• Non ci sono risultati.

Differentiability for bounded minimizers of some anisotropic integrals

N/A
N/A
Protected

Academic year: 2021

Condividi "Differentiability for bounded minimizers of some anisotropic integrals"

Copied!
11
0
0

Testo completo

(1)

᎐650 2001 doi:10.1006rjmaa.2000.7186, available online at http:rrwww.idealibrary.com on

Differentiability for Bounded Minimizers of Some

Anisotropic Integrals

A. Canale

Dipartimento di Ingegneria dell’Informazione e Matematica Applicata, Uni¨ersita di Salerno, Facolta’ di Scienze, Via S. Allende,`

( )

84081 Baronissi Salerno , Italy

A. D’Ottavio and F. Leonetti

Dipartimento di Matematica Pura ed Applicata, Uni¨ersita di L’Aquila,` 67100 L’Aquila, Italy

and M. Longobardi

Dipartimento di Ingegneria dell’Informazione e Matematica Applicata, Uni¨ersita di Salerno, Facolta’ di Scienze, Via S. Allende,`

( )

84081 Baronissi Salerno , Italy Submitted by Arrigo Cellina

Received February 9, 1999

We prove the existence of second weak derivatives for bounded minimizers u: n N Ž< <2 < <q

. Ž .

⍀ ; R ª R of the integral H Du q D un dx, when 2- q F 2 n y 1 r Žny 3 , n G 4. This allows us to improve on the Hausdorff dimension of the. singular set of u. 䊚 2001 Academic Press

1. INTRODUCTION Let us consider the integral functional

I u

Ž .

s F Du x

H

Ž

Ž .

.

dx ,

Ž

1.1

.

where ⍀ ; Rn is a bounded open set, u: ⍀ ª RN, and F verifies the

growth condition

< <p < <q

c z1 y c F F z F c z q c ,2

Ž .

3 4

Ž

1.2

.

640 0022-247Xr01 $35.00

Copyright䊚 2001 by Academic Press All rights of reproduction in any form reserved.

(2)

for some positive constants c , c , c , c , p, and q with 11 2 3 4 - p F q.

Regu-Ž .

larity properties of minimizers of 1.1 have been deeply studied when

w x

ps q; see 13, 16 . When p - q we say that F has ‘‘non standard’’ growth

w x

or ‘‘ p, q growth,’’ following Marcellini 21, 22 . Model functionals with ‘‘non standard’’ growth are

ny1 2 q < < < < I u1

Ž .

s

H

ž

a

Ý

D ui q b D un

/

dx ,

Ž

1.3

.

is1 < <2 < <q I u2

Ž .

s

H

Ž

Du q D un

.

dx ,

Ž

1.4

.

where a, b, q are positive constants with 2- q, D u sj ⭸ ur⭸ x , Du sj

ŽD u, . . . , D u . In these functionals the last component of the gradient1 n . D u has a different exponent q: because of the different behaviour withn

respect to the x axis, we say that I and I are anisotropic integrals; seen 1 2 w x29 for connection with some reinforced materials. Let us recall that ‘‘non

Ž .

standard’’ growth condition 1.2 allows minimizers to be singular, if p and

ny 1

Ž .

q are too far apart. More precisely, for the integral 1.3 , if 2ny 3- q, then

w x

minimizers may be unbounded 14, 17, 20 . On the other hand, when

ny 1 w x

2- q F 2ny 3, scalar minimizers u: ⍀ ª R are bounded 12 . Related

w x

results are in 5, 8᎐10, 19, 23, 24, 27, 28 . Let us explicitly mention the w x

maximum principle of 11 which applies also to vector-valued mappings u:

N Ž . Ž .

⍀ ª R minimizing 1.3 or 1.4 : if u is bounded on ⭸ ⍀, then it is bounded in ⍀ too. Existence of second weak derivatives has been proved

2 n 2 n ny 1

w x

in 3, 18 when 2- q -ny 2. Note that ny 2- 2ny 3 for nG 4. In this paper we show that bounded minimizers have second weak derivatives also

2 n ny 1

when ny 2F q F 2ny 3, nG 4. This higher differentiability property allows us to estimate the Hausdorff dimension of the singular set. More precisely,

ny 1

N Ž . 0,␥Ž .

if u: ⍀ ª R minimizes 1.4 with 2 - q - 2ny 3, then Dug Cloc ⍀ ,0

nŽ . w x s

for some␥ ) 0 and some open set ⍀ ; ⍀ with HH ⍀ _ ⍀ s 0 1 . HH0 0 is the s-dimensional Hausdorff measure. The existence of second deriva-tives allows us to improve on the estimate of the singular set ⍀ _ ⍀ of0

ny2q⑀Ž .

bounded minimizers: HH ⍀ _ ⍀ s 0, for every0 ⑀ ) 0. In the frame-w x work of partial regularity under ‘‘ p, q growth,’’ let us also mention 26 . In

Ž .

our paper we deal with functionals whose model is 1.3 , 2- q. The case

w x

q- 2 has been studied in 4, 7 .

2. NOTATIONS AND RESULTS

Let ⍀ be a bounded open set of Rn, nG 3, u: ⍀ ª RN, NG 1. Let us

consider variational integrals

I u

Ž .

s F Du x

H

Ž

Ž .

.

dx ,

Ž

2.1

.

(3)

n N 2Ž n N.

where F: R ª R, F g C R and for some positive constants

c, m, M, q, ny1 2 q <F z

Ž .

<F c 1 q

ž

Ý

< <zj q z< <n

/

,

Ž

2.2

.

js1 1y1r2 ny1 ⭸ F < <2 < <q z F c 1 q z q z if is 1, . . . , n y 1, 2.3

Ž .

Ý

j n

Ž

.

ž

/

⭸ zi js1 1y1rq ny1 ⭸F < <2 < <q F c 1 q

Ý

zj q zn ,

Ž

2.4

.

ž

/

⭸ z zn

Ž .

js1 ny1 n N ⭸ F2 2 qy2 2 ␣ ␤ < < < < < < m

ž

Ý

␭ q zi nn

/

F

Ý

Ý

Ž .

z ␭ ␭i j ⭸ z ⭸ zj i is1 i , js1 ␣ , ␤s1 < <2 < <qy2< <2 F M

Ž

␭ q znn

.

Ž

2.5

.

n N 4 4 < <2

for any ␭, z g R , ␣ s 1, . . . , N, where ␭ s ␭ , z s z , ␭ si i N < ␣<2

Ý␣s1 ␭ . About q we assume thati

2- q - q ,n

Ž

2.6

.

where q is defined as follows:n

¡

20q 8 6

'

if ns 3

'

6q 4 2 if ns 4

'

28q 8 10

~

qns if ns 5

Ž

2.7

.

9 2 ny 4 if nG 6.

¢

ny 4 Ž . Ž . Ž . Ž .

We remark that the integrands of 1.3 and 1.4 satisfy 2.2᎐ 2.5 . We say

N

Ž .

that u:⍀ ª R minimizes the integral 2.1 if

1 , 1 < <qr2 2

ug W

Ž

.

D u, . . . , D1 ny1u, D un g L ⍀ ,

Ž

.

Ž

2.8

.

and

I u

Ž .

F I u q

Ž

.

N 1, 1Ž . < <qr2

for any ␾: ⍀ ª R with ␾ g W0 ⍀ , D1␾, . . . , Dny1␾, D ␾n g

2Ž .

(4)

We prove the following higher integrability result:

Ž . Ž . Ž .

THEOREM 1. If ug Lloc ⍀ minimizes the integral 2.1 under 2.2 ᎐ Ž2.7 , then.

< <qr2 4Ž qy1.r q

D u, . . . , D1 ny1u, D un g Lloc

Ž

⍀ .

.

Ž

2.9

.

Remark 1. Note that

qy 1

2- 4 - q.

Ž

2.10

.

q

This higher integrability result allows us to get higher differentiability. THEOREM2. Under the assumptions of Theorem 1 we ha¨e

< <Ž qy2.r2 1 , 2

D u, . . . , D1 ny1u, D un D un g Wloc

Ž

⍀ .

.

Ž

2.11

.

2 Ž .

In order to prove existence of D D un n g Lloc ⍀ we need no

degenera-Ž .

tion, with respect to z , in the left hand side of 2.5 . More precisely wen suppose that, for some positive constant m,

˜

n N ⭸ F2 2 ␣ ␤ < < m

˜

␭ F

Ý

Ý

Ž .

z ␭ ␭i j

Ž

2.12

.

⭸ z ⭸ zj i i , js1 ␣ , ␤s1

for any␭, z g Rn N. We prove

Ž .

THEOREM 3. Under the hypotheses of Theorem 1, if in addition 2.12 holds, then

D ug W1 , 2 ⍀ . 2.13

Ž

.

Ž

.

n loc

Ž . Ž .

We remark that the integrand F of 1.4 satisfies 2.12 but the one in Ž1.3 does not. Boundedness of minimizers of variational integrals 2.1 has. Ž .

w x

been proved in 11, 12 under additional assumptions, so these and our results merge into the following corollaries.

N Ž .

COROLLARY 1. Let u: ⍀ ª R minimize the ¨ariational integral 1.3 where 2- q - q . Ifn ny 1 q Ns 1, qF 2 , ug Lloc

Ž

.

ny 3 or NG 1, u is bounded on⭸ ⍀,

(5)

then ug L⬁loc

Ž

.

and < <Ž qy2.r2 4Ž qy1.r q 1 , 2 D u, . . . , D1 ny1u, D un D un g Lloc

Ž

⍀ l W

.

loc

Ž

⍀ .

.

ny 1 2 n ny 1

We agree that 2ny 3s q⬁ when n s 3. Please note that ny 2- 2ny 3 -q for nn G 4.

Ž .

COROLLARY 2. Under the assumptions of Corollary 1 with 1.3 replaced

Ž .

by 1.4 , we ha¨e

ug L⬁loc

Ž

.

and

< <Ž qy2.r2 4Ž qy1.r q 1 , 2 Du, D un D un g Lloc

Ž

⍀ l W

.

loc

Ž

⍀ .

.

Ž . w x 0,␥Ž .

For minimizers u of 1.4 , it has been shown in 1 that Dug Cloc ⍀ ,0

nŽ . s

for some␥ ) 0 and some open ⍀ ; ⍀ with HH ⍀ _ ⍀ s 0, where HH0 0 is the s-dimensional Hausdorff measure. The existence of second deriva-tives in L2 is very important in order to estimate the Hausdorff dimension

w x w x

of the singular set ⍀ _ ⍀ ; see 13, 15 . This has been done in 18 only for0

2 n 2 n

q- ny 2. Here we are able to achieve the result also for ny 2F q

-ny 1

 4

min 2ny 3, qn when Ns 1 or when N ) 1 and u is bounded on ⭸ ⍀, so w1, 15 and our results merge into the followingx

COROLLARY3. Under the assumptions of Corollary 2, if ny 1

2- q - min 2

½

, qn

5

, ny 3 then

< <Ž qy2.r2 4Ž qy1.r q 1 , 2 Du, D un D un g Lloc

Ž

⍀ l W

.

loc

Ž

.

and

Dug Cloc0 ,␥

Ž

⍀0

.

for some␥ ) 0 and for some open set ⍀ ; ⍀ such that0 H

(6)

3. KNOWN RESULTS

For a vector-valued function f, we define the difference ␶ f x s f x q he y f xs , h

Ž .

Ž

s

.

Ž .

where hg R, e is the unit vector in the x direction, and s s 1, 2, . . . , n.s s

n Ž .

For x0g R , let B x be the ball centered at x with radius R. WeR 0 0 will often suppress x whenever there is no danger of confusion.0

We now recall some lemmas that are crucial to our work. In the following f :⍀ ª RN, NG 1.

Ž .

LEMMA 3.1 how to control differences by derivatives . If f, D fs g

t Ž . L B3 R , with 1F t - q⬁, then < <t < <t < <t ␶ f x

Ž .

dxF h D f x

Ž .

dx

H

s , h

H

s BR B2 R < < Ž w x . for any h, with h - R. See 13 .

Ž . tŽ .

LEMMA3.2 how to get derivatives from differences . Let fg L B2 R , 1- t - q⬁. If there exists a positi¨e constant C such that

< <t < <t ␶ f x

Ž .

dxF C h

H

s, h BR < < t Ž . Ž w x .

for any h, with h - R, then there exists D f g L B . See 13 .s R Ž

LEMMA3.3 how to get higher integrability from differences by fractional

. 2Ž . Ž .

Sobolev spaces . If fg L B3 R and for some dg 0, 1 and C ) 0

n 2 2 d <␶ f x

Ž .

< dxF C h< <

Ý

H

s, h BR ss1 < < rŽ . Ž . Ž

for any h, with h - R, then f g L BRr4 for any r- 2nr n y 2 d . See w x .2 .

Ž .

LEMMA 3.4 how to control translations . For any t, with 1F t - q⬁, there exists a positi¨e constant C such that

t t < < < < < < 1q f x q

Ž .

␶ f x

Ž .

dxF C

Ž

1q f x

Ž .

.

dx

Ž

.

H

s , h

H

BR B2 R tŽ . < <

(7)

LEMMA3.5. For any qG 2, G: B ª RN, we ha¨e 2 R 2 Ž qy2.r2 < < ␶s , h

Ž

G x

Ž .

G x

Ž .

.

2 q 1 qy2 2 3 < < < < F N

ž /

H

G x

Ž .

q t␶ G xs , h

Ž .

␶ G xs, h

Ž .

dt 2 0 < <

for any h, with h - R, for any s s 1, . . . , n and for any x g B .R

4. PROOF OF THEOREM 1

Ž . Ž .

Under growth conditions 2.2 ᎐ 2.6 , the function u, which minimizes

Ž .

the integral 2.1 , solves Euler’s equation

n N ⭸ FDu x

Ž .

D

Ž .

x dxs 0

Ž

4.1

.

Ž

.

Ý Ý

H

i ⭸␰ ⍀is1␣s1 i N 1, 1Ž .

for all functionsqr2 ␾: ⍀ ª R , with ␾ g W0 ⍀ , D1␾, . . . , Dny1␾, 2

<Dn␾< g L ⍀ . Let R ) 0 be such that B ; ⍀, let B and B beŽ . 4 RR

concentric balls, 0-␳ - R, and let ␩: Rnª R be a ‘‘cut off’’ function inŽ .

C B0 R with

< <

␩ ' 1 on B , 0 F ␩ F 1 and D␩ F 2r R y ␳ .

Ž

.

Ž 2 . Ž .

We use the test function ␾ s ␶s,yh␩ ␶ u in 2.1 ; thus, using thes, h hypotheses and Lemma 3.5, in a standard way, we get Caccioppoli’s estimate ny1 2 Ž qy2.r2 2 <␶ D u q ␶< <

Ž

<D u< D u

.

< dx

Ý

H

ž

s , h i s, h n n

/

B is1 < <qy2 < <qy2 < <2 F c0

H

Ž

1q D un q␶ D us, h n

.

␶ u dx,s , h

Ž

4.2

.

BR Ž .

where c0s c m, M, q, N,0 ␳, R is a positive constant. Let us assume that qy 1

qr2 ␴

< <

D u, . . . , D1 ny1u, D un g Lloc

Ž

.

for some 2F␴ - 4 . q

4.3

(8)

qq

By Holder’s inequality with exponents

¨

2 qŽ y 2.,q␴ y 2 q y 2Ž ., we have < <qy2 < <qy2 < <2 1q D u q␶ D u ␶ u dx

Ž

.

H

n s, h n s , h BR Ž . 2 qy2 rq␴ q␴ r2 q␴ r2 < < < < F c1

ž

H

Ž

1q D un q␶ D us, h n

.

/

BR Žq␴y2 qy2 rq␴Ž .. 2 q␴ rŽq␴y2Žqy2.. < < =

ž

H

␶ us , h

/

BR s c I II .1

Ž . Ž

.

Ž

4.4

.

Ž .

Using Lemma 3.4 and hypothesis 4.3 we get Ž . 2 qy2 rq␴ q␴ r2 < < I F c 1q D u dx - q⬁. 4.5

Ž .

2

ž

H

Ž

n

.

/

Ž

.

B2 R Since 2 q␴ )␴ q␴ y 2 q y 2

Ž

.

Ž .

and u is locally bounded, by Lemma 3.1 and assumption 4.3 Žq␴y2 qy2 rq␴Ž .. 2 q␴ rŽq␴y2Žqy2..y␴ ␴ 5 5 < < II F 2 u ␶ u

Ž

.

L Ž B.

H

s , h 2 R

ž

BR

/

Žq␴y2 qy2 rq␴Ž .. ␴ ␴ Ž q␴y2Žqy2..r q < < < < < < F c h3

ž

H

D us dx

/

F c h4 ,

Ž

4.6

.

B2 R q␴ y 2 q y 2Ž . Ž . Ž . Ž . Ž .

where 0- q - 2. From 4.2 , 4.4 , 4.5 , and 4.6 we obtain

n ny1 2 Ž qy2.r2 2 Ž q␴y2Žqy2..r q <␶ D u q ␶< <

Ž

<D u< D u

.

< dxF c h< < .

Ý

H

ž

Ý

s , h i s, h n n

/

5 B ss1 is1

Applying Lemma 3.3 we get

2 n qr2 r < < D u, . . . , D1 ny1u, D un g Lloc

Ž

.

᭙r - q␴ y 2 q y 2 .

Ž

.

ny q 4.7

Ž

.

(9)

Ž . Ž .

The hypothesis 2.6 implies that there exists ␦ s ␦ n, q ) 0 such that

2 n qy 1 y␴ G ␦ ᭙␴ g 2, 4 .

Ž

4.8

.

q␴ y 2 q y 2

Ž

.

q ny q qy 1 w w

Let us summarize as follows: if we know that for some ␴ g 2, 4 q we < <qr2 ␴ Ž .

have D u, . . . , D1 ny1u, D un g Lloc ⍀ , then we gain a small amount ␦r2 of integrability independent of ␴ ; namely,

qy 1 qr2 ␴ < < D u, . . . , D1 ny1u, D un g Lloc

Ž

⍀ ,

.

2F␴ - 4 q y < <qr2 ␴q␦ r2 D u, . . . , D1 ny1u, D un g Lloc

Ž

⍀ .

.

The iterative scheme

␴ s 2 q i␦r2,i iG 0, achieves our goal.

5. PROOF OF THEOREM 2

Ž .

We argue as in the proof of Theorem 1 until we get 4.5 . Now, using

Ž . Ž .

higher integrability 2.9 , 4.3 is fulfilled with qy 1

␴ s 4 .

q For such a value of ␴ we get

2 q

s␴ ; q␴ y 2 q y 2

Ž

.

Ž . Ž .

then II in 4.4 can be estimated by Lemma 3.1 in the following way: 2r␴ ␴ 2 < < < < II F D u dx h . 5.1

Ž

.

ž

H

s

/

Ž

.

B2 R

(10)

Ž . Ž . Ž . Ž . Using 4.4 , 4.5 , 5.1 in 4.2 , we get n ny1 2 Ž qy2.r2 2 2 <␶ D u q ␶< <

Ž

<D u< D u

.

< dxF c h . 5.2< <

Ž

.

Ý

H

ž

Ý

s , h i s , h n n

/

6 B ss1 is1 Ž . Ž .

Finally 5.2 and Lemma 3.2 imply 2.11 .

6. PROOF OF THEOREM 3

Ž .

We choose in Euler’s equation 4.1 the same test function ␾ as in the proof of Theorem 1. We get the following Caccioppoli’s estimate using Ž2.12 instead of the left hand side in 2.5 :. Ž .

< <2 < <qy2 < <qy2 < <2

␶ Du F c

Ž

1q D u q␶ D u

.

␶ u dx.

H

s , h 7

H

n s, h n s , h

B BR

As in the proof of Theorem 2 we obtain <␶ Du F c h .<2 < <2 6.1

Ž

.

H

s , h 8 B Ž .

Inequality 6.1 and Lemma 3.2 give the assertion.

ACKNOWLEDGMENTS

Ž .

We acknowledge the support of M.U.R.S.T. 60%, 40% and G.N.A.F.A.᎐C.N.R.

REFERENCES

Ž .

1. E. Acerbi and N. Fusco, Partial regularity under anisotropic p,q growth conditions, J. Ž .

Differential Equations 107 1994 , 46᎐67.

2. R. A. Adams, ‘‘Sobolev Spaces,’’ Academic Press, New York, 1975.

3. T. Bhattacharya and F. Leonetti, W2,2 regularity for weak solutions of elliptic systems

Ž .

with non-standard growth, J. Math. Anal. Appl. 176 1993 , 224᎐234.

4. T. Bhattacharya and F. Leonetti, On improved regularity of weak solutions of some Ž .

degenerate, anisotropic elliptic systems, Ann. Mat. Pura Appl. 170 1996 , 241᎐255. 5. L. Boccardo, P. Marcellini, and C. Sbordone, L⬁regularity for variational problems with

Ž .

sharp non standard growth conditions, Boll. Un. Mat. Ital. A 4 1990 , 219᎐225. 6. S. Campanato and P. Cannarsa, Differentiability and partial Holder continuity of the¨

solutions of nonlinear elliptic systems of order 2 m with quadratic growth, Ann. Scuola Ž .

(11)

7. P. Cavaliere, A. D’Ottavio, F. Leonetti, and M. Longobardi, Differentiability for minimiz-Ž .

ers of anisotropic integrals, Comment. Math. Uni¨. Carolinae 39 1998 , 685᎐696. 8. H. J. Choe, Interior behaviour of minimizers for certain functionals with non standard

Ž .

growth, Nonlinear Anal. 19 1992 , 933᎐945.

9. A. Cianchi, Boundedness of solutions to variational problems under general growth Ž .

conditions, Comm. Partial Differential Equations 22 1997 , 1629᎐1646.

10. A. Dall’Aglio, E. Mascolo, and G. Papi, Local boundedness for minima of functionals Ž .

with non standard growth conditions, Remol. Met. Appl. 18 1998 , 305᎐326.

11. A. D’Ottavio, F. Leonetti, and C. Musciano, Maximum principle for vector valued Ž . mappings minimizing variational integrals, Atti Sem. Mat. Fis. Uni¨. Modena 46 1998 , 677᎐683.

12. N. Fusco and C. Sbordone, Local boundedness of minimizers in a limit case, Manuscripta Ž .

Math. 69 1990 , 19᎐25.

13. M. Giaquinta, ‘‘Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,’’ Annals of Mathematics Studies, Vol. 105, Princeton Univ. Press, Princeton, NJ, 1983.

14. M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math. 59 Ž1987 , 245. ᎐248.

15. E. Giusti, Precisazione delle funzioni H1, p e singolarita delle soluzioni deboli di sistemi`

Ž . ellittici non lineari, Boll. Un. Mat. Ital. 2 1969 , 71᎐76.

16. E. Giusti, ‘‘Metodi diretti nel calcolo delle variazioni,’’ UMI, Bologna, 1994.

17. M. C. Hong, Some remarks on the minimizers of variational integrals with non standard Ž .

growth conditions, Boll. Un. Mat. Ital. A 6 1992 , 91᎐101.

18. F. Leonetti, Higher integrability for minimizers of integral functionals with nonstandard Ž .

growth, J. Differential Equations 112 1994 , 308᎐324.

19. G. Lieberman, The natural generalization of the natural growth conditions of Ladyzh-esnkaya and Ural’tseva for elliptic equations, Comm. Partial Differential Equations 16 Ž1991 , 311. ᎐361.

20. P. Marcellini, Un example de solution discontinue d’un probleme variationnel dans le cas scalaire, Preprint 11, Istituto Matematico U. Dini, Universita di Firenze, 1987` r88.

21. P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non Ž .

standard growth conditions, Arch. Rational Mech. Anal. 105 1989 , 267᎐284.

22. P. Marcellini, Regularity and existence of solutions of elliptic equations with p,q-growth Ž .

conditions, J. Differential Equations 90 1991 , 1᎐30.

23. E. Mascolo and G. Papi, Local boundedness of minimizers of integrals of the calculus of Ž .

variations, Ann. Mat. Pura Appl. 167 1994 , 323᎐339.

24. G. Moscariello and L. Nania, Holder continuity of minimizers of functionals with non¨

Ž .

standard growth conditions, Ricerche Mat. 40 1991 , 259᎐273.

25. L. Nirenberg, Remarks on strongly elliptic partial differential equations, Comm. Pure Ž .

Appl. Math. 8 1955 , 649᎐675.

26. A. Passarelli and F. Siepe, A regularity result for a class of anisotropic systems, Rend. Ž .

Istit. Mat. Uni¨. Trieste 28 1996 , 13᎐31.

27. B. Stroffolini, Global boundedness of solutions of anisotropic variational problems, Boll. Ž .

Un. Mat. Ital. A 5 1991 , 345᎐352.

Ž .

28. G. Talenti, Boundedness of minimizers, Hokkaido Math. J. 19 1990 , 259᎐279. 29. Q. Tang, Regularity of minimizers of nonisotropic integrals in the calculus of variations,

Ž .

Riferimenti

Documenti correlati

in conjunction with the nakṣatra- phalguṇī- (f.sg.), kṛttikā- (f.pl.), and citrā- (f.sg.) respectively, in A IV.2.23, according to the scheme introduced by A IV.2.21:

Patients and methods: 19 patients with liver metastases of various primary tumors consecutively treated with SABR (image-guidance with stereotactic ultrasound in combination

This work investigated new possible energy saving architectures for the hydraulic remote auxiliary utilities of an agricultural tractor. Alternative solutions to the standard

espressione ed associazione costituzionalmente garantite dal I Emendamento 108 , in un secondo momento l'orientamento generale pare essere mutato, in particolare quello

Even before their advancement as bioindicators, laboratory experiments have been conducted to investigate the effects of various ecological parameters on community composition,

Si sono ottenuti i profili della vela conoidale sezionando la “pa- tch” della superficie con tre piani perpendicolari a quello d’im- posta. Il profilo di chiave e quelli laterali

fluence of autonomic nervous system activation on changes in mean arterial blood pressure (MABP) in- duced by SCB, different groups of animals were pre- treated with the