• Non ci sono risultati.

Search for CP Violation in B^0- Bbar0 Mixing Using Partial Reconstruction of B^{0}→D^{*-}Xℓ^{+}ν_{ℓ} and a Kaon Tag

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for CP Violation in B^0- Bbar0 Mixing Using Partial Reconstruction of B^{0}→D^{*-}Xℓ^{+}ν_{ℓ} and a Kaon Tag"

Copied!
7
0
0

Testo completo

(1)

Search for

CP Violation in B

0

- 

B

0

Mixing Using Partial Reconstruction

of

B

0

! D



X‘

þ



and a Kaon Tag

J. P. Lees,1V. Poireau,1V. Tisserand,1E. Grauges,2A. Palano,3a,3bG. Eigen,4B. Stugu,4D. N. Brown,5L. T. Kerth,5 Yu. G. Kolomensky,5M. J. Lee,5G. Lynch,5H. Koch,6T. Schroeder,6C. Hearty,7T. S. Mattison,7J. A. McKenna,7 R. Y. So,7A. Khan,8V. E. Blinov,9a,9cA. R. Buzykaev,9aV. P. Druzhinin,9a,9bV. B. Golubev,9a,9bE. A. Kravchenko,9a,9b A. P. Onuchin,9a,9cS. I. Serednyakov,9a,9bYu. I. Skovpen,9a,9bE. P. Solodov,9a,9bK. Yu. Todyshev,9a,9bA. N. Yushkov,9a D. Kirkby,10A. J. Lankford,10M. Mandelkern,10B. Dey,11J. W. Gary,11O. Long,11G. M. Vitug,11C. Campagnari,12 M. Franco Sevilla,12T. M. Hong,12D. Kovalskyi,12J. D. Richman,12C. A. West,12A. M. Eisner,13W. S. Lockman,13 A. J. Martinez,13B. A. Schumm,13A. Seiden,13D. S. Chao,14C. H. Cheng,14B. Echenard,14K. T. Flood,14D. G. Hitlin,14

P. Ongmongkolkul,14F. C. Porter,14R. Andreassen,15Z. Huard,15B. T. Meadows,15M. D. Sokoloff,15L. Sun,15 P. C. Bloom,16W. T. Ford,16A. Gaz,16U. Nauenberg,16J. G. Smith,16S. R. Wagner,16R. Ayad,17,†W. H. Toki,17 B. Spaan,18K. R. Schubert,19R. Schwierz,19D. Bernard,20M. Verderi,20S. Playfer,21D. Bettoni,22aC. Bozzi,22a R. Calabrese,22a,22bG. Cibinetto,22a,22bE. Fioravanti,22a,22bI. Garzia,22a,22bE. Luppi,22a,22bL. Piemontese,22a V. Santoro,22aR. Baldini-Ferroli,23A. Calcaterra,23R. de Sangro,23G. Finocchiaro,23S. Martellotti,23P. Patteri,23

I. M. Peruzzi,23,‡M. Piccolo,23M. Rama,23A. Zallo,23R. Contri,24a,24bE. Guido,24a,24bM. Lo Vetere,24a,24b M. R. Monge,24a,24bS. Passaggio,24aC. Patrignani,24a,24bE. Robutti,24aB. Bhuyan,25V. Prasad,25M. Morii,26 A. Adametz,27U. Uwer,27H. M. Lacker,28P. D. Dauncey,29U. Mallik,30C. Chen,31J. Cochran,31W. T. Meyer,31S. Prell,31 A. E. Rubin,31A. V. Gritsan,32N. Arnaud,33M. Davier,33D. Derkach,33G. Grosdidier,33F. Le Diberder,33A. M. Lutz,33 B. Malaescu,33P. Roudeau,33A. Stocchi,33G. Wormser,33D. J. Lange,34D. M. Wright,34J. P. Coleman,35J. R. Fry,35

E. Gabathuler,35D. E. Hutchcroft,35D. J. Payne,35C. Touramanis,35A. J. Bevan,36F. Di Lodovico,36R. Sacco,36 G. Cowan,37J. Bougher,38D. N. Brown,38C. L. Davis,38A. G. Denig,39M. Fritsch,39W. Gradl,39K. Griessinger,39 A. Hafner,39E. Prencipe,39R. J. Barlow,40,§G. D. Lafferty,40E. Behn,41R. Cenci,41B. Hamilton,41A. Jawahery,41 D. A. Roberts,41R. Cowan,42D. Dujmic,42G. Sciolla,42R. Cheaib,43P. M. Patel,43,*S. H. Robertson,43P. Biassoni,44a,44b

N. Neri,44aF. Palombo,44a,44bL. Cremaldi,45R. Godang,45,∥P. Sonnek,45D. J. Summers,45X. Nguyen,46M. Simard,46 P. Taras,46G. De Nardo,47a,47bD. Monorchio,47a,47bG. Onorato,47a,47bC. Sciacca,47a,47bM. Martinelli,48G. Raven,48 C. P. Jessop,49J. M. LoSecco,49K. Honscheid,50R. Kass,50J. Brau,51R. Frey,51N. B. Sinev,51D. Strom,51E. Torrence,51 E. Feltresi,52a,52bM. Margoni,52a,52bM. Morandin,52aM. Posocco,52aM. Rotondo,52aG. Simi,52a,52bF. Simonetto,52a,52b R. Stroili,52a,52bS. Akar,53E. Ben-Haim,53M. Bomben,53G. R. Bonneaud,53H. Briand,53G. Calderini,53J. Chauveau,53

Ph. Leruste,53G. Marchiori,53J. Ocariz,53S. Sitt,53M. Biasini,54a,54bE. Manoni,54aS. Pacetti,54a,54bA. Rossi,54a C. Angelini,54a,54bG. Batignani,55a,55bS. Bettarini,55a,55bM. Carpinelli,55a,55b,¶G. Casarosa,55a,55bA. Cervelli,55a,55b F. Forti,55a,55bM. A. Giorgi,55a,55bA. Lusiani,55a,55cB. Oberhof,55a,55bE. Paoloni,55a,55bA. Perez,55aG. Rizzo,55a,55b

J. J. Walsh,55aD. Lopes Pegna,56J. Olsen,56A. J. S. Smith,56R. Faccini,57a,57bF. Ferrarotto,57aF. Ferroni,57a,57b M. Gaspero,57a,57bL. Li Gioi,57aG. Piredda,57aC. Bu¨nger,58O. Gru¨nberg,58T. Hartmann,58T. Leddig,58C. Voß,58 R. Waldi,58T. Adye,59E. O. Olaiya,59F. F. Wilson,59S. Emery,60G. Hamel de Monchenault,60G. Vasseur,60Ch. Ye`che,60 F. Anulli,61D. Aston,61D. J. Bard,61J. F. Benitez,61C. Cartaro,61M. R. Convery,61J. Dorfan,61G. P. Dubois-Felsmann,61 W. Dunwoodie,61M. Ebert,61R. C. Field,61B. G. Fulsom,61A. M. Gabareen,61M. T. Graham,61C. Hast,61W. R. Innes,61

P. Kim,61M. L. Kocian,61D. W. G. S. Leith,61P. Lewis,61D. Lindemann,61B. Lindquist,61S. Luitz,61V. Luth,61 H. L. Lynch,61D. B. MacFarlane,61D. R. Muller,61H. Neal,61S. Nelson,61M. Perl,61T. Pulliam,61B. N. Ratcliff,61 A. Roodman,61A. A. Salnikov,61R. H. Schindler,61A. Snyder,61D. Su,61M. K. Sullivan,61J. Va’vra,61A. P. Wagner,61 W. F. Wang,61W. J. Wisniewski,61M. Wittgen,61D. H. Wright,61H. W. Wulsin,61V. Ziegler,61W. Park,62M. V. Purohit,62

R. M. White,62,**J. R. Wilson,62A. Randle-Conde,63S. J. Sekula,63M. Bellis,64P. R. Burchat,64T. S. Miyashita,64 E. M. T. Puccio,64M. S. Alam,65J. A. Ernst,65R. Gorodeisky,66N. Guttman,66D. R. Peimer,66A. Soffer,66S. M. Spanier,67 J. L. Ritchie,68A. M. Ruland,68R. F. Schwitters,68B. C. Wray,68J. M. Izen,69X. C. Lou,69F. Bianchi,70a,70bF. De Mori,70a A. Filippi,70aD. Gamba,70a,70bS. Zambito,70a,70bL. Lanceri,71a,71bL. Vitale,71a,71bF. Martinez-Vidal,72A. Oyanguren,72

P. Villanueva-Perez,72H. Ahmed,73J. Albert,73Sw. Banerjee,73F. U. Bernlochner,73H. H. F. Choi,73G. J. King,73 R. Kowalewski,73M. J. Lewczuk,73T. Lueck,73I. M. Nugent,73J. M. Roney,73R. J. Sobie,73N. Tasneem,73T. J. Gershon,74

P. F. Harrison,74T. E. Latham,74H. R. Band,75S. Dasu,75Y. Pan,75R. Prepost,75and S. L. Wu75 (BABARCollaboration)

(2)

1Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universite´ de Savoie, CNRS/IN2P3,

F-74941 Annecy-Le-Vieux, France

2Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain 3aINFN Sezione di Bari, I-70126 Bari, Italy

3bDipartimento di Fisica, Universita` di Bari, I-70126 Bari, Italy 4University of Bergen, Institute of Physics, N-5007 Bergen, Norway

5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA 6Institut fu¨r Experimentalphysik 1, Ruhr Universita¨t Bochum, D-44780 Bochum, Germany

7

University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

8Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom 9aBudker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russia

9bNovosibirsk State University, Novosibirsk 630090, Russia 9cNovosibirsk State Technical University, Novosibirsk 630092, Russia

10University of California at Irvine, Irvine, California 92697, USA 11University of California at Riverside, Riverside, California 92521, USA 12University of California at Santa Barbara, Santa Barbara, California 93106, USA

13Institute for Particle Physics, Santa Cruz, University of California at Santa Cruz, California 95064, USA 14California Institute of Technology, Pasadena, California 91125, USA

15University of Cincinnati, Cincinnati, Ohio 45221, USA 16University of Colorado, Boulder, Colorado 80309, USA 17Colorado State University, Fort Collins, Colorado 80523, USA

18Technische Universita¨t Dortmund, Fakulta¨t Physik, D-44221 Dortmund, Germany

19Technische Universita¨t Dresden, Institut fu¨r Kern- und Teilchenphysik, D-01062 Dresden, Germany 20Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France

21

University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

22aINFN Sezione di Ferrara, I-44122 Ferrara, Italy

22bDipartimento di Fisica e Scienze della Terra, Universita` di Ferrara, I-44122 Ferrara, Italy 23INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy

24aINFN Sezione di Genova, I-16146 Genova, Italy

24bDipartimento di Fisica, Universita` di Genova, I-16146 Genova, Italy 25Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India

26Harvard University, Cambridge, Massachusetts 02138, USA

27Physikalisches Institut, Universita¨t Heidelberg, D-69120 Heidelberg, Germany 28Institut fu¨r Physik, Humboldt-Universita¨t zu Berlin, D-12489 Berlin, Germany

29Imperial College London, London SW7 2AZ, United Kingdom 30University of Iowa, Iowa City, Iowa 52242, USA 31Iowa State University, Ames, Iowa 50011-3160, USA 32Johns Hopkins University, Baltimore, Maryland 21218, USA

33Laboratoire de l’Acce´le´rateur Line´aire, IN2P3/CNRS et Universite´ Paris-Sud 11, Centre Scientifique d’Orsay,

F-91898 Orsay Cedex, France

34Lawrence Livermore National Laboratory, Livermore, California 94550, USA 35University of Liverpool, Liverpool L69 7ZE, United Kingdom 36Queen Mary, University of London, London, E1 4NS, United Kingdom

37University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom 38University of Louisville, Louisville, Kentucky 40292, USA

39Johannes Gutenberg-Universita¨t Mainz, Institut fu¨r Kernphysik, D-55099 Mainz, Germany 40University of Manchester, Manchester M13 9PL, United Kingdom

41

University of Maryland, College Park, Maryland 20742, USA

42Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA 43McGill University, Montre´al, Que´bec, Canada H3A 2T8

44aINFN Sezione di Milano, I-20133 Milano, Italy

44bDipartimento di Fisica, Universita` di Milano, I-20133 Milano, Italy 45University of Mississippi, University, Mississippi 38677, USA

46Universite´ de Montre´al, Physique des Particules, Montre´al, Que´bec, Canada H3C 3J7 47aINFN Sezione di Napoli, I-80126 Napoli, Italy

47bDipartimento di Scienze Fisiche, Universita` di Napoli Federico II, I-80126 Napoli, Italy 48

NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands

49University of Notre Dame, Notre Dame, Indiana 46556, USA 50Ohio State University, Columbus, Ohio 43210, USA

51University of Oregon, Eugene, Oregon 97403, USA 52aINFN Sezione di Padova, I-35131 Padova, Italy

(3)

52bDipartimento di Fisica, Universita` di Padova, I-35131 Padova, Italy

53Laboratoire de Physique Nucle´aire et de Hautes Energies, IN2P3/CNRS, Universite´ Pierre et Marie Curie-Paris6,

Universite´ Denis Diderot-Paris7, F-75252 Paris, France

54aINFN Sezione di Perugia, I-06123 Perugia, Italy

54bDipartimento di Fisica, Universita` di Perugia, I-06123 Perugia, Italy 55aINFN Sezione di Pisa, I-56127 Pisa, Italy

55bDipartimento di Fisica, Universita` di Pisa, I-56127 Pisa, Italy 55cScuola Normale Superiore di Pisa, I-56127 Pisa, Italy 56

Princeton University, Princeton, New Jersey 08544, USA

57aINFN Sezione di Roma, I-00185 Roma, Italy

57bDipartimento di Fisica, Universita` di Roma La Sapienza, I-00185 Roma, Italy 58Universita¨t Rostock, D-18051 Rostock, Germany

59Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom 60CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France

61SLAC National Accelerator Laboratory, Stanford, California 94309, USA 62University of South Carolina, Columbia, South Carolina 29208, USA

63Southern Methodist University, Dallas, Texas 75275, USA 64Stanford University, Stanford, California 94305-4060, USA 65State University of New York, Albany, New York 12222, USA 66School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

67University of Tennessee, Knoxville, Tennessee 37996, USA 68University of Texas at Austin, Austin, Texas 78712, USA 69University of Texas at Dallas, Richardson, Texas 75083, USA

70aINFN Sezione di Torino, I-10125 Torino, Italy 70b

Dipartimento di Fisica Sperimentale, Universita` di Torino, I-10125 Torino, Italy

71aINFN Sezione di Trieste, I-34127 Trieste, Italy

71bDipartimento di Fisica, Universita` di Trieste, I-34127 Trieste, Italy 72IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain 73University of Victoria, Victoria, British Columbia, Canada V8W 3P6 74Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

75University of Wisconsin, Madison, Wisconsin 53706, USA

(Received 10 May 2013; published 3 September 2013; corrected 30 September 2013)

We present results of a search for CP violation in B0- B0mixing with the BABAR detector. We select a sample of B0! DX‘þ decays with a partial reconstruction method and use kaon tagging to assess the flavor of the other B meson in the event. We determine the CP violating asymmetry ACP ½NðB0B0Þ 

NðB0B0Þ=½NðB0B0Þ þ NðB0B0Þ ¼ ð0:06  0:17þ0:380:32Þ%, corresponding to CP¼ 1  jq=pj ¼ ð0:29 

0:84þ1:88

1:61Þ  103.

DOI:10.1103/PhysRevLett.111.101802 PACS numbers: 13.20.He, 11.30.Er, 13.20.Gd, 13.25.Ft

Experiments at B factories have observed CP violation in direct B0 decays [1] and in the interference between B0 mixing and decay [2]. CP violation in mixing has so far eluded observation.

The weak-Hamiltonian eigenstates are related to the flavor eigenstates of the strong interaction Hamiltonian by jBL;Hi ¼ pjB0i  qj B0i. The value of the ratio jq=pj

can be determined from the asymmetry between the two oscillation probabilities P ¼ PðB0 ! B0Þ and P ¼ Pð B0! B0Þ through ACP¼ ð P  P Þ=ð P þ P Þ ¼ ð1 

jq=pj4Þ=ð1 þ jq=pj4Þ  2

CP, where CP¼ 1  jq=pj

and the Standard Model (SM) prediction is ACP¼ ð4:0  0:6Þ  104[3]. Any observation with the present

experimental sensitivity [Oð103Þ] would therefore reveal physics beyond the SM.

Experiments measureACPfrom the dilepton asymme-try,A‘‘¼½Nð‘þ‘þÞNð‘‘Þ=½Nð‘þ‘þÞþNð‘‘Þ, where an ‘þ (‘) tags a B0 ( B0) meson, and ‘ refers to

either an electron or a muon [4]. These measurements benefit from the large number of produced dilepton events. However, they rely on the use of control samples to sub-tract the charge-asymmetric background originating from hadrons wrongly identified as leptons or leptons from light hadron decays and to compute the charge-dependent lepton identification asymmetry that may produce a false signal. The systematic uncertainties associated with the correc-tions for these effects constitute a severe limitation to the precision of the measurements.

Using a sample of dimuon events, the D0 Collaboration measured a value of ACP for a mixture of Bs and B0

decays that deviates from the SM by 3.9 standard devia-tions [5]. Measurements ofACPfor Bs! DsX decays

are consistent with the SM [6].

We present a measurement of ACPðB0Þ with a new technique. We reconstruct B0 mesons (hereafter called BR; charge conjugation is implied) from semileptonic

(4)

B0 ! DX‘þ events with a partial reconstruction of the D!  D0 decay [7]. The observed asymmetry between the number of events with an ‘þversus an ‘ is

A‘ Ar‘þ ACPd; (1)

where d ¼ 0:1862  0:0023 [8] is the integrated mixing

probability for B0mesons andAr‘is the detector-induced charge asymmetry in the BRreconstruction.

We identify (‘‘tag’’) the flavor of the other B0 meson (labeled BT) using events with a charged kaon (KT). An

event with a Kþ (K) usually arises from a state that decays as a B0 ( B0) meson. When mixing occurs, the ‘ and KThave the same electric charge. The observed

asym-metry in the rate of mixed events is AT ¼ N ð‘þ KþTÞ  Nð‘KTÞ Nð‘þKþTÞ þ Nð‘KTÞ  Ar‘þ AKþ ACP; (2) where AK is the detector charge asymmetry in kaon reconstruction. A kaon with the same charge as the ‘ might also arise from the Cabibbo-favored decays of the D0 meson produced with the lepton from the partially recon-structed side (KR). The asymmetry observed for these

events is AR ¼ N ð‘þ KRþÞ  Nð‘KRÞ Nð‘þKRþÞ þ Nð‘KRÞ  Ar‘þ AKþ ACPd: (3) Equations (1)–(3) can be used to extractACP and the detector-induced asymmetries (Ar‘andAK).

A detailed description of the BABAR detector is pro-vided elsewhere [9]. We use a sample with an integrated luminosity of425:7 fb1[10] collected on the peak of the ð4SÞ resonance. A 45 fb1 sample collected 40 MeV

below the resonance (‘‘off peak’’) is used for background studies. We also use a simulated sample of B B events [11] with an integrated luminosity equivalent to approximately 3 times the data.

We preselect a sample of hadronic events requiring the number of charged particles to be at least four. We reduce non-B B (continuum) background by requiring the ratio of the second to the zeroth order Fox-Wolfram moments [12] to be less than 0.6.

We select the BRsample by searching for combinations

of a charged lepton (in the momentum range1:4 < p< 2:3 GeV=c) and a low momentum pion 

s (60 < ps < 190 MeV=c), which is taken to arise from D! 

D0s

decay. Here and elsewhere momenta are calculated in the center-of-mass frame. The ‘þ and the s must have

opposite electric charge. Their tracks must be consistent with originating from a common vertex, which is con-strained to the beam collision point in the plane transverse to the beam axis. Finally, we combine p‘, ps, and the probability of the vertex fit in a likelihood ratio variable ()

optimized to reject combinatorial B B events. If more than one candidate is found in the event, we choose the one with the largest value of .

We determine the square of the unobserved neutrino mass as

M2

¼ ðEbeam ED E‘Þ2 ðpDþ p‘Þ2;

where we neglect the momentum of the B0 (pB 340 MeV=c) and identify the B0 energy with the beam

energy Ebeam in the eþe center-of-mass frame; E‘ and

p‘are the energy and momentum of the lepton andpDis the

estimated momentum of the D. As a consequence of limited phase space in the Dþ decay, the soft pion is emitted nearly at rest in the Dþ rest frame. The Dþ four-momentum can therefore be computed by approximat-ing its direction as that of the soft pion, and parametrizapproximat-ing its momentum as a linear function of the soft-pion momentum. All B0semileptonic decays withM2near zero are consid-ered to be signal events, including B0! DX0‘þ‘

(primary), DX0þ; þ! ‘þ‘ (cascade), and

Dhþ (misidentified), where h ¼ ; K is misidentified as a lepton. B0decays to flavor-insensitive CP eigenstates, B0! DDX; D ! ‘X, and Bþ ! DXþ‘þ‘

accu-mulate atM2 0 and are called ‘‘peaking background.’’ The uncorrelated background consists of continuum and combinatorial B B events.

We identify charged kaons in the momentum range 0:2 < pK< 4 GeV=c with an average efficiency of about

85% and a 3% pion misidentification rate. We determine the K production point from the intersection of the K track and the beam spot, and then determine the distance z between the ‘þ s and K vertex coordinates along

the beam axis. Finally, we define the proper time difference t between the BR and the BT in the ‘‘Lorentz boost

approximation’’ [13], t ¼ z=, where  ¼ 0:56 is the average boost of the ð4SÞ in the laboratory frame. Since the B mesons are not at rest in the ð4SÞ rest frame, and in addition the K is usually produced in the cascade process BT ! DX, D ! KY, t is only an approximation

of the actual proper time difference between the BRand the

BT. We reject events if the uncertainty ðtÞ exceeds 3 ps.

This selection reduces to a negligible level the contamina-tion from protons produced in the scattering of primary particles with the beam pipe or the detector material and wrongly identified as kaons, which would otherwise con-stitute a large charge-asymmetric source of background.

We define an event as ‘‘mixed’’ if the K and the ‘ have the same electric charge and as ‘‘unmixed’’ otherwise. In about 20% of the cases, the K has the wrong charge correlation with respect to the BT, and the event is wrongly

defined (mistags).

About 95% of the KRcandidates have the same electric

charge as the ‘; they constitute 75% of the mixed event sample. Because of the small lifetime of the D0meson, the separation in space between the KRand the ‘sproduction

(5)

points is much smaller than for KT. Therefore, we uset as

a first discriminant variable. Kaons in the KR sample are

usually emitted in the hemisphere opposite to the ‘, while genuine KT are produced randomly, so we use in addition

the cosine of the angle ‘K between the ‘ and the K.

In about 20% of the cases, the events contain more than one K; most often we find both a KT and a KRcandidate.

As these two carry different information, we accept multiple-candidate events. Using ensembles of simulated samples of events, we find that this choice does not affect the statistical uncertainty.

TheM2distribution of all signal candidates in shown in Fig.1. We determine the signal fraction by fitting theM2 distribution in the interval ½10; 2:5 GeV2=c4 with the

sum of continuum, B B combinatorial, and B B peaking events. We split peaking B B into direct (B0 ! D‘þ), ‘‘D’’ (B ! DX0‘þ‘), cascade, hadrons wrongly

identified as leptons, and CP eigenstates. In the fit, we float the fraction of direct, D, and B B combinatorial

background, while we fix the continuum contribution to the expectation from off-peak events, rescaled by the on-peak to off-on-peak luminosity ratio, and the rest (less than 2% of the total) to the level predicted by the simulation. Based on the assumption of isospin conservation, we attribute 66% of the D events to Bþ decays and the rest to B0 decays. We use the result of the fit to compute the fractions of continuum, combinatorial, and peaking Bþbackground, CP eigenstates, and B0signal in the sample, as a function of M2. We find ð5:945  0:007Þ  106 peaking events (see Fig.1).

We then repeat the fit after dividing events into the four lepton categories (e, ) and eight tagged samples (eK, K).

We measureACPwith a binned four-dimensional fit to t (100 bins), ðtÞð20Þ, cos‘kð4Þ, and pKð5Þ. Following

Ref. [14] and neglecting resolution effects, thet distri-butions for signal events with a KT are represented by the

following expressions: FB0B0ðtÞ ¼0e 0jtj 2ð1 þ r02Þ  1 þ qp 2 r02  coshðt=2Þ þ1  pq 2 r02  cosðmdtÞ  pq ðb þ cÞ sinðmdtÞ  ; FB0B0ðtÞ ¼ 0e0jtj 2ð1 þ r02Þ  1 þ pq 2 r02  coshðt=2Þ þ1  pq 2 r02  cosðmdtÞ þ pq ðb  cÞ sinðmdtÞ  ; FB0B0ðtÞ ¼0e 0jtj 2ð1 þ r02Þ  1 þ pq 2 r02  coshðt=2Þ 1  pq 2 r02  cosðmdtÞ  pq ðb  cÞ sinðmdtÞ   pq 2 ; FB0B0ðtÞ ¼ 0e0jtj 2ð1 þ r02Þ  1 þ qp 2 r02  coshðt=2Þ 1  pq 2 r02  cosðmdtÞ þ pq ðb þ cÞ sinðmdtÞ   pq 2 ;

where the first index ofF refers to the flavor of the BRand the second to the BT,0¼ 1B0 is the average width of the two B0 mass eigenstates, md and  are, respectively, their mass and width differences, the parameter r0 results from the interference of Cabibbo-favored and doubly Cabibbo suppressed decays on the BT side [14] and has a

very small value [Oð1%Þ], and b and c are two parameters expressing the CP violation arising from that interference. In the SM, b ¼ 2r0sinð2 þ Þ cos 0 and c ¼ 2r0cosð2 þ Þ sin 0

, where  and  are angles of the unitary triangle and 0 is a strong phase. The quantities md, B0, b, c, and sinð2 þ Þ are left free in the fit. The

value of is fixed to zero. Neglecting the tiny contribu-tion from doubly Cabibbo suppressed decays, the main contribution to the asymmetry is time independent and due to the normalization factors of the two mixed terms.

The t distribution for the decays of the Bþ mesons is parametrized by an exponential function, FBþ ¼ þejþtj, where the Bþdecay width is computed as the

inverse of the lifetime1þ ¼ Bþ¼ ð1:641  0:008Þ ps.

When the KTcomes from the decay of the B0meson to a

CP eigenstate (as, for example, B0 ! DðÞ DðÞ [8]), a different expression applies:

FCPeðtÞ ¼

0

4 e0jtj½1  S sinðmdtÞ

 C cosðmdtÞ;

where the plus (minus) sign applies if the BRdecays as a B0

( B0). The fraction of these events (about 1%) and the parameters S and C are fixed in the fits and are taken from simulation.

We obtain the t distributions for KT in B B events, GiðtÞ, by convolving the theoretical ones with a

resolu-tion funcresolu-tion, which consists of the superposiresolu-tion of several Gaussian functions, convolved with exponentials to account for the finite lifetime of charmed mesons in the cascade decay b ! c ! K. Different sets of parameters are used for peaking and for combinatorial background events.

(6)

To describe thet distributions for KRevents,GK RðtÞ, we select a subsample of data containing fewer than 5% KT

decays and use background-subtracted histograms in our likelihood functions. As an alternative, we apply the same selection to the simulation and correct the simulated t distribution by the ratio of histograms from data and simu-lation. Thecos‘Kshapes are obtained from the histograms of the simulated distributions for B B events. The t dis-tribution of continuum events is represented by a decaying exponential convolved with Gaussians parametrized by fitting simultaneously the off-peak data.

The rate of events in each bin (j) and for each tagged sample is then expressed as the sum of the predicted contributions from peaking events, B B combinatorial, and continuum background. Accounting for mistags and KR events, the peaking B0 contributions to the same-sign

samples are G‘þKþðjÞ ¼ ð1 þ Ar‘Þð1 þ AKÞfð1  fþþKR Þ  ½ð1  !þÞG B0B0ðjÞ þ !GB0B0ðjÞ þ fþþ KR ð1  ! 0þÞG KRðjÞð1 þ dA‘‘Þg; G‘KðjÞ ¼ ð1  Ar‘Þð1  AKÞfð1  fKR Þ  ½ð1  !ÞG B0B0ðjÞ þ !þGB0B0ðjÞ þ f KR ð1  ! 0ÞG KRðjÞð1  dA‘‘Þg;

where the reconstruction asymmetries have separate values for the e and  samples. We allow for different mistag probabilities for KT (!) and KR (!0). The parameters

fKR ðpkÞ describe the fractions of KR tags in each sample

as a function of the kaon momentum.

A total of 168 parameters are determined in the fit. By analyzing simulated events as data, we observe that the fit reproduces the generated values of1  jq=pj (zero) and of the other most significant parameters (Ar‘, AK, md, and B0). We then produce samples of simulated events

withCP¼ 0:005, 0:010, 0:025 and Ar‘orAKin the range of 10%, by removing events. A total of 67 different simulated event samples are used to check for biases. In each case, the input values are correctly deter-mined, and an unbiased value of jq=pj is always obtained. The fit to the data yields CP¼ ð0:29  0:84þ1:881:61Þ  103, where the first uncertainty is statistical and the

second systematic. The values of the detector charge asymmetries are Ar;e¼ ð3:0  0:4Þ  103, Ar;¼ ð3:1  0:5Þ  103, andA

K¼ ð13:7  0:3Þ  103. The

frequency of the oscillation md¼ 508:5  0:9 ns1 is consistent with the world average, while B0 ¼ 1:553 

0:002 ps is somewhat larger than the world average, which we account for in the systematic uncertainties. Figure 2 shows the fit projection fort.

The systematic uncertainty is computed as the sum in quadrature of several contributions, described below and summarized in TableI.

Peaking sample composition.—We vary the sample composition by the statistical uncertainty of the M2 fit, the fraction of B0 to Bþ in the Dpeaking sample in the range 50  25% to account for possible violation of iso-spin symmetry, the fraction of the peaking contributions

FIG. 2 (color online). Distribution of t for the continuum-subtracted data (points with error bars) and fitted contributions from KR(dark) and KT(light), for (a) ‘þKþ events, (b) ‘K

events, (c) ‘Kþ events, (d) ‘þK events, (e) raw asymmetry between ‘þKþ and ‘Kevents.

FIG. 1 (color online). M2distribution for selected events. The data are represented by the points with error bars. The fitted contributions from B0! Dþ‘‘, other peaking background,

Devents, B B combinatorial background, and rescaled off-peak events are overlaid.

(7)

(taken from the simulation) by 20%, and the fraction of CP eigenstates by 50%.

B B combinatorial sample composition.—We vary the fraction of Bþ events in the B B combinatorial sample by 4:5%, which corresponds to the uncertainty in the inclu-sive branching fraction for B0 ! DX.

t resolution model.—We quote the difference between the result when all resolution parameters are determined in the fit and those obtained when those that exhibit a weak correlation with jq=pj are fixed.

KRfraction.—We vary the ratio of Bþ! KRX to B0 !

KRX by 6:8%, which corresponds to the uncertainty of

the fraction BRðD0! KXÞ=BRðDþ! KXÞ.

KRt distribution.—We use half the difference between

the results obtained using the two different strategies to describe the KRt distribution.

Fit bias.—Parametrized simulations are used to check the estimate of the result and its statistical uncertainty. We add the statistical uncertainty on the validation test using the detailed simulation and the difference between the nominal result and the central result determined from the ensemble of parametrized simulations.

CP eigenstates description.—We vary the S and C parameters describing the CP eigenstates by their statisti-cal uncertainties as obtained from simulation.

Physical parameters.—We repeat the fit setting the value of to 0:02 ps1. The lifetimes of the B0and Bþmesons andmdare floated in the fit. Alternatively, we check the effect of fixing each parameter in turn to the world average. In summary, we present a new measurement of the parameter governing CP violation in B0- B0 oscillations. With a partial B0 ! DX‘þ reconstruction and kaon tagging, we find CP¼ ð0:29  0:84þ1:881:61Þ  103 and ACP¼ ð0:06  0:17þ0:380:32Þ%. These results are consistent

with, and more precise than, dilepton-based results from B factories [4]. No deviation is observed from the SM expectation [3].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing

organizations that support BABAR. The collaborating insti-tutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

*Deceased.

Present address: University of Tabuk, Tabuk 71491, Saudi

Arabia.

Also at: Universita` di Perugia, Dipartimento di Fisica,

Perugia, Italy.

§Present address: University of Huddersfield, Huddersfield

HD1 3DH, United Kingdom.

Present address: University of South Alabama, Mobile,

Alabama 36688, USA.

Also at: Universita` di Sassari, Sassari, Italy.

**Present address: Universidad Te´cnica Federico Santa Maria, Valparaiso, Chile 2390123.

[1] B. Aubert et al. (BABAR Collaboration),Phys. Rev. Lett. 93, 131801 (2004).

[2] B. Aubert et al. (BABAR Collaboration),Phys. Rev. D 79, 072009 (2009); I. Adachi et al. (Belle Collaboration), Phys. Rev. Lett. 108, 171802 (2012).

[3] A. Lenz, U. Nierste, J. Charles, S. Descotes-Genon, H. Lacker, S. Monteil, V. Niess, and S. T’Jampens,Phys. Rev. D 86, 033008 (2012); J. Charles et al.,Phys. Rev. D 84, 033005 (2011); A. Lenz and U. Nierste,J. High Energy Phys. 06 (2007) 072.

[4] B. Aubert et al. (BABAR Collaboration),Phys. Rev. Lett. 96, 251802 (2006); E. Nakano et al. (Belle Collaboration), Phys. Rev. D 73, 112002 (2006).

[5] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. D 84, 052007 (2011).

[6] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 110, 011801 (2013).

[7] B. Aubert et al. (BABAR Collaboration),Phys. Rev. Lett. 100, 051802 (2008).

[8] J. Beringer et al. (Particle Data Group),Phys. Rev. D 86, 010001 (2012).

[9] B. Aubert et al. (BABAR Collaboration),Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).

[10] J. P. Lees et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 726, 203 (2013).

[11] D. Lange,Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[12] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).

[13] D. Boutigny et al., SLAC Report No. SLAC-R-504, 1998. [14] O. Long, M. Baak, R. N. Cahn, and D. Kirkby,Phys. Rev.

D 68, 034010 (2003). TABLE I. Principal sources of systematic uncertainties.

Source ðCPÞ

Peaking sample composition þ1:501:17 103

Combinatorial sample composition 0:39  103

t resolution model 0:60  103 KRfraction 0:11  103 KRt distribution 0:65  103 Fit bias þ0:580:46 103 CP eigenstate description 0 Physical parameters 0:28þ0  103 Total þ1:881:61 103

Riferimenti

Documenti correlati

The weather forecast data include the Direct Normal Irradiance (DNI), which directly influences the energy production of the solar field, and the ambient

The frequency analysis has been carried out for the main variables of interest that may have a direct impact on the heat release response, such as progress variable and mixture

© Copyright Giuffrè 2017..

Improvements for moderate depressive disorders are also more marked when the remission rates have been considered: BDT and supportive psychotherapy exhibite

LHC  con  i  suoi  esperimenti  è  frutto  di  uno  sforzo  corale  di 

Una più formale, seppur preliminare, analisi è stata condotta attraverso una regressione multipla, che inseriva come variabili esplicative

methionine, threonine, arginine, tyrosine, γ- aminobutyric acid, taurine, α-aminobutyric acid, phenylalanine, ethanolamine and glycine Metabolomics highly promising to detect