegalantamine,and 25intheplacebocondition).

2.2. Drugadministration

Drug administrationwas performedin arandomisedand double-blindfashion.

In study1 each participantreceived eithera single oraldose of thecholinergic(muscarinic)antagonistbiperiden,thedopaminergic an-tagonistamisulpride,orplacebo(lactose).Basedonpreviousstudies, dosagewaschosenas4mgbiperiden(Guthrieetal.,2000)or400mg ofamisulpride(Rosenzweigetal.,2002),respectively.Drug administra-tiontookplace90minutesbeforestartingthefirsttask(seebelow),as forbothbiperidenandamisulpride,thepeakplasmalevelisattained withinapproximately1.5h(Grimaldietal.,1986;Hamon-Vilcotetal., 1998).

Instudy2subjectsreceivedeitherasingleoraldoseof8mg galan-tamine(acetylcholinesteraseinhibitor),200mglevodopa(prodrugof dopamine)combinedwith50mgoftheperipheraldecarboxylase in-hibitorbenserazide,orplacebo(lactose).Drugadministrationstarted 60 minbefore startingthefirsttask,asforbothsubstancesthepeak plasma level is attained within approximately 1–2 h (Farlow, 2003; KhorandHsu,2007;NoetzliandEap,2013).

2.3. Experimentaldesign:associativelearningtask

Inboth studies,participantsperformed thesameaudio-visual as-sociative learningtask(stimulus-stimulus learning,SSL) asdescribed previously(fMRIstudy2inIglesiasetal.,2013;Iglesiasetal.,2019). Inbrief,participantshadtolearnthepredictivestrengthsofauditory cues (AC)inorder topredict,asquickly andaccuratelyas possible, whichoftwopossiblevisualtarget(VT)categorieswouldfollow(aface orahousepicture,Fig.1A).Importantly,thecue-outcomeassociation strength changedover time(volatility),includingstronglypredictive cues(probabilitiesof0.9and0.1),moderatelypredictivecues(0.7,0.3) andnon-predictivecues(0.5;Fig.1B).Participantswerenotinformed aboutthesequenceofprobabilities.Theywereinstructedexplicitlythat learningone associationwas sufficienttoinfertheentire probabilis-ticstructureofthetask(seeSupplementaryMaterialinIglesiasetal., 2013).

The two possible ACs, lasting for 300 ms, included high tones (576Hz)andlowtones(352Hz),werefollowedbytheVT(presented for300ms) 1200mslater.Duringthisinterval,theparticipantshad toindicatebybuttonpresswhethertheypredictedafaceorhouseto appear,providinguswithanexplicitbehaviouralreadoutofprediction (Fig.1A).TheappearanceoftheVTgaveparticipantsexplicitfeedback abouttheirpredictionsandallowedthemtoupdatetheirbeliefs trial-by-trial.Therewerenotrial-wisemonetaryrewards.Participantsreceived afixedpaymentforparticipatinginthestudy,whichwasindependent oftheirtaskperformance.

To ensure that participantsperceived both tones equallyloudly, they performedapsychophysicalmatchingtask withintheMR scan-ner(denOudenetal.,2010),priortothetask.Stimuliwerepresented usingCogent2000(www.vislab.ucl.ac.uk/Cogent/index.html).

2.4. Questionnaires

To controlfor potential changes in vigilanceand arousal due to the drugs,two questionnaires wereapplied: theEpworth Sleepiness Scale (ESS; Johns, 1991) and the Karolinska Sleepiness Scale (KSS; AkerstedtandGillberg,1990).However,onlytheKSSscoreswereused ascovariatesinthefMRIgroupanalyses.

IntheKSS,thesubjectivelevelofsleepinessatdifferenttimepoints duringthedayismeasured.Hereweexplicitlyaskedthemtoratetheir alertnessduringthefMRImeasurements.Subjectshadtoindicateona 9-pointscale,fromextremelyalert(1)toextremelysleepy(9),whichlevel bestreflectstheirpsycho-physicalstate(AkerstedtandGillberg,1990).

(4)

Fig.1. Taskandcomputationalmodel

A)Thesensory-sensoryassociativelearningtask(SSL).Subjectshadtopredictwithin1200mswhichvisualstimulus(faceorhouse)followedanauditorycue(high orlowtone).B)Black:theprobabilistictrajectoryvisualizingthechangeintheassociationstrengthbetweentheauditorycuesandthevisualtargets,including highassociations(probabilitiesof0.9and0.1),moderateassociations(0.7,0.3)andnoassociations(0.5);red:trajectoryexampleofasubject-specificposterior expectationofthevisualoutcome“Face” giventheauditoryhightone(HT).C)HGF:HierarchicalGaussianFilter:x1representstheidentityofthestimulus(stimulus

category),x2thetendencytowardsoneofthecategories(theconditionalprobabilityofthetargetgiventhecueinlogitspace),andx3representsthe(log)volatility

oftheenvironment.Thefigurehasbeenadapted,withpermission,fromIglesiasetal.(2013).

2.5. Computationalmodelingofbehaviouraldata

ThebehaviouraldatawereanalysedusingtheHierarchicalGaussian Filter(HGF).Thismodeldescribeshierarchicallearningatmultiple lev-elsintermsof coupledGaussianrandomwalks(Mathysetal.,2011; Mathysetal.,2014).Theupdateequationsinthismodelareanalytic andcontainclassicaldelta-ruleorreinforcementlearningasaspecial case,withprecision-weightedPEsdrivingbelief updatingatdifferent levelsofthehierarchicalmodel.

Here,weusedanidenticalimplementationoftheHGFasinour pre-viousstudy(Iglesiasetal.,2013)andconsideredthreealternative mod-els:Afirstmodel,hgf3l,correspondedtothestandardthree-levelHGF

asdescribedbyMathysetal.(2011);Fig.1C.Forourlearningtask, thefirstlevelofthismodelrepresentedtheoccurrenceoftheauditory andvisualstimuli,thesecondleveltheconditionalprobabilityofthe visualstimulusgiventheauditorycue,andthethirdlevelthechange inthisconditionalprobability(i.e.,log-volatility).Freesubject-specific learningparametersincludedϑ (thespeedoflearningaboutthe(log) volatilityoftheenvironment)and𝜅 (whichdeterminedhowmuchthe estimatedenvironmentalvolatilityaffectedthelearningrateatthe sec-ondlevel).AsexplainedinMathysetal.(2014),forHGFapplications wherethebelief trajectoryat thethirdlevel doesnotinformthe re-sponsemodel,notalloftheperceptualparametersoftheHGFare iden-tifiable.Therefore,inordertoensureparameteridentifiabilitywefixed thelearningparameter𝜔(whichisaconstantcomponentofthe learn-ingrateatthesecondlevel)to-4.Theperceptualmodelwascombined witharesponsemodelthatlinkedtrial-wiseestimatesoftheconditional probability(ofthevisualstimulusgiventheauditorycue)totrial-wise behaviouralresponses(i.e.,thesubjects’predictionsofvisualstimulus category)bymeansof asigmoidfunctionwithparameter𝜁.This en-abledustoinverttheHGFinordertoobtainsubject-specificparameter estimatesandbelieftrajectories(ofPEsandprecisions)foralllevelsof themodel.However,itshouldbenotedthatforthebehavioural anal-ysesoftheHGFparameters,werestrictedourselvesto𝜅 and𝜁,which

couldbewellrecoveredinsimulations,whereasϑ wasnotrecoverable (seeFigureS3,SupplementaryMaterial).

The HGF software used for the analyses in this paper (hgfTool-Box_v1.0)isavailableatwww.translationalneuromodeling.org/tapasas opensourcecode(GPLv3).Allupdateequationsaredescribedindetail byMathysetal.(2011,2014).

UsingrandomeffectsBayesianmodelselection(BMS;Stephanetal., 2009; Pennyetal.,2010),we comparedthis three-levelHGF(hgf3l) to two additional models: (i)a reduced model, hgf2l, in which the

thirdlevel(thelog-volatilityoftheenvironment)wasomitted;this rep-resentedthepossibilitythatparticipantsdidnot trackandmake use ofvolatility;and(ii),anon-hierarchicalRescorla-Wagner(RW)model withfixedlearningrate.BMSoperatesonthelog-evidence,which cor-respondstothenegativesurpriseofencounteringthedatagiventhe model,andquantifiesthetrade-off betweenaccuracy(fit)andmodel complexity. Please note that we could not use model “HGF2” from

Iglesiasetal.(2013)becausethisreferredtothepredictionoftrial-wise rewards– whichdidnotexistinthepresentstudy.

UsingtheHGFweestimatedsubject-specifictrajectoriesofdifferent computationalquantitiesthatwereusedforsubsequentfMRIanalyses. Inourfirstgenerallinearmodel(GLM1)analysisoffMRIdata,the fol-lowingthreequantitieswereusedasparametricmodulators,asinour previousanalysis(Iglesiasetal.,2013):

(i) 𝜀2(= 𝜓2⋅ 𝛿1),theprecision-weightedPEaboutvisualstimulus

out-come2(whichupdatestheestimateofvisualstimulusprobabilityin

logitspace,𝜇2);

(ii) 𝜀3(≈ 𝜓3⋅ 𝛿2)theprecision-weightedPEaboutvisualstimulus

prob-ability3(whichupdatestheestimateofenvironmentallogvolatility,

𝜇3);

2Forthemathematicaldefinitionofprecisionweight𝜓

2andPE𝛿1,seeEq.

A.7inSupplementaryMaterialtoIglesiasetal.,2013.

3Forthemathematicaldefinitionofprecisionweight𝜓

3andPE𝛿2,seeEq.

(5)

(iii) 𝜀𝑐ℎ,theprecision-weightedchoicePEaboutvisualstimulusoutcome. Inasubsequentanalysis(GLM2), wesplittheprecision-weighted predictionerrorsintotheircomponents,resultinginthefollowing parametricmodulators:

(i) 𝛿1,thePEaboutvisualstimulusoutcome;

(ii) 𝛿2,thePEaboutvisualstimulusprobability;

(iii) 𝜓2, precisionweight at thesecond level; this corresponds tothe

learningratebywhichvisualstimulusprobabilityestimatesare up-dated;

(iv) 𝜓3,precisionweightatthethirdlevel; thisisproportional tothe

learningratebywhich(log)volatilityestimatesareupdated; (v) 𝛿𝑐ℎ,thechoicePEaboutvisualstimulusoutcome.

Notethatowingtotheunambiguousnatureof theoutcomes,our sensoryassociativelearningtaskinvolvedinformationaluncertainty(or estimationuncertainty,i.e.theuncertaintyaboutoutcome probabili-ties,capturedby𝜓2)andenvironmentaluncertainty(i.e.changesinthe

probabilitieswithtime,capturedby𝜓3),butdidnotinvolvesensory

uncertainty.

As thepredictions in this task were of a categorical nature and theprobabilitieswerecoupledforbothlearningtrajectories,we com-putedtheabsolutevalueofboth,theprecision-weightedpredictionerror (𝜀2),andofthepredictionerror(𝛿1)abouttheoutcome(thisis

iden-ticaltocomputing separate trajectoriesfor bothstimuluscategories; seeSupplementaryMaterialtoIglesiasetal.,2013).Thus,the lower-levelprecision-weightedpredictionerror(𝜀2)andthelower-level

pre-dictionerror(𝛿1)representthedifferencebetweentheactualvisual

out-comeanditsaprioriprobability.Bycontrast,theprecision-weighted choicepredictionerror(𝜀𝑐ℎ)andthelower-levelpredictionerror(𝛿𝑐ℎ) aresignedpredictionerrorsandrepresentthedifferencebetweenthe participant’schoicebeingcorrectandtheaprioriprobabilityofthe cor-rectnessofthischoice.Therefore,thechoicepredictionerrorispositive whentheparticipantmadeacorrectchoiceandnegativewhenthe par-ticipantwaswrong(seeSupplementaryMaterialtoIglesiasetal.,2013). 2.6. Classicalinference

Weperformedunivariateanalysesofcovariance(ANCOVA)totest whetherthereweresignificantdifferencesinbehaviouracrossthe phar-macologicalconditions.ForthisweusedthetwoHGFparameters, reac-tiontime(RT),andpercentcorrectresponses(%CR)asdependent vari-ables,weight,andKSSscoresascovariates,anddrugconditionas inde-pendentvariable.WereportsignificanteffectsataBonferroni-corrected significancethresholdof0.05/4=0.0125.BeforerunningtheANCOVAs weverifiedthattherewerenodifferencesacrossgroupsinthe covari-ates.ThesestatisticalanalyseswereperformedinIBMSPSSStatistics (Version23.0).

Atthesuggestionofareviewerwecomplementedourfrequentist analyseswiththeirBayesiancounterpartsusingthesoftwareJASP (Ver-sion0.13.1; JASP Team, 2020) andreport thecorresponding Bayes factor expressed as BF10, which is computed as the ratio between the probability of the data giventhe alternative hypothesis H1 and theprobability ofthedatagiventhenullhypothesisH0.Asstatedin

Wagenmakersetal.(2018b),BF10 “...grades thedegree ofevidence thatthedataprovidedforH1versusH0“.Accordingtotheir classifi-cation,aBF10rangingfrom3-10reflects“moderate” evidence,aBF10

1030“strong” evidence,aBF1030-100“verystrong” evidence,anda

BF10>100“extreme” evidenceinfavourofthealternativehypothesis

(Wagenmakersetal.,2018a).ForallBayesiananalyses,Cauchyprior distributionswere used, as is default in JASP (Wagenmakers et al., 2018a).Asacaveat,thecurrentBayesianANOVAimplementationdoes notaccountforpotentialviolationsofsphericityandnormality, there-fore,theseresultsshouldbeinterpretedwithcaution (vandenBergh etal.,2020).

2.7. fMRIdataacquisitionandstatisticalanalysis

InbothstudiesstructuralandfunctionalMRIdatawereacquired ona3TeslaPhilipsAchievawholebodyMRScanner(PhilipsMedical Systems)equippedwithaneight-channelPhilipsSENSEhead-coil.The structuralimagewasacquiredusingaT1-weightedsequence(inversion

recoveryMPRAGEsequence;resolution=1.1×1.1×0.6mm; inver-siontime(TI)=875ms;repetitiontime(TR)=2.8s).AT2∗-weighted

echo-planarimagingsequencecoveringthewholebrainwasusedfor functionaldataacquisitionandlastedfor∼23min,ormore specifi-callyfor550volumeswithaTRof2500ms,aslicethicknessof3mm; in-planeresolutionof2×2mm;interslicegapof0.6mm;ascending continuousin-planeacquisition;TE=36ms;flipangle=90°;fieldof view=192×192×118mm;SENSEfactor=2;EPIfactor=51(as inIglesiasetal.,2013).Asecondorderpencil-beamvolumeshim (pro-videdbyPhilips)wasappliedtoaccountforfieldinhomogeneities.The fMRIsequenceweusedwasoptimisedforsignalqualityinbrainstem andbasal forebrain,resulting in signal dropoutsin theorbitofrontal cortex(seeFig.S6).Therefore,noconclusionscanbedrawnaboutthe representationofourcomputationalquantitiesinthisregion.

Inordertoenablephysiologicalnoisecorrectionofbreathingand heartbeatrelatedsignalvariance,participantsworeabreathingbelt, andanelectrocardiogramwasobtainedduringfMRIdataacquisition.

WeanalysedallfMRIdata– includingtheplacebogroupdata pre-viouslypublishedinIglesiasetal.(2013)– usingStatisticalParametric Mapping(SPM),version12(r7487).Preprocessingstepsincluded mo-tioncorrectionofthefunctionalimages(realignment),co-registration tothestructuralimage,warping ofthefunctionalandstructural im-ages toMNI spaceusing the“New Segment” toolboxin SPM12, re-sampling to 1.5 × 1.5 × 1.5 mm resolution, andsmoothing of the functionalimageswitha6mmfull-widthathalfmaximumGaussian kernel. Signal-to-noiseratiooptimizationforrelevantregions suchas the brainstem, wasperformed by correctingforphysiological noise using RETROICOR (Glover et al., 2000) based on the PhysIO tool-box(expansionorderoftheregressors:3rd,4th,1storderforcardiac, respiratoryandinteractionbetweenrespiratoryandcardiaccycle, re-spectively (Harvey etal., 2008)) andbyentering intothefirst-level GLMsregressorsobtainedfromprincipalcomponentanalysis(PCA)of white matterandcerebrospinalfluid(CSF; Behzadietal., 2007) us-ingthePhysIOtoolbox(version2019b,v7.2.1)(Kasperetal.,2017; www.translationalneuromodeling.org/tapas).

Wespecifiedtwodifferentvoxel-wisegenerallinearmodels(GLMs) foreachparticipant.Inbothofthesefirst-levelGLMswespecified re-gressorsrepresentingthetwovisualtrialtypes(face,house),eachof whichwasmodulatedbyseveralcomputationalquantitiesthatwere es-timatedfromtheindividualbehaviour.Specifically,inGLM1weused thesubject-specifictrajectoriesofprecision-weightedPEs𝜀2,𝜀3,𝜀𝑐ℎas computational(parametric)modulators.InGLM2wesplitour computa-tionalquantitiesintoprecisionandpredictionerrorcomponents, result-inginthefollowingparametricmodulators:𝛿1,𝛿2,𝜓2,𝜓3,𝛿𝑐ℎ.Inboth GLMs,theregressorswerenotorthogonalisedtoeachotherandwere time-lockedtotheoutcomephase.Additionally,wemodeledmissedand lateresponses,respectively,byseparateregressors.Allregressorswere convolvedwithacanonicalhemodynamicresponsefunctionandits tem-poralderivative.

Inadditiontotheseregressorsofinterest,ourfirst-levelGLMsalso includedregressorsrepresentingpotentialconfounds.Thisincludedthe realignment parameters, their first derivative, a regressor censoring scanswith≥1mmor≥1º scan-to-scanheadmovement,physiological confoundvariablesrelatedtocardiacactivityandbreathing(provided bythePhysIOtoolbox),andthePCAregressorsforwhitematterand CSF.

Contrastsofinterestsatthefirstlevelincludedtheaverageeffectof each computationalquantity(parametricmodulator)specifiedabove. Thesecontrastswereenteredintostudy-specificseparatesecond(group) levelANOVAs(fullfactorialdesign)thatcomparedthethreedifferent

(6)

drug groups,together withthetwo covariates(KSSscore,andbody weight).Totestourhypotheses,we comparedequivalentdrugtypes across neuromodulators (i.e.amisulpride/biperiden/placebo and lev-odopa/galantamine/placebo). KSS accounted for individual variabil-ityin drug-inducedvigilance. Thecovariatebodyweight was mean-centeredandincludedaninteractionwiththefactordrug.Bodyweight servedasaproxyforthevolumeofdistributionandthusasa(rough) approximationtoindividualdifferencesinpharmacokinetics.In addi-tiontotestingforamaineffectofdrug,wetestedwhetherdrugeffects oncomputationalquantitiesshowedabody-weightdependenteffect.

In addition to whole-brain analyses, we performed region-of-interest(ROI) analysesbasedonacombinedanatomicalmaskof pu-tativedopaminergicandcholinergicnuclei,asinour previousstudy (Iglesiasetal.,2013).Theanatomicalmaskincluded(i)the dopamin-ergic midbrain (substantia nigra, SN, and ventral tegmental area, VTA;Bunzeck andDuzel, 2006), (ii)the cholinergicbasal forebrain (Eickhoff et al.,2005; Zaborszkyetal.,2008),and(iii)theputative cholinergicnucleiinthetegmentumofthebrainstem,i.e.,the peduncu-lopontinetegmental(PPT)andlaterodorsaltegmental(LDT)nuclei.The latterwerebasedonmanualdelineationusingMRICronandanatomical landmarks(Naidichetal.,2009;Zrinzoetal.,2011).

Finally,we alsohad access toinformation about two single nu-cleotidepolymorphisms (SNPs) in ourvolunteers: COMT(related to dopamine)andChAT(related toacetylcholine;formore details,see SupplementaryMaterialSection“SupplementalResults”). Inorderto exploreinteractioneffectsofthepharmacologicalinterventionand com-putationalquantitieswithgenotype,weperformedwhole-brainandROI group-levelanalysesasdescribedpreviously,butaddingCOMTorChAT asacovariate.However,asoursamplesizemaynotbesufficientfor ro-bustanalysesoftheinfluencebygenotype,wereporttheseresults in theSupplementaryMaterialonly.

Ouranalysesfocusedonouranatomicalregionsofinterest(ROIs), testingeachcomputationalquantityforgroupdifferences(e.g., differ-encesin 𝜀2-relatedactivitybetween biperiden andplacebo).Forthe

pharmacologicaleffectsinourROIs,weuseBayesianstatisticstoassess theevidenceforthenullhypothesisrelativetothealternative hypoth-esis.Sinceitismethodologicallychallengingtodealwithspatial de-pendenciesacrossvoxelsincurrentimplementationsofBayesiantests whencorrectingformultiplecomparisons,theBayesianprocedurewe useddiffersfromthestatisticalanalysisperformedwithSPM. Specif-ically,fortheBayesianapproach, wesummarisedthedataacross all voxelswithinagivenROI(intermsofthefirsteigenvariate)whereas fortheSPManalyseswe wereperforming voxel-wiseanalyses.More specifically,intheBayesianapproachweextractedthefirst eigenvari-ate(orprincipalcomponent)separatelyforeachregionfromourapriori anatomicalmask,i.e.,SN/VTA,basalforebrain,andPPT/LDT.This ex-tractionwasperformedforeachregionseparately,withoutapplyingany threshold,andremovingalleffectsrelatedtobodyweightand sleepi-ness.Foreachcomputationalquantityandeachofthethree anatomi-calregions,theextractedfirsteigenvariateswereenteredintoseparate BayesianANOVAs,withtherespectivefirsteigenvariateasdependent variable,andgroupasindependentvariable.Themodelcontainingthe factorgroup(H1)wasthencomparedtoanullmodel(H0).Post-hoc

tests– i.e.pairwisecomparisonswithBayesiant-testsusingaCauchy prior(0,r=1/sqrt(2))– wereonlycomputediftheANOVAdisplayedat leastmoderateevidenceforthealternativehypothesis(i.e.ifBF10>3).

InJASP,multipletestingisaccountedforbyadjustingthepriorodds. MultiplyingtheprioroddswiththeestimatedBFresultsintheposterior odds(i.e.therelativeplausibilityofthemodelafterobservingthedata (vanDoornetal.,2020).

Additionally,anumberofregionsthroughoutthebrainshowed sig-nificantdrugeffectsonactivityrelatedtothedifferentcomputational quantities.Asthesefindingsdidnotdirectlyrelatetoourhypotheses, wereporttheseresultsintheSupplementaryMaterial(TablesS32and S33).RegardlesswhetheranalyseswereconductedforROIsoracrossthe wholebrain,wealwayscorrectedstringentlyformultiplecomparisons;

intheformercase,thesearchvolumecorrespondedtothetotalvolume ofallROIscombined.Allfindingsreportedinthispapersurvived family-wiseerrorcorrectionformultiplecomparisons(p<0.05),eitheratthe peak-leveloratthecluster-levelwithacluster-definingthreshold(CDT) ofp<0.001.ThisCDTaffordsvalidcluster-levelinferenceinSPM(see Eklundetal.,2016;FlandinandFriston,2016).

3. Results

3.1. Behaviouraldata:classicalanalysis

Here,wereportbehaviouraldatafromtheN=75 participantsin study1andN=69instudy2,whosedatawereincludedinthefMRI analyses,respectively.First,withineverystudywetestedforany sig-nificant differencesin the sleepiness ratings (KSS) andbody weight betweenthepharmacologicalgroups.Wedidnotfindanysignificant groupdifferences,neitherinstudy1(KSS:F(2,72)=0.229,p=0.796,

BF10=0.137,i.e.thedatais1/0.137=7.3timesmorelikelyunderH0 thanunderH1;bodyweight:F(2,72)=1.354,p=0.265,BF10=0.326) norin study2(KSS:F(2,66) = 1.012,p= 0.369,BF10 = 0.260;body

weight:F(2,66)=0.674,p=0.513,BF10=0.203).

We subsequentlyperformed one-wayanalyses (ANOVA) on reac-tiontimes(RT)andpercentcorrectresponses(%CR).Because normal-ityand/orhomoscedasticitywerenotalwaysmet,Welch’sANOVAwas performed for all variablesusing drug as independentvariable. No-tably,usingthis testwecannotaccountfortheeffectsofthe covari-atesKSS andweight. Wedidnot find anysignificant maineffectof drug onthese variables(study1:RT: F(2,47.675) = 0.621,p= 0.542,

BF10=0.182;%CR:F(2,44.343)=1.193,p=0.313,BF10=0.308;study2: RT:F(2,43.167)=0.567,p=0.571,BF10=0.175;%CR:F(2,43.280)=1.544, p=0.225,BF10=0.431).

3.2. Behaviouraldata:computationalmodeling

Using Bayesian modelselection (BMS;Stephan etal., 2009), we tested,following ourprevious study(Iglesiaset al.,2013),which of severalalternativegenerativemodelsbestexplainedourparticipants’ behaviour.Specifically,wecomparedathree-levelHGFmodel(hgf3l),

areducedversionoftheHGF(hgf2l),andtheclassicalRescorla-Wagner

model(RW)ofassociativelearningthathasafixedlearningrateand isagnosticaboutenvironmentalvolatility.ForBMSanalyseswehadto excludeparticipantsduetonumericalproblemsduringinversionofthe RWmodel(study1:fiveparticipantsexcluded;study2:fourparticipants excluded)andinversionofthehgf3lmodel(1participantexcludedfrom

study2aslistedinthe“Subjects” session).

Independentlyofdrugcondition,randomeffectsBMSyieldeda pos-teriormodelprobability(PP)of87.0%and79.9%instudy1andstudy 2,respectively,andaprotectedexceedanceprobabilityof>0.99inboth studiesinfavorofmodelhgf3l.Thissuggeststhatourparticipantsnot

onlylearnedthetask-relevantconditionalprobabilitiesofvisualstimuli, butwerecapableoftrackingthevolatilityoftheenvironmentand up-datingtheirlearningratedynamically(FigureS4AandS5A,TableS3). (PPistheexpectedprobabilitythatthemodelinquestiongeneratedthe dataforarandomlychosensubject.Theexceedanceprobability(XP)of amodeldenotestheprobabilitythatthismodelhasagreaterposterior probabilitythananyothermodeltested;andtheprotectedexceedance probability(PXP)accountsforthepossibilityofmodelshavingidentical frequencies;(Rigouxetal.,2014)).Furthermore,wheneach pharmaco-logicalconditionwasconsideredseparately,hgf3lwasthemost

com-pellingofthemodelstested(study1:placebo:PP=87.9%,PXP>99%; amisulpride:PP=81.0%,PXP>98%;biperiden:PP=71.7%,PXP> 97.9%;FigureS4B-D,TableS3;study2:placebo:PP=65.0%,PXP> 94%;levodopa:PP=85.9%,PXP> 99%;galantamine:PP=72.2%, PXP>93%;FigureS5B-D,TableS3).

Havingidentifiedanoptimalmodel(amongstthemodelstested),we proceededtotestingwhetherwithinstudythereweresignificant

(7)

differ-encesinparameterestimatesacrossdrugconditions(seeTableS4).(In thesubsequentanalyses,weexcluded onesubject forwhich wehad encounterednumericalfittingproblemsforhgf3l).Tothisend,we

per-formedWelch’sone-wayanalysesofvarianceandaBayesianANOVAfor thedependentvariables𝜅 (thelearningparameterreflectinghowmuch theestimatedenvironmentalvolatilityinfluenceslearningatthesecond level)and𝜁 (theparameterencodingdecisionnoiseintheobservation model)withdrugasindependentvariable.Wedidnotfindany signifi-cantmaineffectofdrugonthesemodelparameterestimates(study1: 𝜅:F(2,44.937) =0.296,p=0.745,BF10=0.157;𝜁:F(2,45.737)=0.344, p= 0.711,BF10 =0.144;study2: 𝜅: F(2,43.368) = 1.237,p=0.300,

BF10=0.275;𝜁:F(2,41.511)=2.375,p=0.106,BF10=0.514). Finally,multipleregressionwasappliedseparatelyinbothstudiesto testwhetherthemodelparameterestimatescouldexplaintask perfor-mance(percentcorrectresponses(%CR))andreactiontimes(RT)across allpharmacologicalconditions.Notably,iftheidentifiedmodelis rea-sonable,onewouldexpectthatitisassociatedwith%CRbutnotRT; thisisbecausethemodelwaschallengedtoexplainthebinarynature oftrial-by-trialdecisions,butwithoutreferencetotheirspeed.Thistest wasconductedwhilecontrollingforpotentiallyconfoundingfactorsin relationtopharmacology,i.e.KSS,andbodyweight.Inafirststepwe onlyconsideredtheconfoundvariablesandexaminedwhether,ontheir own,theyaffectedindividual%CR.Thiswasnotthecaseinstudy1:the combinedinfluenceofpotentialconfoundsonlyexplained6.5%ofthe variancein %CR(study 1;F(2,72) =2.486,p= 0.09;BF10 = 0.627). However,we founda significantinfluencein study2 (R2= 11.7%; F(2,66) = 4.388, p = 0.016;BF10 = 2.843). Notably, this effect was

onlysignificantinthegalantaminegroup(R2=30.6%;F(2,19)=4.187, p=0.031;BF10=2.434).

Wethenadded thetwomodelparameter estimates(𝜅 and𝜁; Ta-bleS4)totheregressionmodel;thisexplainedadditional58.9%and 47.9%of the variancein %CRin study1and study2, respectively (study1:R2change=58.9;F(2,70) =59.508,p<0.001;BF10 >150;

study2:R2change=47.9;F(2,64)=37.892,p<0.001;BF10>150). Themainparameterdrivingthisresultwas𝜁 (study1:𝛽 =0.793,p< 0.001;BFInclusion>150;study2:𝛽 =0.737,p<0.001,BFInclusion>150;

BFInclusionrepresentstheevidenceinthedataforincludingapredictor

inthemodel(vandenBerghetal.,2020)).Theseresultswerenotdriven byanysinglepharmacologicalcondition,butwerefoundsimilarlywhen consideringeachdruginisolation(seeSupplementaryMaterial).

Bycontrast,asexpected,addingthemodelparameterestimatesto theregressionmodeldidnothelpexplainRT(study1:across condi-tions:R2change=0.02;F(2,70)=0.822,p=0.444,BF10=0.333;study

2:across conditions:R2 change= 0.057;F(2,64) =2.218,p=0.117, BF10=0.844).

Finally, it is worth noting that the behavioural results reported here (both in terms of model comparison and analyses of parame-ter estimates) are perfectly consistent with the results of the non-pharmacologicalfMRIstudyinIglesiasetal.(2013).

3.3. fMRIresults

First, we tested for main effects of each computational variable (withinevery study pooledacross drug conditions),both across the wholebrainandwithinouranatomicalmask(thecombinedROIsof dopaminergicandcholinergicnuclei).Thisservedtotestwhether, aver-agedacrossallpharmacologicalconditions,wewouldobtain compara-bleresultstothenon-pharmacologicalresultsasinIglesiasetal.(2013). Forthis,weusedthesamestatisticalcriteriaasinIglesiasetal.(2013), i.e.,family-wiseerrorcorrectionformultiplecomparisons(p<0.05),at thepeak-level.

Second,wetestedfordifferentialdrugeffectsonthecomputational quantitiesandinteractioneffectsbetweenbodyweight,drug,and com-putationalquantities;thistestwasappliedbothacrossthewholebrain andwithinanatomicallydefinedROIs.AsdetailedintheMethods sec-tion,weonly reportresults thatsurviveFWEcorrectionfor multiple

comparisons.Unlessmentionedotherwise,thepharmacologicalresults survivep<0.05atthecluster-levelwithacluster-definingthreshold (CDT)ofp<0.001.

Third,weconductedanalternativetestofdifferentialdrugeffects on the computationalquantities usingBayesian ANOVAs (see Meth-ods).Here,wefocusedonthethreeanatomicalregionsSN/VTA,BFand PPT/LDTwithinourapriorianatomicalmaskandassessedtheevidence foramodelincludingthepharmacologicalgroupfactorcomparedtoa nullmodel.

AsexplainedintheMethods,weusedtwodifferentGLMs.InGLM1 weusedprecision-weightedPEs(𝜀2,𝜀3,𝜀𝑐ℎ)ascompoundcomputational

quantitiesforparametricmodulation.InGLM2,wesplitthesequantities intoprecisionandPEcomponents,resultinginfiveparametric modula-tors(𝛿1,𝛿2,𝜓2,𝜓3,𝛿𝑐ℎ).

3.3.1. GLM1:averageeffectofprecision-weightedPEsacrossdrug conditions

Wefirstexaminedinbothstudiesseparatelythelow-level precision-weightedPEs,theabsoluteprecision-weightedoutcomePE𝜀2 andthe

precision-weightedchoicePE𝜀𝑐ℎ.Inbothstudies,whole-brainanalyses showedasignificant activationof numerousregionsby𝜀2, including

parietal,prefrontal,visual,insularareas,andcerebellum(seeFigs.2A and3AandTableS8).Additionally,weobservedadeactivationof op-ercular,insular,cingulate,auditory,hippocampalandprefrontalareas (seeTableS9fordetails).ThechoicePE(𝜀𝑐ℎ)notonlyactivatedawide rangeofprefrontal,cingulate,insular,temporal,andparietalregions, butalsoventralstriatum,basalforebrain,putamen,andhippocampus (Figs.2Band3B,foracompletelist,seeTableS10).Deactivationsby 𝜀𝑐ℎ werefoundinsupplementarymotorcortex,middlecingulate cor-tex,superiorparietalcortex,middlefrontalgyrus,calcarinecortexand precuneus(TableS11).

Withinouranatomicalmask,wefounda significant𝜀2 activation

inthemidbrain(asalreadyobservedinthewholebrainanalysis;see Figs.2Dand3DfortheanatomicalROIanalysis),butalsoinPPT/LDT (TableS12)andasignificant𝜀2deactivationinthebasalforebrain

(Ta-bleS13).Similarly,thechoicepredictionerror𝜀𝑐ℎactivatedthebasal forebrain(Figs.2Eand3E,Table S14),asin thewholebrain analy-sis, anddeactivatedin bothstudiesputatively thecholinergicnuclei (PPT/LDT;TableS15)andadditionallyinstudy1themidbrain.

Subsequently,wemovedtothenexthigherlevelofthehierarchyin ourmodelandexaminedtheprecision-weightedprobabilityPE,𝜀3.In

whole-brainanalyses,wefound𝜀3activationsinthehippocampus,ACC,

MCCopercularandinsularregions(Figs.2Cand3CTableS16). Deac-tivationswerefoundinnumerousregions,includingoccipital,insular, prefrontal,parietal,temporalareasaswellascerebellum(TableS17). Restrictingtheanalysestoouranatomicalmask,wefoundtheexpected 𝜀3activationwithinthebasalforebrain(Figs.2Fand3F,TableS18)and

adeactivationofthemidbrain(TableS19).

3.3.2. GLM1:drugeffectsonprecision-weightedPEs– ROI(anatomical mask)

InanalysesrestrictedtoouranatomicalROIs,wedidnotfind signif-icantdifferencesbetweendrugconditionsforanyofthecomputational quantities(𝜀2,𝜀3,𝜀𝑐ℎ)thatsurvivedcorrectionformultiplecomparisons.

UsingBayesianANOVAwetested,foreachcomputationalquantity andineachROI(i.e.SN/VTA,BF,PPT/LDT),theevidenceforamodel thatincludedthefactorpharmacologicalgroupvs.anullmodel.For almostalltests,theBayesfactorsshowedthatthedatawerebetter ex-plainedbythenullmodel,althoughtheevidencewasonlymoderate atbest(seeTableS5).Bycontrast,evidencefordrugeffectswasonly foundinonecase(𝜀3inPPT/LDT,weakevidence).

3.3.3. GLM2:averageeffectsofPEsandprecisionsacrossdrugconditions Thepredictionerrorabouttheoutcome,𝛿1producedasimilar

whole-brainactivationpatternas𝜀2(Figs.4Aand5A),includingprominent

(8)

Fig.2. Study1-Activationsbytheprecision-weightedPEs

A)whole-brainactivationsby𝜀2;B)whole-brainactivationsby𝜀𝑐ℎ;C)whole-brainactivationsby𝜀3;A-C)Activationmapsareshownatathresholdofp<0.05,

FWEpeak-levelcorrectedformultiplecomparisonsacrossthewholebrain.D)activationsby𝜀2;E)activationsby𝜀𝑐ℎ;F)activationsby𝜀3;D-F)Activationmaps

areshownatathresholdofp<0.05,FWEpeak-levelcorrectedformultiplecomparisonsacrosstheanatomicalmask(red)overlayedonactivationthresholdedat p<0.05,FWEcluster-levelcorrectedformultiplecomparisonswithaninitialCDTofp<0.001(orange).WB:whole-brain;AM:anatomicalmask.

Fig.3. Study2-Activationsbytheprecision-weightedPEs

A)whole-brainactivationsby𝜀2;B)whole-brainactivationsby𝜀𝑐ℎ;C)whole-brainactivationsby𝜀3;A-C)Activationmapsareshownatathresholdofp<0.05,

FWEpeak-levelcorrectedformultiplecomparisonsacrossthewholebrain.D)activationsby𝜀2;E)activationsby𝜀𝑐ℎ;F)activationsby𝜀3;D-F)Activationmaps

areshownatathresholdofp<0.05,FWEpeak-levelcorrectedformultiplecomparisonsacrosstheanatomicalmask(red)overlayedonactivationthresholdedat p<0.05,FWEcluster-levelcorrectedformultiplecomparisonswithaninitialCDTofp<0.001(orange).WB:whole-brain;AM:anatomicalmask.

(9)

Fig.4. Study1-ActivationsbythePEs

A)whole-brainactivationsby𝛿1;B)whole-brainactivationsby𝛿𝑐ℎ;C)whole-brainactivationsby𝛿2;A-C)Activationmapsareshownatathresholdofp<0.05,

FWEpeak-levelcorrectedformultiplecomparisonsacrossthewholebrain.D)activationsby𝛿1;E)activationsby𝛿𝑐ℎ;F)activationsby𝛿2;D-F)Activationmaps

areshownatathresholdofp<0.05,FWEpeak-levelcorrectedformultiplecomparisonsacrosstheanatomicalmask(red)overlayedonactivationthresholdedat p<0.05,FWEcluster-levelcorrectedformultiplecomparisonswithaninitialCDTofp<0.001(orange).WB:whole-brain;AM:anatomicalmask.

wellasbasalganglia,thalamus,and(instudy2)midbrain(fordetailed results,seeTableS20).Deactivationswerefoundinthebasalforebrain, hippocampus,insula,aswellasinvariousothercorticalareas(Table S21).

Inouranatomicalmaskwefoundasignificant𝛿1activationwithin

themidbrainandPPT/LDT(Figs.4Dand5D).Deactivationswerefound intheseptumandbasalforebrain(spreadingtoparahippocampalgyrus butstillwithintheprobabilisticallydefinedboundariesofthebasal fore-brain;TablesS22andS23).

Concerningthechoicepredictionerror,𝛿𝑐ℎ,wefoundasimilar ac-tivationpatternascomparedtoitsprecision-weightedcounterpart,𝜀𝑐ℎ, describedabove.Thisincludedactivationsinstriatum,basalforebrain, vmPFC,midandposteriorcingulatecortex(fordetailsandother acti-vations,seeFigs.4Band5B,andTableS24;fordeactivations,seeTable S25).IntheanatomicalROIanalyses,wefounda𝛿𝑐ℎactivationin bilat-eralbasalforebrain(Figs.4Eand5E,TableS26)andadeactivationin theputativelycholinergicnucleiandSN(TableS27).

Whole-brainanalysesofthehigh-levelpredictionerror(about prob-ability),𝛿2,activatedthehippocampusandanteriorcingulategyrusas

previouslyobservedforitsprecision-weightedcounterpart𝜀3,butalso

theseptumandmiddlecingulategyrus(Figs.4Cand5C;TableS28). Interestingly,theseptal𝛿2 activationwasconsiderablystrongerthan

for𝜀3,suggestingthatseptalactivitywasmorestronglydrivenbythe

PEthanbyprecision.The𝛿2deactivationsweresimilartothosefor𝜀3

(TableS29).IntheanatomicalROIanalyses,wefoundtheexpected ac-tivationofseptum(Figs. 4F and5F;TableS30),anddeactivationsin PPT/LDTandmidbrain(TableS31).

Finally,weexploredactivityrelatedtotheprecisionweights. No-tably,theseprecisionweightshaveslightlydifferentformsacrossthe twolevelsofourmodel.Atthelower(second)level,theprecisionweight 𝜓2correspondstovarianceoruncertainty(aboutstimulusoutcome);see

Mathysetal.(2014).Inwhole-brainanalyses,thisquantityledto ac-tivationsof angularandfrontalgyri,parietalcortex,with additional activationsinbasalganglia,anteriorinsula(onlystudy1)and cerebel-lum(Figs.6Aand7A,TableS32).Adeactivationwasfoundintheright thalamusandprecentralgyrus(TableS33).Noresultswerefoundfor 𝜓2intheanatomicalROIanalyses.

Concerning thehigher (third) level, theprecision weight𝜓3

cor-responds to a ratio of second- and third-level uncertainties; see Mathyset al.(2014)for details.Forwhole-brainanalyses of𝜓3, we

foundsignificantactivationsoffusiformandlingualgyri,parietal, tem-poral,frontalareas,anteriorinsulaandbrainstemregions(Figs.6Band 7B;TableS34;nooverlappingdeactivationsacrossbothstudieswere found;TableS35).Withinouranatomicalmask,we foundan activa-tioninthemidbrain,andcholinergicnucleiPPT/LDT(Figs.6Dand7D; TableS36).

3.3.4. GLM2:drugeffectsonPEsandprecisions– ROI(anatomicalmask) Forthelow-levelPE,wefoundthat,comparedtoplacebo, galan-tamineenhancedthepositive relationshipbetween bodyweight and 𝛿1-relatedactivityin themidbrain (FWE peak-levelandcluster-level

corrected;x=0;y=-27;z=-18;tscore:4.46;clustersize:23 vox-els;Fig.8A).Furthermore,biperidenasopposedtoplaceboincreased the𝛿1-relatedactivityintherightPPT/LDT(FWEpeak-levelcorrected;

x=6;y=-36;z=-16;tscore:4.19;Fig.9A).Thesameregion(x=6; y=-36;z=-18)showedanear-significantactivationby𝛿1under

amisul-prideascomparedtoplacebo(FWEpeak-levelcorrected;tscore:3.99; p=0.051).

Forthehigh-levelPE,wefoundthatbiperidendecreased𝛿2-related

activityintherightPPT/LDT(FWEpeak-levelcorrected;x=6;y=-36; z=-18;tscore:4.29;Fig.9B).Additionally,wefoundadecreased𝛿2

(10)

Fig.5. Study2-ActivationsbythePEs

A)whole-brainactivationsby𝛿1;B)whole-brainactivationsby𝛿𝑐ℎ;C)whole-brainactivationsby𝛿2;A-C)Activationmapsareshownatathresholdofp<0.05,

FWEpeak-levelcorrectedformultiplecomparisonsacrossthewholebrain.D)activationsby𝛿1;E)activationsby𝛿𝑐ℎ;F)activationsby𝛿2;D-F)Activationmaps

areshownatathresholdofp<0.05,FWEpeak-levelcorrectedformultiplecomparisonsacrosstheanatomicalmask(red)overlayedonactivationthresholdedat p<0.05,FWEcluster-levelcorrectedformultiplecomparisonswithaninitialCDTofp<0.001(orange).WB:whole-brain;AM:anatomicalmask.

Table1

Summaryofallsignificantpharmacologicaleffectsonbrainactivityassociatedwithourcomputationalquantitiesinapriorianatomicalregionsof interest.Notethatnoeffectwasfoundforlevodopa.

Computational quantity/anatomical region 𝛿1 SN/VTA 𝜓 3 SN/VTA

galantamine ↑ vs. placebo interaction

with body weight

amisulpride ↑ vs. placebo

Computational quantity/anatomical region 𝛿1 PPT/LDT 𝛿2 PPT/LDT 𝛿2 PPT ∕ LDT 𝛿2 PPT ∕ LDT

biperiden ↑ vs. placebo ↓ vs. placebo

amisulpride ↓ vs. placebo ↑ vs. biperiden interaction

with body weight

toplacebo(FWEpeak-levelcorrected;x=6;y=-36;z=-18;tscore: 5.30;Fig.9C)andamodulationofdrugeffectson𝛿2-relatedactivityby

bodyweightinrightPPT/LDT(FWEpeak-levelcorrected;x=6;y=-34; z=-15;tscore:3.99):underamisulpridewefoundapositiverelation between𝛿2-relatedactivityandbodyweightwhereasthisrelationwas

inverted(negative)underbiperiden(Fig.9D).Moreprecisely,𝛿2-related

activityin thePPT/LDTincreasedwithlowerbodyweight(andthus presumablyhigher plasmalevelsofbiperiden)andwithhigher body weight(andhenceputativelylowerlevelsofamisulpride).

Finally,amisulpridecomparedtoplaceboincreasedthe𝜓3-related

activityinthemidbrain (FWEpeak-level andcluster-level corrected; x=11;y=-25;z=-21;tscore:4.26;clustersize:33voxels;Fig.8B).

Therewerenosignificantdrugeffectsfor𝛿𝑐ℎ, 𝜓2ineitherstudynor

foranyofthecomputationalquantitiesinstudy2,exceptfortheone ef-fectmentionedabove(ofgalantamineontherelationbetween𝛿1-related

activityinthemidbrainandbodyweight).Allsignificant pharmacologi-caleffectsacrosstheanatomicalmaskhavebeensummarizedinTable1.

Instudy1,aBayesianANOVAfoundmoderateevidenceforadrug effecton𝛿1-relatedactivityinPPT/LDT(BF10=9.105).Inlinewiththe

SPMresults,Bayesianpost-hoctestsrevealedmoderateevidencefora differencebetweenplaceboandbiperiden(posteriorodds=4.924)and between placeboandamisulpride(posteriorodds=3.505;seeTable S7).Fortheotherregions(SN/VTAandbasalforebrain),therewasweak tomoderateevidenceinfavourofthenullmodel,i.e.absenceofdrug effects(seeTableS6).

Finally,forallothercomputationalquantities(except𝛿2,werewe

foundaweakeffectinPPT/LDT)usingBayesianANOVAtheevidence showedthatthedata(extractedfromthethreeanatomicalregions, re-spectively)wasbestpredictedbythenullmodel(seeTableS6).

4. Discussion

Thenotionthatthedifferentneuromodulatorytransmitters– such asdopamine,acetylcholine,serotoninornoradrenaline– mightserveto

(11)

Fig.6. Study1-Activationsbytheprecision-weights

A)whole-brainactivationsby𝜓2;Activationmapsareshownatathresholdofp<0.05,FWEpeak-levelcorrectedformultiplecomparisonsacrossthewholebrain

(red)overlayedonactivationthresholdedatp<0.05,FWEpeak-levelcorrectedformultiplecomparisonswithaninitialCDTofp<0.001(orange).

B)whole-brainactivationsby𝜓3;Activationmapsareshownatathresholdofp<0.05,FWEpeak-levelcorrectedformultiplecomparisonsacrossthewholebrain.

C)activationsby𝜓2;D)activationsby𝜓3;C-D)Activationmapsareshownatathresholdofp<0.05,FWEpeak-levelcorrectedformultiplecomparisonsacross

theanatomicalmask(red)overlayedonactivationthresholdedatp<0.05,FWEcluster-levelcorrectedformultiplecomparisonswithaninitialCDTofp<0.001 (orange).WB:whole-brain;AM:anatomicalmask.

signaldistinctcomputationalquantitieshasalonghistory(forreviews, seeDoya,2008;Dayan,2012;Iglesiasetal.,2017).Aseminalfinding wasthatphasicdopaminereleaseappearstoreflectrewardPEsthatmay provideateachingsignalduringinstrumentallearning(Schultzetal., 1997;Montagueetal.,2004).HumanfMRIstudieshavefound represen-tationsofPEsinputativedopaminoceptiveregions,suchasthemidbrain (D’Ardenneetal.,2008;Klein-Fluggeetal.,2011;Diederenetal.,2016; HowardandKahnt,2018)orventralstriatum(Pessiglioneetal.,2006; Glascheretal.,2010; Dawetal.,2011; DanielandPollmann,2012; Hackeletal.,2015;Diederenetal.,2016;Guggenmosetal.,2016). Ad-ditionally,recent meta-analysesdifferentiating betweenabsolute PEs (i.e. “surprise PE”; deviation between prediction and outcome) and signed PEs found that the former was represented in the putative dopaminergicmidbrain,whereasthelatterwererepresentedinthe ven-tralstriatum(Garrisonetal.,2013;Fouragnanetal.,2018).Inourstudy, thelow-levelabsolutePEs(𝛿1andprecision-weighted𝜀2,respectively)

resemblethepreviouslymentionedsurprisePEandactivatedsimilar re-gions,suchasthemidbrain.Similarly,thechoicePEs(𝛿𝑐ℎand

precision-weighted𝜀𝑐ℎ,respectively)showedasimilaractivationpatternasthe signedPE.Itmustbekeptinmind,however,thatdifferencesin interpre-tationexistsbetweenourBayesianPEsandPEsfromRLmodels.Whilst inRLthegoalistomaximizereward,inourBayesianframeworkthe goalistominimize(anapproximationto)surprisebybeliefupdatingat multiplelevels(Mathysetal.,2014),wheretheuncertaintyofbeliefs affectsthewayPEsimpactonlearning.

ThesignedchoicePEcomputedinthisstudyisdifferentfromthe signedrewardPE(RPE)usedinRL:whileRPEsencodewhetheran out-comewasbetter(positiveRPE)orworsethanpredicted(negativeRPE; Schultzetal., 1997; Fouragnanetal., 2018),in ourcasethesigned choicePErepresentsthedifferencebetweentheparticipant’schoice be-ingcorrectandtheaprioriprobabilityofthischoicebeingcorrect(see Iglesiasetal.,2013).Finally,ourlow-levelabsolutePEcorrespondsto Bayesiansurprise,i.e.thedifferencebetweentheoutcomeanditsa pri-oriprobability.

Although RPEs andoutcome PEshave been linkedto dopamine, questionsofspecificityandcontext-dependencyhavearisen,evenfor

(12)

Fig.7. Study2-Activationsbythe precision-weights

A)whole-brainactivationsby𝜓2;Activation

mapsareshownatathresholdofp<0.05, FWEpeak-levelcorrectedformultiple compar-isonsacrossthewholebrain(red)overlayedon activationthresholdedatp<0.05,FWE peak-levelcorrectedformultiplecomparisonswith aninitialCDTofp<0.001(orange). B)whole-brainactivationsby𝜓3;Activation

mapsareshownatathresholdofp<0.05, FWEpeak-levelcorrectedformultiple compar-isonsacrossthewholebrain.C)activationsby 𝜓2;D)activationsby𝜓3;C-D)Activationmaps

areshownata thresholdofp< 0.05,FWE peak-levelcorrectedformultiplecomparisons acrossthe anatomicalmask(red)overlayed onactivationthresholded atp< 0.05,FWE cluster-level correctedfor multiple compar-isonswithaninitialCDTofp<0.001(orange). WB:whole-brain;AM:anatomicalmask.

thismostwell-establishedlinkbetweenneurotransmittersand compu-tations. Forexample,recentworkin humans using invasive voltam-metrymeasurementsofsubsecond striatalDArelease(Kishida etal., 2016)failedtofindasimplelinkbetweenrewardPEsandDArelease. Instead,thisstudysuggestedthatstriatalDAreleasereflectsthe inte-grationofrewardPEswithcounterfactualpredictionerrors.More gen-erally,dopaminewasalsofoundtosupporttheformationof associa-tionsbetweenneutralstimuli,withoutanyreinforcement(Youngetal., 1998).Furthermore,followinghumanfMRIfindingsthatsuggestedthe signallingofsensoryPEsbymidbrainneurons(Iglesiasetal.2013),this hasbeencorroboratedbysubsequentstudies(Takahashietal.,2017; Stalnakeretal.,2019),leadingtothenotionthatdopaminetransients mightencodegeneralizedPEsthatarenotnecessarilytiedtorewards (Gardneretal.,2018).

BeyondPEs,therearenumerousstudiesindicatingthatdopamine might also signal uncertainty (or its inverse, precision) in a vari-ety of contexts (Fiorillo et al., 2003; deLafuente and Romo, 2011; Fristonetal.,2012;Hartetal.,2015;Schwartenbecketal.,2015). Alto-gether,thesepotentiallydiverserolesofdopaminecouldbeinterpreted asthepossiblereflectionofamultiplexingprinciple(Nakahara,2014; Gardner et al., 2018), where different computational quantities are broadcastin different frequencybands; this maybe linkedto differ-encesineffectsofphasicvs.tonicdopaminerelease(Grace,1991).An alternativecauseofdiversityindopaminefunctionisthemarked hetero-geneityofdopamineneuronswithregardtodevelopment,physiological propertiesandanatomicalprojectionpatterns(forreview,seeRoeper, 2013).

PEsanduncertainty/precisionarefundamentalcomponentsofmany theoriesoflearningandperceptualinference,andtheirsignallinghas alsobeenlinkedtoacetylcholine(YuandDayan,2005;Okadaetal., 2011; Moranetal., 2013;Vossel etal., 2014;Marshallet al.,2016; Naude et al., 2016), noradrenaline (Yu and Dayan, 2005; Payzan-LeNestouretal.,2013),andserotonin(Cohenetal.,2015).These at-temptstounderstandthephysiologicalimplementationsof computa-tionshavereceivedconsiderableattention, notleastbecauseoftheir clinicalimplications:Ifatightlinkbetweenneuromodulatorsand spe-cificcomputationalquantitiesexisted,thismightenablethe develop-mentofcomputationalassaysthatinferredpathologicalalterationsof neuromodulatory transmitters from combined behavioural and neu-roimaginganalyses(Stephanetal.,2015;Iglesiasetal.,2017).

In aprevious fMRI study usinga sensory learningparadigm un-dervolatility,wefound(andreplicatedintwoseparatesamples)that twohierarchicallyrelatedPEswerereflectedbyactivityintwo neu-romodulatorysystems:low-levelprecision-weightedPEsaboutsensory outcomesactivatedtheputativedopaminergicmidbrain,whereas high-levelprecision-weightedPEsabouttheprobabilityoftheoutcome acti-vatedthecholinergicbasalforebrain(Iglesiasetal.,2013),specifically theseptum(Ch1-2complex;Zaborszkyetal.,2008).Theseresultswere intriguingsincetheysuggestedthefeasibilityofassayingtwoclinically relevantneuromodulatorysystemswithasingleparadigm.However,as highlightedinthispreviousstudy,itwasnotpossibletoconcludewith certainty thatthesefMRI resultstruly reflectedDA andAChsignals. This is becausethemidbrain andbasalforebrainarenotexclusively composedofdopaminergicandcholinergicneurons, respectively,but

(13)

Fig.8. Significantpharmacologicalresultsin themidbrain

A)Galantamineascompared toplacebo in-creasedthebody-weightdependent𝛿1activity

inthemidbrain;theactivationmapisshown ata thresholdof p < 0.05,FWE peak-level correctedformultiplecomparisonsacrossthe anatomicalmask(blue)overlayedon activa-tionthresholdedatp<0.05,FWEcluster-level correctedformultiple comparisonswith an initialCDTofp<0.001(yellow).B) Amisul-prideascomparedtoplaceboincreasedthe 𝜓3-relatedactivityinthemidbrain;the

activa-tionmapisshownatathresholdofp<0.05, FWEcluster-levelcorrectedformultiple com-parisonsacrossthewholebrain,withan ini-tialCDTofp<0.001.Thedatawereextracted fromthesignificantpeakvoxelatthegroup level,removingtheeffectsofgroupand sleepi-ness(A)orremovingtheeffectsofthe covari-atesbodyweightandsleepiness(B), respec-tively.

containnumeroustypesofneurons,e.g.GABAergicandglutamatergic neurons(forreviews,ZaborszkyandDuque,2003;Duzeletal.,2009). Additionally,dopaminergicmidbrainneuronsreceivecholinergic affer-ents(Bolametal.,1991;Oakmanetal.,1995;Yeomansetal.,2001; KobayashiandOkada,2007),andcholinergicbasalforebrainneurons receivedopaminergicinputs(Gaykemaand Zaborszky,1996).These twofactorscomplicatetheinterpretationofmidbrain/basalforebrain activationsconsiderably,asbothdopaminergicandcholinergic mecha-nismscouldexplainactivationofeitherregion.Toaddevenmore com-plexity,cholinergicmechanismscannot onlyalter thefiringpattern ofDAneuronsinmidbrain(e.g.,Yeomansetal.,2001;Kobayashiand Okada,2007),butcanalsotriggerstriatalDAreleaseviapresynaptic re-ceptorsonmesostriatalprojectionsandindependentlysofromDA neu-ronactivity(Threlfelletal.,2012).

Thepresentstudyrepresentsaninitialattempttoscrutinizethe inter-pretabilityofourpreviousfMRIfindingsbyinvestigatinghow pharma-cologicalperturbationsofDAandAChwouldaltertherepresentation ofprecision-weightedPEsin dopaminergicandcholinergicnuclei.In humans,thiscanonlybetestedbysystemicadministrationofdrugs,in combinationwithhumanneuroimaging.(Unfortunately,asdiscussed below, this approach hasmany possible confounds andlimitations.) Here,fortwoseparatestudies,weusedabetween-subjectdesignwhere participantsinstudy1eitherreceived400mgoftheD2/D3-receptor antagonistamisulpride,4mg ofthemuscarinic(M1)receptor antag-onistbiperiden,orplacebo,andinstudy2either200mgofthe pro-druglevodopacombinedwith50mgofbenserazide,8mgofthe acetyl-cholinesteraseinhibitorgalantamine,orplacebo. Theidealresultwe hopedtofindwasthatlow-andhigh-levelprecision-weightedPE activ-ityinthemidbrainandbasalforebrainwouldbeselectivelyaffectedby pharmacologicalmanipulationsofDAandACh,respectively.

Thishypothesiswasnotsupportedbyourdata.Inbrief,wedidnot find clear-cutevidencefor adichotomybetween low-level precision-weighted PEs and DA on the one hand, and high-level precision-weightedPEsandAChontheotherhand.Thishypothesiseddichotomy didnotemergeeitherwhensplittingtheprecision-weightedPEsintheir PEandprecisioncomponents.Wedid,however,findeffectsofinterest acrosstheanatomicalROIsthatdeservediscussion.

First,wefoundabody-weightdependentpharmacologicaleffecton 𝛿1-relatedactivityintheSN/VTA:comparedtoplacebo,galantamine

enhancedthepositiverelationbetweenbodyweightandlow-levelPE (𝛿1)-relatedactivityinthisregion(Fig.8A).Morespecifically,δ1-related

midbrainactivitydecreasedwithhigherbodyweightintheplacebo con-ditionbutincreasedundergalantamine.Whilethecholinergiceffecton themidbrainisnotdirectlyin linewithourprevioushypothesisand thecurrentliteraturelinkingsensoryPEstomidbrainDAsignalling,the effectsof galantaminemight haveoccurredvia cholinergicreceptors on dopaminergicmidbrainneurons. Forexample,cholinergic projec-tionsfromPPTandLDTaffectDAneuron activityviabothnicotinic andmuscarinicreceptors(Zhouetal.,2003).Galantamineisan acetyl-cholinesteraseinhibitorenhancingAChlevelsandalsoactsasallosteric modulatorofpresynapticnicotinicAChreceptors,increasingreceptor sensitivity(NoetzliandEap,2013).Moststudiesexaminingthe activa-tionofnicotinicandmuscarinicreceptorsonDAmidbrainneuronshave foundexcitatoryeffects(e.g.DaniandBertrand,2007;Schilstrometal., 2007;Blahaetal.,1996;forreview,Zhouetal.,2003).Unlessthese effectsfollowanonlineardose-responserelationship,theyshould de-crease withhigherbody weight(and thus presumablylowerplasma levelsofgalantamine), whereaswefoundtheopposite.Activationof muscarinicreceptorsondopamineneuronsintheSN/VTAcanalso ex-ertinhibitoryeffectsonmidbraindopamineneuronsbutthismaybe

(14)

re-Fig.9. Significantpharmacologicalresultsinputativelythecholinergicnuclei

A)Biperidenascomparedtoplaceboincreasedthe𝛿1-relatedactivityinPPT/LDT;B)biperidenascomparedtoplaceboreducedthe𝛿2-relatedactivityinPPT/LDT;

C)amisulprideascomparedtoplaceboreducedthe𝛿2-relatedactivityinPPT/LDT;D)amisulprideascomparedtobiperidenincreasedthebody-weightdependent

𝛿2-relatedactivityinPPT/LDT.ThefMRIresultsoverlayedonthestructuralimageareshownatathresholdofp<0.05,FWEpeak-levelcorrectedformultiple

comparisonsacrossthewholebrain(blue)anduncorrectedatthecluster-level,withaninitialCDTofp<0.001(yellow).Thedatawereextractedfromthe significantpeakvoxelatthegrouplevel,removingtheeffectsofthecovariatesbodyweightandsleepiness(A,B,C)orremovingtheeffectsofgroupandsleepiness (D),respectively.

strictedtophasiccholinergictransmission(FiorilloandWilliams,2000; butseeMillerandBlaha,2005).Inbrief,itisnotimmediatelyclearhow theobservedincreaseinδ1-relatedmidbrainactivitywithhigherbody

weight(andthuspresumablylowergalantaminelevels)canbe recon-ciledwiththeknowninteractionsbetweenthedopaminergicmidbrain andcholinergicPPT/LDT.

Asecondfindingwasthatbiperidenaffectedlow-levelPEs(𝛿1)and

thehigh-levelPE(𝛿2)inabrainstemregioncorrespondingtoputatively

thecholinergicPPT/LDT(Fig.9AandB,regionsoverlap).Theseeffects wereindependentofbodyweight,i.e.reflectingmeanpharmacological effectsonactivityin PPT/LDTrelatedtobothpredictionerrors.This ispartly compatiblewithourpreviousstudy(Iglesiasetal.,2013) – wherewehadfoundanactivationoftheprecision-weightedhigh-level PEinacholinergicregion,thebasalforebrain– andresultsfromrecent behaviouralstudiesthatusedtheHGFandcholinergicmanipulations (Vosseletal.,2014;Marshalletal.,2016).Thebiologybehind possi-bledopaminergicandcholinergiceffectsonPPT/LDTactivity,however, iscomplexanddeservesabriefdiscussiontoillustratethenumerous waysinwhichdrugscanaffectthesenucleiandtheirinteractionswith thedopaminergicmidbrain.PPT/LDTnotonlycontaincholinergic,but alsoglutamatergic,GABAergicanddopaminergicneurons(Pahapilland Lozano,2000; KobayashiandOkada, 2007; Okadaet al.,2011), re-ceive cholinergic, glutamatergic and GABAergicafferents (Ye etal., 2010),andprojectwidelytoother(sub)corticalregions,includingthe dopaminergicmidbrain(LodgeandGrace,2006;vonBohlenund Hal-bach&Dermietzel,2006;Mena-Segoviaetal.,2008;Okadaetal.,2011). ProjectionsfromtheSNtoPPTincludebothinhibitoryandexcitatory connections (Granata and Kitai, 1991; Okada etal., 2011), andSN neuronsareendowedwithmuscarinicreceptors(Vilaró et al., 1990; Leveyetal.,1991;ZubietaandFrey,1993).Furthermore,thePPT re-ceivesinputfromtheventralpallidumwhich,inturn,receives

GABAer-gicprojectionsfromthedopaminergicallyinnervatedventralstriatum (Leeetal.,2000).ThiscircuitryoffersampletargetsforDAandAChin affectingPPT/LDTactivity.

Athirdfindingwasthatamisulpridesignificantlyincreased activa-tionoftherightmidbrainby𝜓3,theprecision-weightonthethirdlevel

ofourmodel(Fig.8B);thisparticularprecision-weightcorrespondsto thedegreeoftheagent’suncertaintyaboutthelog-volatility𝑥(3𝑘) (i.e. theprecisionthatmodulatestheinfluenceofthehigh-levelPEon log-volatilityestimates).IntheplaceboconditionSNresponseswere nega-tivelyrelatedtotheparticipant’sprecision-weightatthethirdlevel,and this negativerelationdisappearedunderamisulprideandturnedinto apositiverelation.Theprecisionofbeliefsaboutactionselectionhas beenrelatedtodopaminergicprocesses(deLafuenteandRomo,2011; Schwartenbeck etal.,2015; Parr andFriston,2017),while expected uncertainty(i.e.thedifferencebetweenthedegree(conditional prob-ability) of cue validity and certainty) has been linked to choliner-gic signalling (Yu and Dayan, 2005; Iglesiaset al., 2013; Parr and Friston, 2017) and unexpected uncertainty (uncertainty about state transitions)tonoradrenergicsignalling(YuandDayan,2005; Payzan-LeNestouretal.,2013;ParrandFriston,2017).Herewefinda dopamin-ergicmodulationof𝜓3-relatedactivityinadopaminergicregion,

sug-gestingadopaminergicroleinsignallinghigherlevelprecisionestimates (asfurthershownbytheaverageeffectof𝜓3).

Oursecondhypothesisconcerningpharmacologicaleffectson rep-resentations of the computational quantities across the whole-brain was moreexploratory.Nevertheless,giventheprominenceof certain neuroanatomicallycharacterisedprojections,forthelower-level com-putational quantities (𝜀2, 𝛿1, and 𝜓2) effects would have been

ex-pectedinmajordopaminergicprojectionregionssuchasthebasal gan-glia,hippocampus,amygdala,cingulateandfrontalcortex(Wise,2004; BentivoglioandMorelli,2005;Schultz,2012)andforthehigher-level

Riferimenti

Documenti correlati

Figure 3: Three examples of the execution of our algorithm, from left to right: (1) an impulse is detected, as movement is sudden (first panel from top) and direction of

Using the velocity integrated CO (6–5) high-velocity maps (pix- els with S/N above 3), we calculate the H 2 mass of the outflow gas, following the relations presented in Paper I

In total, more than 300 assessment teams (corresponding to around 800 evaluators, some of them being part of more than one team) were trained in a series of 2-day intensive

widths of the input signal and fixed density N T = 7.5 12 eV −1 cm −2 of acceptor type interface traps with a uniform energy distribution. This article is licensed

L'architettura moderna dal 1900 / William J. dall'inglese di Anna Barbara e Chiara Rodriquez. Opera di riferimento sull'architettura del XX secolo, &#34;L'architettura moderna

Such objects have been reported in the litera- ture by several authors, who refer to them as galactic “coronae” ( Sun et al. The discovery of a corona associated to the SG supports

tematica dei diritti fondamentali dell’uomo in materia penale nel complesso percorso normativo della Carta costituzionale e, soprattutto, ha posto in fase di germinazione nelle

EDS: Ehlers Danlos Syndrome; HT: Hypermobile; h: hypermobyle... have been screened by titles and abstracts. Then, 1,698 articles were excluded following the selection criteria and