An
acetylcholinesterase
biosensor
for
determination
of
low
concentrations
of
Paraoxon
and
Dichlorvos
D.
Di
Tuoro
1,
M.
Portaccio
1,2,
M.
Lepore
1,2,
F.
Arduini
1,3,
D.
Moscone
1,3,
U.
Bencivenga
1,4and
D.G.
Mita
1,2,4,1NationalInstituteofBiostructuresandBiosystems(INBB),Rome,Italy
2DepartmentofExperimentalMedicine,SecondUniversityofNaples,Naples,Italy 3DepartmentofChemicalSciencesandTechnologies,UniversityofTorVergata,Rome,Italy 4InstituteofGeneticsandBiophysicsofCNR,Naples,Italy
The
characterization
of
an
economic
and
ease-to-use
carbon
paste
acetylcholinesterase
(AChE)
based
biosensor
to
determine
the
concentration
of
pesticides
Paraoxon
and
Dichlorvos
is
discussed.
AChE
hydrolyses
acetylthiocholine
(ATCh)
in
thiocoline
(TC)
and
acetic
acid
(AA).
When
AChE
is
immobilized
into
a
paste
carbon
working
electrode
kept
at
+410
mV
vs.
Ag/AgCl
electrode,
the
enzyme
reaction
rate
using
acetylthiocholine
chloride
(ATCl)
as
substrate
is
monitored
as
a
current
intensity.
Because
Paraoxon
and
Dichlorvos
inhibit
the
AChE
reaction,
the
decrease
of
the
current
intensity,
at
fixed
ATCl
concentration,
is
a
measure
of
their
concentration.
Linear
calibration
curves
for
Paraoxon
and
Dichlorvos
determination
have
been
obtained.
The
detection
limits
resulted
to
be
0.86
ppb
and
4.2
ppb
for
Paraoxon
and
Dichlorvos,
respectively,
while
the
extension
of
the
linear
range
was
up
23
ppb
for
the
former
pesticide
and
up
to
33
ppb
for
the
latter.
Because
the
inhibited
enzyme
can
be
reactivated
when
immediately
treated
with
an
oxime,
the
biosensor
reactivation
has
been
studied
when
1,1
0-trimethylene
bis
4-formylpyridinium
bromide
dioxime
(TMB-4)
and
pyridine
2-aldoxime
methiodide
(2-PAM)
were
used.
TMB-4
resulted
more
effective.
The
comparison
with
the
behavior
of
similar
AChE
based
biosensors
is
also
presented.
Introduction
Organophosphorus (OPs) pesticides are very toxiccompounds, intensivelyusedinagriculturebecauseoftheirhighinsecticidal activity and their rapidmineralization in the environment [1]. Theirpresenceintheenvironmentisveryharmfulforwildlifeand humanhealthastheyirreversiblyinhibitthecatalyticactivityof acetylcholinesterase (AChE), an enzyme which catalyzes the hydrolysisoftheacetylcholine(ACh),oneofthemostimportant neurotransmittersplayingavitalroleinthecentralandperipheral nervoussystem[2,3].Acetylcholineisbelievedtoaffectmemory, sleep, concentrationabilities.Ashortsupplyofacetylcholine is associatedwithAlzheimer’sdisease[3,4].Duetotheir
toxicologi-calactivity someOPshavebeenusedalsoasChemicalWarfare Agents(CWAs)[5,6].
In presence of these health risks, in recent years a growing attentionhasbeenpaidindevelopingreliable,fastandinexpensive analyticalsystemstomonitorthisfamilyofpesticides.Biosensors basedonacetylcholinesterase,indeed,representanemergingand promisingtechniquefortoxicityanalysis,environmental monitor-ing,foodqualitycontrolandmilitaryinvestigations[6–9].Themain applicationofAChEbiosensorsisthedetectionofOPspesticides basedonenzymeinhibition.Biosensorscansubstitutethecurrent analyticalmethods,suchaschromatographicandcoupled chroma-tographic–spectrometricprocedures,bysimplifyingoreliminating sample preparation,thus decreasingthe analysistime and cost. Themost criticalpoint inthe development ofbiosensorsisthe
Research
P
aper
immobilizationofthebiologicalrecognitionelementinanactive formontotheelectrodesurface.Becausetheanalyticalperformance ofanelectrodeisstronglyaffectedbythisprocess,intensiveefforts have to bemade to develop effective immobilization methods, allowingimprovedoperationalandstoragestability,responsetime, linearrangeandsensitivity,andpreservingatthesametimethe enzymeaffinityforthesubstratesor/andinhibitors.Physical entrap-mentoftheenzymehasbeenusedtoimmobilizeenzymesbecause theabsenceofchemicalbondsformationhelpstopreserve enzy-maticactivityduring immobilization.However, the main draw-backsaretheenzymeleakingandthepossiblediffusion barriers, imposedbytheentrappinglayer.ImmobilizationofAChEbysimple incorporation into thegraphite paste and by cross-linkingwith glutaraldehyde ina single or multi-layerdepositionwas accom-plished[10,11].Several biosensorsfunctioningaccording tothe principleofAChEinhibitionhavealsobeenproposed[12]. Numer-ousprototypesbasedonpotentiometric[13,14],amperometric[15– 17] and piezoelectric [18,19] transducers have been developed. Because the enzymatic activity in AChE-based biosensors is destroyeduponcalibrationorinthepresenceoftheanalyte,the sensormustbediscardedafterdetermination[20,21],or, alterna-tively,theenzymemustbereplaced[22–25]orreactivated[26,27]. Inthispaperweproposeaneconomicandeaseofusecarbon paste AChE biosensor to detect OPs concentration in aqueous solutions.Oncecharacterized, thebiosensorhasbeen employed inaqueoussolutiontodetecttheconcentrationofthepesticides paraoxonanddichlorvos,onthebasisoftheirinhibitoryeffecton AChEactivity.TheconditionsfortheAChEreactivationhavebeen reported,togetherwithexperimentsofrecoverystudiesofspilled realsamples.
Material
and
methods
Materials
Acetylcholinesterase(AChE,EC3.1.1.7,TypeVI–S,10kUmg1, from electric eels), acetylthiocholine chloride (ATCl) and the oximes pyridine-2-aldoxime methoiodide (2-PAM) and 1,10
-tri-methylene bis4-formylpyridinium bromide (TMB-4) were pur-chased from Sigma (USA) and used as received. Paraoxon and DichlorvoswerealsopurchasedfromSigma(USA),andtheirstock solutions were prepared in ethanol. Phosphate buffer solution (PBS) 0.1M at pH 7.5, containing 0.1M KCl, wasprepared by mixing stocksolutions of0.1M NaH2PO4 and 0.1M Na2HPO4.
Carbon powder (1.2mM in size) and mineral oil (employed as pasting material) were purchased from Sigma–Aldrich (Milan, Italy).Allchemicalswereofanalyticalreagentgradeandallthe aqueoussolutionswerepreparedwithredistilleddeionizedwater.
Biosensor
design
and
fabrication
Carbon paste wasused to buildup the working electrode.The carbon paste was prepared by hand mixing graphite powder, mineraloiland,whenitwasthecase,acetylcholinesteraseinan appropriateweightratio.Theresultingpasteswerepackedintothe well of a Teflon tube (3mm internal diameter and 1.2mm in thickness)withanelectricalcontactprovidedbyacopperwire.For economicreasonstheTeflontubewaspackedwithadoublelayer ofcarbonpaste.Theinnerlayercontainedonlygraphitepowder mixed to mineral oil,and the outer layercomposed of carbon paste,mineraloilandacetylcholinesterase.Theinnerlayer,about
2/3ofthetotalvolume,waspreparedbymixing60%ofgraphite powderand40%ofmineraloil,foratotalweightof4.8mg.The outerlayer,about1/3ofthetotalvolumeandwithatotalweight of2.5mg,waspreparedbymixinggraphitepowderwithmineral oilandacetylcholinesteraseintheratio(w/w)of50:40:10, respec-tively.Foreachelectrodeweusedabout0.25mgof acetylcholi-nesterase which corresponds to about 2500U. The electrode surfacewaspolishedonweighingpapertogiveasmoothfinish beforeuse.Amperometricmeasurementswerecarriedoutusinga PalmSens instrument (Palm Instruments, the Netherlands) coupled to a PC. All experiments were carried out in a three electrode electrochemical cell with a volume of 10mL (0.1M sodium phosphate buffer, pH 7.5, containing 0.1M KCl) with theenzymemodifiedCPEasworkingelectrode,anAg/AgCl elec-trode as reference electrode and a platinum wire as auxiliary electrode (seeFigure 1).The workingelectrode wasoperatedat +410mVvs.Ag/AgCl.Amagneticstirreranda stirringbar pro-videdtheconvectivetransportintheelectrolyticcell.All measure-mentswereperformedatroomtemperature,thatis25.00.58C.
Acethylthiocholine
concentration
measurements
Theacetylthiocolineconcentrationwasdeterminedbymeasuring the oxidationcurrent of thiocholine according to the reaction occurringattheworkingelectrodesurface:
acetylthiocolineþH2O! AChE
thiocholineþaceticacid 2ThiocholineðredÞ!ThiocholineðoxÞðdimericÞ
þ2Hþþ2e
AChE
inhibition
experiments
Experimentsaboutinhibitionmeasurementsandpesticides con-centrationdeterminationwerecarriedoutwith[ATCl]=100mM. To determinethe pesticide concentration, the initial electrode
FIGURE1
Theelectrochemicalsystem:1:Pbcounterelectrode;2:Ag/AgClreference electrode;3:workingelectrode,4:magneticbar;5:magneticstirrer;6: electrolyticcell.
Research
P
response (I0) in presence of a known ATCl concentration
and in the absence of the inhibitor is determined. Then the electrode is immersed in an aqueous solution containing the pesticide at a given concentration and incubated for 30min. After washing, thecurrent intensity response(I1) is measured
againundertheinitialstandardconditionsofATCl.The inhibi-tionpercentageI(%)wasdeterminedaccordingto the expres-sion[9]:I(%)=[(I0I1)/I0]100.Itisimportanttoobservethat
thesampleincubationandtheelectrochemicalmeasurementare performed in two separate steps and among them a washing procedureisincluded.
Thedetectionlimit(LOD)correspondstotheamountof inhi-bitorwhichleadstothedecreaseofthesignalequaltothreetimes thestandarddeviationofthesignalmeasurement[28–30].
AChE
reactivation
experiments
Immediately afterthe enzymeinhibition byorganophosphorus pesticides,torestoreitsfunctionalityanoximeshouldbe admi-nistered [26,27].Enzymereactivationprocedure wascarriedout accordingtoGullaetal.[26].Inbrief,afterbiosensorwasexposed topesticide,itwaswashedwithPBS(pH7.5,0.1mM)and reacti-vated for15minwith theoximesTMB-4 or2-PAM, then trans-ferredtoelectrochemicalcellof10mL0.1PBSatpH7.5withKCl 0.1M containing 100mM ATCl to study the electrochemical response. Thereactivation efficiency(R%)wasestimatedas fol-lows:R0(%)=[(IrI0)/(I1I0)]100%,whereIrwasthe
steady-statecurrentofATClatbiosensorafterreactivation,andI1andI0
havethemeaningsasdescribedabove.
Experimental
data
treatment
Eachexperimentalpointinthefigureistheaverageoffive experi-mentscarriedoutunderthesameconditions.Theexperimental errorneverexceeded3%.Theoperationalstabilityoftheelectrode was more than 40 days. In fact,the electrodes were discarded when,after40days oftwo weeklyuse,the ATCldetermination understandardconditionswaschangedof20%.
Results
and
discussion
First, we have studied the electrode response by varying the appliedpotentialdifferenceunderconstantATClconcentration (20mM)andtemperature(258C).
Results reported inFigure 2 show the biosensors response as functionoftheappliedpotentialduetooxidationofthiocholine. It is observed an exponential increase of the current intensity accordingtoalawofthetype:
IðpotÞ¼Aepot=B
withA=2.690.61nAandB=24020mV.
Electrochemicaloxidationofthiocholinemayleadto dimeriza-tion products[31] causingfouling effectson the working elec-trode.Thiswasobservedathighpotentials(from500to700mV) afterfewminutesofoperation,whereasatanappliedpotentialof 410mV, the thiocholine response decreased significantly only after several hours of operation (data not shown). Due to the improvedlong-termapplicabilityoftheelectrode,apotentialof 410mV was used in the following investigation. Moreover, at 410mV,theinterferenceofotherelectro-oxidablechemicals pre-sentin realmatricesto beanalyzed isreduced.InFigure 3 the
electroderesponseatdifferentacetylthiocholineconcentrationsis reported. Data show a characteristic Michaelis–Menten kinetic mechanism. The apparent Michaelis–Menten constant (KM,app)
is the result of both the enzymatic affinity and the ratio of microscopic kinetic constants. The data of Figure 3 can be re-plottedinformofLineweaver–Burkequation:
1 I ¼ KM;app Imax 1 Cþ 1 Imax
whereIisthesteady-statecurrentafteradditionofsubstrate,Cis itsbulkconcentration,andImaxisthemaximumcurrentmeasured
undersaturatedsubstrateconditions.TheKM,appvaluefor
AChE-biosensorwascalculatedtobe1.120.14mM,whilethevalueof 1.030.07mAforImaxwasobtained.InsertinFigure3showsthe
linearcalibrationcurveofourbiosensorundertheadopted
experi-2000 1500 1000 500 0 0 100 200 300 400 500 600 700 500 400 300 200 100 0 0 50 100 150 200 250 300 350 I (nA) [ATCh] (μM) I (nA) [ATCh] (μM) FIGURE3
CurrentintensityresponseofAChEbasedbiosensor:saturationcurrentsasa functionofATClconcentration.Insert:thelinearpartofthecurveisreported ascalibrationcurve. 700 600 500 400 300 200 100 0 0 10 20 30 40 50 I (nA) Potential (mV) FIGURE2
Oxidationcurrentsasfunctionoftheappliedpotential.Experimental condition:T=258C,[ATCl]=20mMinphosphatebuffer0.1MpH7.5 containing0.1MKCl.
Research
P
mentalconditions.Fromthedataitispossibletoobtainavalueof 0.690.01mA/mMforthebiosensorsensitivity.
Havingcharacterizedourbiosensor,wecarriedoutexperiments todeterminethelinearcalibrationcurvesforthepesticidesofour interest.
TheirreversiblephosphorylationoftheAChEactivesitewhen biosensorsareincubatedwithpesticidesleadstoadecreaseinthe electroderesponse.Thedetectionofthepesticidesisquantifiedby measuringtheAChEinhibitionresponseaspercentdecreaseofthe currentbeforeandafterinhibition,whichisdirectlyproportional totheconcentrationofpesticideinthetestedsolution.
Figure4showsthe percentageinhibitionofthecurrent mea-suredbythebiosensorasafunctionofthepesticideconcentration accordingtothereportedmethodology.
The acetylthiocoline concentration and the temperature were100mMand250.58C,respectively.Inparticular,resultsin
Figure4refertoParaoxon(Figure4a)andtoDichlorvos(Figure4b). Forsakeofclarity,doublex-axisisintroduced.Inparticular,lower axisreports concentrations in ppm,whilein the upperaxisthe concentrationisreportedinmM.
In both figures, the data of percentage of inhibition of the currentintensityversusthepesticideconcentrationarewellfitted byanhyperbolicfunctionwithabehaviorsimilartoaMichaelis– Mentendependence.Thecorrespondingequations(R2=0.90for ParaoxonandR2=0.96forDichlorvos)allowedustocalculatethe
Km,Inhibandthemaximuminhibitionpercentage,IPmax(%).For
paraoxonthesevaluesresultedtobeequalto0.0120.004ppm and 80.46.7%, respectively. Similarly, the values of K m,In-hib=0.080.02ppmandIPmax(%)=79.83.8%wereobtained
fordichlorvos.Theinsertsinbothfiguresshowthelinearcalibration lines(S=257547ppm1forParaoxonandS=8849ppm1for
Dichlorvos)fromwhich,knowingthepercentageofinhibition,itis possibletodeterminetheconcentrationofpesticidepresentinthe aqueoussolution.
HavingascertainedthefunctionalityofourAChEcarbonpaste modifiedbiosensorindetectingthepesticidesofinterest,wehave studiedtheenzymereactivationafterinhibition.
Theoximesusedareseveralandinclude,amongother,TMB-4 and 2-PAM. These substances, when the phosphoester bond betweenthe enzymeand the inhibitoris not tooold, areable toremovetheinhibitorfromtheenzymeactivesitebymeansofa transesterificationreaction.Onthecontrary,iftheenzymeisleft inhibited forlong time,in the absence of refill ofany kindof oxime,itundergoestheso-called‘agingeffect’[32,33],resultingin apermanentenzymeinhibition.
Wehavetestedtwooximes,TMB-4and2-PAM,findingthat,at eachconcentrationused,theformerwasmoreeffectiveandthatthe optimalincubationtimewas15min(datanotshown).Inparticular, with a Paraoxon concentration of 28.6ppb (corresponding to 0.1mM),we havefoundthatat theconcentrationof3.5mMof eachoxime,the2-PAMexhibitsa76%ofreactivation,whilethe AChEtreatedwithTMB-4showsareactivationpercentagehigher than95%.
Justtogiveanexample,inFigure5itispossibletoobservethe current intensity response of the biosensor in the absence of inhibition(trace 1), inthe presence ofinhibitionby 15minof expositionto0.25mMparaoxon(trace2)andafterreactivationby 3.5mMTMB-4 (trace3). Ineachcase thefinalacetylthiocoline concentrationinthereactionmediumwas100mM.Itis interest-ing to observe that after reactivation, the biosensor response reachesquitethe valueobtained beforethe inhibitionby para-oxon.
InFigure6thereactivationpercentagesarereportedasa func-tionofthepesticideconcentration.TheTMB-4concentrationwas 3.5mM.Asexpected,thereactivationpercentagesdecreasewith thepesticideconcentration,beingtotalatlowestconcentrations. ResultsinFigure6showthatthecomplexpesticide/AChEismore resistant to the reactivation in the case of Dichlorvos. As for Paraoxon, the highest percentage of reactivation (90–100%) is obtained with inhibitor concentrations rangingfrom 0.003mM and 0.5mM;thispercentagedropstoa valueof60% forhigher pesticideconcentrations.Instead,inthecaseofDichlorvos,itcan beseenthatthereactivationpowerislower,withvaluesof30%for highpesticideconcentrations.
0,0 0,5 1,0 1,5 2,0 2,5 3,0 0 10 20 30 40 50 60 70 80 90 1000,0 1,8 3,6 5,4 7,2 9,0 10,8 0,0000 0,005 0,010 0,015 0,020 10 20 30 40 50 60 Inhibition (%) [Paraoxon] (ppm)
a
b
[Paraoxon] (μM) Inhibition (%) [Paraoxon] (ppm) 0 1 2 3 4 0 20 40 60 80 1000,0 4,5 9,1 13,6 18,2 0,00 0,01 0,02 0,03 0,04 0 5 10 15 20 25 30 35 Inhibition (%) [Dichlorvos] (ppm) [Dichlorvos] (μM) Inhibition (%) [Dichlorvos] (ppm) FIGURE4Percentageofinhibitionasafunctionofpesticideconcentration:(a) Paraoxon;(b)Dichlorvos.Inserts:thelinearpartofthecurveisreportedas calibrationcurve.Experimentalcondition:T=258C,[ATCl]=100mMin phosphatebuffer0.1MpH7.5containing0.1MKCl,appliedpotential: +410mVvs.Ag/AgCl;pesticideincubationtime=30min.
Research
P
Tochallengethebiosensorwithrealsamples,thebiosensorwas thentestedusingriverwatersamplesfromtwodifferentsitesin AgriRiver(Basilicata,Italy).Thesites,identifiedas1and2,were distantrespectivelyabout1or2kmfromtheartificiallake‘Pietra delPertusillo’.Noinhibitionwasobservedforourbiosensor.To evaluatethe accuracyofthebiosensor,thesampleswerespiked with the two pesticides according to Arduini et al. [34]. Two different concentrations of Paraoxon or Dichlorvos were sepa-rately used. Table 1 shows the obtained results. A recovery of 87% and 140% was observed for Paraoxon, while a recovery varying between 83% and 120% was observed for Dichlorvos. Therelativestandarddeviation(R.S.D.)ofthreesuccessive mea-surementsofthe samesamplewasaroundof5%. Theseresults demonstrate goodrecoveryvaluesand lowmatrix effectonthe
biosensorsignal. The lowmatrix effect isdue tothe procedure adoptedforthepesticidesmeasurement(seeexperimentalpart).In fact,usingthismethod,itispossibletoavoidelectrochemicaland enzymaticinterferences[12].Briefly,theelectrochemical interfer-ences, which can be present in the real sample tested, were eliminatedbecausetheresidualenzymaticactivitywasmeasured inanewsubstratephosphatebuffersolution,inabsenceofreal sample.Inaddition,theenzymaticinterferencesduetoreversible inhibitors are avoided because after the incubation step, the biosensor iswashed with distilled waterand,in this way, only theinhibitorcovalentlylinkedtotheenzyme(organophosphorus andcarbammiccompounds)ismeasured.
Conclusions
Inthispaperwehavereportedtheresultsofthedeterminationof the concentrationofParaoxon and Dichlorvosby meansof an AChEcarbonpastebiosensors.Themethodologywasbasedonthe inhibitionoftheactivityofAChEentrappedinamixture(5:4:1by weight)ofcarbonpaste,oil and AChE,respectively. Theoxime TMB-4 resulted more effective than 2-PAM in reactivating the inhibitedAChE.
Otherpropertiesofour biosensorare:(a) adetectionlimitof 0.86ppbforParaoxonandof4.2ppbforDichlorvos;(b)an intra-electrodeerrorneverexceedingthe3%,whiletheinter-electrode reproducibilitywasaround7%;and(c)anoperationalstabilityof about40days.
Tocomparethecharacteristicsofourbiosensorswiththeones ofsimilarbiosensors,wemustremind,forexample,thataccording to the literature, the detection limit of differently developed biosensorsdepends onthe severalparameters suchaspH, tem-perature, the immobilization matrix and the time of reaction betweentheenzymeand theinhibitor.Thus,directcomparison ofthesensitivitybetweendifferentbiosensorsisnoteasyandthe citedparametersshouldbetakenintoconsideration.Furthermore, thedefinitionsofLODandlinearrangearenotunique.Therefore, todothis comparison,the LODand linearrangevaluesof bio-sensorswithdesigncharacteristicssimilartoourandtakenfrom
20 18 16 14 12 10 8 6 4 2 0 0 10 20 30 40 50 60 70 80 90 100 Reactivation (%) [Pesticide] (μM) FIGURE6
Reactivationpercentagesasafunctionofpesticideconcentration.Symbols: (&)Paraoxon;(&)Dichlorvos.
300 250 200 150 100 50 0 0 10 20 30 40 50 60 70 80 90 3 2 1 Current (nA) Time (s) FIGURE5
Currentintensitymeasuredintheabsenceofinhibitor(trace1),inpresence ofinhibition(trace2),afterreactivationwith3.5mMTMB-4(trace3). Experimentalcondition:T=258C,[ATCl]=100mMinphosphatebuffer0.1M pH7.5containing0.1MKCl,appliedpotential:+410mVvs.Ag/AgCl; pesticideincubationtime=30min.
TABLE1
Recoverystudiesofspikedrealwatersamples Samples Paraoxon concentration added(ppb) Paroxon concentration found(ppb) Recovery (%) Site1 5 6 120 15 13 87 Site2 5 7 140 15 14 93 Samples Dichlorvos concentration added(ppb) Dichlorvos concentration found(ppb) Recovery (%) Site1 10 12 120 30 32 107 Site2 10 9 90 30 25 83
Experimentalconditions:ATCl(100mM),appliedpotential:+410mVvs.Ag/AgCl, phosphatebuffer0.1M+KCl0.1M,pH7.5.Incubationtime=30min.Allthevaluesare meanoftriplicatemeasurements.
Research
P
literatureandreportedinTable2,havebeenintegratedwiththe definitionsused toobtainthem. ExaminationofTable 2shows that our results, even under the indicated limitations, can be competitive withthe other reported in the tablewhen a more attentivecomparisonisattempted.Infact,insomecasesthebetter LODischaracterizedbyaverylimitedlinearrange(seeforexample ref. [41]) or LODreachesa very lowvalueonly whendifferent definitionsofthisparameteraregiven(seeref.[42],whoseresults werenotreportedinthetableduetomanydifferentLOD defini-tionsgivenalongthepaper).
Althoughmanyothertechnologicalapproachesarenowadays available[44],inthisworkwehavehighlightedthatoptimising theoperativeconditions,itispossibletorealizeasimplebiosensor based on enzyme immobilization in the carbon paste, which allows satisfactoryresultsin terms ofsensitivity and reproduci-bility.Moreover,theelectrochemicalsurfacecanbeeasilyrenewed andthebiosensorcanbereadytouseforsuccessiveanalysis.
InadditionweknowthatthereareothermoresensitiveACHE basedbiosensors,buttheseweredonewithengineeredenzymes
[45]andthentheyaremoreexpensive.
Inconclusionswheneconomyandeaseofusearemandatory, our biosensor can show characteristics betteror comparable in respecttothoseobtainedbyotherauthors.
Acknowledgements
ThisworkwashasbeensupportedbytheItalianConsortiumINBB withafellowshiptoDanielaDiTuoro,bytheItalianMinistryof HealthundertheNationalStrategicProjects‘Salutedelladonna’ (ISS/ISPESL)and‘EndocrineDisruptors’(ISPESL),andalsobythe ItalianMinistryofHealth/ISZM(Portici-Italy).
References
1Jury,A.W.etal.(1987)Transportandtransformationsoforganicchemicalsinthe
soil-air-waterecosystem.Environ.Contamn.Toxicol.99,119–164
2Bowen,D.M.etal.(1976)Neurotransmitterrelatedenzymesandindicesof
hypoxiainseniledementiaandotherabiotrophies.Brain99,459–496
3Deutsch,J.A.andRogers,J.B.(1979)Cholinergicexcitabilityandmemory:animal
studiesandtheirclinicalimplications.InBrainacetylcholineandneuropsychiatric
disease(Davis,K.L.andBerger,P.A.,eds),pp.175–204,PlenumPress
4Fisher,A.etal.(1986)Alzheimer’sandParkinson’sdisease.InStrategiesforresearchand
development(Fisher,A.,Hanin,I.,Lachman,C.,eds),pp.141–146,PlenumPress
5Sanchez-Santed,F.etal.(2004)Long-termneurotoxicityofParaoxonand
clorpyrifos:behaviouralandpharmacologicalevidence.Neurotoxicol.Teratol.26,
305–317
6Noort,D.etal.(2002)Biomonitoringofexposuretochemicalwarfareagents:a
review.Toxicol.Appl.Pharmacol.184,116–126
7Leon-Gonzalez,M.E.andTownshend,A.(1990)Flow-injectiondeterminationof
paraoxonbyinhibitionofimmobilizedacetylcholinesterase.Anal.Chim.Acta236,
267–272
8Miroslaw,J.andSmogorzewskiShaul,G.M.(2008)Alteredacetylcholine
metabolismofbraininuremia:roleofsecondaryhyperparathyroidism.J.Renal
Nutr.18,122–126
9Wilkins,E.etal.(2000)Aquantitativedeterminationoforganophosphate
pesticidesinorganicsolvents.Electrochem.Commun.2,786–790
10 Albareda-Sirvent,M.etal.(2001)Thick-filmbiosensorsforpesticidesproducedby
screen-printingofgraphite–epoxycompositeandbiocompositepastes.Sens.
ActuatorsB79,48–57
11 Albareda-Sirvent,M.etal.(2001)Pesticidedeterminationintapwaterandjuice
samplesusingdisposableamperometricbiosensorsmadeusingthick-film
technology.Anal.Chim.Acta442,35–44
12 Arduini,F.etal.(2010)Biosensorsbasedoncholinesteraseinhibitionforinsecticides,
nerveagentsandaflatoxinB1detection(review).Microchim.Acta170,193–214
13 Ghindilis,A.L.etal.(1996)Potentiometricbiosensorsforcholinesteraseinhibitor
analysisbasedonmediatorlessbioelectrocatalysis.Biosens.Bioelectron.11,873–880
14 Evtugyn,G.A.etal.(1996)Influenceofsurface-activecompoundsontheresponse
andsensitivityofcholinesterasebiosensorsforinhibitordetermination.Analyst
121,1911–1915
15 Mionetto,N.etal.(1994)Acetylcholinesteraseinorganicsolventsforthe
detectionofpesticides:biosensorapplication.Biosens.Bioelectron.9,463–470
16 Palleschi,G.etal.(1992)Determinationoforganophosphorusinsecticideswitha
cholineelectrochemicalbiosensor.Sens.ActuatorsB7,513–517
17 Skladal,P.andMascini,M.(1992)Sensitivedetectionofpesticidesusing
amperometricsensorsbasedoncobaltphthalocyanine-modifiedcomposite
electrodesandimmobilizedcholinesterases.Biosens.Bioelectron.7,335–343
18 Guilbault,G.G.andNgeh-Ngwainbi,J.(1988) Analyticalusesofimmobilized
biologicalcompoundsfordetection,medicalandindustrialuses(.InAnalyticalusesof
immobilizedbiologicalcompoundsfordetection,medicalandindustrialuses(Guilbault,
G.G.andMascini,M.,eds),p.187,Reidel
19 Abad,J.M.etal.(1998)Determinationoforganophosphorusandcarbamate
pesticidesusingapiezoelectricbiosensor.Anal.Chem.70,2848–2855
20 Hartley,I.C.andHart,J.P.(1994)Amperometricmeasurementof
organophosphatepesticidesusingascreen-printeddisposablesensorand
biosensorbasedoncobaltphthalocyanine.Anal.Proc.31,333–337
21 Kulys,J.andD’Costa,E.J.(1991)PrintedamperometricsensorbasedonTCNQand
cholinesterase.Biosens.Bioelectron.6,109–115
22 Kindervater,R.etal.(1990)Exchangeableimmobilizedenzymereactorforenzyme
inhibitiontestsinflow-injectionanalysisusingamagneticdevice.Determination
ofpesticidesindrinkingwater.Anal.Chim.Acta234,113–117
TABLE2
LODsandlinearrangesforamperometricAChEbiosensors
Paraoxon Dichlorvos Ref.
LOD (ppb) Linearrange (ppb) LOD (ppb) Linearrange (ppb) 0.86 0.86–22.93 4.2 4.2–33.16 Presentpaper 51.6a 51.6–154.8e N.A. N.A. [35]
3b N.A. N.A. N.A. [31]
2.86c N.A. 2.21c N.A. [36]
N.A. N.A. 0.69a N.A. [37]
N.A. N.A. 0.0025c 0.01–10e [38]
0.29d
N.A. N.A. N.A. [39]
N.A. N.A. 132a N.A. [40]
0.3a N.A. N.A. N.A. [41]
10d
14–173e N.A. N.A. [28]
N.A. 300–1800f N.A. N.A. [26]
94d
N.A. N.A. N.A. [29]
N.A. N.A. 0.02c N.A. [42]
0.025a 0.025–0.175 N.A. N.A. [43]
N.A.standsfornotavailable.
a
LODvaluecorrespondstotheconcentrationoftheinhibitorforwhichthereis10%of inhibition.
b
LODvaluecorrespondstotheconcentrationoftheinhibitorforwhichthereis5%of inhibition.
c
NoLODdefinition.
d
LODdefinedinasthispaper.
e
Linearrangedefinedinfunctionoflog(pesticideconcentration).
f
Linearrangedefinedinfunctionofpesticideconcentrationasinourpaper.
Research
P
23 Hart,A.L.etal.(1997)Theresponseofscreen-printedenzymeelectrodes
containingcholinesterasestoorgano-phosphatesinsolutionandfrom
commercialformulations.Biosens.Bioelectron.12,645–654
24 Palchetti,I.etal.(1997)Determinationofanticholinesterasepesticidesinreal
samplesusingadisposablebiosensor.Anal.Chim.Acta337,315–321
25 Morelis,R.M.andCoulet,P.R.(1990)Sensitivebiosensorforcholineand
acetylcholineinvolvingfastimmobilizationofabienzymesystemonadisposable
membrane.Anal.Chim.Acta231,27–32
26 Gulla,K.C.etal.(2002)Reactivationofimmobilizedacetylcholinesteraseinan
amperometricbiosensorfororganophosphoruspesticide.Biochim.Biophys.Acta
1597,133–139
27 Pohanka,M.etal.(2008)Improvementofacetylcholinesterase-basedassayfor
organophosphatesinwayofidentificationbyreactivators.Talanta77,451–454
28 Suprun,E.etal.(2005)Acetylcholinesterasesensorbasedonscreen-printedcarbon
electrodemodifiedwithPrussianblue.Anal.Bioanal.Chem.383,597–604
29 Ivanov,Y.etal.(2010)Amperometricbiosensorbasedonasite-specific
immobilizationofacetylcholinesteraseviaaffinitybondsonananostructured
polymermembranewithintegratedmultiwallcarbonnanotubes.J.Mol.Catal.B:
Enzym.63,141–148
30 DelCarlo,M.etal.(2005)Determiningpirimiphos-methylindurumwheat
samplesusinganacethylcholinesteraseinhibitionessay.Anal.Bioanal.Chem.381,
1367–1372
31 Gunther,A.andBilitewski,U.(1995)Characterisationofinhibitorsof
acetylcholinesterasebyanautomatedamperometricflow-injectionsystem.Anal.
Chim.Acta300,117–125
32 Kennedy,S.W.(1991) Cholinesterase-inhibitinginsecticides:theirimpactonwildlife
andtheenvironment(Mineu,P.,ed.),pp.75–88,Elsevier
33 Okazaki,S.etal.(2000)Re-activationofanamperometricorganophosphatepesticide
biosensorby2-pyridinealdoximemethochloride.Sens.ActuatorsB66,131–134
34 Arduini,F.etal.(2006)Detectionofcarbamicandorganophosphorouspesticides
inwatersamplesusingacholinesterasebiosensorbasedonPrussianBlue-modified
screen-printedelectrode.Anal.Chim.Acta580,155–162
35Li,Y.G.etal.(1999)Immobilisationofenzymeonscreen-printedelectrodeby
exposuretoglutaraldehydevapourfortheconstructionofamperometric
acetylcholinesteraseelectrodes.Anal.Chim.Acta382,277–282
36Hart,A.L.etal.(1997)Theresponseofscreen-printedenzymeelectrodes
containingcholinesterasestoorgano-phosphatesinsolutionandfrom
commercialformulations.Biosens.Bioelectron.17,645–654
37Avramescu,A.etal.(2002)Biosensorsdesignedforenvironmentalandfood
qualitycontrolbasedonscreen-printedgraphiteelectrodeswithdifferent
configurations.Anal.Bioanal.Chem.374,25–32
38Sun,X.andWang,X.(2010)AcetylcholinesterasebiosensorbasedonPrussian
blue-modifiedelectrodefordetectingorganophosphorouspesticides.Biosens.
Bioelectron.25,2611–2614
39Khayyami,M.etal.(1998)Developmentofanamperometricbiosensorbasedon
acetylcholineesterasecovalentlyboundtoanewsupportmaterial.Talanta45,
557–563
40Valde´s-Ramı´rez,G.etal.(2008)Sensitiveamperometricbiosensorfordichlorovos
quantification:applicationtodetectionofresiduesonappleskin.Talanta74,
741–746
41Jeanty,G.andMarty,J.L.(1997)Detectionofparaoxonbycontinuousflowsystem
basedenzymesensor.Biosens.Bioelectron.13,213–218
42Valde´s-Ramı´rez,G.etal.(2009)Automatedresolutionofdichlorvosand
methylparaoxonpesticidemixturesemployingaFlowInjectionsystemwithan
inhibitionelectronictongue.Biosens.Bioelectron.24,1103–1108
43Jha,N.andRamaprabhu,S.(2010)DevelopmentofAunanoparticlesdispersed
carbonnanotube-basedbiosensorforthedetectionofparaoxon.Nanoscale2,
806–810
44Periasamy,A.P.etal.(2009)Nanomaterials–acetylcholinesteraseenzymematrices
fororganophosphoruspesticideselectrochemicalsensors:areview.Sensors9,
4034–4055
45Sotiropoulou,S.etal.(2005)Geneticallyengineeredacethylcolinesterase-based
biosensorsforottomolardetectionofdichlorvos.Biosens.Bioelectron.20,
2347–2352
Research
P