• Non ci sono risultati.

3D reinforcement of composite materials

N/A
N/A
Protected

Academic year: 2021

Condividi "3D reinforcement of composite materials"

Copied!
79
0
0

Testo completo

(1)

Facoltà  di  Ingegneria  dei  Processi  Industriali  

Degree  in  Materials  Engineering  

 

 

 

3D  Reinforcement  of  Composite  

Materials  

 

 

 

 

Supervisors:  

Valter  Carvelli  

(Politecnico  di  Milano)

 

 

 

 

Giulio  Ventura  

(Politecnico  di  Torino)

 

 

 

 

Carlo  Poggi  

(Politecnico  di  Milano)  

 

 

 

 

Corinna  A  Conway  

750155  

 

(2)
(3)

 

 

 

 

 

 

 

 

 

 

 

Dedicated  to  my  little  brother,  Michael  Conway      

Who  taught  me  how  precious  life  truly  is  and  what  it  means  to  follow  

your  dreams.  

 

And  to  My  Parents,  Robert  and  Theresa  Conway  

Who  made  this  all  possible  through  their  love  and  

 

 

 

(4)
(5)

 

Table  of  Contents

 

 

Abstract    

 

 

 

 

 

 

 

 

13  

Summary  

 

 

 

 

 

 

 

 

14  

Chapter  1  

Introduction  to  Composites    

 

 

 

16  

 

1.1  Introduction                   16     1.2  Fiber  Reinforced  Composites  (FRC)           16       1.2.1  The  Matrix               17       1.2.2  The  Fibers               17     1.3  Reinforcement  Architectures             19       1.3.1  2D  Composites               20       1.3.2  3D  Composites               21     References                   22

 

 

Chapter  2  

Reinforcement  Fabric  Manufacturing  

 

 

23

 

  2.1  Introduction                 23  

  2.2  Weaving                   23  

    2.2.1  2D  Weaving               23       2.2.2  3D  Weaving               25  

2.2.3  3D  Orthogonal  Non-­‐Woven,  Multiaxial  Weaving    

and  Distance  Fabrics               26  

  2.3  Braiding                   27  

    2.3.1  2D  Braiding               27       2.3.2  Two  and  Four  Step  3D  Braiding         27       2.3.3  Multilayer  Interlock  Braiding           28  

(6)

  3.2  Composite  Consolidation  techniques           32       3.2.1  Resin  Transfer  Molding           32       3.2.2  Resin  Film  Infusion             32  

    3.2.3  SCRIMP                 34  

  3.3  Consolidation  Equipment             34       3.3.1  Tooling  (mold)               35       3.3.2  Heating  and  Cooling             35       3.3.3  Injection  Equipment             36  

  3.4  Optimization                 36  

  References                   39  

 

Chapter  4  

Textile  Fiber  Reinforcement  Properties    

 

40  

  4.1  Introduction                 40  

  4.2  In-­‐Plane  Shear                 40     4.3  In-­‐Plane  Biaxial  Tension               42  

  References                   44  

 

Chapter  5  

Composite  Modeling    

 

 

 

 

45  

  5.1  Introduction                 45  

5.2  Fundamentals                 46   5.3  Representative  Volume               48   5.4  Rule  of  Mixtures                 50   5.5  Basic  Models  for  2D  Woven  Composites         51     5.5.1  Mosaic  Model               51     5.5.2  Undulation  Model             53  

(7)

5.6  Models  for  3D  Woven  Composites           56     5.6.1  Orientation  averaging             57     5.6.2  Iso-­‐Strain  and  Iso-­‐Stress  Model         57     5.6.3  Finite  Element  Model             60  

References                   61  

 

Chapter  6  

3D  Woven  Composites    

 

 

 

 

63  

  6.1  Introduction                 63  

  6.2  3D  Woven  Composites               63       6.2.1  Microstructure  Features  and  Crimp         63       6.2.2  Tensile  Properties             66       6.2.3  Compressive  Properties           67       6.2.4  Flexural  and  Interlaminar  Shear  Properties       68       6.2.5  Interlaminar  Fracture             68       6.2.6  Impact  Damage  Tolerance           69  

  References                   71  

 

Chapter  7  

3D  Braided,  Knitted,  Stitched  and    

Z-­‐Pinned  Composites    

 

 

 

 

 

 

72  

  7.1  Introduction                 72     7.2  3D  Braided  Composites               72       7.2.1  In-­‐Plane  Properties             72       7.2.2  3D  vs.  2D  Braided  Composites         73     7.3  3D  Knit  Composites               73       7.3.1  In-­‐Plane  Properties             73   7.3.2  Interlaminar  Fracture  and  Impact  Toughness     75     7.4  Stitched  Composites               75       7.4.1  In-­‐Plane  Mechanical  Properties         76  

(8)
(9)

Figures  

 

Figure  1.1:    Depiction  of  fiber  type,  and  non-­‐woven  composite  

architectures                   18  

Figure  1.2:  Layup  sequence                 18  

Figure  1.3:  Stress  vs.  Strain  graph  comparing  Carbon  (green),    

Glass  (purple)  and  Aramid  (red)  fiber  properties         19  

Figure  1.4:  Braided,  woven  and  knit  fabric  structures         20  

Figure  1.5:  Comparison  of  in-­‐plane  and  through-­‐thickness    

Properties                   21  

Figure  2.1:    Traditional  weaving  loom             24  

Figure  2.2:    Illustration  of  yarn  structure,  and  common  weave    

Patterns                   25  

Figure  2.3:    3D  weave  geometries               26  

Figure  2.4:    Illustrating  the  ability  to  weave  slits  into  the  fabric    

capable  of  creating  three-­‐dimensional  structures         26  

Figure  2.5:  Multilayer  interlock  braided  fabric           28  

Figure  2.6:  3D  knit  fabric                 29  

Figure  2.7:  Stitched  fabric                 30  

Figure  2.8:  Z-­‐pinning  process               30  

Figure  3.1:  RTM                   33  

Figure  3.2:  RFI                   34  

Figure  3.3:  Autoclave  for  composite  consolidation.    Image    

provided  by  AAC  research               35   Figure  3.4:    Viscosity  vs.  Time  –  temperature  dependence    

of  thermoset  TGDDM  resin.  Image  taken  from  Understanding    

of  Rheology  of  Thermosets               37  

Figure  4.1:    Biaxial  tension  test  (left)  and  Picture  frame  test  (right)     41  

Figure  4.3:  Illustrating  non-­‐linear  behavior  of  woven  fabric       42  

Figure  4.4:  Biaxial  testing  Machine               42  

Figure  4.5:  Biaxial  testing  sample               43  

Figure  4.6:    Clamps                   43  

(10)

model.    b)  Division  of  the  unit  cell  into  4  blocks         58  

Figure  5.8:    Possible  assembly  directions  of  block  A  and  B       58  

Figure  5.9:  Example  of  a  3D  FE  model  of  a  unit  cell  of  a  3D    

orthogonal  Woven  composite  material           60   Figure  6.1:  Tensile  strength  at  different  stages  of  the  weaving    

Process                   64  

Figure  6.2:  Illustration  of  the  crimping  in  2D  woven  fabrics       65  

Figure  6.3:  difference  between  Idealized  z-­‐binder  geometry  (a)    

and  actual  (b)                   65  

Figure  6.4  Top  and  cross  sectional  view             66  

Figure  6.5:  Kinking  failure  in  compression           67  

Figure  6.6:  Mode  I  delamination  cracking             68  

Figure  6.7:    Effect  of  impact  velocity  on  delamination  damage  of    

2D  and  3D  woven  composites             69  

Figure  6.8:  Effect  of  impact  energy  on  flexural  strength         70  

Figure  6.9:  Effect  of  impact  energy  on  the  compressive  strength       70  

Figure  7.1:    Warp  knit  (a)  Denbigh,  (b)  1x3  single  cord,  and  (c)  1x4    

single  cord  architectures               74  

Figure  7.2:  Wale  and  course  directions  as  well  as  warp  and    

weft  fabric  structure.                 75   Figure  7.3:    Illustrating  mode  I  interlaminar  toughening    

mechanism  of  stitched  composites             76  

Figure  7.4:  Depiction  of  z-­‐pinned  architecture  at  insertion  site       77  

Figure  7.5:    Depiction  of  weaving  and  deflection  caused  by  z-­‐pins     78  

   

Tables  

 

Table  1.1:  Matrix  materials  costs,  application  temperature  and    

toughness.    (TP  –  thermoplastic  and  TS  –  thermoset)    14       17  

Table  1.2:  Glass  type  and  defining  characteristics         19  

(11)

pattern  and  edge  conditions               73   Table  7.2:    Tensile  properties  of  warp  knit  with  varying  knit  

architectures                   74  

Table  7.3:    Tensile  properties  of  weft  knit  with  varying  knit        

(12)
(13)

 

 

 

 

 

 

 

 

 

Abstract  

 

Composite  materials  present  a  unique  opportunity  to  engineer  a  material  in   order   to optimize   its   physical,   thermal   and   mechanical   properties   for   specific   applications.    Offering  many  advantages  such  a  relatively  high  specific  strength,   stiffness,  fatigue  resistance  and  corrosion  resistance  with  respect  to  weight.    Due   to   their   exceptional   qualities,   composites   can   be   found   in   many   applications,   from   aircrafts,   helicopters   and   spacecrafts   to   submarines,   automobiles   and   sporting  goods.    However  their  wide  spread  use  has  been  inhibited  by  their  high   cost,   poor   delamination   toughness,   and   poor   impact   damage   resistance.     Many   prospects   have   been   investigated   as   methods   for   improving   these   characteristics,   however   composites   reinforced   with   3D   fabric   architectures   appear   to   be   the   most   promising   solution.     Here   an   investigation   of   3D   fabric   architectures   (3D   woven,   braided,   knit,   stitched   and   z-­‐pinned),   manufacturing   methods,   and   composite   properties   are   reviewed   in   order   to   have   a   better   understanding   of   the   pros   and   cons   of   such   a   material   as   well   as   potential   improvements  and  opportunities.    As  expected  3D  composites  solve  many  of  the   problems   faced   by   2D   composites,   however   these   improvements   are   accompanied  by  the  deterioration  of  in-­‐plane  properties.      Many  3D  composites   show   potential   for   applications   unsuited   for   2D   composites,   however   optimization  of  3D  fabric  manufacturing,  composite  production,  and  in-­‐  and  out-­‐ of-­‐plane  properties  needs  further  investigation.  

   

(14)

a  corrosione  se  confrontati  col  peso.  A  causa  delle  loro  qualità  eccezionali,  i   compositi  possono  essere  trovati  in  molte  applicazioni:  dagli  aeroplani,  elicotteri   e  veicoli  spaziali  ai  sottomarini,  automobili  e  merci  sportive.  Purtroppo  la  loro   larga  diffusione  è  limitata  dal  loro  alto  costo,  piccola  durezza  alla  laminazione  e   piccola  resistenza  all'impatto.  Molti  aspetti  sono  stati  investigati  come  metodi   per  migliorare  queste  caratteristiche,  comunque  i  compositi  rinforzati  con   architetture  di  tessuti  3D  appaiono  essere  la  soluzione  più  promettente.  Un   approfondimento  sui  metodi  di  produzione,  modellazione,  e  le  proprietà  dei   compositi  di  tessuti  3d,  3d  intreccaiti,  cuciti  e  z-­‐appuntati  architetture  di  rinforzo   è  stata  eseguita  in  modo  da  capire  meglio  i  pro  e  contro  di  questi  materiali  così   come  possibili  miglioramenti  e  opportunità.      

Molti  miglioramenti  sono  ancora  necessari  per  la  produzione  di  tessuti  di   rinforzo  3D.    I  tessuti  e  i  tessuti  intrecciati  possono  essere  prodotti  usando   speciali  macchine  o  modificando  i  tradizionali  macchinari  2D.  Comunque  le   architetture  e  i  costi  e  i  volumi  di  produzione  sono  correntemente  limitati  dalle   tecnologie  disponibili.  RTM  (Resin  transfer  molding)  and  RFI  (Resin  film  

infusion)  or  SCRIMP  sono  i  metodi  più  efficienti  per  la  corrente  produzione  di   compositi  3D.  Ogni  metodo  ha  diversi  benefici  e  limitazioni.  Una  revisione  di   base  degli  attuali  metodi  di  prova  e  modellazione  per  i  compositi  3D  è  presentata   nei  capitoli  4  e  5.      

Come  ci  si  aspetta  i  compositi  3D  risolvono  molti  dei  problemi  che  hanno  i   compositi  2D,  comunque  questi  miglioramenti  sono  accompagnati  dalla  

deteriorazione  delle  proprietà  nel  piano.  L'ottimizzazione  della  manifattura  dei   tessuti  3D,  la  produzione  di  compositi,  e  le  proprietà  nel  piano  e  fuori  dal  piano   hanno  bisogno  di  ulteriori  investigazioni,  comunque  molti  compositi  3D  

mostrano  potenzialità  per  diverse  applicazioni  per  cui  non  possono  essere  usati   compositi  2D.  Per  esempio,  cuciture  e  z-­‐pinning  mostrano  eccezionali  

potenzialità  per  il  rinforzo  dei  giunti,  mentre  I  tessuti  a  maglia  3D  mostrano  un   eccellemte  resistenza  all'impatto  e  sono  di  particolare  interesse  per  l'uso  nelle   protesi  ma  non  sono  utilizzabili  per  applicazioni  strutturali.  

(15)

1  

Introduction  to  Composites  

 

 

1.1  Introduction  

 

Over   the   past   years   composites   have   become   increasingly   popular.     Their   popularity  is  due  to  their  ability  to  be  manipulated  and  engineered  in  order  to   optimize   physical,   thermal   and   mechanical   properties   for   specific   applications.     The  mechanical  properties  of  a  composite  depend  on  both  the  material  selection   as   well   as   the   orientation   of   the   reinforcements   within   the   component.     For   example,   fiber   direction   may   be   dictated   in   order   to   optimize   the   mechanical   properties  of  the  material  in  a  given  direction  and  materials  can  be  selected  to   optimize   performance   in   diverse   environments.     Composites   are   also   advantageous  from  a  weight  perspective,  as  they  display  a  relatively  high  specific   strength,   stiffness,   fatigue   resistance   and   corrosion   resistance   with   respect   to   weight.     Therefore   they   are   usually   chosen   for   applications   where   high   operational   properties   are   crucial   and   weight   management   is   critical.     Due   to   their  exceptional  qualities,  composites  can  be  found  in  all  types  of  applications,   from   aircrafts,   helicopters   and   spacecrafts   to   submarines,   automobiles   and   sporting  goods.1,2  

     

1.2  Fiber  Reinforced  Composites  (FRC)    

The  definition  of  a  composite  material  is  that  it  must  be  made  up  of  at  least   two   distinguishable   constituents   demonstrating   significantly   different   chemical   or  physical  properties.    The  combination  of  these  constituents  into  a  composite   creates   a   new   material   that   displays   a   set   of   properties   different   from   the   individual   properties   of   each   of   the   constituent   materials.     There   are   many   different  composite  types,  however  for  the  purpose  of  this  thesis  we  will  focus  on   Fiber  Reinforced  (FR)  Composites.    FR  composites  consist  of  a  matrix,  usually  a   rigid   polymeric   material   embedded   with   fiber   reinforcements.     The   polymeric   material   of   the   matrix   is   made   from   either   a   thermoplastic   (e.g.   polyamide,   polypropylene,  etc)  or  a  thermoset  (e.g.  polyimides,  epoxy,  etc.)  material,  while   the  reinforcing  fibers  are  usually  made  from  glass,  carbon  or  aramid.1,2  

(16)

handle  due  to  their  high  viscosity.    Thermoset  matrix  materials  are  characterized   by   their   low   viscosity   and   low   processing   temperature   with   drawbacks   in   application  temperature,  and  toughness  (see  Table  1.1).  

 

Matrix  Material   Cost   Application  Temperature   Toughness  

PAI  (TP)   >25  €/kg   >  300°C   Medium-­‐High   PEEK  (TP)   >25  €/kg   >  300°C   High   Polyimide  (TS)   10-­‐25  €/kg   200-­‐300°C   High   PES  (TP)   10-­‐25  €/kg   200-­‐300°C   Low-­‐Medium   Epoxy  (TS)   2.5  –  10  €/kg   120-­‐200°C   Low   Phenolic  (TS)   2.5  –  10  €/kg   120-­‐200°C   Low   PBT  (TP)   2.5  –  10  €/kg   120-­‐200°C   Low-­‐Medium   PA  (TP)   2.5  –  10  €/kg   120-­‐200°C   Medium-­‐High   Polyester  (TS)   <2.5  €/kg   <120°C   Low   PP  (TP)   <2.5  €/kg   <120°C    

Table  1.1:  Matrix  materials  costs,  application  temperature  and  toughness.    (TP  –  thermoplastic  

and  TS  –  thermoset)  3  

   

1.2.2  The  Fibers  

  The   fibers   of   the   FR   composite   can   be   varied   in   size,   shape,   length,   direction,  architecture,  and  material  in  order  to  engineer  a  composite  to  the  have   specific   properties.     The   length   of   the   reinforcing   fibers   can   be   whiskers   (short/staple)  or  continuous  (filament)  (Figure  1.1),  and  usually  have  an  ovular   or  circular  cross-­‐sectional  shape,  although  almost  any  shape  is  possible.  Whisker   reinforcement   fibers   are   used   to   create   non-­‐woven,   non-­‐structural   composites.     When   randomly   oriented   in   the   matrix   material   they   create   an   isotropic   composite,  while  orienting  the  fibers  can  give  more  strength  in  the  orientation   direction,  generating  an  anisotropic  composite.  

   

(17)

 

Figure  1.1:    Depiction  of  fiber  type,  and  non-­‐woven  composite  architectures  

 

On   the   other   hand,   using   filament   fibers   makes   it   possible   to   engineer   the   reinforcement  architecture.    This  can  be  achieved  through  the  prepreg  lay-­‐up,  or   by   using   woven,   braided,   stitched,   or   z-­‐pinned   fabrics.     A   prepreg   is   a   unidirectional  fiber  sheet  impregnated  with  uncured  matrix  resin.    The  layup  of   the  prepregs  determines  the  fiber  orientations  within  the  composite  (see  figure   1.2).     Fibers   may   be   oriented   in   one   direction   (e.g.   0°/0°/0°/0°)   giving   unidirectional   characteristics,   or   in   multiple   directions   (e.g.   0°/+45°/-­‐45°/90)   creating  quasi-­‐isotropic  properties.1  

 

(18)

Type   General  Characteristics  

E   Low  cost,  General  purpose   S/R   High  stiffness  and  strength   D   Good  dielectric  properties   A/AR   Alkali  resistance  

E-­‐CR   Acid  Resistance  

C   Good  chemical  resistance  

Table  1.2:  Glass  type  and  defining  characteristics  

 

Carbon  fibers  are  becoming  more  popular  and  are  of  high  interest  due  to  their   high   modulus,   high   strength,   and   low   density/weight,   however   they   are   still   extremely  expensive.      

 

 

Figure  1.3:  Stress  vs.  Strain  graph  comparing  Carbon  (green),  Glass  (purple)  and  Aramid  (red)  

fiber  properties.  3  

 

Aramid  fibers  have  advantages  in  its  high  toughness,  high  strength  and  low  cost,   but  suffer  from  low  UV  resistance,  and  low  compressive  strength  (although  the   low  compressive  strength  can  be  used  to  an  advantage  in  certain  applications).       These  are  the  three  most  common  fiber  reinforcement  materials,  whose  tensile   behavior   are   compared   in   Figure   1.3.     However   it   is   important   to   note,   that   boron,  basalt  and  ceramic  fibers  have  also  been  used  to  a  much  lesser  extent.1,2  

   

1.3  Reinforcement  Architectures    

Using   more   complex   reinforcement   architectures   gives   another   engineering   possibility.   Woven,   knit,   braided,   stitched,   and   z-­‐pinned   architectures   provide  

(19)

the   most   interesting   opportunities   at   the   moment   (figure   1.4).     Within   each   fabric   production   process   there   are   many   different   architectures   that   can   be   achieved.    For  example  with  3D  weaving  we  can  produce  angle  interlock  weaves,   orthogonal   weaves   or   through-­‐thickness   interlock   weaves.     The   properties   of   each  of  these  fabrics  differ  greatly,  therefore  the  fabric  itself  can  be  engineered   for  the  desired  properties.1,2  

 

   

   

Figure  1.4:  Braided,  woven  and  knit  fabric  structures  

   

1.3.1  2D  Composites  

2D laminated composites are among the most common composites used in the market today. In applications requiring high performance properties filament fibers are selected over whiskers and are oriented in the x-, y-directions of the composite. Some of the major disadvantages of 2D composites lie in their high cost, and low through-thickness mechanical properties due to the lack of z-directional fibers. Therefore the mechanical properties in the through-thickness direction are determined by the mechanical properties of the resin and the fiber-resin interface. A comparison of the in-plane and through-thickness strengths of 2D laminates, seen in figure 1.5 below, reveals that the through-thickness properties are usually less than 10% of the in-plane properties and therefore cannot be used in applications supporting high through-thickness or inter-laminar shear loads.2

(20)

Figure 1.5: Comparison of in-plane and through-thickness properties1

Another issue with 2D composites is their poor impact damage resistance, delamination and the loss in mechanical properties caused by impact. A composite subjected to an impact in the through-thickness direction can suffer from degraded in-plane mechanical properties under tension, compression, bending and fatigue. Due to the threat of delamination, composite parts are often over-engineered by adding thickness, resulting in increased costs, weight and volume.2

Alternatives to improve through-thickness delamination resistance and post-impact mechanical properties include chemical and rubber toughening of resins, chemical and plasma treatment of fibers, and interlaying using though thermoplastic films. They have all shown improvements in low energy impacts but have other drawbacks, which have lead to the limitation of their use in large structures.2

   

1.3.2  3D  Composites  

  3D  composites  were  introduced  as  a  solution  to  the  main  disadvantages  of   2D   composites:   high   fabrication   costs,   proneness   to   through-­‐thickness   delamination  and  low  impact  damage  tolerance.    Unlike  the  2D  composites,  3D   composites   have   fibers   in   the   x-­‐,   y-­‐,   and   z-­‐directions.     The   z-­‐directional   or   z-­‐ binder   yarn   is   responsible   for   the   increase   of   these   out-­‐of-­‐plane   mechanical   properties.    3D  composites  can  be  made  from  3D  woven,  braided,  or  knit  fabrics   as   well   as   stitched   and   z-­‐pinned   fabrics.     The   rest   of   this   thesis   will   cover   3D   composites  and  their  reinforcements.    The  following  chapters  will  review  their   manufacturing,  composite  consolidation,  modeling  and  properties.2  

(21)

References  

1. M. Sc. Badawi, Said Sobhey A. M. Development  of  the  Weaving  Machine   and  3D  Woven  Spacer  Fabric  Structures  for  Light  Weight  Composites   Materials.    Dresden Technical University. 2007  

2. Tong,  L.  Mouritz,  A.P.  and  Bannister,  M.K.    3D  Fibre  Reinforced  Polymer   Composites.    Elsevier  Science  Ltd.    Oxford,  UK.    2002.  

3. Poggi,  Carlo.    Composites  For  Structural  Application.    Politecnico  di   Milano.    Course,  2nd  Semester  2011    

   

(22)

2  

Reinforcement  Fabric  Manufacturing  

 

 

2.1  Introduction    

  The  manufacturing  of  the  3D  fabric  reinforcement  plays  a  very  important   role   in   the   growth   of   the   3D   fiber   reinforced   composite   industry.     It   is   only   through   economical   production   of   the   3D   reinforcement   that   wide   spread   use   can  be  achieved.    There  are  many  different  ways  in  which  to  manufacture  a  3D   fabric  reinforcement,  however  the  most  common  methods,  and  those  that  will  be   discussed   here,   are:   weaving,   braiding,   knitting,   stitching,   noobing,   and   z-­‐ pinning.  2,3  

   

2.2  Weaving    

  Weaving   is   one   of   the   oldest   forms   of   fabric   production   and   is   already   used  extensively  within  the  composite  industry.    However,  the  fabrics  currently   being   used   are   mostly   2D   and   not   3D.     The   weaving   process,   at   the   moment,   allows   for   the   production   of   fabric   widths   between   1.8   –   2.5   meters   at   a   rapid   production   rate   making   this   type   of   reinforcement   good   for   components   requiring   large   surfaces   and   fast   production   rates.     An   appealing   aspect   of   the   current  weaving  process  is  that  the  2D  weaving  equipment  can  be  easily  altered,   at   little   cost,   to   attain   the   ability   of   producing   3D   fabrics,   however   yarn   directions  are  restricted  to  0  and  90  degree  directions.  1,3  

   

2.2.1  2D  Weaving  

  Let  us  begin  with  a  description  of  the  traditional  2D  weaving  process,  as   the   3D   process   is   based   off   of   its   simpler   counterpart.     Weaving   is   the   act   of   interlacing  two  sets  of  yarns  to  produce  a  fabric2.    The  steps  of  weaving  are  in  the  

order   of   shedding,   picking,   beating   up   and   taking   up3.     At   this   point   it   is  

important  to  note  that  there  are  different  types  of  weaving  looms,  the  traditional   looms  (Figure  2.1)  that  can  produce  fabrics  of  plain  weave,  twill  and  satin,  and   those   called,   jacquard   looms,   which   can   produce   complicated   fabric   patterns.     Jacquard   looms   have   a   lifting   mechanism   controlled   by   a   computer   in   which   individual  warp  yarns  can  be  lifted  at  any  time  allowing  for  intricate  patterns  to   be   woven   into   the   fabric,   these   are   of   particular   interest   in   the   3D   weaving   process.  1,2,3  

(23)

 

 

Figure  2.1:    Traditional  weaving  loom3  

 

The  weaving  process  starts  by  threading  or  feeding  the  warp  yarns,  those   that   run   in   the   machine   direction   –   0   degrees,   into   the   loom   from   the   source   yarns.    The  source  yarns  are  run  through  a  series  of  rollers  in  order  to  maintain   and  control  the  tension.    These  yarns  are  then  fed  through  the  lifting  mechanism.     The  lifting  mechanism  lifts  the  warp  yarns  in  order  to  create  a  space,  or  shed,  for   the  weft  yarns  to  be  inserted.    The  weft  yarns  are  those  running  horizontal  to  the   machine,  or  in  the  90  degree  direction.    The  sequence  in  which  the  warp  yarns   are  lifted  and  the  weft  yarns  inserted  creates  the  pattern  of  the  fabric  (see  Figure   2.2).     It   is   important   to   note   that   the   fabric   architecture   greatly   influences   the   mechanical  properties  and  drapability  of  the  fabric  and  is  highly  dependent  on   the   weave   pattern,   fiber   or   tow   size,   weft   and   warp   yarn   concentration,   yarn   tension,   and   tightness   of   the   tows.1,2,3   Plain   weave   being   the   stiffest   (least  

drapable)  and  weakest,  while  satin  is  the  strongest  and  most  drapable.3  

(24)

 

Figure  2.2:    Illustration  of  yarn  structure,  and  common  weave  patterns  

 

Picking  is  the  process  of  inserting  the  weft  yarns  in  the  shed  created  by  the  lifting   mechanism.2     This   can   take   place   in   a   number   of   different   ways.     The   oldest  

technique   for   insertion   of   the   weft   yarns   is   through   the   use   of   a   shuttle   to   transport   the   yarns   through   the   shed.       This   technique   is   slow,   but   creates   a   closed  edge  fabric.    Open  edged  fabrics  can  be  produced  at  much  quicker  rates,   using   a   mechanical   arm,   rapier,   or   high-­‐pressure   air   or   water   to   transport   the   weft  yarns  through  the  shed.3    The  next  step  is  the  beating  up  process,  in  which  

the   inserted   weft   yarns   are   compacted   using   a   comb-­‐like   devise,   the   reed.     Finally,  in  order  to  have  a  continuous  process  the  fabric  is  advanced  forward  by  a   series   of   positively   driven   rollers,   this   is   called   take-­‐up.     This   process   is   continued   until   the   desired   length   of   fabric   is   created.     The   fabric   can   be   produced  continuously  and  cut  into  the  lengths  needed.    Also  different  types  of   yarns  can  be  used  for  warp  and  weft  to  help  created  a  fabric  better  suited  for  the   intended  use.  1,2,3  

   

2.2.2  3D  Weaving  

  The   major   difference   between   2D   and   3D   woven   fabrics   is   the   need   of   multiple   layers   of   warp   yarns   in   the   3D   fabrics.     This   tends   to   be   a   major   disadvantage,  as  the  need  for  a  large  number  of  warp-­‐ends  and  the  time  required   to   prepare   the   loom   can   be   very   costly.     Therefore,   at   the   moment,   most   3D   woven   fabrics   are   used   in   the   production   of   narrow   products   reducing   the   number   of   warp   yarns   required.     As   stated   above,   the   traditional   weaving   equipment   can   be   easily   altered   to   create   a   3D   woven   fabric.     The   first   modification   is   to   use   a   lifting   mechanism   with   multiple   eyes,   allowing   for   layered  warp  yarns.    Jacquard  looms  are  normally  selected  for  the  production  of   3D  woven  fabrics,  given  the  distinct  advantage  of  improved  control  of  the  lifting   mechanism.     With   the   multiple   layers   of   warp   yarns,   comes   the   creation   of   multiple  sheds.    This  allows  for  multiple  insertions  of  the  weft  yarns  at  the  same   time,  and  is  the  second  modification  needed  in  order  to  have  3D  weaving.  1,2,3  

  In  the  formation  of  a  3D  woven  fabric,  pockets  are  formed  between  any   four  adjacent  warp  yarns.    These  pockets  can  be  filled  with  stuffer  yarns  that  do   not   interlace   with   the   weft   yarns.     The   pockets   can   be   filled   according   to   mechanical  needs  and  in  this  way  the  fabric  can  be  further  engineered  to  specific   applications.     In   order   to   maximize   performance,   majority   of   the   yarns   are   designed   to   lay   flat,   and   only   select   warp   yarns   are   used   to   bind   the   layers   together.     Examples   of   the   weaving   architectures   capable   of   being   produced   using   the   3D   weaving   procedure   are   given   in   the   figure   2.3.     Please   note   that  

(25)

these   fabric   architectures   are   idealized   and   not   possible   in   reality.     Woven   materials  can  be  produced  in  types  of  solid,  shell,  tubular  and/or  combinations  of   these.  1,2,3  

 

 

Figure  2.3:    3D  weave  geometries2  

 

As   with   2D   weaving,   3D   weaving   is   limited   to   yarn   placement   in   the   0   and   90   degree   directions.     Therefore   its   use   is   limited   to   components   that   are   not   subjected  to  extensive  shear  and  torsion  stresses.    An  advantage  of  the  weaving   loom  is  its  capability  of  producing  fabrics  with  slits  that  can  then  be  opened  into   three-­‐dimensional   structures   (see   figure   2.4).     This   can   be   used   to   produce   I   beams  and  boxes  using  flat  fabric  and  have  already  been  used  in  civil  engineering   components.  3  

 

 

Figure  2.4:    Illustrating  the  ability  to  weave  slits  into  the  fabric  capable  of  creating  three-­‐

dimensional  structures.3  

 

  Examples   of   3D   weaving   equipment   include,   3WEAVE   created   by   3tex.     This  machine  allows  for  the  use  of  multiple  filling  layers  at  a  time,  use  of  carbon,   aramid,   glass,   polyethylene,   steel   fibers,   etc.,   produce   a   fabric   thickness   up   to   25.4  mm,  and  a  fabric  width  of  1830mm.  2  

(26)

  Distance   fabrics   are   produced   using   a   similar   processed   used   in   the   production   of   velvet.     There   are   two   sets   of   warp   yarns,   spaced   at   specified   distance   apart,   that   are   woven   as   separate   fabrics   and   at   the   same   time   interlinked   by   transferring   specific   warp   yarns,   pile   yarns,   between   the   layers.     This   fabric   is   important   for   the   production   of   peel-­‐resistant   and   delamination   resistant  sandwich  composites.  3  

   

2.3  Braiding      

  Braiding   is   also   commonly   found   in   the   production   of   many   composite   components:     golf   clubs,   yacht   masts   and   aircraft   propellers.     Unlike   weaving,   braiding  allows  for  a  much  larger  selection  of  shapes,  however  is  not  capable  of   producing   large   volumes   of   wide   fabrics,   therefore   is   better   suited   for   the   production  of  highly  specialized  parts.    The  disadvantages  of  braiding  fall  in  the   limited   size   of   performs   compared   to   the   size   of   the   equipment   as   well   as   the   limited  length  of  the  preform  before  the  yarns  need  to  be  refilled.  3  

   

2.3.1  2D  Braiding  

  2D   braiding   is   usually   preformed   by   a   set   of   yarn   carriers   that   counter   rotate   around   a   circular   frame   to   form   the   braided   fabric.     Braided   fabric   is   characterized   by   the   high   level   of   yarn   interlinking   and   is   formed   as   either   a   tubular  or  flat  fabric.    A  large  benefit  of  the  braiding  process  is  that  braiding  can   be  preformed  over  a  mandrel  in  order  to  produce  intricate  perform  shapes.    The   shapes  achievable  can  have  varying  cross  sectional  shapes,  varying  dimensions   along  their  length,  and  attachment  points  or  holes  can  also  be  incorporated  into   the  preform.    By  incorporating  holes  and  attachment  points  it  is  possible  to  cut   costs   in   component   finishing   as   well   as   improve   mechanical   performance   by   allowing  for  unbroken  fibers  at  the  attachment  sites.    Another  large  benefit  of  the   braiding  process  is  the  ability  to  produce  fabric,  containing  yarns  at  angles  other   than  0/90  degree  directions.3  

   

2.3.2    Two  and  Four-­Step  3D  Braiding  

  The  2D  braiding  equipment  is  insufficient  to  produce  3D  braided  fabric.     One  of  the  first  3D  braiding  processes,  was  developed  by  General  Electric  and  is   known  as  the  four-­‐step  or  row  and  column  braiding.    This  process  involves  a  flat   bed  containing  rows  and  columns  of  yarn  carriers  that  form  the  preform  shape.     The   name   comes   from   the   requirement   of   four   separate   sequences   of   row   and   column   motion   in   order   to   produce   the   braided   fabric   or   perform.     In   this   process,   the   yarns   are   mechanically   compacted   after   each   step,   similar   to   the  

(27)

weaving   process.     The   braiding   process   can   be   controlled   in   order   to   produce   diverse  braid  patterns  and  allows  for  high  control  over  mechanical  properties  of   the  preform  in  the  three  principal  directions.3  

  Later   the   technology   was   developed   into   a   cylindrical   configuration   known  as,  Through-­‐the-­‐Thickness  braiding.    This  is  achieved  by  having  identical   rings   arranged   side   by   side   in   an   axial   arrangement.     The   rings   allow   the   yarn   carriers  to  move  from  ring  to  ring  in  the  axial  direction  while  the  rings  rotate  to   perform   braiding.     Cylindrical   braiding   equipment   is   advantageous   in   space   saving.3  

  Another  form  of  braiding  exists  in  the  two-­‐step  process.    In  this  process   majority  of  the  yarns  are  fixed  in  the  axial  direction,  and  a  small  number  of  yarns   are   used   to   braid.     The   shape   of   the   perform   can   be   controlled   by   the   arrangement   of   the   axial   carriers.     Here   the   braiding   carriers   move   completely   through   the   structure   between   the   axial   yarns.     It   is   advantageous   in   that   any   shape   can   be   achieved,   and   there   is   no   need   for   mechanical   compaction   of   the   yarns  reducing  the  risk  of  damage.3  

   

2.3.3    Multilayer  Interlock  Braiding  

  This  method  of  3D  braiding  is  most  similar  to  the  traditional  2D  braiding   processes.     The   equipment   is   comprised   of   a   cylindrical   braiding   frame   containing   parallel   braiding   tracks   with   yarn   carriers   that   can   be   transferred   between   the   tracks,   allowing   for   the   interlocking   of   the   adjacent   layers.     This   version  of  3D  braiding  is  advantageous  in  that  the  interlocking  yarns  are  in  the   plane  of  the  structure  and  therefore  allow  the  preform  to  maintain  most  of  the   in-­‐plane  properties.    However,  to  achieve  the  same  number  of  yarn  carriers  the   multilayer   interlocking   braiding   equipment   needs   to   be   larger,   and   the   equipment  is  less  adaptable.    Figure  2.5  illustrates  multilayer  interlock  braided   fabric.3  

 

 

 

Figure  2.5:  Multilayer  interlock  braided  fabric3  

   

2.4  Knitting    

(28)

sections   of   straight   yarns   to   improve   in   plane   mechanical   properties.     Further   developments   in   the   electronic   control   of   the   needles   have   allowed   for   the   component   to   be   knit   in   a   way   that   allow   for   the   final   3D   shape   to   be   formed   automatically   without   further   alteration   after   the   knitting   process,   without   excessive  waste.  3  

 

 

Figure  2.6:  3D  knit  fabric3  

 

  The  traditional  forms  of  knitting  are  either  warp  of  weft  knitting.    In  weft   knitting  there  is  only  a  single  yarn  fed  into  the  machine  at  a  90-­‐degree  direction   with  respect  to  the  fabric  production.    The  yarn  forms  a  line  of  interlocking  loops   to  form  the  knit  fabric.    While  with  warp  knitting,  there  are  a  number  of  yarns   feed   into   the   machine   at   the   0   degree   direction   with   respect   to   the   fabric   production.     With   warp   knitting,   multiple   types   of   yarns   can   easily   be   knit   together,  however  more  yarn  bundles  will  be  needed  and  therefore  can  be  more   costly.    The  interlocking  of  the  loops  is  achieved  through  a  needle  bed,  a  row  of   closely   spaced   needles   that   pull   the   yarns   through   the   previously   knit   loops.     Machines  with  two  or  more  needle  beds  are  capable  of  creating  3D  knit  fabrics.  3  

        2.5  Stitching    

Stitching  is  the  simplest  and  cheapest  of  the  methods  for  producing  a  3D   fabric  architecture.    The  process  involves  the  insertion  of  a  needle  carrying  a  z-­‐ directional  yarn  through  layers  of  2D  fabric,  in  effect  stitching  the  layers  together   and   creating   a   3D   architecture   (see   figure   2.7).     The   z-­‐binding   yarns   are   most   commonly   aramid.     This   is   due   to   their   high   toughness   as   well   as   equipment   requirements.     Current   stitching   machinery   may   be   used   with   aramid   yarns  

(29)

without  further  alterations.    However  attention  must  be  given  to  their  tendency   to  absorb  moisture  and  insufficient  binding  to  many  common  polymer  resins.3  

 

 

Figure  2.7:  Stitched  fabric3  

 

Creating   3D   architectures   through   stitching   provides   many   benefits.     Among   those   is   the   possibility   to   use   the   process   with   traditional   2D   woven,   braided,   knit,   etc.   prepregs.     This   allows   for   a   great   degree   of   flexibility   in   the   fabric  lay-­‐up;  using  different  material  layers,  as  well  as  different  yarn  directions.     Also,  stitching  can  be  placed  only  in  the  areas  that  require  reinforcement  in  the  z-­‐ direction,   as   well   as   complex   stitching   patterns   by   using   current   embroidery   machinery   and   software.     Another   great   advantage   is   the   ability   to   create   complex  3D  shapes  by  stitching  different  component  parts  together.3  

The  main  disadvantages  with  this  process  lay  in  the  reduction  of  the  in-­‐ plane   properties.     This   is   due   to   local   fiber   damaged   caused   by   the   needle   insertion,   increased   crimp   induced   by   the   z-­‐directional   yarns,   and   resin-­‐rich   pockets  formed  by  the  bunching  of  fibers  contained  by  the  stitching  yarns.3  

   

2.6  Z-­pinning    

  Z-­‐pinning  is  used  as  an  alternative  method  to  stitching.    The  process  uses   pre-­‐cured   reinforcement   fibers,   which   are   embedded   in   a   thermoplastic   foam   and  placed  on  top  of  the  prepreg  or  dry  fabric.    The  prepreg  and  foam  are    then   prepared  for  curing.    During  the  curing  process,  the  thermoplastic  foam  collapses   and   the   pressure   slowly   drives   the   reinforcing   fibers   into   the   component   (see   figure   2.8).     With   z-­‐pinning,   there   is   less   crimping   induced   by   the   z-­‐directional   reinforcing  fibers  as  well  as  less  damage  to  the  yarns  in  the  prepreg,  while  still   maintaining  the  high  level  of  control  over  reinforcement  placement.3  

(30)
(31)

3  

Composite  Manufacturing  

 

  3.1  Introduction    

  There   are   many   different   ways   in   which   to   consolidate   the   preform   to   create   the   final   composite   component,   however   not   all   of   these   processes   are   suited   for   3D   preform   consolidation.     Methods   such   as   hand   impregnation,   pultrusion,  and  commingled  yarns  greatly  distort  the  fabric  architecture  during   composite   consolidation,   significantly   diminishing   the   final   mechanical   properties  of  the  component.    Therefore,  in  order  to  reap  the  benefits  of  the  3D   preform  production  technologies,  the  correct  consolidation  technology  must  be   chosen.     At   this   moment   the   only   manufacturing   process   that   is   successful   in   consolidating  3D  fiber  performs  is  Liquid  Molding  (LCM).    This  is  due  to  its  high   flexibility  regarding  component  shape.    For  preforms  of  complex  geometries  LCM   offers  opportunity  to  produce  a  high  quality  component  for  a  relatively  low  cost.  

1,2  

LCM  consists  of  a  family  of  processes,  which  involves  the  impregnation  of   a   dry   reinforcement   with   a   liquid   thermosetting   resin.     The   most   widely   used   processes   of   the   LCM   family   are:     resin   transfer   molding   (RTM),   SCRIMP,   and   resin   film   infusion   (RFI).     Here   we   will   review   the   different   processes   and   the   opportunities   and   challenges   that   they   each   provide   with   respect   to   the   formation  of  3D  composites.  1,2  

   

3.2  Composite  Consolidation  Techniques    

 

3.2.1  Resin  Transfer  Molding  

  Resin  transfer  molding  is  the  most  commonly  used  of  the  liquid  molding   techniques.     It   consists   of   a   closed   mould   system,   which   produces   components   with  excellent  surface  finishes  and  fiber  volume  ranging  between  50-­‐60%.    It  is   perfect  for  production  of  high  quality  automotive  and  aerospace  components.    In   this   process   the   preform   is   place   between   a   closed   mould,   and   the   resin   is   pumped  into  the  mould  at  pressures  ranging  from  2-­‐20  bar  (see  figure  3.1).      The   resin   travels   in   the   in-­‐plane   direction   to   the   preform,   this   is   a   distinguishing  

(32)

 

Figure  3.1:  RTM  

 

  Variations   to   RTM   include   Vacuum   assisted   RTM   (VARTM)   where   a   vacuum  is  applied  to  aid  in  consolidation,  air  removal  and  increase  the  velocity   of   resin   infiltration,   and   Structural   Reaction   Injection   Molding   (SRIM)   where   higher  injection  pressures  are  used  to  decrease  production  time.  1,2  

   

3.2.2  Resin  Film  Infusion  

  Resin  Film  Infusion  (RFI)  is  an  alternative  to  the  RTM  method.    In  RFI  the   resin  is  present  in  the  form  of  a  film  instead  of  a  liquid.    The  resin  film  is  placed   on  the  tool  surface,  over  which  the  preform  is  placed.    On  top  of  the  preform  a   release   film   (to   allow   for   easy   component   removal)   and   breather   material   (in   order  to  form  a  vacuum)  are  added.    Everything  is  bagged,  vacuumed  and  placed   in  an  autoclave  to  be  heated  under  pressure  (see  figure  3.2).    The  resin  film  melts   and  is  sucked  up  into  the  preform  through  capillary  action,  thus  being  absorbed   in  the  thickness  direction.    The  pressure  can  be  varied  in  order  to  compact  the   component  to  the  desired  fiber  volume  fraction.  1,2  

(33)

 

Figure  3.2:  RFI2  

 

  RFI  has  many  advantages  and  disadvantages  of  RTM.    The  advantages  of   RFI   consist   of   the   relatively   low   tooling   costs   and   the   loss   of   the   maximum   injection  length  limitations.    However,  RFI  has  limitations  in  the  thickness  of  the   component.    Therefore  RFI  is  usually  used  with  thinner  larger  components  while   RTM   is   suited   for   smaller   thicker   components.     Another   disadvantage   of   RFI   is   the   relatively   high   costs   of   the   resin   film,   which   can   cost   up   to   two   times   the   price  of  the  pure  resin,  as  well  as  their  difficulty  to  handle.  1,2  

   

3.2.3  SCRIMP  

  Seemann  Composite  Resin  Infusion  Process  (SCRIMP)  is  a  mixture  of  both   the  RTM  and  the  RFI  consolidation  processes.    SCRIMP  uses  a  liquid  resin  from   an  external  source,  like  with  RTM,  and  impregnates  the  preform  in  the  thickness   direction,  like  with  RFI.    To  achieve  resin  absorption  in  the  thickness  direction,  a   resin  distribution  medium  is  used.    This  medium  allows  the  resin  to  flow  quickly   over   the   preform   surface,   spreading   over   the   entire   surface   and   then   being   absorbed   in   a   similar   fashion   to   RFI   through   the   thickness   of   the   component.     The   preparation   is   similar   to   RFI,   with   the   layering   of   the   components   and   sealing  in  a  vacuum  bag.    The  prepared  setup  is  then  placed  under  vacuum  and   the   resin   is   sucked   into   the   freeform   through   a   resin   inlet   port.     The   vacuum   created   pressure   gradient   provides   the   driving   force   for   resin   infusion   and   no   other   injection   equipment   is   needed.     This   process   has   an   advantage   in   that   tooling   costs   are   cut   similar   to   RFI,   as   well   as   cost   reductions   in   the   raw   materials  as  in  RTM.    The  limitations  of  thickness  and  maximum  length  are  also   overcome  in  this  process.  1,2  

   

3.3  Consolidation  Equipment    

(34)

sided   mold   or   open   mold   is   used.     The   most   important   consideration   is   the   material   used   to   produce   the   mold.     This   depends   on   cost   and   production   volume.     For   low   production   volume,   wood   and   plaster   are   generally   used   to   make  the  mold  due  to  the  ease  of  mold  production  and  low  costs.    However  for   large   production   volumes   (10,000s)   metals   such   as   steel   and   aluminum   are   chosen.    For  high  production  volumes,  it  is  more  cost  efficient  to  use  metals  due   to   their   high   durability   the   need   for   repair   or   replacement   is   greatly   reduced.       Also  metals  tend  to  produce  higher  quality  surface  finishes  and  allow  for  a  wider   range  of  processing  temperatures.  

   

3.3.2  Heating  and  Cooling  

As   with   all   the   other   equipment,   the   heating   and   cooling   systems   are   dependent   on   the   consolidation   process.     For   RFI   and   SCRIMP,   using   an   open   mold,   it   is   more   cost   effective   to   use   an   external   heating   sources,   such   as   a   convection   oven,   autoclave   (figure   3.3)   or   other   similar   heating   devices.     The   heating  system  selected  will  depend  on  component  size,  shape,  required  heating   rate  and  curing  temperature.    Cooling  is  generally  achieved  through  air-­‐cooling.  

2,4  

 

 

Figure  3.3:  Autoclave  for  composite  consolidation.    Image  provided  by  AAC  research  

 

  For  RTM  heating  using  external  sources  becomes  too  expensive.    Here  it   becomes  more  cost  effective  to  use  an  integrated  heating  system.    This  system   consists  of  a  series  of  internal  channels  that  allow  for  temperature  controlled  

Figura

Table	
  1.1:	
  Matrix	
  materials	
  costs,	
  application	
  temperature	
  and	
  toughness.	
  	
  (TP	
  –	
  thermoplastic	
   and	
  TS	
  –	
  thermoset) 	
  3	
  
Figure	
  1.1:	
  	
  Depiction	
  of	
  fiber	
  type,	
  and	
  non-­‐woven	
  composite	
  architectures	
   	
   	
  
Table	
  1.2:	
  Glass	
  type	
  and	
  defining	
  characteristics	
  
Figure	
  1.4:	
  Braided,	
  woven	
  and	
  knit	
  fabric	
  structures	
   	
  
+7

Riferimenti

Documenti correlati

Figure 12 shows a view of the Tyrolean Alps in which maps of the second person plural subject pronoun ihr ‘you’ from three German dialect atlases are superimposed (the light area

The School Children Mental Health in Europe (SCMHE) project: Design and first results. Positive youth development in the United States: Research findings on evaluations of

Other members of the household also influence the decision making process, influence that might be different in different stages of the process (problem recognition,

Sardegna e Sicilia: circolazione di modelli tra le due maggiori isole del Mediterraneo dal Neolitico al Bronzo Antico, in La Preistoria e la Protostoria della Sardegna, Atti della

Patrizia Basso - Diana Dobreva ● Aquileia: first results from the market excavation and the late antiquity town walls part two.. Site plan and East/West and North-South

Il DIST è attualmente impegnato nel progetto Réduction de la vulnérabil- ité agro-pastorale et amélioration de la résiliencedans le Hodh el Chargui (Mauritania sud

The involved mathematics is less straightforward than that of the usual Weyl formalism; for instance Born-Jordan pseudodifferential calculus is not fully covariant under

It is worth noting that in certain countries (eg Spain, Italy, Portugal), a single variety can be officially registered under two or more distinct names. The number of varie-