• Non ci sono risultati.

Suppression of Λ(1520) resonance production in central Pb-Pb collisions at s NN =2.76 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Suppression of Λ(1520) resonance production in central Pb-Pb collisions at s NN =2.76 TeV"

Copied!
12
0
0

Testo completo

(1)

Suppression of

(1520) resonance production in central Pb-Pb collisions at

s

NN

= 2.76 TeV

S. Acharya et al.∗ (ALICE Collaboration)

(Received 31 May 2018; revised manuscript received 19 September 2018; published 8 February 2019) The production yield of the (1520) baryon resonance is measured at midrapidity in Pb-Pb collisions at √sNN = 2.76 TeV with the ALICE detector at the Large Hadron Collider (LHC). The measurement is

performed in the(1520) → pK−(and charge conjugate) hadronic decay channel as a function of the transverse momentum (pT) and collision centrality. The ratio of the pT-integrated production of(1520) baryons relative to  baryons in central collisions is suppressed by about a factor of 2 with respect to peripheral collisions. This is the first observation of the suppression of a baryonic resonance at the LHC and the first 3σ evidence of

(1520) suppression within a single collision system. The measured (1520)/ ratio in central collisions is

smaller than the value predicted by the statistical hadronization model calculations. The shape of the measured

pT distribution and the centrality dependence of the suppression are reproduced by the EPOS3 Monte Carlo event generator. The measurement adds further support to the formation of a dense hadronic phase in the final stages of the evolution of the fireball created in heavy-ion collisions, lasting long enough to cause a significant reduction in the observable yield of short-lived resonances.

DOI:10.1103/PhysRevC.99.024905

I. INTRODUCTION

High-energy heavy-ion collisions provide an excellent means to study the properties of nuclear matter under ex-treme conditions and the phase transition to a deconfined state of quarks and gluons (quark-gluon plasma, QGP [1]) predicted by lattice QCD calculations [2]. The bulk properties of the matter created in high-energy nuclear reactions have been widely studied at the Relativistic Heavy Ion Collider (RHIC) and at the Large Hadron Collider (LHC) and are well described by hydrodynamic and statistical models. The initial hot and dense partonic matter rapidly expands and cools, eventually undergoing a transition from the QGP to a hadron gas phase [3]. The relative abundances of sta-ble particles are consistent with chemical equilibrium and are successfully described by statistical hadronization mod-els (SHMs) [4–6]. They are determined by the “chemical freeze-out” temperature Tch and the baryochemical potential

μB[4,7], reflecting the thermodynamic characteristics of the

chemical freeze-out. In the final stage of the collision, a dense hadron gas is expected to form and to expand until the system eventually decouples when elastic interactions cease. Hadronic resonances with lifetimes shorter than or comparable to the timescale of the fireball evolution (a few fm/c) are sensitive probes of the dynamics and properties of the medium formed after hadronization [8]. Within the SHM,

Full author list given at the end of the article.

Published by the American Physical Society under the terms of the

Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

they are expected to be produced with abundances consistent with the chemical equilibrium parameters Tchand μB, but the

measured yields might be modified after the chemical freeze-out by the hadronic phase. Because of their short lifetimes, resonances can decay within the hadronic medium, which can alter or destroy the correlation among the decay daughters via interactions (rescattering) with the surrounding hadrons, hence reducing the observed yield. Alternatively, an increase (regeneration) might also be possible due to resonance forma-tion in the hadronic phase [9]. The observed yield of hadronic resonances depends on the resonance lifetime, the duration of the hadronic phase, and the relative scattering cross section of the decay daughters within the hadronic medium.

Recent results from the ALICE Collaboration in Pb-Pb collisions at√sNN= 2.76 TeV [10] show that the production yields of the K∗(892)0 resonance are suppressed in central

collisions with respect to peripheral collisions and are over-estimated by SHM predictions. This phenomenon might be due to the short K∗(892)0lifetime (τ ∼ 4 fm/c) and suggests

the dominance of destructive rescattering over regeneration processes in the hadronic phase. No suppression is observed for the longer lived φ(1020) meson (τ ∼ 46 fm/c), indicating that it decays mostly outside the fireball. Both observations are in agreement with the calculations of EPOS3, a model that includes a microscopic description of the hadronic phase [11]. Within this model, the lifetime of the hadronic phase formed in central Pb-Pb collisions at√sNN= 2.76 TeV is predicted to be ∼10 fm/c. The measurement of the production of the (1520) baryonic resonance, owing to its characteristic life-time (τ ∼ 12.6 fm/c), serves as an excellent probe to further constrain the formation, the evolution, and the characteristics of the hadronic phase.

In this article, we present the first measurement of(1520) production in Pb-Pb collisions at √sNN = 2.76 TeV. The

(2)

) 2 c (GeV/ pK M 1.5 1.6 1.7 1.8 ) 2 c Counts / (7.5 MeV/ 0 1 2 3 4 5 10 × c < 2.0 GeV/ T p 1.5 < 50-80% data (bkg. subtracted) global fit (Voigt. + residual bkg.) residual bkg. ) 2 c (GeV/ pK M 1.5 1.6 1.7 1.8 ) 2 c Counts / (7.5 MeV/ 0 5 10 15 10 × c < 2.5 GeV/ T p 2.0 < 20-50% + cc. − pK → (1520) Λ | < 0.5 y | ) 2 c (GeV/ pK M 1.5 1.6 1.7 1.8 ) 2 c Counts / (10 MeV/ 0 5 10 15 20 25×10 c < 4.0 GeV/ T p 3.0 < 0-20% ALICE = 2.76 TeV NN s Pb-Pb, 3 3 3

FIG. 1. Example invariant-mass distributions of the (1520) → pK− (and charged conjugate) reconstruction after subtraction of the mixed-event background. The solid line represents the global fit (signal+ residual background) to the data while the dashed line indicates the estimated residual background. The error bars indicate the statistical uncertainties of the data.

measurement is performed at midrapidity,|y| < 0.5, with the ALICE detector [12] at the LHC and is based on an analysis of about 15 million minimum-bias Pb-Pb collisions recorded in 2010. Previous results on(1520) production in high-energy hadronic collisions have been reported by STAR in pp, d-Au, and Au-Au collisions at√sNN= 200 GeV at RHIC [13,14].

II. EXPERIMENTAL SETUP AND DATA ANALYSIS

A detailed description of the ALICE experimental appara-tus and its performance can be found in Ref. [15]. The relevant features of the main detectors utilized in this analysis are outlined here. The V0 detector is composed of two scintillator hodoscopes, placed on either side of the interaction point, and covers the pseudorapidity regions 2.8 < η < 5.1 and −3.7 < η < −1.7, respectively. It is employed for triggering, background suppression, and collision-centrality determina-tion. The inner tracking system (ITS) and the time-projection chamber (TPC) provide vertex reconstruction and charged-particle tracking in the central barrel, within a solenoidal magnetic field of 0.5 T. The ITS is a high-resolution tracker made of six cylindrical layers of silicon detectors. The TPC is a large cylindrical drift detector of radial and longitudinal dimensions of about 85 < r < 247 cm and −250 < z < 250 cm, respectively. Charged-hadron identification is performed by the TPC via specific ionization energy loss (dE/dx) and by the time-of-flight (TOF) detector. The TOF is located at a radius of 370–399 cm and measures the particle time of flight with a resolution of about 80 ps, allowing hadron identification at higher momenta. A minimum-bias trigger was configured to select hadronic events with high efficiency, requiring a combination of hits in the two innermost layers of the ITS and in the V0 detector. The contamination from beam-induced background is removed offline, as discussed in detail in Refs. [16,17]. The collision centrality is determined based on the signal amplitude of the V0 detector, whose response is proportional to the event multiplicity. A complete description of the event selection and centrality determination can be found in Ref. [18].

The (1520) resonance is reconstructed via invariant-mass analysis of its decay daughters in the hadronic decay channel(1520) → pK−(and charge conjugate, c.c.), with a branching ratio of 22.5± 0.5% [19]. Particle and antiparticle states are combined to enhance the statistical significance of the reconstructed signal.(1520) refers to their sum in the following, unless otherwise specified. Candidate daughters are selected from tracks reconstructed by the ITS and TPC, are required to have pT > 150 MeV/c, and are restricted

to the pseudorapidity range|η| < 0.8 for uniform acceptance and efficiency performance. Furthermore, a cut on the impact parameter to the primary vertex is applied to reduce contam-ination from secondary tracks emanating from weak decays or from interactions with the detector material. Details on the track selection can be found in Ref. [10]. Kaons and protons are identified from the combined information of the track dE/dx in the TPC and the time of flight measured by the TOF. The invariant-mass distribution of unlike-sign pairs of se-lected kaon and proton tracks is constructed for each centrality class and pTinterval. The rapidity of the candidate(1520) is

required to be within|y| < 0.5. A large source of background from random combinations of uncorrelated hadrons affects the invariant-mass spectrum. A mixed-event technique [20] is employed to estimate the combinatorial background, using unlike-sign proton and kaon tracks taken from different events with similar characteristics. The background is normalized and corrected for event-mixing distortions using a fit to the mixed/same-event ratio of like-sign pairs. Figure 1 shows examples of the reconstructed invariant-mass distribution af-ter background subtraction. The (1520) raw yield is then extracted by means of a global fit, where a Voigtian function (the convolution of the nonrelativistic Breit-Wigner with the Gaussian detector resolution) is used to describe the signal. The shape of the residual background resembles that of a Maxwell-Boltzmann distribution; therefore the residual back-ground is fitted with a similar functional form,

fbackground(mpK)

= B(mpK− mcutoff)nC3/2 exp[−C (mpK− mcutoff)n],

(3)

TABLE I. Main contributions to the systematic uncertainty of the(1520) pT-differential yield in 0–20%, 20–50%, and 50–80% centrality classes. The values are relative uncertainties (standard de-viations expressed in %). When appropriate, they are reported for the lowest and highest measured pTbin. The total systematic uncertainty and the contribution uncorrelated across centralities (after removing the common uncertainties) are also reported.

0–20% 20–50% 50–80%

Signal extraction 12 11 9

Global tracking efficiency 10–10.5 10–10.5 10–10.5 TOF matching efficiency 1–6.5 1–6.5 0–6.5

Particle identification 3 3 3

Material and interactions 3.5–2.5 3.5–2.5 4.5–2.5

(1520) true pTdistribution 3.5–1 4.5–1 2.5–1

Normalization 0.5 1.5 4.5

Total 17–17.5 16.5–17 15.5–16.5

Uncorrelated 12–11.5 11.5–10.5 9.5–9.5

where B (normalization), mcutoff(low-mass cutoff), C, and n

are free parameters.

The raw yields are corrected for the decay branching frac-tion and for detector acceptance, reconstrucfrac-tion, track selec-tion, and particle-identification efficiency, evaluated through a detailed Monte Carlo simulation of the ALICE detector. Simulation events are produced using the HIJING Monte Carlo event generator [21] with the addition of (1520) signals (particle and antiparticle states). Particle transport is performed by GEANT3 [22].

The main sources of systematic uncertainty on the cor-rected yields are summarized in TableI. They include the sig-nal extraction procedures as well as the contributions related to the efficiency corrections (true pTdistribution of(1520),

track selection, particle identification, material budget, and hadronic cross section) and event normalization. A significant fraction of this uncertainty, estimated to be about 12%, is common to all centrality classes.

III. RESULTS AND DISCUSSION

The fully corrected pT-differential yields of(1520)

mea-sured in|y| < 0.5 are shown in Fig.2in the centrality classes 0–20%, 20–50%, and 50–80%. The spectral shapes are com-pared with predictions from the blast-wave model [23], which assumes particle production from thermal sources expanding with a common transverse velocity. The parameters of the model are the ones obtained from published results on pion, kaon, and proton production in Pb-Pb collisions [24]. The good agreement of the blast-wave predictions with the data is consistent with the scenario where(1520) undergoes a similar hydrodynamic evolution as pions, kaons, and protons with a common transverse expansion velocity that increases with centrality. The pT distributions are also compared to

predictions of the EPOS3 model [11], a Monte Carlo gen-erator founded on parton-based Gribov-Regge theory, which describes the full evolution of a heavy-ion collision. The model employs viscous hydrodynamic calculations for the

description of the expansion of the bulk partonic matter. EPOS3 incorporates the UrQMD [25,26] transport model to describe the interactions among particles in the hadronic phase in a microscopic approach. The results from the model are in rather good agreement with the measured (1520) spectral shapes in all centrality classes, but the model overesti-mates the yields in central (0–20%) and semicentral (20–50%) collisions.

The pT-integrated yield, dN/dy, and the average

trans-verse momentum, pT, are computed by integrating the

data and using extrapolations to estimate the yields in the unmeasured regions. The extrapolations are obtained using the best fit of the blast-wave function to the pT distributions.

Several other fit functions (Maxwell-Boltzmann, Fermi-Dirac, mT exponential, pT exponential) are employed to estimate

the systematic uncertainties. The fraction of the yields in the extrapolated regions are 6.2%, 6.2%, and 10.4% for 0–20%, 20–50%, and 50–80% centrality events, respectively. The total dN/dy systematic uncertainties are 17.2%, 16.5%, and 15.6%, with a significant contribution common to all central-ity classes of about 12%. The total systematic uncertainties onpT are 6.9%, 7.2%, and 6.9%. The values of dN/dy and

pT for (1520) are reported in TableII.

The ratio of the pT-integrated yield of (1520) to that

of its stable counterpart, , highlights the characteristics of resonance production directly related to the particle lifetime, as possible effects due to valence-quark composition cancel. The yields of  have been previously measured by ALICE in Pb-Pb collisions at √sNN = 2.76 TeV [27]. Since the centrality classes for (1520) are different from those of the measured yields, the latter has been interpolated from the measured values fitting their dependence on the number of participating nucleons in the collisions (Npart) with the

empirical parametrization a + bNpartc, where a, b, and c

are free parameters. Moreover, the  yield, which was not published in Ref. [27], has been assumed equal to that of, as expected at LHC energies [24]. In the following, refers to the sum of particle and antiparticle states, except for ALICE, where it is defined as 2. The yield ratios (1520)/ are reported in TableII.

Figures3and4, respectively, present thepT of (1520)

and the (1520)/ yield ratios as a function of the cubic root of the charged-particle multiplicity density at midrapidity [17],dNch/dη1/3. The latter is used as a proxy for the system

radius to emphasize the system-size dependence of(1520) production, as suggested by femtoscopic studies using Bose-Einstein correlations [28]. The pT increases significantly

with increasing charged-particle multiplicity, hence with in-creasing collision centrality (Fig. 3). The value in central (0–20%) collisions is 23% higher than the one in peripheral (50–80%) collisions. The measured pT is compared to the

prediction from the blast-wave model discussed previously [23,24]. The good agreement confirms the consistency of the (1520) data with a common hydrodynamic evolution picture. The pT results also highlight the good agreement

with the prediction from the EPOS3 [11] model. It is notewor-thy that EPOS3 fails to describe the data when the UrQMD transport stage is disabled, underlining the importance of

(4)

)

c

(GeV/

T

p

0 2 4 6 8

]

-1

)

c

) [(GeV/

T

p

d

y

/(d

N

2

d

4 − 10 3 − 10 2 − 10 1 − 10 1 10 2 10 (1520) + cc. Λ | < 0.5 y | 0-20% (100x) EPOS v3.107 /K/p) π Blast-Wave ( = 2.76 TeV NN s ALICE, Pb-Pb, (1520) + cc. Λ | < 0.5 y | 20-50% (10x) EPOS v3.107 /K/p) π Blast-Wave ( = 2.76 TeV NN s ALICE, Pb-Pb, (1520) + cc. Λ | < 0.5 y | 50-80% (1x) EPOS v3.107 /K/p) π Blast-Wave ( = 2.76 TeV NN s ALICE, Pb-Pb, 0 2 4 6 0.5 1 1.5 /K/p) π Blast-Wave ( = 0.646 〉 T β 〈 ) = 0.097 c (GeV/ kin T n = 0.722 0 2 4 6 0.5 1 1.5 = 0.608 〉 T β 〈 ) = 0.105 c (GeV/ kin T n = 0.831 0 2 4 6 0.5 1 1.5 = 0.508 〉 T β 〈 ) = 0.124 c (GeV/ kin T n = 1.220 0 2 4 6

d

ata

/ mo

d

e

l

0.5 1 1.5 EPOS v3.107 0 2 4 6 0.5 1 1.5

)

c

(GeV/

T

p

0 2 4 6 0.5 1 1.5

FIG. 2. (Left) pT-differential yields of(1520) at midrapidity, |y| < 0.5, in the centrality classes 0–20%, 20–50%, and 50–80%. The solid and dashed curves represent predictions from the blast-wave model (normalization fitted to the data) and EPOS3, respectively. The horizontal error bars represents the width of the measured pTinterval. (Right) Ratio of the data to the blast-wave and EPOS3 predictions.

the latter in the description of the evolution of heavy-ion collisions.

A gradual decrease of the (1520)/ yield ratio with increasing charged-particle multiplicity is observed from pe-ripheral to central Pb-Pb collisions (Fig. 4). The (1520) suppression in central Pb-Pb events with respect to peripheral events is measured as the double ratio

Rcp/=

[(1520)/]0–20% [(1520)/]50–80%

= 0.54 ± 0.08(stat) ± 0.12(syst), (2) where common uncertainties cancel. (1520)/ in central collisions is about 45% lower than in peripheral collisions. The result provides the first evidence for (1520) suppres-sion in heavy-ion collisuppres-sions, with a 3.1σ confidence level. The ratio is compared to grand-canonical equilibrium pre-dictions from the GSI-Heidelberg [4], THERMUS [29], and SHARE3 [30] models, whose parameters have been deter-mined from fits to stable particles [31]. The ratio is also compared to the nonequilibrium configuration implemented

in SHARE3, where the undersaturation (oversaturation) pa-rameters γs (strange) and γq (light quarks) are free [32]. All models describe the yield of stable hadrons well.(1520)/ in central collisions is lower than SHM predictions by values ranging from 37% to 52%, depending on the reference model. Figure 4 also shows the data from the STAR Collaboration at RHIC in Au-Au, d-Au, and pp collisions atsNN = 200 GeV [13,14]. The trend of the suppression is similar to the one seen from STAR data in Au-Au collisions at√sNN= 200 GeV. The current measurement of(1520) suppression has a higher precision at 3.1σ confidence level, as compared to the 1.8σ confidence level of STAR data in Au-Au collisions. Finally, the multiplicity dependence of the(1520)/ ratio is compared with the prediction from EPOS3 [11] (Fig. 4). It is important to note that the model, although it system-atically overestimates the data, describes the trend of the suppression well. The double ratio Rcp∗/ is in agreement

with the data within the uncertainties, although the model is about 25% higher. This might hint to a longer lifetime of the hadronic phase than the value obtained from EPOS3 calculations (τhadr∼ 8.5 fm/c) or to an imprecise description TABLE II. (1520) integrated yields, pT-integrated ratio of(1520)/, pT of (1520) production and corresponding uncertainties in 0–20%, 20–50%, and 50–80% centrality classes. The first and second uncertainties indicate the statistical and total systematic error, respectively. The values in parentheses show the systematic uncertainty excluding the contributions common to all centrality classes.

dN/dy (1520)/ pT (GeV/c)

0–20% 1.56± 0.20 ± 0.27 (0.19) 0.038± 0.005 ± 0.008 (0.006) 1.85± 0.09 ± 0.13 (0.10) 20–50% 0.70± 0.06 ± 0.12 (0.08) 0.044± 0.004 ± 0.009 (0.007) 1.76± 0.06 ± 0.13 (0.11) 50–80% 0.22± 0.02 ± 0.03 (0.02) 0.069± 0.006 ± 0.013 (0.010) 1.50± 0.05 ± 0.10 (0.07)

(5)

1/3

η

/d

ch

N

d

0 2 4 6 8 10 12

)

c

(GeV/〉

T

p〈

1.2 1.4 1.6 1.8 2 ALICE = 2.76 TeV NN s Pb-Pb, EPOS v3.107

EPOS v3.107 (UrQMD off) /K/p) π Blast-Wave ( (1520) + cc. Λ | < 0.5 y |

FIG. 3. pT of (1520) as a function of dNch/dη1/3. Sta-tistical and systematic uncertainties are shown as bars and boxes, respectively. The solid line shows the blast-wave predictions. The dashed lines show the predictions from EPOS3 with and without the hadronic phase (UrQMD off).

of the relevant hadronic cross sections in the transport phase. These observations highlight the relevance of the hadronic phase in the study of heavy-ion collisions and the importance of a microscopic description of the late hadronic interactions.

1/3

η

/d

ch

N

d

0 2 4 6 8 10 12

Λ

(1520) / Λ

0 0.05 0.1 0.15 ALICE = 2.76 TeV NN s Pb-Pb, = 200 GeV NN s STAR, pp d-Au Au-Au EPOS v3.107 = 2.76 TeV NN s Pb-Pb, = 156 MeV ch T THERMUS GSI-Heidelberg SHARE3 = 2.08 s γ = 1.63, q γ = 138 MeV, ch T SHARE3

FIG. 4. pT-integrated ratio of(1520)/ production as a func-tion of dNch/dη1/3. Predictions from several SHMs and from EPOS3 are also shown.

IV. CONCLUSION

In conclusion, the first measurement of(1520) produc-tion in Pb-Pb collisions at√sNN= 2.76 TeV at the LHC has been presented. The spectral shapes and pT are consistent

with the hydrodynamic evolution picture that describes pions, kaons, and protons, indicating that the (1520) experiences the same collective radial expansion, with a common trans-verse velocity which increases with collision centrality. The comparison of the pT results to EPOS3 predictions

high-lights the relevance of the hadronic phase in the study of heavy-ion collisions and the importance of a microscopic de-scription of the late hadronic interactions. The pT-integrated

ratio (1520)/ is suppressed in central Pb-Pb collisions with respect to peripheral Pb-Pb collisions (first such evidence in heavy-ion collisions) and is lower than the value predicted by statistical hadronisation models. The measurement adds further support to the formation of a dense hadronic phase in the latest stages of the evolution of the fireball created in high-energy heavy-ion collisions, lasting long enough to cause a significant reduction in the observable yield of short-lived resonances.

ACKNOWLEDGMENTS

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accel-erator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centers and the Worldwide LHC Computing Grid (WLCG) Collaboration. The ALICE Collaboration acknowledges the following fund-ing agencies for their support in buildfund-ing and runnfund-ing the AL-ICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Com-mittee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Min-istry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universi-dade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Min-istry of Science and Technology of China (MSTC), National Natural Science Foundation of China (NSFC), and Ministry of Education of China (MOEC), China; Ministry of Science and Education, Croatia; Ministry of Education, Youth, and Sports of the Czech Republic, Czech Republic; The Dan-ish Council for Independent Research | Natural Sciences, the Carlsberg Foundation, and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), and Centre National de la Recherche Sci-entifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung, und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH,

(6)

Germany; General Secretariat for Research and Technology, Ministry of Education, Research, and Religions, Greece; Na-tional Research, Development, and Innovation Office, Hun-gary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC), and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, In-donesia; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Sci-ence and Technology, Nagasaki Institute of Applied SciSci-ence (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI, and Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Re-search Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and Na-tional Science Centre, Poland; Korea Institute of Science and

Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics, and Roma-nian National Agency for Science, Technology, and Innova-tion, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research, and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológ-icas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba and Centro de Investigaciones Energéticas, Medioambien-tales y Tecnológicas (CIEMAT), Spain; Swedish Research Council (VR) and Knut and Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Re-search, Switzerland; National Science and Technology De-velopment Agency (NSDTA), Suranaree University of Tech-nology (SUT), and Office of the Higher Education Com-mission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; and National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

[1] N. Cabibbo and G. Parisi, Exponential hadronic spectrum and quark liberation,Phys. Lett. B 59,67(1975).

[2] E. Laermann and O. Philipsen, The status of lattice QCD at finite temperature, Ann. Rev. Nucl. Part. Sci. 53, 163 (2003).

[3] B. Müller and J. L. Nagle, Results from the Relativistic Heavy Ion Collider,Ann. Rev. Nucl. Part. Sci. 56,93(2006). [4] A. Andronic, P. Braun-Munzinger, and J. Stachel, Hadron

production in central nucleus-nucleus collisions at chemical freeze-out,Nucl. Phys. A 772,167(2006).

[5] F. Becattini and R. Fries, The QCD confinement transition: Hadron formation, Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms - Vol. 23 (Springer-Verlag, Berlin Heidelberg, 2010).

[6] J. Cleymans and K. Redlich, Unified Description of Freezeout Parameters in Relativistic Heavy Ion Collisions, Phys. Rev. Lett. 81,5284(1998).

[7] A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, The thermal model on the verge of the ultimate test: Particle production in Pb-Pb collisions at the LHC, J. Phys. G 38, 124081(2011).

[8] C. Markert, R. Bellwied, and I. Vitev, Formation and decay of hadronic resonances in the QGP,Phys. Lett. B 669,92(2008). [9] M. Bleicher and J. Aichelin, Strange resonance production:

Probing chemical and thermal freezeout in relativistic heavy ion collisions,Phys. Lett. B 530,81(2002).

[10] B. Abelev et al. (ALICE Collaboration), K∗(892)0and φ(1020) production in Pb-Pb collisions at√sNN= 2.76 TeV,Phys. Rev.

C 91,024609(2015).

[11] A. G. Knospe, C. Markert, K. Werner, J. Steinheimer, and M. Bleicher, Hadronic resonance production and interaction in

partonic and hadronic matter in the EPOS3 model with and without the hadronic afterburner UrQMD,Phys. Rev. C 93, 014911(2016).

[12] K. Aamodt et al. (ALICE Collaboration), The ALICE experi-ment at the CERN LHC, JINST 3, S08002 (2008).

[13] B. I. Abelev et al. (STAR Collaboration), Strange Baryon Resonance Production in√sNN = 200 GeV p + p and Au+Au

Collisions,Phys. Rev. Lett. 97,132301(2006).

[14] B. I. Abelev et al. (STAR Collaboration), Hadronic resonance production in d+Au collisions atsNN = 200 GeV at RHIC,

Phys. Rev. C 78,044906(2008).

[15] B. Abelev et al. (ALICE Collaboration), Performance of the ALICE Experiment at the CERN LHC,Int. J. Mod. Phys. A 29,1430044(2014).

[16] K. Aamodt et al. (ALICE Collaboration), Charged-Particle Multiplicity Density at Mid-Rapidity in Central Pb–Pb Collis-ions at√sNN= 2.76 TeV,Phys. Rev. Lett. 105,252301(2010).

[17] K. Aamodt et al. (ALICE Collaboration), Centrality Depen-dence of the Charged-Particle Multiplicity Density at Mid-Rapidity in Pb-Pb Collisions at√sNN= 2.76 TeV,Phys. Rev.

Lett. 106,032301(2011).

[18] B. Abelev et al. (ALICE Collaboration), Centrality determina-tion of Pb-Pb collisions at√sNN= 2.76 TeV with ALICE,Phys.

Rev. C 88,044909(2013).

[19] C. Patrignani, K. Agashe, G. Aielli, C. Amsler, M. Antonelli, D. M. Asner, H. Baer, Sw. Banerjee, R. M. Barnett, T. Basaglia

et al., Review of particle physics,Chin. Phys. C 40,100001 (2016).

[20] D. L’Hote, About resonance signal extraction from multiparticle data: Combinatorics and event mixing methods,Nucl. Instrum. Meth. A 337,544(1994).

(7)

[21] X.-N. Wang and M. Gyulassy, HIJING: A Monte Carlo model for multiple jet production in pp, p A, and A A collisions,Phys. Rev. D 44,3501(1991).

[22] R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, and L. Urban, GEANT Detector Description and Simulation Tool [http://cds.cern.ch/record/1082634]

[23] E. Schnedermann, J. Sollfrank, and U. W. Heinz, Thermal phenomenology of hadrons from 200-A/GeV S+S collisions, Phys. Rev. C 48,2462(1993).

[24] B. Abelev et al. (ALICE Collaboration), Centrality dependence of π, K, p production in Pb-Pb collisions atsNN= 2.76 TeV,

Phys. Rev. C 88,044910(2013).

[25] S. A. Bass, M. Belkacem, M. Brandstetter, L. Bravina, C. Ernest, L. Gerland, M. Hofmann, S. Hofmann, J. Konopka, G. Mao et al., Microscopic models for ultrarelativistic heavy ion collisions,Prog. Part. Nucl. Phys. 41,255(1998).

[26] M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ernst, S. Soff, L. Bravina, M. Belkacem, H. Weber, H. Stöcker et al.,

Relativistic hadron hadron collisions in the ultrarelativistic quantum molecular dynamics model, J. Phys. G 25, 1859 (1999).

[27] B. Abelev et al. (ALICE Collaboration), K0

Sand Production

in Pb-Pb Collisions at√sNN= 2.76 TeV,Phys. Rev. Lett. 111,

222301(2013).

[28] K. Aamodt et al. (ALICE Collaboration), Two-pion Bose-Einstein correlations in central Pb-Pb collisions at√sNN= 2.76

TeV,Phys. Lett. B 696,328(2011).

[29] S. Wheaton and J. Cleymans, Statistical-thermal model calcula-tions using THERMUS,J. Phys. G 31,S1069(2005).

[30] M. Petran, J. Letessier, J. Rafelski, and G. Torrieri, SHARE with CHARM,Comput. Phys. Commun. 185,2056(2014). [31] M. Floris, Hadron yields and the phase diagram of strongly

interacting matter,Nucl. Phys. A 931,103(2014).

[32] M. Petran, J. Letessier, V. Petraek, and J. Rafelski, Hadron production and quark-gluon plasma hadronization in Pb-Pb collisions at √sNN= 2.76 TeV, Phys. Rev. C 88, 034907

(2013).

S. Acharya,138D. Adamová,94J. Adolfsson,81M. M. Aggarwal,98G. Aglieri Rinella,36M. Agnello,33N. Agrawal,49 Z. Ahammed,138S. U. Ahn,77S. Aiola,143A. Akindinov,65M. Al-Turany,104S. N. Alam,138D. S. D. Albuquerque,120

D. Aleksandrov,88B. Alessandro,59R. Alfaro Molina,73Y. Ali,16A. Alici,11,54,29A. Alkin,3J. Alme,24T. Alt,70

L. Altenkamper,24I. Altsybeev,137M. N. Anaam,7C. Andrei,48D. Andreou,36H. A. Andrews,108A. Andronic,141,104

M. Angeletti,36V. Anguelov,102C. Anson,17T. Antiˇci´c,105F. Antinori,57P. Antonioli,54R. Anwar,124N. Apadula,80

L. Aphecetche,112H. Appelshäuser,70S. Arcelli,29R. Arnaldi,59O. W. Arnold,103,115I. C. Arsene,23M. Arslandok,102 B. Audurier,112A. Augustinus,36R. Averbeck,104M. D. Azmi,18A. Badalà,56Y. W. Baek,61,42S. Bagnasco,59R. Bailhache,70

R. Bala,99A. Baldisseri,134M. Ball,44R. C. Baral,86A. M. Barbano,28R. Barbera,30F. Barile,53L. Barioglio,28

G. G. Barnaföldi,142L. S. Barnby,93V. Barret,131P. Bartalini,7K. Barth,36E. Bartsch,70N. Bastid,131S. Basu,140G. Batigne,112

B. Batyunya,76P. C. Batzing,23J. L. Bazo Alba,109I. G. Bearden,89H. Beck,102C. Bedda,64N. K. Behera,61I. Belikov,133

F. Bellini,36H. Bello Martinez,2R. Bellwied,124L. G. E. Beltran,118V. Belyaev,92G. Bencedi,142S. Beole,28A. Bercuci,48 Y. Berdnikov,96D. Berenyi,142R. A. Bertens,127D. Berzano,36,59L. Betev,36P. P. Bhaduri,138A. Bhasin,99I. R. Bhat,99

H. Bhatt,49B. Bhattacharjee,43J. Bhom,116A. Bianchi,28L. Bianchi,124N. Bianchi,52J. Bielˇcík,39J. Bielˇcíková,94

A. Bilandzic,115,103G. Biro,142R. Biswas,4S. Biswas,4J. T. Blair,117D. Blau,88C. Blume,70G. Boca,135F. Bock,36

A. Bogdanov,92L. Boldizsár,142M. Bombara,40G. Bonomi,136M. Bonora,36H. Borel,134A. Borissov,20,141M. Borri,126

E. Botta,28C. Bourjau,89L. Bratrud,70P. Braun-Munzinger,104M. Bregant,119T. A. Broker,70M. Broz,39E. J. Brucken,45

E. Bruna,59G. E. Bruno,36,35D. Budnikov,106H. Buesching,70S. Bufalino,33P. Buhler,111P. Buncic,36O. Busch,130,a Z. Buthelezi,74J. B. Butt,16J. T. Buxton,19J. Cabala,114D. Caffarri,90H. Caines,143A. Caliva,104E. Calvo Villar,109

R. S. Camacho,2P. Camerini,27A. A. Capon,111F. Carena,36W. Carena,36F. Carnesecchi,29,11J. Castillo Castellanos,134

A. J. Castro,127E. A. R. Casula,55C. Ceballos Sanchez,9S. Chandra,138B. Chang,125W. Chang,7S. Chapeland,36

M. Chartier,126S. Chattopadhyay,138S. Chattopadhyay,107A. Chauvin,103,115C. Cheshkov,132B. Cheynis,132

V. Chibante Barroso,36D. D. Chinellato,120S. Cho,61P. Chochula,36T. Chowdhury,131P. Christakoglou,90C. H. Christensen,89 P. Christiansen,81T. Chujo,130S. U. Chung,20C. Cicalo,55L. Cifarelli,11,29F. Cindolo,54J. Cleymans,123F. Colamaria,53 D. Colella,66,36,53A. Collu,80M. Colocci,29M. Concas,59,bG. Conesa Balbastre,79Z. Conesa del Valle,62J. G. Contreras,39

T. M. Cormier,95Y. Corrales Morales,59P. Cortese,34M. R. Cosentino,121F. Costa,36S. Costanza,135J. Crkovská,62

P. Crochet,131E. Cuautle,71L. Cunqueiro,141,95T. Dahms,103,115A. Dainese,57S. Dani,67M. C. Danisch,102A. Danu,69

D. Das,107I. Das,107S. Das,4A. Dash,86S. Dash,49S. De,50A. De Caro,32G. de Cataldo,53C. de Conti,119J. de Cuveland,41 A. De Falco,26D. De Gruttola,11,32N. De Marco,59S. De Pasquale,32R. D. De Souza,120H. F. Degenhardt,119 A. Deisting,104,102A. Deloff,85S. Delsanto,28C. Deplano,90P. Dhankher,49D. Di Bari,35A. Di Mauro,36B. Di Ruzza,57

R. A. Diaz,9T. Dietel,123P. Dillenseger,70Y. Ding,7R. Divià,36Ø. Djuvsland,24A. Dobrin,36D. Domenicis Gimenez,119

B. Dönigus,70O. Dordic,23L. V. R. Doremalen,64A. K. Dubey,138A. Dubla,104L. Ducroux,132S. Dudi,98A. K. Duggal,98

M. Dukhishyam,86P. Dupieux,131R. J. Ehlers,143D. Elia,53E. Endress,109H. Engel,75E. Epple,143B. Erazmus,112F. Erhardt,97

M. R. Ersdal,24B. Espagnon,62G. Eulisse,36J. Eum,20D. Evans,108S. Evdokimov,91L. Fabbietti,103,115M. Faggin,31 J. Faivre,79A. Fantoni,52M. Fasel,95L. Feldkamp,141A. Feliciello,59G. Feofilov,137A. Fernández Téllez,2A. Ferretti,28

A. Festanti,31,36V. J. G. Feuillard,102J. Figiel,116M. A. S. Figueredo,119S. Filchagin,106D. Finogeev,63F. M. Fionda,24

(8)

U. Frankenfeld,104G. G. Fronze,28U. Fuchs,36C. Furget,79A. Furs,63M. Fusco Girard,32J. J. Gaardhøje,89M. Gagliardi,28

A. M. Gago,109K. Gajdosova,89M. Gallio,28C. D. Galvan,118P. Ganoti,84C. Garabatos,104E. Garcia-Solis,12K. Garg,30

C. Gargiulo,36P. Gasik,115,103E. F. Gauger,117M. B. Gay Ducati,72M. Germain,112J. Ghosh,107P. Ghosh,138S. K. Ghosh,4

P. Gianotti,52P. Giubellino,104,59P. Giubilato,31P. Glässel,102D. M. Goméz Coral,73A. Gomez Ramirez,75V. Gonzalez,104

P. González-Zamora,2S. Gorbunov,41L. Görlich,116S. Gotovac,37V. Grabski,73L. K. Graczykowski,139K. L. Graham,108 L. Greiner,80A. Grelli,64C. Grigoras,36V. Grigoriev,92A. Grigoryan,1S. Grigoryan,76J. M. Gronefeld,104F. Grosa,33

J. F. Grosse-Oetringhaus,36R. Grosso,104R. Guernane,79B. Guerzoni,29M. Guittiere,112K. Gulbrandsen,89T. Gunji,129

A. Gupta,99R. Gupta,99I. B. Guzman,2R. Haake,36M. K. Habib,104C. Hadjidakis,62H. Hamagaki,82G. Hamar,142

M. Hamid,7J. C. Hamon,133R. Hannigan,117M. R. Haque,64J. W. Harris,143A. Harton,12H. Hassan,79D. Hatzifotiadou,54,11

S. Hayashi,129S. T. Heckel,70E. Hellbär,70H. Helstrup,38A. Herghelegiu,48E. G. Hernandez,2G. Herrera Corral,10 F. Herrmann,141K. F. Hetland,38T. E. Hilden,45H. Hillemanns,36C. Hills,126B. Hippolyte,133B. Hohlweger,103D. Horak,39

S. Hornung,104R. Hosokawa,130,79J. Hota,67P. Hristov,36C. Huang,62C. Hughes,127P. Huhn,70T. J. Humanic,19

H. Hushnud,107N. Hussain,43T. Hussain,18D. Hutter,41D. S. Hwang,21J. P. Iddon,126S. A. Iga Buitron,71R. Ilkaev,106

M. Inaba,130M. Ippolitov,88M. S. Islam,107M. Ivanov,104V. Ivanov,96V. Izucheev,91B. Jacak,80N. Jacazio,29P. M. Jacobs,80

M. B. Jadhav,49S. Jadlovska,114J. Jadlovsky,114S. Jaelani,64C. Jahnke,119,115M. J. Jakubowska,139M. A. Janik,139C. Jena,86

M. Jercic,97O. Jevons,108R. T. Jimenez Bustamante,104M. Jin,124P. G. Jones,108A. Jusko,108P. Kalinak,66A. Kalweit,36 J. H. Kang,144V. Kaplin,92S. Kar,7A. Karasu Uysal,78O. Karavichev,63T. Karavicheva,63P. Karczmarczyk,36E. Karpechev,63

U. Kebschull,75R. Keidel,47D. L. D. Keijdener,64M. Keil,36B. Ketzer,44Z. Khabanova,90A. M. Khan,7S. Khan,18

S. A. Khan,138A. Khanzadeev,96Y. Kharlov,91A. Khatun,18A. Khuntia,50M. M. Kielbowicz,116B. Kileng,38B. Kim,130

D. Kim,144D. J. Kim,125E. J. Kim,14H. Kim,144J. S. Kim,42J. Kim,102M. Kim,61,102S. Kim,21T. Kim,144T. Kim,144

S. Kirsch,41I. Kisel,41S. Kiselev,65A. Kisiel,139J. L. Klay,6C. Klein,70J. Klein,36,59C. Klein-Bösing,141S. Klewin,102 A. Kluge,36M. L. Knichel,36A. G. Knospe,124C. Kobdaj,113M. Kofarago,142M. K. Köhler,102T. Kollegger,104 N. Kondratyeva,92E. Kondratyuk,91A. Konevskikh,63M. Konyushikhin,140O. Kovalenko,85V. Kovalenko,137M. Kowalski,116

I. Králik,66A. Kravˇcáková,40L. Kreis,104M. Krivda,66,108F. Krizek,94M. Krüger,70E. Kryshen,96M. Krzewicki,41

A. M. Kubera,19V. Kuˇcera,94,61C. Kuhn,133P. G. Kuijer,90J. Kumar,49L. Kumar,98S. Kumar,49S. Kundu,86P. Kurashvili,85

A. Kurepin,63A. B. Kurepin,63A. Kuryakin,106S. Kushpil,94J. Kvapil,108M. J. Kweon,61Y. Kwon,144S. L. La Pointe,41 P. La Rocca,30Y. S. Lai,80I. Lakomov,36R. Langoy,122K. Lapidus,143C. Lara,75A. Lardeux,23P. Larionov,52E. Laudi,36 R. Lavicka,39R. Lea,27L. Leardini,102S. Lee,144F. Lehas,90S. Lehner,111J. Lehrbach,41R. C. Lemmon,93I. León Monzón,118

P. Lévai,142X. Li,13X. L. Li,7J. Lien,122R. Lietava,108B. Lim,20S. Lindal,23V. Lindenstruth,41S. W. Lindsay,126

C. Lippmann,104M. A. Lisa,19V. Litichevskyi,45A. Liu,80H. M. Ljunggren,81W. J. Llope,140D. F. Lodato,64V. Loginov,92

C. Loizides,95,80P. Loncar,37X. Lopez,131E. López Torres,9A. Lowe,142P. Luettig,70J. R. Luhder,141M. Lunardon,31

G. Luparello,60M. Lupi,36A. Maevskaya,63M. Mager,36S. M. Mahmood,23A. Maire,133R. D. Majka,143M. Malaev,96 Q. W. Malik,23L. Malinina,76,cD. Mal’Kevich,65P. Malzacher,104A. Mamonov,106V. Manko,88F. Manso,131V. Manzari,53

Y. Mao,7M. Marchisone,74,128,132J. Mareš,68G. V. Margagliotti,27A. Margotti,54J. Margutti,64A. Marín,104C. Markert,117

M. Marquard,70N. A. Martin,104P. Martinengo,36J. L. Martinez,124M. I. Martínez,2G. Martínez García,112

M. Martinez Pedreira,36S. Masciocchi,104M. Masera,28A. Masoni,55L. Massacrier,62E. Masson,112A. Mastroserio,53

A. M. Mathis,103,115P. F. T. Matuoka,119A. Matyja,127,116C. Mayer,116M. Mazzilli,35M. A. Mazzoni,58F. Meddi,25 Y. Melikyan,92A. Menchaca-Rocha,73E. Meninno,32J. Mercado Pérez,102M. Meres,15C. S. Meza,109S. Mhlanga,123 Y. Miake,130L. Micheletti,28M. M. Mieskolainen,45D. L. Mihaylov,103K. Mikhaylov,65,76A. Mischke,64A. N. Mishra,71

D. Mi´skowiec,104J. Mitra,138C. M. Mitu,69N. Mohammadi,36A. P. Mohanty,64B. Mohanty,86M. Mohisin Khan,18,d

D. A. Moreira De Godoy,141L. A. P. Moreno,2S. Moretto,31A. Morreale,112A. Morsch,36V. Muccifora,52E. Mudnic,37

D. Mühlheim,141S. Muhuri,138M. Mukherjee,4J. D. Mulligan,143M. G. Munhoz,119K. Münning,44M. I. A. Munoz,80 R. H. Munzer,70H. Murakami,129S. Murray,74L. Musa,36J. Musinsky,66C. J. Myers,124J. W. Myrcha,139B. Naik,49R. Nair,85

B. K. Nandi,49R. Nania,54,11E. Nappi,53A. Narayan,49M. U. Naru,16A. F. Nassirpour,81H. Natal da Luz,119C. Nattrass,127

S. R. Navarro,2K. Nayak,86R. Nayak,49T. K. Nayak,138S. Nazarenko,106R. A. Negrao De Oliveira,70,36L. Nellen,71

S. V. Nesbo,38G. Neskovic,41F. Ng,124M. Nicassio,104J. Niedziela,139,36B. S. Nielsen,89S. Nikolaev,88S. Nikulin,88

V. Nikulin,96F. Noferini,11,54P. Nomokonov,76G. Nooren,64J. C. C. Noris,2J. Norman,79A. Nyanin,88J. Nystrand,24

H. Oh,144A. Ohlson,102J. Oleniacz,139A. C. Oliveira Da Silva,119M. H. Oliver,143J. Onderwaater,104C. Oppedisano,59 R. Orava,45M. Oravec,114A. Ortiz Velasquez,71A. Oskarsson,81J. Otwinowski,116K. Oyama,82Y. Pachmayer,102V. Pacik,89

D. Pagano,136G. Pai´c,71P. Palni,7J. Pan,140A. K. Pandey,49S. Panebianco,134V. Papikyan,1P. Pareek,50J. Park,61

J. E. Parkkila,125S. Parmar,98A. Passfeld,141S. P. Pathak,124R. N. Patra,138B. Paul,59H. Pei,7T. Peitzmann,64X. Peng,7

L. G. Pereira,72H. Pereira Da Costa,134D. Peresunko,88E. Perez Lezama,70V. Peskov,70Y. Pestov,5V. Petráˇcek,39

M. Petrovici,48C. Petta,30R. P. Pezzi,72S. Piano,60M. Pikna,15P. Pillot,112L. O. D. L. Pimentel,89O. Pinazza,54,36 L. Pinsky,124S. Pisano,52D. B. Piyarathna,124M. Płosko´n,80M. Planinic,97F. Pliquett,70J. Pluta,139S. Pochybova,142 P. L. M. Podesta-Lerma,118M. G. Poghosyan,95B. Polichtchouk,91N. Poljak,97W. Poonsawat,113A. Pop,48H. Poppenborg,141

S. Porteboeuf-Houssais,131V. Pozdniakov,76S. K. Prasad,4R. Preghenella,54F. Prino,59C. A. Pruneau,140I. Pshenichnov,63

M. Puccio,28V. Punin,106J. Putschke,140S. Raha,4S. Rajput,99J. Rak,125A. Rakotozafindrabe,134L. Ramello,34F. Rami,133

(9)

A. Rehman,24P. Reichelt,70F. Reidt,36X. Ren,7R. Renfordt,70A. Reshetin,63J.-P. Revol,11K. Reygers,102V. Riabov,96

T. Richert,64,81M. Richter,23P. Riedler,36W. Riegler,36F. Riggi,30C. Ristea,69S. P. Rode,50M. Rodríguez Cahuantzi,2

K. Røed,23R. Rogalev,91E. Rogochaya,76D. Rohr,36D. Röhrich,24P. S. Rokita,139F. Ronchetti,52E. D. Rosas,71K. Roslon,139

P. Rosnet,131A. Rossi,31A. Rotondi,135F. Roukoutakis,84C. Roy,133P. Roy,107O. V. Rueda,71R. Rui,27B. Rumyantsev,76

A. Rustamov,87E. Ryabinkin,88Y. Ryabov,96A. Rybicki,116S. Saarinen,45S. Sadhu,138S. Sadovsky,91K. Šafaˇrík,36 S. K. Saha,138B. Sahoo,49P. Sahoo,50R. Sahoo,50S. Sahoo,67P. K. Sahu,67J. Saini,138S. Sakai,130M. A. Saleh,140

S. Sambyal,99V. Samsonov,96,92A. Sandoval,73A. Sarkar,74D. Sarkar,138N. Sarkar,138P. Sarma,43M. H. P. Sas,64

E. Scapparone,54F. Scarlassara,31B. Schaefer,95H. S. Scheid,70C. Schiaua,48R. Schicker,102C. Schmidt,104H. R. Schmidt,101

M. O. Schmidt,102M. Schmidt,101N. V. Schmidt,95,70J. Schukraft,36Y. Schutz,36,133K. Schwarz,104K. Schweda,104

G. Scioli,29E. Scomparin,59M. Šefˇcík,40J. E. Seger,17Y. Sekiguchi,129D. Sekihata,46I. Selyuzhenkov,104,92K. Senosi,74 S. Senyukov,133E. Serradilla,73P. Sett,49A. Sevcenco,69A. Shabanov,63A. Shabetai,112R. Shahoyan,36W. Shaikh,107 A. Shangaraev,91A. Sharma,98A. Sharma,99M. Sharma,99N. Sharma,98A. I. Sheikh,138K. Shigaki,46M. Shimomura,83

S. Shirinkin,65Q. Shou,7,110K. Shtejer,28Y. Sibiriak,88S. Siddhanta,55K. M. Sielewicz,36T. Siemiarczuk,85D. Silvermyr,81

G. Simatovic,90G. Simonetti,36,103R. Singaraju,138R. Singh,86R. Singh,99V. Singhal,138T. Sinha,107B. Sitar,15M. Sitta,34

T. B. Skaali,23M. Slupecki,125N. Smirnov,143R. J. M. Snellings,64T. W. Snellman,125J. Song,20F. Soramel,31S. Sorensen,127

F. Sozzi,104I. Sputowska,116J. Stachel,102I. Stan,69P. Stankus,95E. Stenlund,81D. Stocco,112M. M. Storetvedt,38P. Strmen,15 A. A. P. Suaide,119T. Sugitate,46C. Suire,62M. Suleymanov,16M. Suljic,36,27R. Sultanov,65M. Šumbera,94

S. Sumowidagdo,51K. Suzuki,111S. Swain,67A. Szabo,15I. Szarka,15U. Tabassam,16J. Takahashi,120G. J. Tambave,24

N. Tanaka,130M. Tarhini,112M. Tariq,18M. G. Tarzila,48A. Tauro,36G. Tejeda Muñoz,2A. Telesca,36C. Terrevoli,31

B. Teyssier,132D. Thakur,50S. Thakur,138D. Thomas,117F. Thoresen,89R. Tieulent,132A. Tikhonov,63A. R. Timmins,124

A. Toia,70N. Topilskaya,63M. Toppi,52F. Torales-Acosta,22S. R. Torres,118S. Tripathy,50S. Trogolo,28G. Trombetta,35 L. Tropp,40V. Trubnikov,3W. H. Trzaska,125T. P. Trzcinski,139B. A. Trzeciak,64T. Tsuji,129A. Tumkin,106R. Turrisi,57 T. S. Tveter,23K. Ullaland,24E. N. Umaka,124A. Uras,132G. L. Usai,26A. Utrobicic,97M. Vala,114J. W. Van Hoorne,36M. van

Leeuwen,64P. Vande Vyvre,36D. Varga,142A. Vargas,2M. Vargyas,125R. Varma,49M. Vasileiou,84A. Vasiliev,88

A. Vauthier,79O. Vázquez Doce,103,115V. Vechernin,137A. M. Veen,64E. Vercellin,28S. Vergara Limón,2L. Vermunt,64

R. Vernet,8R. Vértesi,142L. Vickovic,37J. Viinikainen,125Z. Vilakazi,128O. Villalobos Baillie,108A. Villatoro Tello,2 A. Vinogradov,88T. Virgili,32V. Vislavicius,89,81A. Vodopyanov,76M. A. Völkl,101K. Voloshin,65S. A. Voloshin,140 G. Volpe,35B. von Haller,36I. Vorobyev,115,103D. Voscek,114D. Vranic,104,36J. Vrláková,40B. Wagner,24H. Wang,64

M. Wang,7Y. Watanabe,130M. Weber,111S. G. Weber,104A. Wegrzynek,36D. F. Weiser,102S. C. Wenzel,36J. P. Wessels,141

U. Westerhoff,141A. M. Whitehead,123J. Wiechula,70J. Wikne,23G. Wilk,85J. Wilkinson,54G. A. Willems,141,36

M. C. S. Williams,54E. Willsher,108B. Windelband,102W. E. Witt,127R. Xu,7S. Yalcin,78K. Yamakawa,46S. Yano,46Z. Yin,7

H. Yokoyama,79,130I.-K. Yoo,20J. H. Yoon,61V. Yurchenko,3V. Zaccolo,59A. Zaman,16C. Zampolli,36H. J. C. Zanoli,119 N. Zardoshti,108A. Zarochentsev,137P. Závada,68N. Zaviyalov,106H. Zbroszczyk,139M. Zhalov,96X. Zhang,7Y. Zhang,7

Z. Zhang,7,131C. Zhao,23V. Zherebchevskii,137N. Zhigareva,65D. Zhou,7Y. Zhou,89Z. Zhou,24H. Zhu,7J. Zhu,7Y. Zhu,7

A. Zichichi,29,11M. B. Zimmermann,36G. Zinovjev,3J. Zmeskal,111and S. Zou7

(ALICE Collaboration)

1A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia 2Benemérita Universidad Autónoma de Puebla, Puebla, Mexico

3Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine 4Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India

5Budker Institute for Nuclear Physics, Novosibirsk, Russia 6California Polytechnic State University, San Luis Obispo, California, USA

7Central China Normal University, Wuhan, China 8Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France

9Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba 10Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico 11Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi,” Rome, Italy

12Chicago State University, Chicago, Illinois, USA 13China Institute of Atomic Energy, Beijing, China 14Chonbuk National University, Jeonju, Republic of Korea

15Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia 16COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan

17Creighton University, Omaha, Nebraska, USA

18Department of Physics, Aligarh Muslim University, Aligarh, India 19Department of Physics, Ohio State University, Columbus, Ohio, United States 20Department of Physics, Pusan National University, Pusan, Republic of Korea

(10)

21Department of Physics, Sejong University, Seoul, Republic of Korea 22Department of Physics, University of California, Berkeley, California, USA

23Department of Physics, University of Oslo, Oslo, Norway

24Department of Physics and Technology, University of Bergen, Bergen, Norway 25Dipartimento di Fisica dell’Università ’La Sapienza’ and Sezione INFN, Rome, Italy

26Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy 27Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy

28Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy 29Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy 30Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy 31Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy 32Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy

33Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy

34Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy 35Dipartimento Interateneo di Fisica “M. Merlin” and Sezione INFN, Bari, Italy

36European Organization for Nuclear Research (CERN), Geneva, Switzerland

37Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia 38Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway 39Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic

40Faculty of Science, P. J. Šafárik University, Košice, Slovakia

41Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany 42Gangneung-Wonju National University, Gangneung, Republic of Korea

43Gauhati University, Department of Physics, Guwahati, India

44Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany 45Helsinki Institute of Physics (HIP), Helsinki, Finland

46Hiroshima University, Hiroshima, Japan

47Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms, Germany 48Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania

49Indian Institute of Technology Bombay (IIT), Mumbai, India 50Indian Institute of Technology Indore, Indore, India 51Indonesian Institute of Sciences, Jakarta, Indonesia 52INFN, Laboratori Nazionali di Frascati, Frascati, Italy

53INFN, Sezione di Bari, Bari, Italy 54INFN, Sezione di Bologna, Bologna, Italy 55INFN, Sezione di Cagliari, Cagliari, Italy 56INFN, Sezione di Catania, Catania, Italy

57INFN, Sezione di Padova, Padova, Italy 58INFN, Sezione di Roma, Rome, Italy 59INFN, Sezione di Torino, Turin, Italy 60INFN, Sezione di Trieste, Trieste, Italy 61Inha University, Incheon, Republic of Korea

62Institut de Physique Nucléaire d’Orsay (IPNO), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3/CNRS),

Université de Paris-Sud, Université Paris-Saclay, Orsay, France

63Institute for Nuclear Research, Academy of Sciences, Moscow, Russia 64Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands

65Institute for Theoretical and Experimental Physics, Moscow, Russia 66Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia

67Institute of Physics, Bhubaneswar, India

68Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic 69Institute of Space Science (ISS), Bucharest, Romania

70Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany 71Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico

72Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil 73Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico

74iThemba LABS, National Research Foundation, Somerset West, South Africa

75Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany 76Joint Institute for Nuclear Research (JINR), Dubna, Russia

77Korea Institute of Science and Technology Information, Daejeon, Republic of Korea 78KTO Karatay University, Konya, Turkey

(11)

79Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France 80Lawrence Berkeley National Laboratory, Berkeley, California, USA

81Lund University Department of Physics, Division of Particle Physics, Lund, Sweden 82Nagasaki Institute of Applied Science, Nagasaki, Japan

83Nara Women’s University (NWU), Nara, Japan

84National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece 85National Centre for Nuclear Research, Warsaw, Poland

86National Institute of Science Education and Research, HBNI, Jatni, India 87National Nuclear Research Center, Baku, Azerbaijan

88National Research Centre Kurchatov Institute, Moscow, Russia 89Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark 90Nikhef, National institute for subatomic physics, Amsterdam, Netherlands

91NRC Kurchatov Institute IHEP, Protvino, Russia 92NRNU Moscow Engineering Physics Institute, Moscow, Russia

93Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom 94Nuclear Physics Institute of the Czech Academy of Sciences, ˇRež u Prahy, Czech Republic

95Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 96Petersburg Nuclear Physics Institute, Gatchina, Russia

97Physics Department, Faculty of science, University of Zagreb, Zagreb, Croatia 98Physics Department, Panjab University, Chandigarh, India

99Physics Department, University of Jammu, Jammu, India 100Physics Department, University of Rajasthan, Jaipur, India

101Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany 102Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

103Physik Department, Technische Universität München, Munich, Germany

104Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany 105Rudjer Boškovi´c Institute, Zagreb, Croatia

106Russian Federal Nuclear Center (VNIIEF), Sarov, Russia 107Saha Institute of Nuclear Physics, Kolkata, India

108School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 109Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru

110Shanghai Institute of Applied Physics, Shanghai, China 111Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria 112SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France

113Suranaree University of Technology, Nakhon Ratchasima, Thailand 114Technical University of Košice, Košice, Slovakia

115Technische Universität München, Excellence Cluster “Universe,” Munich, Germany

116The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland 117The University of Texas at Austin, Austin, Texas, USA

118Universidad Autónoma de Sinaloa, Culiacán, Mexico 119Universidade de São Paulo (USP), São Paulo, Brazil 120Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

121Universidade Federal do ABC, Santo Andre, Brazil 122University College of Southeast Norway, Tonsberg, Norway

123University of Cape Town, Cape Town, South Africa 124University of Houston, Houston, Texas, USA

125University of Jyväskylä, Jyväskylä, Finland

126University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool, United Kingdom 127University of Tennessee, Knoxville, Tennessee, USA

128University of the Witwatersrand, Johannesburg, South Africa 129University of Tokyo, Tokyo, Japan

130University of Tsukuba, Tsukuba, Japan

131Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France 132Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France 133Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France

134Université Paris-Saclay Centre d’Études de Saclay (CEA), IRFU, Department de Physique Nucléaire (DPhN), Saclay, France 135Università degli Studi di Pavia, Pavia, Italy

136Università di Brescia, Brescia, Italy

(12)

138Variable Energy Cyclotron Centre, Kolkata, India 139Warsaw University of Technology, Warsaw, Poland

140Wayne State University, Detroit, Michigan, USA

141Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany 142Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary

143Yale University, New Haven, Connecticut, USA 144Yonsei University, Seoul, Republic of Korea

aDeceased.

bPresent address: Dipartimento DET del Politecnico di Torino, Turin, Italy.

cPresent address: M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia. dPresent address: Department of Applied Physics, Aligarh Muslim University, Aligarh, India.

Figura

FIG. 1. Example invariant-mass distributions of the (1520) → pK − (and charged conjugate) reconstruction after subtraction of the mixed-event background
TABLE I. Main contributions to the systematic uncertainty of the (1520) p T -differential yield in 0–20%, 20–50%, and 50–80% centrality classes
FIG. 2. (Left) p T -differential yields of (1520) at midrapidity, |y| &lt; 0.5, in the centrality classes 0–20%, 20–50%, and 50–80%
FIG. 3. p T  of (1520) as a function of dN ch /dη 1/3 . Sta- Sta-tistical and systematic uncertainties are shown as bars and boxes, respectively

Riferimenti

Documenti correlati

A clear perfusion through the lymphatic vessels of the methylene blue solution from the uterine cavity to extra- uterine structures was seen and this was not related to tubal patency

Veblen developed the idea that an economic theory should be about the evolution of social behaviours, whilst Menger elaborate the necessity to distinguish

The main findings of this study are that: (1) the rate of use of PP was higher than previously reported for severe ARDS in the Lung Safe study, (2) the major reason for not

Se gli studi di provenienza, come visto, sono più appropriati per quei materiali in cui è stretto il rapporto materia prima – prodotto finito, gli studi sulle

Gidarakou IK, Tallents RH, Kyrkanides S, Stein S, Moss ME: Comparison of skeletal and dental morphology in asymptomatic volunteers and symptomatic patients with

Il progetto è stato elaborato da Marina Trento, Pedagogista responsabile del Laboratorio di Pedagogia clinica, Dipartimento di Scienze Mediche dell’Università di Torino, con la

A questo percorso storico riassuntivo segue un paragrafo dedicato alle caratteristiche del genere, in primo luogo dal punto di vista letterario con

Angelini, “Il “nuovo” procedimento di riesame delle misure cautelari personali al vaglio della Corte Costituzionale”, DirS. Turco, “La rifoma delle misure