• Non ci sono risultati.

Divergence of a strain of Pseudomonas aeruginosa during an outbreak of ovine mastitis

N/A
N/A
Protected

Academic year: 2021

Condividi "Divergence of a strain of Pseudomonas aeruginosa during an outbreak of ovine mastitis"

Copied!
9
0
0

Testo completo

(1)

Divergence

of

a

strain

of

Pseudomonas

aeruginosa

during

an

outbreak

of

ovine

mastitis

Elli

A.

Wright

a,1

,

Valeria

Di

Lorenzo

b,1

,

Claudia

Trappetti

b

,

Manuele

Liciardi

c

,

Germano

Orru

d

,

Carlo

Viti

e

,

Christina

Bronowski

a

,

Amanda

J.

Hall

a

,

Alistair

C.

Darby

f

,

Marco

R.

Oggioni

b,g,h,2,

**

,

Craig

Winstanley

a,2,

*

a

InstituteofInfectionandGlobalHealth,UniversityofLiverpool,LiverpoolL697BE,UK

b

LaboratoriodiMicrobiologiaMolecolareeBiotecnologia,DipartimentodiBiologiaMolecolare,Universita` diSiena,Siena,Italy

c

IstitutoZooprofilatticoSperimentaledellaSardegna,Italy

d

DipartimentodiScienzeChirurgiche,ServizioSequenziamentoDNA,Policlinico,Universita` diCagliari,Cagliari,Italy

eDip.diBiotecnologieAgrarie,Universita` diFirenze,Firenze,Italy

fInstituteofIntegrativeBiology,UniversityofLiverpool,LiverpoolL697BE,UK g

UOCBatteriologia,AziendaOspedalieraUniversitariaSenese,Siena,Italy

h

DepartmentofGenetics,UniversityofLeicester,LeicesterLES17RH,UK

ARTICLE INFO

Articlehistory:

Received3September2014

Receivedinrevisedform4November2014 Accepted12November2014 Keywords: Mastitis Pseudomonasaeruginosa Diversity Geneexpression Biofilm Straindivergence ABSTRACT

Bacterialinfectionscausingmastitisinsheepcanresultinsevereeconomiclossesfor farmers.A large survey of milk samples from ewes with mastitis in Sardinia, Italy, indicatedanincreasing prevalenceof Pseudomonasaeruginosa infections.It hasbeen shown previously that during chronic, biofilm-associated infections P. aeruginosa populationsdiversify.We reportthephenotypicandgenomiccharacterisation oftwo clonalP.aeruginosaisolates (PSE305andPSE306)fromamastitis infectionoutbreak, representingdistinctcolony morphologyvariants.In additionto pigmentproduction, PSE305andPSE306differedinphenotypiccharacteristicsincludingbiofilmformation, utilisationofvariouscarbonandnitrogensources,twitchingmotility.Wefoundhigher levelsofexpressionof genesassociated withbiofilmformation (pelB) and twitching motility (flgD) in PSE305, compared to the biofilm and twitching-defective PSE306. Comparativegenomicsanalysis revealedsinglenucleotidepolymorphisms(SNPs)and minor insertion/deletion variations between PSE305 and PSE306, including a SNP mutationinthepilPgeneofPSE306.Byintroducingawild-typepilPgenewewereableto partiallycomplementthedefectivetwitchingmotilityofPSE306.Therewerealsothree largerregionsofdifferencebetweenthetwogenomes,indicatinggenomicinstability. Hence,wehavedemonstratedthatP.aeruginosapopulationdivergencecanoccurduring anoutbreakofmastitis,leadingtosignificantvariationsinphenotypeandgenotype,and resemblingthebehaviourofP.aeruginosaduringchronicbiofilm-associatedinfections.

ß2014ElsevierB.V.Allrightsreserved.

* Correspondingauthorat:InstituteofInfectionandGlobalHealth,UniversityofLiverpoolRonaldRossBuilding,WestDerbyStreet,LiverpoolL697BE, UK.Tel.:+4401517959642.

E-mailaddress:C.Winstanley@liv.ac.uk(C.Winstanley).

** Correspondingauthorat:DepartmentofGenetics,UniversityofLeicester,AdrianBuilding,Room115,UniversityRoad,LeicesterLE17RH,UK. E-mailaddress:mro5@leicester.ac.uk(M.R.Oggioni).

1

Theseauthorscontributedequallytothework.

2

Theseauthorscontributedequallytothework.

ContentslistsavailableatScienceDirect

Veterinary

Microbiology

j our na l h ome p a ge : w ww . e l se v i e r . com / l oc a te / v e t m i c

http://dx.doi.org/10.1016/j.vetmic.2014.11.011

(2)

1. Introduction

Mastitis is an inflammation of the mammary gland and is a common condition in many sheep-rearing countries (Conington et al., 2008). The economic losses due to mastitis are of major consequence for sheep farmers. In particular, mastitis can result in poor milk yields,changesinmilkcomposition,prematurecullingof ewesand poor growthratesof lambs(Conington etal., 2008). Mastitis isfrequentlycaused bytheintroduction andmultiplicationofpathogenicbacteriainthemammary glands.CausativebacteriaincludetheCoagulaseNegative Staphylococci,Staphylococcusaureus,Streptococci, Enter-obacteriaceaeandPseudomonasaeruginosa.Alargesurvey of 27,218 milk samples from ewes with mastitis (1214flocksand 1634mastitisevents)inSardinia,Italy indicated that the prevalence of P. aeruginosa cases increasedover the7 yearsamplingperiod(unpublished data).ThemanagementofP.aeruginosainfections repre-sents an increased challenge compared to infections involving other aetiological agents because of the tendencyforlongpersistenceandspread from subclini-cally infected animals throughout a herd. Furthermore with no effective antimicrobials available, intervention strategiesarelimited.

Asaconsequenceofitslargegenome,P.aeruginosaisa versatileandadaptable opportunisticpathogenthatcan causeinfections ofboth medical and veterinary impor-tance(WinstanleyandFothergill,2009;Hertletal.,2011). TheabilityofP.aeruginosatocoloniseandinfectavariety of sites has been attributed to the many virulence factors that it can produce. These include various exotoxins, andseveral secreted products thatare under thecontrolof complex interconnecting quorum-sensing (QS)regulatorynetworks,includingpyocyanin,elastases, LasA, alkaline proteases and rhamnolipid (Winstanley and Fothergill, 2009). Biofilm formation and alginate overproduction,arealsoimportantaspectsofP.aeruginosa pathogenicity,especially in thecontext of chronic lung infections of cystic fibrosis (CF) patients, where they contribute to the intrinsic resistance of P. aeruginosa infections to antimicrobials (Winstanley and Fothergill, 2009).

AlthoughseveralP.aeruginosagenomesequenceshave been reported, these are mostly from human infection isolates(Silbyetal.,2011).Genomesequencingstudieson P. aeruginosa isolates from human CF lung infections haveshownthatmutationandpopulationdivergenceisa commonfeatureofbacteriaduringthesechronic, biofilm-associated,infections,oftenleadingtochangesin pigmen-tationorcolonymorphology(Mowatetal.,2011).Similar diversificationhasbeenobservedinexperimentalbiofilm systems(McElroyetal.,2014).

Having observed colonial morphology variations amongstP.aeruginosaisolatedfromanoutbreakofovine mastitis,theaimofthisstudywastodeterminewhether duringmastitisP.aeruginosapopulationsshowbehaviour characteristicofchronicbiofilm-associatedinfectionsby characterisingthephenotypicandgenotypicpropertiesof two P. aeruginosa isolates representing distinct colony morphologyvariants.

2. Methods 2.1. Bacterialstrains

Theisolateschosenforthisstudywerefromaninfected flockofSardinianewesofabout350animalsnotifiedfor casesofmastitisduringthelactationperiod2004–2005.In a6monthperiod,morethan100animalsbecame culture-positiveforP.aeruginosa.Towardstheendofthelactation period,agroupofsevensheepshowingsignsofmastitis werechosenformoreextensivesampling.Duplicatemilk samplesandswabswerecollectedforeachhalfudder.In fourcases,cultures fromewes showingclinical signsof mastitis yielded a P. aeruginosa with green fluorescent pigmentation(exampleisolatePSE305).Fromtwosheep,a red-pigmentedpyorubin-positive,non-fluorescentP. aer-uginosawasisolated(exampleisolatePSE306).Fromeach sampleallcolonieswereeitherredorgreen-pigmented, and PSE305-like isolates were also obtained from the milkingmachine.

TheIstitutoZooprofilatticoSperimentaleistheofficial Italian public body operating in the frame of National Health Servicewithdutiesrelated toanimal health and welfareandfoodsafety.Animalsamplesweretakenaspart of thenormal surveillance of a regional programme in Sardegnaforreductionofovinemastitis.

2.2. ArrayTubegenotyping

IsolatesPSE305andPSE306werecharacterisedusing the ArrayTube (CLONDIAG, Alere Technologies, Ko¨ln, Germany) genotypingmethod(Wiehlmann etal.,2007). Data from the 13 SNPs, flagellin type (a/b), and the presence of the mutually exclusive type III secretion exotoxins(S orU), wereconvertedinto a ‘‘hexadecimal code’’ representedbyfourdigits,allowingthepublished databasetobesearchedasdescribedpreviously( Wiehl-mannetal.,2007).

2.3. Bacterialculture,RNAextractionandcDNAsynthesis GrowthcurveswereperformedonPAO1,PSE305and PSE306toconfirmthestageatwhichthebacterialcellsare at the mid-exponential and stationary phase. PAO1, PSE305 and PSE306 were inoculated into LB to give a starting A600 of 0.05. The cultures weregrown to

mid-exponential(A600of0.5)andstationaryphase(A600of1.5)

shakingat180rpmandat378C.PSE305andPSE306were alsogrownstaticallyin6-wellplatesinLBat378Cfor24h. RNAextractionswerecollectedfromtheseisolatesat mid-exponential,stationaryphaseandduringconditionsthat promote biofilmgrowth inPAO1 and PSE305 usingthe NucleospinRNAIIkit(Macherey-Nagel).Thepelletswere washedin1MTrispH8(0.1MEDTA)andresuspendedin 100

m

l lysis buffer (Nucleospin RNA II kit; Macherey-Nagel).FollowingRNAextraction,1

m

gofRNAwasusedas atemplateforcDNAsynthesis,usingtheTranscriptorFirst Strand cDNA Synthesis kit (Roche Diagnostics). RNA samples thatwere notexposed toreverse transcriptase wereusedascontrols,andthesewereconfirmedashaving negligiblelevelsofgenomicDNApresent.

(3)

2.4. GeneexpressioninPSE305andPSE306usingSYBR Green1

TherealtimePCRwasperformedinavolumeof20

m

l containing 1 LightCycler DNA Master SYBR Green I mastermix (RocheDiagnostics), 500nM ofeach primer and 2

m

l of the appropriate cDNA sample. Each cDNA sample(includingreversetranscriptasenegativecontrols) wasdiluted1:2withsterile,RNaseandDNase-freewater andanalysedinduplicate.Thereactionswereperformedin 96-wellplatesinaLightCycler480realtimePCRmachine (Roche diagnostics). Amplification was carried out for 45cyclesof958Cfor10s,608Cfor5sand728Cfor30s. Fluorescence was recorded at a wavelength between 510nm and 550nm at theend of each PCR cycle. PCR products weresubsequently analysed by melting curve analysisrangingfrom658Cto958C.Foldchangesingene expressionwascalculatedusing the2DDCt(Schmittgen

and Livak, 2008). The referencegene was gyrBand the referencecondition wasexponentiallygrown PSE305or PSE306. The fold changes in gene expression during stationary phase and biofilmgrowthwere comparedto PSE305 and PSE306grown toexponentialphase. Genes selected for analysis were pilT, algD, pslD, pelB, lasR, pslA and flgD (for primer details, see Supplementary Table1).Toconfirmsuitabilityofusingthe2DDCt

method toanalysethequantitativerealtimePCRdata,astandard curvewasconstructedforeachtargetandreferencegene (SchmittgenandLivak,2008).SerialdilutedP.aeruginosa genomic DNA was amplified with the corresponding primer sets and the obtained threshold crossing point cycles (CT) were plotted against logarithms of initial genomicDNAamountsutilisedineachreaction.AllPCRs exhibited a strong linear correlation (R2<0.9) between

template amounts and CT values, with PCR efficiencies rangingfrom95%to110%confirmingthesuitabilityofthe 2DDCTmethodfortheanalysisofrelativegeneexpression

(SchmittgenandLivak,2008). Furthermore,all quantita-tive PCRs had single melting points following melting curveanalysis.

2.5. Cellattachmentassay

P.aeruginosaisolatesPSE305andPSE306were inocu-latedintoPM1F-0solution(Biolog)untilthesolutionwas at42%transmittance(Biologturbidimeter).Thissolution inavolumeof15mlwasfurtherdilutedin75mlof PM1F-0solution.Thedilutedbacterialsuspension,inavolumeof 100

m

l,wasaddedtoeachwellofPM1andPM2A96-well plates(Biolog)andincubatedfor24hat378C. Thiswas performed intriplicate.Following incubation,themedia and planktonic cells were removed and the adhered biofilms were washed three times with 150

m

l of phosphate-bufferedsaline. Thebiofilmswereallowedto dryand 125

m

lof0.5%(w/v)crystalvioletinwaterwas added to each well and stained for 15min at room temperature.Thebiofilmswerewashedthoroughlywith water to ensure excess stain was removed. Following which,125

m

lofethanolwasaddedtoeachwelltodissolve thecrystalviolet.Thesolutionwastransferredtoanew microtiterplateandreadatA550nm.

2.6. Twitchingmotilityassay

P.aeruginosastrainswerestabbedintoLBagarusinga steriletoothpick,throughtothebottomofthepetridish. Theplateswereincubatedovernight at378C.Following incubation,theagarwasremovedfromthepetridishand the dish was stained with0.5% (w/v) crystal violet for 20minatroomtemperature.Thestainwaswashedoffand the diameter of the stained zones was measured. The twitching motility assay was performed six times. For complementation, the plasmid pDFR1C (Martin et al., 1995), containing pilM, pilN, pilO and pilP, was kindly suppliedbyProfessorJohnMattick,Universityof Queens-land. The plasmid was introduced into P. aeruginosa PSE306 by electroporation, selecting for carbenicillin resistance(400

m

g/ml).

2.7. Genomesequencing

DNA was extracted from PSE305 and PSE306 grown planktonically in LB broth overnight at 378C using the Wizard1

Genomic DNA Purification Kit (Promega). The purityoftheextractedbacterialDNAwasassessedusingthe NanodropND-1000andthequantityofbacterialDNAwas measuredusingtheQubit1

2.0Fluorometer.StrainPSE305 wassequencedusingtheRoche454GenomeSequencerFLX (GS-FLX)bypreparinga6kbpaired-endlibraryusingthe standardtitaniumchemistryfor454.Contigswere assem-bled from the reads, and scaffolded using the Roche 454Newblerassembler(version2.5)withdefaultsettings. ThescaffoldswereorderedandorientatedwithrespecttoP. aeruginosaPAO1(AE004091)usingAbacas( http://abacas.-sourceforge.net/)andthealignmentprogrammeMUMmer (Kurtzetal.,2004).Glimmerv3.02wasusedtocallputative ORFs(Delcheretal.,2007).Aputativefunctionwasthen assigned to each gene by BLAST (Altschul et al., 1990) comparisonwithadatabaseofsequencesgeneratedfrom previously annotated P.aeruginosa genomes.In orderto identifyregions ofdifference, the pseudochromosome of strain PSE305was aligned to the genome of PAO1 and analysedusingtheARTEMISComparisonTool(Carveretal., 2005). In addition, the genome of strain PSE306 was sequencedusingtheSOLiDv4.0systeminordertoidentify single nucleotide polymorphism (SNP) mutations and insertions/deletions(INDELs)withinthisgenomein com-parisontoPSE305.TheSOLiD readsweremapped using BWA(LiandDurbin,2009)incolorspaceusingsequence quality.TheresultingBAMwasthenprocessedusingGATK (McKennaetal.,2010)basequalityscorerecalibration,indel realignment, and duplicate removal. SNP and INDEL discovery was performed using standard hard filtering parameters (DePristo et al., 2011). The VCF output was filteredusingVCFTOOLS(Daneceketal.,2011)andviewed inARTEMIS(Carveretal.,2005).Genomesequencingwas performedbytheCentreforGenomicsResearch,University ofLiverpool.

2.8. Multi-locussequencetyping(MLST)

ForMLSTtyping,regionsoftheacsA,aroE,guaA,mutL, nuoD, pspAand trpEgenes were extracted directly from

(4)

genomesequencedata.Sequencetypeswereassignedusing theavailabledatabase(http://pubmlst.org/paeruginosa/). 2.9. BIOLOGphenotypicassays

Isolates PSE305 and PSE306, and the control P. aeruginosa strainsPAO1 and PA14 were subjected to a phenotypicmicroarray(PM)usingBIOLOGPM1andPM2 microtiterplates,whichtogethertesttheabilitytoutilise 190differentcarbonsources,andPM3,whichtestsforthe ability to utilise 95 different nitrogen sources. The P. aeruginosa were prepared as described previously (Viti etal.,2009).DatawerereadbytheOmniLogPMSoftware andat-testwasappliedtothreeindependentreplicatesto determinestatisticalsignificance.

2.10. Genomesequenceaccession

ThegenomesequencedataforstrainPSE305hasbeen deposited in the ENA-EMBL database under accession numberHG974234.

3. Results

3.1. Genotypingofmastitis-associatedisolatesrepresenting thetwocolonymorphologyvariants

TheArrayTubegenotypingmethodandMLST(derived fromgenomesequencedata) wereusedtoconfirmthat PSE305(green-pigmented isolate)and PSE306 (the red-pigmented isolate) were of the same clone type. The ArrayTubegenotypingmethod(Wiehlmannetal.,2007), whichgivesagenotypicprofilethatcanbeusedtosearcha largedatabaseofP.aeruginosastrains,showedthatPSE305 andPSE306haveanidenticalprofile,whichtheyalsoshare withP.aeruginosacloneV(hexadecimalcode:0812).Clone Visnotoneofthemajorclonesinthedatabase,butithas beenfoundamongstthecollectiontested,mostly associ-atedwithisolatesfromhumanbacteraemiacases( Wiehl-mannet al.,2007). Previousanalysesof clonal complex structuresbasedonthegenotypingdataidentifycloneVas an outlier rather than a member of a major cluster (Wiehlmannetal.,2007).Inadditiontheanalysisofthe PSE305 genomesequence identified thestrain as MLST typeST-244.

3.2. PhenotypicvariationbetweenisolatesPSE305and PSE306

Inadditiontopigmentproduction,therewereanumber ofphenotypicdifferencesbetweentheP.aeruginosaisolates PSE305andPSE306.PSE306didnotformstablebiofilmsin thepresenceofvarioussubstrates,unlikePSE305(Fig.1). Therewerestatisticallysignificantdifferencesinthelevels of crystal violet staining between PSE305 and PSE306, following growth in conditions that promote biofilm formationandinthepresenceofvarioussubstrates (two-tailedStudentst-test,noadditional substrate:t[4]=3.13, p<0.05; with

a

-D-glucose: t[4]=10.68, p<0.001; with butyric acid: t[4]=39.62, p<0.001; with caproic acid: t[4]=7.051, p<0.01; with capric acid: t[4]=51.28,

p<0.001).PSE305growninthepresenceof

a

-D-glucose,

butyric acid, caproic acid and capric acid significantly increasedbiofilmformationinthisstrain,whencompared togrowth withoutadditional substrates(two-tailed Stu-dentst-test,with

a

-D-glucose:t[4]=8.24,p<0.001;with butyric acid:t[4]=18.87, p<0.001;with caproicacid: t[4]=6.53, p<0.01; with capric acid: t[4]=30.00, p<0.001).

PSE305andPSE306differedintheirutilisationofcertain nitrogenandcarbonsources(SupplementaryTable2).In particular,PSE305exhibitedmoremetabolicactivityinthe presenceof

a

-D-glucose,butyricacid,caproicacid,capric

acidandL-histamine,thanPSE306grownunderthesame conditions. This was true of other nitrogen and carbon sources that were assayed (data not shown). However, interestinglybothmastitisstrainsdidnotutiliselactosetoa significantextent(SupplementaryTable2).

OnewayANOVA(Bonferroniadjusted)indicatedthat PSE306wasdeficientin twitchingmotilitycomparedto PSE305(Fig.2)(p<0.001).

3.3. ComparativegenomicsofisolatesPSE305andPSE306 We obtainedthegenomesequenceofisolatePSE305 using454pyrosequencingandthepseudochromosomeof strainPSE305wasalignedtothegenomeofstrainPAO1. InsertionsanddeletionsinthegenomeofstrainPSE305in comparisontothegenomeofstrainPAO1aresummarised in Supplementary Tables 3 and 4. Many of these were locatedinpreviouslyreportedregionsofgenomeplasticity (Mathee et al., 2008). Most of the larger insertions corresponded to known genomic islands or prophages. The largest additional region in the genome of strain PSE305wasa115kbgenomicisland.

InadditionwesequencedthegenomeofstrainPSE306 using the SOLiD v4.0 system in order to identify SNP mutationsandINDELswithinthisgenomeincomparison toPSE305.Threelargegeneclustersidentifiedaspresentin thegenomeofstrainPSE305butabsentfromthegenome

Fig.1.PSE305formsstablebiofilms,unlikePSE306.PSE305andPSE306 werestaticallygrowninthepresenceofvarioussubstrates,andthe resultantbiofilmswerestainedwithcrystalviolet(CV)toassessthe extentofbiofilmformationinthesecultures.1.Noextrasubstrate,2.a-D -glucose,3.D9a-D-lactose,4.butyricacid,5.caproicacid,6.capricacid(all groups:n=3).TheblackandwhitebarsrepresentPSE305andPSE306, respectively.Errorbars representthestandard errorofthemean.(* p<0.05,**p<0.01and***p<0.001).

(5)

ofstrainPSE306wereidentified.Twoofthese(insertionsE andNinSupplementaryTable3)containedseveralORFs sharingsimilaritywithphageproteins,andareputative prophages. A third large deletion (approximately 91kb; position2070401to2161555)wasofaclusterofgenes correspondingtothePAO1genesPA1981-2059.Thislatter regionhasnotpreviouslybeenreportedasdivergent.PCR assayshavebeendesignedtothesethreedeletedregions. In allcases,strain PSE305wasPCR-positive andPSE306 wasPCR-negative,confirmingthegenomesequencedata (datanotshown).

SNPandminorINDELvariationsinthegenomeofstrain PSE305whencomparedtothegenomeofstrainPSE306are summarisedinTable1.OnlysixSNPspassingthequality threshold were found in the genome of PSE306. These includedSNPsinanumberofORFswithputativefunctions thatmightimpactonimportantphenotypessuchasasensor histidine kinase, siderophore receptor, type IV pilus biogenesis protein,alginateregulatory protein, permease andphenazinebiosynthesisprotein.Onlyasmallnumberof minorINDELsweredetected,oneofwhichwasinanORF withaputativeroleinhemeutilisationoradhesion(Table1). 3.4. GeneexpressionvariationsbetweenPSE305andPSE306 BecausePSE305andPSE306exhibiteddifferent pheno-typic propertieswith regardsto biofilm-forming ability andtwitchingmotility,weusedgeneexpressionanalysis toascertainwhetherdifferencesingeneexpressioncould have contributed to these observed phenotypic differ-ences. Therefore, the expression of genes involved in biofilm formationandtwitching motilityinPSE305 and PSE306werequantitativelyassessed(Fig.3).Specifically, theexpressionprofileindifferentinvitromodelsofgrowth (planktonic and biofilm mode of growth) were charac-terisedtoidentifywhethertherearedifferencesbetween

thePSE305 (which can undergo twitching motilityand biofilm formation) and PSE306 (which cannot). The expression profiles of the genes pilT and flgD both of which are involved in type IV fimbrial biogenesis and motility (Bertrand et al., 2010) was characterised. In addition, pslD, pslA, pelB and algD expression profiles, whichareinvolvedinbiofilmarchitectureandformation (Campisano et al., 2006; Ghafoor et al., 2011)and lasR which is involved in the regulation of QS network (WinstanleyandFothergill,2009)weredetermined.

TheexpressionofflgDwassignificantlylowerinPSE306 at stationary phase and under conditions that promote biofilmformation,comparedtoexpressioninPSE305 (two-tailed Students t test; stationary phase: t(6)=2.54, p=0.04.Biofilmgrowth:t(6)=2.87, p=0.03).In addition, theexpressionofpelBwasalsosignificantlylowerinPSE306 at stationary phase and under conditions that promote biofilmformation (two-tailed Studentst test; stationary phase: t(6)=2.72, p=0.03. Biofilm growth: t(6)=2.99, p=0.03).Thisdifferencebetweenthetwoisolateswasalso trueofalgD(two-tailedStudentsttest;stationaryphase: t(6)=6.86,p=0.0005.Biofilmgrowth:t(6)=3.96,p=0.007). Therewasnostatisticalsignificantdifferencebetweenthe geneexpressionprofilesofpilT,pslD,pslAandlasRbetween PSE306and PSE305grownin eitherstationaryphase or underconditions that promote biofilmformation. There was,however,asignificantincreaseinpslDexpressionin PSE306between stationary phase andduring growthin conditions that promote biofilm formation (two-tailed Studentsttest;t(6)=3.57,p=0.01).ThisdifferenceinpslD expressionwasnotobservedinPSE305.

3.5. Partialcomplementationoftwitchingmotility

HavingidentifiedamutationinthepilPgene(Table1) in the twitching motility-defective strain PSE306, we

Fig.2.Comparisonoftwitchingmotilities.TwitchingmotilitywascomparedbetweenstrainsPAO1(controlstrain),PSE305,PSE306andPSE306containing theplasmidpDFRIC.Errorbarsrepresentthestandarderrorofthemean.pvaluesone-wayanalysisofvariance(Bonferroniadjustment)comparisonsare shown(n=6);ns:notsignificant.

(6)

introducedplasmidpDFR1C,containinganintactpilP,into the strain. The presence of the plasmid led to partial complementationofthelossoftwitchingmotility(Fig.2). 4. Discussion

Littleis known about thebehaviour ofP. aeruginosa during mastitis infections in sheep. Having observed variations in colony morphology amongst isolates, we hypothesised that during such infections P. aeruginosa showbehaviourcharacteristicofchronic, biofilm-associ-atedinfections.In thisstudy,wefocusedon representa-tivesofthetwomajorcolonymorphologytypesidentified during the mastitis outbreak and have demonstrated considerablevariationsbetween them. Thetwo isolates (PSE305and PSE306)fromthe same outbreak of ovine mastitisina flock ofSardinian eweswereconfirmedas beingofthesameclone-type,bothgenotype0812(clone V),whichhasbeenfoundinanumberofdifferentclinical sourcesandamongstisolates fromwater (Crameretal., 2012). Previous analyses of clonal complex structures

basedonthegenotypingdataidentifycloneVasanoutlier ratherthanamemberofamajorcluster(Wiehlmannetal., 2007).MLSTanalysisshowedthatPSE305belongedtothe subtype, ST-244. This subtype has been identified in a collectionofhumanwoundisolatesfromthe Mediterra-nean,andincasesofbacteraemiainAsia(Maatallahetal., 2011; Wooetal.,2011). Hence,it islikely thatthetwo isolatescomparedinthisstudyarederivedfromthesame outbreak. Despitebeingof thesameclone-type,PSE305 and PSE306 showed evidence of both phenotype and genotype variation. PSE305 and PSE306 differed in pigmentproduction,twitchingmotilityandintheirability toformstablebiofilms,suggestingthatstrain diversifica-tionoccurredwithinthisoutbreakofovinemastitis.

Some of these phenotypic differences could be explained bythe SNPmutationspresentin PSE306 and theothergenomicdifferencesbetweenthesetwoisolates. Inparticular,theSNPinpilPofPSE306couldexplainthe deficiencyintwitchingmotilityseeninthisisolate.PilPis a lipoprotein that localises to the inner membrane of P.aeruginosaandpromotestheassemblyandfunctionof

Table1

Non-synonymousSNPs/INDELsinPSE306relativetothechromosomeofPSE305ThepositionreferstothelocationoftheSNPandINDELinthePSE305 pseudochromosome.Comp.indicatesthatthegeneisonthecomplementarystrandandonlySNPswithaminimumqualityscoreof100areshown.

Position Description Quality PSE305CDS PAO1ORF Comments

1051625 SNPT!C 246.81 PSE305_10100 PA1098 FlagellarsensorhistidinekinaseFleS(402AAin length); changeofVal57!Ala57;databaseP.

aeruginosasequencesareallAlainthisposition 3880538 SNPA!G(comp.T!C) 128.06 PSE305_36890c PA3408 Hemophore HasAouter membrane receptor HasR; iron siderophore receptor protein (883AAinlength);changeofSer860!Pro860;

databaseP.aeruginosasequencesareallProin thisposition

5237941 SNPT!G(comp.A!C) 157.63 PSE305_49740c PA5041 TypeIVpilusbiogenesisproteinPilP(174AAin length);changeofThr107!Pro107;databaseP.

aeruginosasequencesareallThrinthisposition 5521552 SNPG!A(comp.C!T) 253.13 PSE305_52460c PA5261 AlginatebiosynthesisregulatoryproteinAlgR (248AAinlength);changeofPro16!Leu16;

databaseP.aeruginosasequencesareallLeuin thisposition

6105549 SNPG!A 241.13 PSE305_58030 PA0220 Amino acid permease (477 AA in length); changeofGly33!Asp33;databaseP.aeruginosa

sequencesareallGlyinthisposition 6752225 SNPT!G(comp.A!C) 122.6 PSE305_64430c PA1905and

PA4216

Phenazinebiosynthesis proteinPhzG1/PhzG2 (95 AA in length); changeof Lys24!Thr24;

databaseP.aeruginosasequencesareallArgin this position. Poordatabase matchesin the N-terminalfirst24residues

2300849 INDELGC!G 16/16 PSE305_22350 N/A Possible RBS region mutation upstream of ORF21710c(putativeNADH-flavinreductase); matchesPAO1ORFPA2176

3166266 INDELCT!C 11/11 – N/A BetweenORFs28800and28810

3297412 INDELG!GC(comp.C!CG) 11/11 PSE305_31300c PA2885 Acyclic terpenes utilisation regulator, AtuR, TetRfamily

4564584 INDELCAGGT!C Poor PSE305_43480 PA3980 (Dimethylallyl)adenosine tRNA methylthio-transferase;frameshiftmutationfromposition 125ina446AAprotein

4981298 INDELA!AC 7/7 – N/A BetweenORFs46340and46350

5153865 INDELGC!G(comp.CG!C) Poor PSE305_49100c PA4981 Aminoacidtransporter,AATfamily;frameshift mutationfromposition327ina470AAprotein 5907354 INDELC!CG 8/8 PSE305_56120 PA0041 Largeexoproteinsinvolvedinhemeutilisation

oradhesion

6245439 INDELTC!T 10/10 PSE305_59200 PA0299 Omega-aminoacid-pyruvateaminotransferase 6733229 INDELCA!C Poor – N/A BetweenORF62780and62790

(7)

Fig.3.RelativelevelsofgeneexpressioninPSE305andPSE306.RelativeexpressionlevelsofbiofilmandmotilitygenesbetweenPSE305andPSE306grown tostationaryphaseandunderconditionsthatpromotebiofilmformation,comparedtoexponentialphase(n=3–4).ThereferencegenewasgyrB.Blackand whitebarsrepresentPSE305andPSE306,respectively.Errorbarsrepresentthestandarderrorofthemean.(*p<0.05,**p<0.01and***p<0.001).

(8)

thetypeIVpilus(Ayersetal.,2009).Studieshaveshown thatdisruptionofthepilPgene,resultsinalossofsurface typeIVpiliandadeficiencyintwitchingmotility(Ayers et al., 2009). We demonstrated partial restoration of twitchingmotility followingtheintroductionof a wild-typepilP on aplasmid,implicatingthis mutationin the defectivetwitchingmotilityofPSE306.

Furthermore,therewerealsodifferencesinthe utilisa-tionofhistamineasanitrogensourcebetweenPSE305and PSE306. PSE305 utilised histamine to a greater extent comparedtoPSE306.Thiscouldhavebeenattributedtothe presenceof a SNPmutation in PSE306,in a regionwith homology tothe open reading frame, PA0220in PAO1. PA0220codes foran aminoacidpermease,which when knockedoutinPAO1causedadefectinhistamineutilisation (Johnson et al., 2008). Biolog analysis also showed the absenceoflactoseutilisationbybothPSE305andPSE306. Althoughlactoseisamajorcomponentofovinemilk(Jandal, 1996),theabsenceoflactoseutilisationwasnotsurprising as Pseudomonas sp. does not typically ferment lactose. Glucose appears to be the dominant carbon source of PSE305,unlikeinPSE306.Interestingly,capricacid utilisa-tionbyPSE306appearedtobegreaterthanbyPSE305.This fatty acid is also a significant component of ovine milk (BreckenridgeandKuksis,1967)andcouldbeasourceof carbonforPSE306.Studieshaveshownthatthefattyacid profileofovinemilkcanbemanipulatedbyusingdifferent feedingregimens(Addisetal.,2005).Itispossiblethatby changingthedietoftheovineherdinordertoreducethe fatty acid components of the milk, the P. aeruginosa populationsthatutilisethesecomponentsforgrowthcould becontrolled.Incontrast,capricacidhasbeenshownto haveantimicrobialpropertiesagainstotherGram-negative bacteria,includingCampylobacterjejuni,Salmonellaspp.and Escherichiacoli(Thormaretal.,2006).

ThethreemajordeletionsfromthegenomeofPSE306 compared to PSE305, and the insertions/deletions in PSE305comparedtoPAO1,suggestconsiderablygenomic instabilityduringtheoutbreak.GenomicinstabilityinP. aeruginosaCFinfectionshasbeenwidelyreported(Cramer etal.,2011).Howeverthisisthefirstevidenceofgenomic instabilityduringacuteP.aeruginosamastitisinfections.

BesidesthegenomicdifferencesbetweenPSE305and PSE306,therewerealsosignificantdifferencesinthegene expressionprofilesbetweenthesetwoisolates.Thesegene expression differences could also explain the observed phenotypes of PSE305 and PSE306, in particular the deficiencyintwitchingmotilityandtheabsenceofstable biofilm formation in PSE306. There was a significant differencebetweentheexpressionofpelBbetweenPSE305 andPSE306underthetwogrowthconditionstested.The pelgenesareinvolvedintheproductionofaglucose-rich polysaccharide that contributes to the formation of a matrix that surrounds the cells in a biofilm; PelB in particular has been predicted to be a transmembrane proteinlocatedwithinthecytoplasmicmembrane( Vas-seuretal.,2005).P.aeruginosawithmutationsinpelBare deficient in their ability to form biofilms, in particular duringearlystages of biofilmformation (Vasseur etal., 2005).ThissuggeststhatthereducedexpressionofpelBin PSE306comparedtoPSE306,couldhavecontributedtothe

deficiencyofPSE306toformstablebiofilms.AswithpelB, algD gene expression was also reduced in PSE306 comparedtoPSE305,underthegrowthconditionstested. ThealgDgeneispartofanoperonthatisresponsiblefor the synthesis of alginate and contributes to biofilm architecture(Stapperetal.,2004). ExpressionoftheflgD gene,involvedinflagellaassembly,wasreducedinPSE306. It has been shown that flagella are necessary for P. aeruginosabiofilmdevelopmentandmotility(O’Tooleand Kolter,1998).Therefore,thereducedexpressionofalgD, flgDandpelBcouldcontributetotheinabilityofPSE306to formstablebiofilms.Furthermore,reducedflgDexpression in PSE306 could have resulted in reduced flagella-dependant motility in this isolate. Interestingly, pilP transcription was not significantly reduced in PSE306 compared to PSE305 despite PSE306 containing a SNP mutationinthisgene.ThereforeitispossiblethattheSNP mutationaffectsthefunctionofPilP,butnotthelevelof pilP transcription. Overall,somekey differencesin gene expressionbetween PSE305and PSE306wereidentified thatcouldhavecontributedtothephenotypicdifferences betweenthesetwoisolates.

5. Conclusion

PSE306andPSE305representisolatesofthesameclone thatvaryinbothgenotypeandphenotype.Thisprovides evidence that strain divergence occurred during this infection outbreak. P. aeruginosa population divergence has previouslynot beenreported in mastitis infections. Thefurther understandingofpopulation behaviourofP. aeruginosaduringmastitisinfections,inparticular regard-ingbiofilmformingability,mayaidthedevelopmentof noveltherapeuticstrategiestotreatmastitisinfections. Acknowledgments

TheworkwassupportedinpartbyagrantoftheMinistro della Saluteprogramma diricercacorrente IZS SA 01/04 and Progetti di ricercafondamentale o di base; Regione Sardegna.Anno2009CRP1_188.Thegenomesequencingand analysis work was supportedby a grantfrom the Royal CollegeofVeterinarySurgeonsGoldenJubileeTrustFund, UK.

AppendixA. Supplementarydata

Supplementarydataassociated withthisarticlecanbe found, in the online version, at http://dx.doi.org/10.1016/ j.vetmic.2014.11.011.

References

Addis,M.,Cabiddu,A.,Pinna,G.,Decandia,M.,Piredda,G.,Pirisi,A.,Molle, G.,2005.Milkandcheesefattyacidcompositioninsheepfed Medi-terraneanforages withreference toconjugated linoleicacid cis-9,trans-11.J.DairySci.88,3443–3454.

Altschul,S.F.,Gish,W.,Miller,W.,Myers,E.W.,Lipman,D.J.,1990.Basic localalignmentsearchtool.J.Mol.Biol.215,403–410.

Ayers,M.,Sampaleanu,L.M.,Tammam,S.,Koo,J.,Harvey,H.,Howell,P.L., Burrows,L.L.,2009.PilM/N/O/Pproteinsformaninnermembrane complexthataffectsthestabilityofthePseudomonasaeruginosatype IVpilussecretin.J.Mol.Biol.394,128–142.

(9)

Bertrand,J.J.,West,J.T.,Engel,J.N.,2010.Geneticanalysisoftheregulation oftypeIVpilusfunctionbytheChpchemosensorysystemof Pseudo-monasaeruginosa.J.Bacteriol.192,994–1010.

Breckenridge,W.C.,Kuksis,A.,1967.Molecularweightdistributionsof milkfattriglyceridesfromsevenspecies.J.LipidRes.8,473–478.

Campisano,A.,Schroeder,C.,Schemionek,M.,Overhage,J.,Rehm,B.H., 2006.PslDisasecretedproteinrequiredforbiofilmformationby Pseudomonasaeruginosa.Appl.Environ.Microbiol.72,3066–3068.

Carver,T.J.,Rutherford,K.M.,Berriman,M.,Rajandream,M.A.,Barrell,B.G., Parkhill,J.,2005.ACT:theArtemisComparisonTool.Bioinformatics 21,3422–3423.

Conington,J.,Cao,G.,Stott,A.,Bunger,L.,2008.Breedingforresistanceto mastitisinUnitedKingdomsheep,areviewandeconomicappraisal. Vet.Rec.162,369–376.

Cramer,N.,Klockgether,J.,Wrasman,K.,Schmidt,M.,Davenport,C.F., Tummler,B.,2011.Microevolutionofthemajorcommon Pseudomo-nasaeruginosaclonesCandPA14incysticfibrosislungs.Environ. Microbiol.13,1690–1704.

Cramer,N.,Wiehlmann,L.,Ciofu,O.,Tamm,S.,Hoiby,N.,Tummler,B., 2012. MolecularepidemiologyofchronicPseudomonasaeruginosa airwayinfectionsincysticfibrosis.PLoSONE7,e50731.

Danecek,P.,Auton,A.,Abecasis,G.,Albers,C.A.,Banks,E.,DePristo,M.A., Handsaker, R.E.,Lunter, G.,Marth,G.T.,Sherry,S.T., McVean,G., Durbin,R.,GenomesProjectAnalysisGroup,2011.Thevariantcall formatandVCFtools.Bioinformatics27,2156–2158.

Delcher,A.L.,Bratke,K.A.,Powers,E.C.,Salzberg,S.L.,2007.Identifying bacterialgenesandendosymbiontDNAwithGlimmer. Bioinformat-ics23,673–679.

DePristo,M.A.,Banks,E.,Poplin,R.,Garimella,K.V.,Maguire,J.R.,Hartl,C., Philippakis,A.A.,delAngel,G.,Rivas,M.A.,Hanna,M.,McKenna,A., Fennell,T.J.,Kernytsky,A.M.,Sivachenko,A.Y.,Cibulskis,K.,Gabriel, S.B.,Altshuler,D.,Daly,M.J.,2011.Aframeworkforvariation discov-eryandgenotypingusingnext-generationDNAsequencingdata.Nat. Genet.43,491–498.

Ghafoor,A.,Hay,I.D.,Rehm,B.H.,2011.Roleofexopolysaccharidesin Pseudomonasaeruginosabiofilmformationandarchitecture.Appl. Environ.Microbiol.77,5238–5246.

Hertl,J.A.,Schukken,Y.H.,Bar,D.,Bennett,G.J.,Gonzalez,R.N.,Rauch,B.J., Welcome,F.L.,Tauer,L.W.,Grohn,Y.T.,2011.Theeffectofrecurrent episodesof clinicalmastitiscaused by gram-positive and gram-negativebacteriaandotherorganismsonmortalityandcullingin Holsteindairycows.J.DairySci.94,4863–4877.

Jandal,J.M.,1996.Comparativeaspectsofgoatandsheepmilk.Small Rumin.Res.22,177–185.

Johnson,D.A.,Tetu,S.G.,Phillippy,K.,Chen,J.,Ren,Q.,Paulsen,I.T.,2008.

High-throughputphenotypiccharacterizationofPseudomonas aeru-ginosamembranetransportgenes.PLoSGenet.4,e1000211.

Kurtz,S.,Phillippy,A.,Delcher,A.L.,Smoot,M.,Shumway,M.,Antonescu, C.,Salzberg,S.L.,2004.Versatileandopensoftwareforcomparing largegenomes.GenomeBiol.5,R12.

Li,H.,Durbin,R.,2009.Fastandaccurateshortreadalignmentwith Burrows-Wheelertransform.Bioinformatics25,1754–1760.

Maatallah,M.,Cheriaa,J.,Backhrouf,A.,Iversen,A.,Grundmann,H.,Do,T., Lanotte,P.,Mastouri,M.,Elghmati,M.S.,Rojo,F.,Mejdi,S.,Giske,C.G., 2011. Populationstructure of Pseudomonasaeruginosa from five Mediterraneancountries:evidenceforfrequentrecombinationand epidemicoccurrenceofCC235.PLoSONE6,e25617.

Martin,P.R.,Watson,A.A.,McCaul,T.F.,Mattick,J.S.,1995. Characteriza-tionofafive-geneclusterrequiredforthebiogenesisoftype4 fim-briaeinPseudomonasaeruginosa.Mol.Microbiol.16,497–508.

Mathee,K.,Narasimhan,G.,Valdes,C.,Qiu,X.,Matewish,J.M.,Koehrsen, M.,Rokas,A.,Yandava,C.N.,Engels,R.,Zeng,E.,Olavarietta,R.,Doud, M.,Smith,R.S.,Montgomery,P.,White,J.R.,Godfrey,P.A.,Kodira,C., Birren,B.,Galagan, J.E.,Lory,S.,2008. DynamicsofPseudomonas aeruginosagenomeevolution.Proc. Natl.Acad.Sci. U.S.A.105, 3100–3105.

McElroy,K.E.,Hui,J.G.,Woo,J.K.,Luk,A.W.,Webb,J.S.,Kjelleberg,S.,Rice, S.A.,Thomas,T.,2014.Strain-specificparallelevolutiondrives short-termdiversificationduringPseudomonasaeruginosabiofilm forma-tion.Proc.Natl.Acad.Sci.U.S.A.111,E1419–E1427.

McKenna,A.,Hanna,M.,Banks,E.,Sivachenko,A.,Cibulskis,K.,Kernytsky, A.,Garimella,K.,Altshuler,D.,Gabriel,S.,Daly,M.,DePristo,M.A., 2010.TheGenomeAnalysisToolkit:aMapReduceframeworkfor analyzingnext-generationDNAsequencingdata.GenomeRes.20, 1297–1303.

Mowat,E.,Paterson,S.,Fothergill,J.L.,Wright,E.A.,Ledson,M.J.,Walshaw, M.J.,Brockhurst,M.A.,Winstanley,C.,2011.Pseudomonasaeruginosa populationdiversityandturnoverincysticfibrosischronicinfections. Am.J.Respir.Crit.CareMed.183,1674–1679.

O’Toole,G.A.,Kolter,R.,1998.Flagellarandtwitchingmotilityare neces-saryforPseudomonasaeruginosabiofilmdevelopment.Mol. Micro-biol.30,295–304.

Schmittgen,T.D.,Livak,K.J.,2008.Analyzingreal-timePCRdatabythe comparativeC(T)method.Nat.Protoc.3,1101–1108.

Silby,M.W.,Winstanley,C.,Godfrey,S.A.,Levy,S.B.,Jackson,R.W.,2011.

Pseudomonasgenomes:diverseandadaptable.FEMSMicrobiol.Rev. 35,652–680.

Stapper,A.P.,Narasimhan,G.,Ohman,D.E.,Barakat,J.,Hentzer,M.,Molin, S.,Kharazmi, A.,Hoiby,N.,Mathee,K.,2004.Alginateproduction affectsPseudomonasaeruginosabiofilmdevelopmentand architec-ture,butisnotessentialforbiofilmformation.J.Med.Microbiol.53, 679–690.

Thormar,H., Hilmarsson,H., Bergsson, G.,2006.Stable concentrated emulsionsofthe1-monoglycerideofcapricacid(monocaprin)with microbicidalactivitiesagainstthefood-bornebacteriaCampylobacter jejuni,Salmonellaspp.,andEscherichiacoli.Appl.Environ.Microbiol. 72,522–526.

Vasseur,P.,Vallet-Gely,I.,Soscia,C.,Genin,S.,Filloux,A.,2005.Thepel genesofthePseudomonasaeruginosaPAKstrainareinvolvedatearly andlatestagesofbiofilmformation.Microbiology151,985–997.

Viti,C.,Decorosi,F.,Mini,A.,Tatti,E.,Giovannetti,L.,2009.Involvementof theoscA gene inthe sulphur starvation responseand in Cr(VI) resistanceinPseudomonascorrugata28.Microbiology155,95–105.

Wiehlmann,L.,Wagner,G.,Cramer,N.,Siebert,B.,Gudowius,P.,Morales, G.,Kohler,T.,vanDelden,C.,Weinel,C.,Slickers,P.,Tummler,B.,2007.

PopulationstructureofPseudomonasaeruginosa.Proc.Natl.Acad.Sci. U.S.A.104,8101–8106.

Winstanley,C.,Fothergill,J.L.,2009.Theroleofquorumsensinginchronic cysticfibrosisPseudomonasaeruginosainfections.FEMSMicrobiol. Lett.290,1–9.

Woo,P.C.,Tsang,A.K.,Wong,A.Y.,Chen,H.,Chu,J.,Lau,S.K.,Yuen,K.Y., 2011.Analysisofmultilocussequencetypingschemesfor35different bacteriarevealedthatgenelociof10bacteriacouldbereplacedto improvecost-effectiveness.Diagn.Microbiol.Infect.Dis.70,316–323.

Riferimenti

Documenti correlati

Therefore, we identify the Sverdrup flow with those obtained in the framework of the linear models (where the streamlines are closed) but restrict the stability analysis inside a

Humber's Marketing Management graduate certificate program is a comprehensive program covering a wide range of topics relevant to today's marketing professionals including

Trovare la velocit` a angolare con cui va a sbattere, la velocit` a del centro di massa (in funzione dell’an- golo di inclinazione), le equazioni del moto e l’energia (sempre

Pecori-giraldi, nella sua relazione al capo del governo per il periodo 11 febbraio - 30 aprile 1919, commentava: «l’anno scolastico ormai troppo avanzato e l’approssi- marsi

Negli ultimi decenni sono stati compiuti notevoli progressi nella diagnosi e trattamento della hairy cell leukemia, ma fino a pochi anni or sono non erano state

Exit focal plane for MICADO LGS WFS Real Time Computer Telescope Central Control System MAORY Instrumentation Software MICADO Instrumentation Software Field splitting SCAO

the closure relations are discussed in the outlined section. 4b ), we derived the microphysical and dynamical parameters. The results are reported in Table 6 and are used to

This Letter highlights an application with which the temper- ature range can be inferred at which past polluters were active. It also illustrates the precision that might be