• Non ci sono risultati.

View of A truncated bivariate inverted Dirichlet distribution

N/A
N/A
Protected

Academic year: 2021

Condividi "View of A truncated bivariate inverted Dirichlet distribution"

Copied!
9
0
0

Testo completo

(1)

A TRUNCATED BIVARIATE INVERTED DIRICHLET DISTRIBUTION Saralees Nadarajah

1. INTRODUCTION

The need for truncated bivariate distributions with heavy tails is frequently en-countered in many applied areas, see, for example, Lien (1985, 1986). A popular bivariate distribution with heavy tails is the bivariate inverted dirichlet distribu-tion. Because of the heavy tails, this distribution does not possess finite moments of all orders. In this note, we overcome this weakness by introducing a truncated version. The bivariate inverted dirichlet distribution is given by the joint probabil-ity densprobabil-ity function (pdf):

1 1 ( ) ( ) ( ) ( ) ( )(1 ) a b a b c a b c x y g x y a b c x y − − + + Γ Γ Γ Γ + + , = + + (1)

for x > 0, y > 0, a > 0, b > 0 and c > 0. The corresponding joint cumulative dis-tribution function (cdf) is:

( ) ( ) ( 1) ( 1) ( )(1 ) a b a b c a b c x y G x y a b c x y + + Γ Γ Γ Γ + + , = + + + + 2 1 1 1 1 1 1 y x F a b c a b x y x y ⎛ ⎞ × + + ; , ; + , + ; , , + + + + ⎝ ⎠ (2)

where F denotes the Appell hypergeometric function of the second kind de-2

fined by 2 0 0 ( ) ( ) ( ) ( ) ( ) ( ) k l k l k l k l k l a b b z F a b b c c z c c k l η η ∞ ∞ + = = ′ ′ ′ , , ; , ; , = ′ ! !

∑ ∑

for | | | | 1z + η < , where ( )e k =e e( +1) ("e k+ −1) denotes the ascending factorial. The truncated version is given by the pdf:

(2)

1 1 ( ) ( ) ( ) ( ) ( )(1 ) a b a b c a b c x y f x y a b c x y − − + + Γ ΩΓ Γ Γ + + , = + + (3)

for 0 B x< ≤ ≤A< ∞ and 0 D y C< ≤ ≤ < ∞ , where (A B C D a b c) G A C( ) G A D( ) G B C( ) G B D( )

Ω , , , , , , = , − , − , + , . The cdf

associ-ated with (3) is: 1

( ) { ( ) ( ) ( ) ( )}.

F x y G x y G x D G B y G B D

, = , − , − , + , (4)

The corresponding marginal cdfs and marginal pdfs are 1 ( ) { ( ) ( ) ( ) ( )}, X F x G x C G x D G B C G B D Ω = , − , − , + , 1 ( ) { ( ) ( ) ( ) ( )}, Y F y G A y G A D G B y G B D Ω = , − , − , + , 1 2 1 2 1 ( ) ( ) 1 1 ( ) ( 1) ( )(1 ) 1 1 a b X a b c b a b c x C f x C F b a b c b x a b c x D D F b a b c b x − + + Γ ΩΓ Γ Γ + + ⎧ ⎛ ⎞ = , + + ; + ;− + + + ⎩ ⎝ ⎠ ⎫ ⎛ ⎞ − , + + ; + ;− + ⎝ ⎠⎭ and 1 2 1 2 1 ( ) ( ) 1 1 ( 1) ( ) ( )(1 ) 1 , 1 b a Y a b c a a b c y A f y A F a a b c a y a b c y B B F a a b c a y − + + Γ ΩΓ Γ Γ ⎧ ⎛ ⎞ + + ⎪ = , + + ; + ;− + + + ⎫ ⎛ ⎞⎪ − , + + ; + ;− + ⎝ ⎠⎭

where 2 1F denotes the Gauss hypergeometric function defined by

2 1 0 ( ) ( ) ( , ; ; ) . ( ) k k k k k a b x F a b c x c k ∞ = = !

We refer to (3) as the truncated bivariate inverted dirichlet distribution. Because (3) is defined over a finite interval, the truncated bivariate inverted dirichlet dis-tribution has all it moments. Thus, (3) may prove to be a better model for certain practical situations than one based on just the bivariate inverted dirichlet distribu-tion. Below, we discuss one such situadistribu-tion.

(3)

The bivariate inverted dirichlet distribution has received applications in many areas, including biological analyses, clinical trials, stochastic modelling of decreas-ing failure rate life components, study of labor turnover, queuedecreas-ing theory, and re-liability (see, for example, Nayak (1987) and Lee and Gross (1991)). For data from these areas, there is no reason to believe that empirical moments of any or-der should be infinite. Thus, the choice of the bivariate inverted dirichlet distribu-tion as a model is unrealistic since its product moments (E X Y are not finite m n) for all m and n . The alternative given by (3) will be a more appropriate model for the kind of data mentioned. The choice of the limits, A , B , C and D could be easily based on historical records. For example, to model the dependence be-tween the exchange rate data of the United Kingdom Pound and the Canadian Dollar (as compared to the United States Dollar) for last 100 years, one could choose D = , 100 C = , 0B = and A =10 (see http://www.gobalfindata.com).

The rest of this note is organized as follows. Explicit expressions for the mo-ments of (3) are derived in Sections 2 and 3. Maximum likelihood estimators and the associated Fisher information matrix are derived in Section 4. The calcula-tions use the special funccalcula-tions defined above as well as the hypergeometric func-tion defined by 3 2 0 ( ) ( ) ( ) ( , , ; , ; ) . ( ) ( ) k k k k k k k a b c x F a b c d e x d e k ∞ = = !

The properties of the above special functions can be found in Prudnikov et al. (1986) and Gradshteyn and Ryzhik (2000).

2.MOMENTS

We derive two representations for the product moment (E X Y . Theorem m n) 1 expresses it as an infinite sum of incomplete beta functions while the expres-sion given by Theorem 2 is in terms of the hypergeometric functions.

Theorem 1 If (X Y, ) has the joint pdf (3) then

( ) { ( ) ( ) ( ) ( )} ( ) ( ) ( ) m n a b c E X Y H A C G A D G B C G B D a b c ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ Γ Γ Γ Γ + + = , − , − , + , (5)

for 1m ≥ and n ≥ , where 1

(1 ) 0 ( ) ( ) ( ) ( ) ( ). ( 1) k n b k k P P k k n b a b c Q Q H P Q B m a k b c m n b n b k + ∞ / + = + + + − , = + , + + − +

+ + !

(4)

Proof: Using (3), one can write 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 ( ) ( ) ( ) ( ) ( ) (1 ) ( ) ( ) ( ) ( ) (1 ) (1 ) (1 ) m a n b A C m n a b c B D m a n b m a n b A C A D a b c a b c m a n b m B C B D a b c a b c x y E X Y dydx a b c x y a b c x y x y dydx dydx a b c x y x y x y x dydx x y + − + − + + + − + − + − + − + + + + + − + − + + + Γ Γ Γ Γ Γ Γ Γ Γ + + = + + ⎧ + + = − + + + + ⎩ − + + +

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

(1 1 ) 1 ( ) { ( ) ( ) ( ) ( )}, ( ) ( ) ( ) a n b a b c y dydx x y a b c H A C H A D H B C H B D a b c − + − + + Γ Γ Γ Γ ⎫ ⎬ + + + + = , − , − , + , where 1 1 0 0 ( ) . (1 ) m a n b P Q a b c x y H P Q dydx x y + − + − + + , = + +

∫ ∫

(6)

Application of equation (2.2.6.1) in Prudnikov et al. (1986, volume 1) shows that the double integral (H P Q, ) can be expressed as

1 1 0 0 1 2 1 0 1 0 0 0 ( ) (1 ) (1 ) 1 1 ( ) ( ) (1 ) ( 1) 1 ( ) ( ) ( b n P m a Q a b c n b P m a a b c k n b P m a a b c k k k k n b k k k y H P Q x dydx x y Q x x F n b a b c n b Q dx n b x n b a b c Q x x Q dx n b n b k x n b a b c Q n b + − + − + + + + − − − − + ∞ + − − − − = + ∞ = , = + + ⎛ ⎞ = + + , + + ; + + ;− + ⎝ + ⎠ + + + ⎛ ⎞ = + + + + ! ⎝ + ⎠ + + + = +

1 0 (1 ) 1 1 0 0 (1 ) 0 ) (1 ) ( 1) ( ) ( ) ( ) (1 ) ( 1) ( ) ( ) ( ) ( ), ( 1) k P m a a b c k k k n b P P m a k b c m k k k k k n b k k P P k k Q x x dx n b k n b a b c Q Q y y dy n b n b k n b a b c Q Q B m a k b c m n b n b k θ + − − − − − + ∞ / + + − + + − − = + ∞ / + = − + + + ! + + + − = − + + + ! + + + − = + , + + − + + + !

where we have set y x= / +(1 x) and used the definitions of the incomplete beta and the Gauss hypergeometric functions.

Theorem 2 If (X Y, ) has the joint pdf (3) and if a ≥ and 1 b ≥ are integers then 1 ( m n)

(5)

1 1 1 0 0 1 ( 1) 1 ( ) { ( ) ( )}, 1 b n k b n b n k k l b n b n k H P Q k l k l k k a b c l α β + − − + − + − − = = + − + − − ⎛ ⎞ − ⎛ ⎞ , = , − , − − − + ⎝ ⎠ ⎝ ⎠

1 2 1 1 3 2 ( 1) 1 1 1 if 1 ( ) log( 1) ( 1) 1 1 1 1 2 2 1 if 1 a m l k a b c a m l a m l P Q a m l P F a m l a b c k a m l Q k a b c k l P Q P Q a m l a m l P F a m l a m l Q k a b c α + + − − − + + + + + + ⎧ + ⎪ + + ⎪ ⎪ ⎛ ⎞ × + + , + + − − ; + + + ;− , ⎪ ⎜ + ⎟ ⎝ ⎠ ⎪ ⎪ ≠ + + − , ⎪ , = ⎨ + / + ⎪ ++ + + + + ⎪ ⎛ ⎞ ⎪ × + + + , , ; , + + + ;− , ⎜ ⎟ ⎪ + ⎪ = + + − ⎪⎩ and 2 1 1 3 2 ( 1 1 ) if 1 ( ) ( 1 1 1 2 2 ) 1 if 1 a m l a m l P F a m l a b c k a m l P a m l k a b c k l P F a m l a m l P a m l k a b c β + + + + + ⎧ + + , + + − − ; + + + ;− , ⎪ + + ⎪ ≠ + + − , ⎪ , = ⎨ ⎪ + + + , , ; , + + + ;− ,+ + += + + − .

Proof: Setting z= + + in (6), the double integral (1 x y H P Q, ) can be expressed as

1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 ( 1) ( ) 1 ( 1 ) 1 ( 1 ) (1 ) (1 ) 1 P a m x Q a b c b n x b n P a m b n k x Q k a b c x k b n P a m b n k k k a b c k a b c z x H P Q x z dzdx b n x x z dzdx k b n x x k x Q x dx k a b c + + + − + − − − − + + − + + + − + − − − − − + = + − + − + − − = − − − + − − − + − − , = + − ⎛ ⎞ = − − ⎝ ⎠ + − ⎛ ⎞ = − − ⎝ ⎠ + + − + × − − − +

{

}

1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 ( 1) 1 1 (1 ) (1 ) 1 ( 1) 1 { ( ) ( )}, 1 b n k b n b n k k l P a m l k a b c k a b c b n k b n b n k k l b n b n k k k a b c l x x Q x dx b n b n k k l k l k k a b c l α β + − − + − + − − = = + + − − − − + − − − + + − − + − + − − = = + − + − − ⎛ ⎞ − ⎛ ⎞ = − − − + ⎝ ⎠ ⎝ ⎠ × + + − + + − + − − ⎛ ⎞ − ⎛ ⎞ = , − , − − − + ⎝ ⎠ ⎝ ⎠

(6)

where 1 1 0 (k l) Pxa m l (1 x Q)k a b c dx α , =

+ + − + + − − − + and 1 1 0 (k l) Pxa m l (1 x)k a b c dx. β , = + + − + − − − +

If k a b c≠ + + − then a direct application of equation (2.2.6.1) in Prudnikov et 1 al. (1986, volume 1) shows that (α k l, and () β k l, reduce to the forms given in ) the theorem. If k a b c= + + − then a direct application of equation (2.6.10.31) 1 in Prudnikov et al. (1986, volume 1) shows that (α k l, and () β k l, reduce to the ) forms given in the theorem.

3. PARTICULAR CASES

Using special properties of the hypergeometric functions, one can obtain ele-mentary forms for (E X Y for given integer values of m n) a , b , m and n . This is illustrated in the corollaries below.

Corollary 1 If (X Y, ) has the joint pdf (3) with a b= = then ( )1 E X is given by (5) with 2 2 (1 ) (1 ) (1 ) (1 ) ( ) {1 (1 ) (1 ) (1 ) } { ( 1)} a a a a a a a A A B B A H A B a A a A B A B B B B A a a θ θ θ φ φ θ θ φ θ φ φ φ φ φθ θ − − − − − − − + + + + + , = − − − + + + + + + + − + / − .

Corollary 2 If (X Y, ) has the joint pdf (3) with a b= = then 1 E X is given by ( 2) (5) with 2 2 2 2 2 2 2 2 2 2 2 2 (1 ) (1 ) (1 ) (1 ) ( ) {2 2 2 (1 ) (1 ) (1 ) 2 2 (1 ) (1 ) (1 ) 4 4 2 (1 ) (1 ) 2 2 (1 ) 2(1 a a a a a a a a a a a a a a A A A A H A B A a A a a A B B A A a B A B B B A B B A a A B B B A a A B B A A a θ θ θ θ θ θ θ φ φ θ θ φ θ φ φ φ θ φ φ θ θ φ φ φ θ θ φ φ θ θ − − − − − − − − − − − − − − + + + + , = + − − − + + + + + − + + + + + + + − + + + + + − + + + − + 2 2 3 2 3 ) } { ( 2 2 )}. B A B a a a a φ θ φ φ θ + + / − − + +

(7)

Corollary 3 If (X Y, ) has the joint pdf (3) with a b= = then (1 E XY is given by ) (5) with 2 2 2 2 2 2 2 2 2 2 2 (1 ) (1 ) (1 ) (1 ) ( ) {1 (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) a a a a a a a a a a a a a a A A A A H A B a A A a A B A B B a B B A a A B B A a A B A B A a A B B a B B A A a B B A θ θ θ θ θ θ θ φ θ φ φ φ φ θ θ φ φ θ θ φ θ φ θ θ φ φ φ φ θ θ φ φ θ θ − − − − − − − − − − − − − − + + + + , = − − + − + + + + + − − + + + + + + + + + − + + + + − + − + + − 2 2 2 2 2 2 2 2 2 3 (1 ) (1 ) } { ( 2 2 )}. (1 ) a a a B A B A a B B a B a a a a B A φ θ φ φ φ φ φ θ φ θ − − − + + + + + + + + / − − + + 4. ESTIMATION

Here, we consider estimation of the seven parameters of (3) by the method of maximum likelihood and provide the associated Fisher information matrix. The log-likelihood for a random sample (x y … x y1, 1), ,( n, n) from (3) is:

1 1

1

log ( ) log ( ) log log ( ) log ( ) log ( ) ( 1) log ( 1) log ( ) log(1 ). n n j j j j n j j j L A B C D a b c n a b c n n a n b n c a x b y a b c x y = = = Γ Ω Γ Γ Γ , , , , , , = + + − + − − + − + − − + + + +

It follows that maximum likelihood estimators of the seven parameters are the solutions of the simultaneous equations

1 1 ( ) ( ) n log 1 j j n log j j j n n a b c n a x y x a ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ = = ∂Ω Ψ Ψ Ω ∂ + + − − =

+ + −

, 1 1 ( ) ( ) n log 1 j j n log j j j n n a b c n b x y y b ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ = = ∂Ω Ψ Ψ Ω ∂ + + − − =

+ + −

, 1 ( ) ( ) n log 1 j j j n n a b c n c x y c ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ = ∂Ω Ψ Ψ Ω ∂ + + − − =

+ + , 0 n A ∂Ω Ω ∂ = , 0 n B ∂Ω Ω ∂ = ,

(8)

0 n C ∂Ω Ω ∂ = , and 0 n D ∂Ω Ω ∂ = ,

where ( )Ψ x =dlog ( )Γ x dx/ is the digamma function. The second order deriva-tives of logL are all constants, so the elements of the associated Fisher informa-tion matrix are

2 2 2 2 2 2 log ( ) ( ) L n n E n a b c n a a a a ∂ ∂ Ω ∂Ω Ψ Ψ Ω ∂ ∂ ∂ Ω ⎛ ⎞ − = − − + + + , ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ 2 2 2 log ( ) L n n E n a b c a b a b a b ∂ ∂ Ω ∂Ω ∂Ω Ψ ∂ ∂ Ω ∂ ∂ Ω ∂ ∂ ⎛ ⎞ − = − − + + , ⎜ ⎟ ⎝ ⎠ 2 2 2 log ( ) L n n E n a b c a c a c a c ∂ ∂ Ω ∂Ω ∂Ω Ψ ∂ ∂ Ω ∂ ∂ Ω ∂ ∂ ⎛ ⎞ − = − − + + , ⎜ ⎟ ⎝ ⎠ 2 2 2 2 2 2 logL n n ( ) ( ) E n a b c n b b b b ∂ ∂ Ω ∂Ω ′ ′ Ψ Ψ Ω ∂ ∂ ∂ Ω ⎛ ⎞ − = − − + + + , ⎜ ⎟ ⎜ ⎝ ⎠ 2 2 2 logL n n ( ) E n a b c b c b c b c ∂ ∂ Ω ∂Ω ∂Ω ′ Ψ ∂ ∂ Ω ∂ ∂ Ω ∂ ∂ ⎛ ⎞ − = − − + + , ⎜ ⎟ ⎝ ⎠ and 2 2 2 2 2 2 log ( ) ( ) L n n E n a b c n c c c c ∂ ∂ Ω ∂Ω Ψ Ψ Ω ∂ ∂ ∂ Ω ⎛ ⎞ − = − − + + + , ⎜ ⎟ ⎜ ⎝ ⎠

where ( )Ψ′x is the first derivative of ( )Ψ x . The remaining elements of the Fisher information matrix all take the form

2 2 2 1 2 1 2 1 2 logL n n E θ θ θ θ θ θ ∂ ∂ Ω ∂Ω ∂Ω ∂ ∂ Ω ∂ ∂ Ω ∂ ∂ ⎛ ⎞ − = − . ⎜ ⎟ ⎝ ⎠

School of Mathematics SARALEES NADARAJAH

(9)

REFERENCES

I.S. GRADSHTEYN, I.M. RYZHIK, (2000), Table of Integrals, Series, and Products (sixth edition),

Aca-demic Press, San Diego.

M.L.T. LEE, A.J. GROSS, (1991), Lifetime distributions under unknown environment, “Journal of

Sta-tistical Planning and Inference”, 29, pp. 137-143.

D.D. LIEN, (1985), Moments of truncated bivariate log–normal distributions, “Economics Letters”,

19, pp. 243-247.

T.K. NAYAK, (1987), Multivariate lomax distribution - properties and usefulness in reliability theory,

“Journal of Applied Probability”, 24, 170-177.

A.P. PRUDNIKOV, Y.A. BRYCHKOV, O.I. MARICHEV, (1986), Integrals and Series (volumes 1, 2 and

3), Gordon and Breach Science Publishers, Amsterdam.

SUMMARY

A truncated bivariate inverted Dirichlet distribution

A truncated version of the bivariate inverted dirichlet distribution is introduced. Unlike the inverted dirichlet distribution, this possesses finite moments of all orders and could therefore be a better model for certain practical situations. One such situation is dis-cussed. The moments, maximum likelihood estimators and the Fisher information matrix for the truncated distribution are derived.

Riferimenti

Documenti correlati

Use the 2-gram index to rank all lexicon terms according to the number of matching 2-grams (moon).

Given a dictionary D of K strings, of total length N, store them in a way that we can efficiently support prefix searches for a pattern P over

Cozzi D, Albanesi M, Cavigli E et al (2020) Chest X-ray in new coronavirus disease 2019 (COVID-19) infection: findings and correlation with clinical outcome. Ippolito D, Pecorelli

Ciò però, in caso di citazione in giudizio, fa presumere la responsabilità del capo équipe perché la salute del paziente diventa l’oggetto della posizione di

I composti a base di rame, attualmente autorizzati in agricoltura convenzionale e biologica, sono la poltiglia bordolese, l’idrossido di rame, l’ossicloruro di rame, il solfato

The spoiler span-wise length B is not involved in the 2-dimensional simulation, but its effect should be similar to the thickness t: in linear hypothesis B increases the

The basis generating the Flexible Dirichlet, though keeping compositional invariance, shows a dependence structure which allows various forms of partitional dependence to

A very common distribution on the simplex is the Dirichlet, but its poor parametrization and its inability to model many dependence concepts make it unsatisfactory for